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The permutation relationship for the almost bent (AB) functions in the finite field is a significant issue. Li and Wang proved that
a class of AB functions with algebraic degree 3 is extended affine- (EA-) inequivalent to any permutation. This study proves that
another class of AB functions, which was developed in 2009, is EA-inequivalent to any permutation. This particular AB function
is the first known quadratic class EA-inequivalent to permutation.

1. Introduction

Almost perfect nonlinear (APN) and almost bent (AB) func-
tions and significant theoretical meanings have been exten-
sively applied in finite field theory. The search for new APN
(see Definition 1) and AB (which also implies APN property)
functions has become an interesting topic. Power functions
have six known classes of APN functions, namely, Gold [1],
Kasami [2], Welch [3, 4], Niho [4], Inverse, and Dobbertin
[5]. Apart from power functions, APN function also has sev-
eral known classes. Accordingly, [6–11] show that all results
are quadratic functions (the meaning of degree is a little
different, see Definitions 2 and 3).

In the design of a block cipher, permutations over 𝐹2𝑛
with an even 𝑛 are preferred due to hardware and software
requirements. No APN permutation over 𝐹2𝑛 with an even 𝑛
was determined until Dillon [12] in 2009. Thus, the Big APN
problem emerged: Does such function exist? This problem is
still open for 𝑛 ≥ 8. Berger et al. in [13] provided a significant
solution for the Big APN problem: if the components of an
APN function over 𝐹2𝑛 with an even 𝑛 are plateaued, then
a bent component exists, which is not permuted. This result
is negative for quadratic functions because quadratic implies
reaching a plateau [14]. If 𝐹2𝑛 is changed by an odd 𝑛, then
the plateaued APN functions are equal to the AB functions
based on the result of [3]. The AB functions are conjectured
to be EA-equivalent (see Definition 4) to the permutations.

In 2013, Li and Wang [15] proved that the infinite class in [7]
is EA-inequivalent to any permutation.

Definition 1. 𝐹(𝑥) is called almost perfect nonlinear (APN)
function on 𝐹2𝑛 if 𝐷𝑎𝐹(𝑥) = 𝐹(𝑥 + 𝑎) − 𝐹(𝑥) are 2−1 on 𝐹2𝑛
(i.e., 𝐷𝑎𝐹(𝑥) = 𝐷𝑎𝐹(𝑦) if and only if 𝑥 = 𝑦 or 𝑥 + 𝑎 = 𝑦) for
all 𝑎 ∈ 𝐹2𝑛 \ {0}. Almost bent (AB) function is a kind of APN
function.

Definition 2. Every mapping 𝐹 : 𝐹2𝑛 → 𝐹2𝑛 can be unique
represented in the form𝐹(𝑥) = ∑2𝑛−1𝑖=0 𝑎𝑖𝑥𝑖, called the algebraic
normal form (ANF) of mapping 𝐹. ANF is zero (i.e., 𝑎𝑖 = 0
for any 0 ≤ 𝑖 ≤ 2𝑛 − 1) if and only if mapping is zero (i.e.,𝐹(𝑥) = 0 for any 𝑥).
Definition 3. Every 0 ≤ 𝑗 ≤ 2𝑛 − 1 is equal to an 𝑛 tuple𝑗1 ⋅ ⋅ ⋅ 𝑗𝑛 ∈ 𝑍𝑛2 as 𝑗 = ∑𝑛𝑘=1 𝑗𝑘2𝑛−𝑘, called the 𝑛 bits binary
representation of 𝑗. Integer 𝑗 and 𝑛 tuple 𝑗1 ⋅ ⋅ ⋅ 𝑗𝑛 will be
regarded as the same from here. The degree of monomial 𝑥𝑗
on 𝐹2𝑛 is not 𝑗 itself but the number of support supp(𝑗) ={𝑘 : 𝑗𝑘 ̸= 0}, called the weight of 𝑗 and denoted as 𝑤𝑡(𝑗). The
degree of mapping 𝐹 : 𝐹2𝑛 → 𝐹2𝑛 is deg𝐹 = max{𝑤𝑡(𝑖) :𝑎𝑖 ̸= 0}, the highest degree of all nonzero monomials in its
ANF. For example, linear mappings on 𝐹2𝑛 are in the form
𝐿(𝑥) = ∑𝑛−1𝑖=0 𝑙𝑖𝑥2𝑖 . Trace mapping tr(𝑥) = ∑𝑛−1𝑖=0 𝑥2𝑖 is a linear
mapping only of values 0 or 1.
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Definition 4. Two mappings 𝐹󸀠 and 𝐹 over 𝐹2𝑛 are called
extended affine- (EA-) equivalent if there are affine permu-
tations𝐴1, 𝐴2, and𝐴 over 𝐹2𝑛 such that 𝐹󸀠 = 𝐴1 ∘ 𝐹 ∘ 𝐴2 +𝐴
and affine-equivalent if 𝐴 = 0.
2. Methods and Tools

Lemma 5. 𝐹(𝑥) over 𝐹2𝑛 is EA-equivalent to permutation if
and only if there is linear mapping 𝐿(𝑥) such that 𝐹(𝑥) + 𝐿(𝑥)
is permuted on 𝐹2𝑛 .
Proof. If 𝐴1 ∘ 𝐹 ∘ 𝐴2 + 𝐴 is permuted, then 𝐴−11 ∘ (𝐴1 ∘ 𝐹 ∘𝐴2 + 𝐴) ∘ 𝐴−12 = 𝐹 + 𝐴−11 ∘ 𝐴 ∘ 𝐴−12 is also permuted over 𝐹2𝑛 .𝐴−11 ∘ 𝐴 ∘ 𝐴−12 = ∑𝑛−1𝑖=0 𝑙𝑖𝑥2𝑖 + 𝑐 denotes that 𝐹(𝑥) + ∑𝑛−1𝑖=0 𝑙𝑖𝑥2𝑖 ,
thereby permuted over 𝐹2𝑛 .

Circulation and cycle are introduced to identify and
combine similar terms in tr(∑2𝑛−1𝑖=0 𝑎𝑖𝑥𝑖).
Definition 6. Consider the circulation mapping 𝑔 : 𝑍𝑛2 → 𝑍𝑛2
defined as 𝑔(𝑗1𝑗2 ⋅ ⋅ ⋅ 𝑗𝑛) = 𝑗2 ⋅ ⋅ ⋅ 𝑗𝑛𝑗1, which means 2𝑗 when𝑗 ≤ 2𝑛−1 −1 or 2𝑗−2𝑛 +1when 𝑗 ≥ 2𝑛−1. 𝑐(𝑗) = {𝑔𝑖(𝑗) : 𝑖 ∈ 𝑍}
is called the circulation orbit of 𝑗 and its order |𝑐(𝑗)| = min{𝑖 ∈𝑁∗ : 𝑔𝑖(𝑗) = 𝑗} minimal positive period of 𝑗.

The lemma below is obvious since tr(𝑎𝑖𝑥𝑖) and tr(𝑎𝑗𝑥𝑗)
have no similar terms when 𝑖 ∉ 𝑐(𝑗).
Lemma 7. tr(∑2𝑛−1𝑖=0 𝑎𝑖𝑥𝑖) = 0 if and only if tr(∑𝑖∈𝑐(𝑗) 𝑎𝑖𝑥𝑖) = 0
for every 0 ≤ 𝑗 ≤ 2𝑛 − 1.
3. Main Result and Proof

If 𝐷𝑎𝐹(𝑥) = 0 has no solution for any 𝑎 ∈ 𝐹2𝑛 \ {0}, then𝐹(𝑥) is permuted. If 𝑎 exists, such that 𝑎𝑇(𝐴𝑥 + 𝑏) = 1, then𝐴𝑥+𝑏 = 0 has no solution based on linear algebra. If𝐷𝑎𝐹(𝑥)
is 2 − 1, then rank𝐴 = 𝑛 − 1 and 𝑎, which satisfies 𝑎𝑇𝐴 = 0,
is unique. Furthermore, 𝑎 satisfies 𝑎𝑇𝑏 = 1.

If tr(𝑎3) = 0, then tr(𝑎3𝐷𝑎−1(𝑥3 + tr(𝑥9) + 𝐿(𝑥))) =
tr(𝑎3𝐿(𝑎−1) + 1). If tr(𝑎3𝐿(𝑎−1)) = 0 when tr(𝑎3) = 0, then

[tr(𝑎3) + 1] tr(𝑎3𝐿(𝑎−1)) = 0 for any 𝑎. Obviously, 𝐿(𝑥) =𝑏2𝑥 + 𝑏𝑥2 and 𝐿(𝑥) = tr(𝑏𝑥) satisfy the identity. Theorem 8
will show that all kinds of 𝐿(𝑥) satisfying the identity are the
adding of the two kinds above.

Theorem 8. One assumes that 𝑛 ≥ 9 and 𝐿(𝑥) = ∑𝑛−1𝑖=0 𝑙𝑖𝑥2𝑖
over 𝐹2𝑛 . If (tr(𝑎3) + 1) tr(𝑎3𝐿(𝑎−1)) ≡ 0, then

𝐿 (𝑥) = (𝑙1 + 𝑏)2 𝑥 + (𝑙1 + 𝑏) 𝑥2 + tr (𝑏𝑥) . (1)

Proof. Initially,

(tr (𝑎3) + 1) tr (𝑎3𝐿 (𝑎−1))
= tr (𝑎3 (tr (𝑎3) + 1) 𝐿 (𝑎−1))
= tr(((𝑛−1∑

𝑖=0

𝑎3(2𝑖+1)) + 𝑎3)𝐿 (𝑎−1)) .
(2)

The exponents 3(2𝑖+1)+(−2𝑗) and 3+(−2𝑗) (plus negative
will be denoted asminus for convenience) can be divided into
the following orbits:

1: 3−20, 3−21, 3(20+1)−21, 3(20+1)−22, 3(21+1)−20,3(21 + 1) − 23, 3(2𝑛−1 + 1) − 22, 3(2𝑛−1 + 1) − 2𝑛−1.
101⋅ ⋅ ⋅ 1: 3 − 2𝑗 (2 ≤ 𝑗 ≤ 𝑛 − 1), 3(20 + 1) − 2𝑗 (𝑗 = 0 or3 ≤ 𝑗 ≤ 𝑛 − 1), 3(2𝑖 + 1) − 2𝑗 (2 ≤ 𝑖 ≤ 𝑛 − 2, 𝑗 = 𝑖 + 2)
or 𝑗 = 𝑖+2 and 101 of 3(21+1)−22 and 3(2𝑛−1+1)−21
and 1011 of 3(23 + 1) − 24 and 3(2𝑛−3 + 1) − 21.
10⋅ ⋅ ⋅ 011: 3(2𝑖 +1)− 2𝑗 (2 ≤ 𝑖 ≤ 𝑛−2, 𝑗 = 0, 1, 𝑖, 𝑖 + 1),
100011 of 3(21 + 1) − 2𝑛−2 and 3(2𝑛−1 + 1) − 2𝑛−3, 111 of3(21 + 1) − 21 and 3(2𝑛−1 + 1) − 20.
101⋅ ⋅ ⋅ 10⋅ ⋅ ⋅ 011: 3(2𝑖+1)−2𝑗, 4 ≤ 𝑖 ≤ 𝑛−2, 3 ≤ 𝑗 ≤ 𝑖−1
or 𝑖 + 3 ≤ 𝑗 ≤ 𝑛 − 1.
10001⋅ ⋅ ⋅ 1: 3(21 + 1) − 2𝑗 and 3(2𝑛−1 + 1) − 2𝑗 with 𝑗
unequal to 𝑛 − 2 and 𝑛 − 3. The condition 𝑛 ≥ 9 can
distinguish this class from 10100011.

The following equations were formulated based on
Lemma 7:

1: 𝑙1/20 + 𝑙1 + 𝑙1/41 + 𝑙1/22 + 𝑙1/80 + 𝑙3 + 𝑙1/4𝑛−1 + 𝑙22 = 0
101 ⋅ ⋅ ⋅ 1: 𝑙𝑗 + 𝑙1/2𝑗+1 + 𝑙𝑗+2 + 𝑙2𝑗2 = 0 (2 ≤ 𝑗 ≤ 𝑛 − 3)

101: 𝑙𝑛−1 + 𝑙1/20 + 𝑙1/22 + 𝑙1 = 0
1011: 𝑙𝑛−2 + 𝑙1/2𝑛−1 + 𝑙0 + 𝑙1/42 + 𝑙1/44 + 𝑙21 = 0

100011: 𝑙𝑛−2 + 𝑙2𝑛−3 + 𝑙1/44 + 𝑙40 + 𝑙1/46 + 𝑙81 = 0
111: 𝑙1 + 𝑙20 + 𝑙3 + 𝑙41 + 𝑙1/20 + 𝑙2𝑛−2 = 0

10 ⋅ ⋅ ⋅ 011: 𝑙3 + 𝑙80 + 𝑙5 + 𝑙161 = 0
𝑙𝑖 + 𝑙2𝑖0 + 𝑙𝑖+2 + 𝑙2𝑖+11 = 0 (5 ≤ 𝑖 ≤ 𝑛 − 3)

101 ⋅ ⋅ ⋅ 10 ⋅ ⋅ ⋅ 011: 𝑙𝑖 = 𝑙2𝑗𝑛+𝑖−𝑗 = 0 (3 ≤ 𝑖 ≤ 𝑛 − 3, 2 ≤ 𝑗 ≤ 𝑛 − 𝑖 − 1) .

(3)
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The last equation implies that 𝑙𝑖 = 𝑙2𝑖−𝑗𝑗 for all 3 ≤ 𝑖, 𝑗 ≤
𝑛 − 1. We let 𝑏 = 𝑙2𝑛−1; then 𝑙𝑖 = 𝑏2𝑖 for all 3 ≤ 𝑖 ≤ 𝑛 − 1.

We let 𝑗 = 𝑛 − 3 in the second equation; thus, 𝑙𝑛−3 + 𝑙1/2𝑛−2 +𝑙𝑛−1 + 𝑙2𝑛−32 = 𝑙𝑛−1 + 𝑙2𝑛−32 = 0. Therefore, 𝑙2 = 𝑏4.
Moreover, 𝑙𝑛−1 = 𝑏1/2 and 𝑙2 = 𝑏4 are substituted into the

third equation; thus, (𝑙0 + 𝑏)1/2 = 𝑙1 + 𝑏2.
Therefore, 𝐿(𝑥) = (𝑙1 + 𝑏2)2𝑥 + (𝑙1 + 𝑏2)𝑥2 + tr(𝑏𝑥).𝑥3 + tr(𝑥9) + 𝐿(𝑥) cannot be permuted unless 𝐿(𝑥) is in

the form 𝑎𝑥2 + 𝑎2𝑥 + tr(𝑏𝑥). Thus only 𝑥3 + tr(𝑥9) + 𝑎𝑥2 +𝑎2𝑥 + tr(𝑏𝑥) should be considered. If 𝑦 = 𝑥 + 𝑎, then it is
equal to 𝑦3 + tr(𝑦9) + tr(𝑏𝑦 + 𝑎8𝑦 + 𝑎𝑦8) + 𝑎3 + tr(𝑎9 + 𝑎𝑏),
only different in a constant with 𝑦3+tr(𝑦9)+tr(𝑏󸀠𝑦), in which𝑏󸀠 = 𝑏 + 𝑎8 + 𝑎1/8.
Theorem 9. 𝑥3 + tr(𝑥9) + tr(𝑏𝑥) with 𝑛 ≥ 5 odd is not
permuted.

Proof. 𝑥3 is permuted on 𝐹2𝑛 because 𝑛 is odd; its inverse is𝑥𝑡 in which supp(𝑡) = {1, 3, . . . , 𝑛}. So the theorem is equal to𝑥 + tr(𝑥3) + tr(𝑏𝑥𝑡) which is not permuted. There is 𝐷1(𝑥 +
tr(𝑥3) + tr(𝑏𝑥𝑡)) = 𝐷1 tr(𝑏𝑥𝑡) = tr(𝑏∑𝑗∈Λ 𝑥𝑗), in which Λ ={0 ≤ 𝑗 ≤ 2𝑛 − 1 : supp(𝑗) ⊂ supp(𝑡)}. Every 𝑗 with 𝑗1 = 𝑗𝑛 = 1
satisfies 𝑖 ∉ 𝑐(𝑗) if 𝑖 ∈ Λ \ {𝑗}, which means tr(𝑏𝑥𝑗) has no
similar terms with tr(𝑏𝑥𝑖); and |𝑐(𝑗)| = 𝑛, which means the
terms in tr(𝑏𝑥𝑗) are not similar to each other. Since 𝑗1 and 𝑗𝑛
will be adjacent after circulation, when 𝑗1 = 𝑗𝑛 = 1 there isΛ ∩ 𝑐(𝑗) = {𝑗}, which means 𝑏𝑥𝑗 is not similar to other terms
in tr(𝑏∑𝑗∈Λ 𝑥𝑗).ThusANFof tr(𝑏∑𝑗∈Λ 𝑥𝑗) is not 1. According
to Definitions 2 and 3, there exists 𝑥 ∈ 𝐹2𝑛 such that tr(𝑏𝑥𝑡) =
tr(𝑏(𝑥+1)𝑡). However,𝑥+tr(𝑥3) is equal to𝑥+1+tr(𝑥+1)3.
4. Conclusions

The AB class in [11] when 𝑛 ≥ 9 is EA-inequivalent to
permutations. However, distinguishing whether the AB class
is CCZ-equivalent to permutations is still unknown. Fur-
thermore, the relationship of the permutations of the APN
classes in [6, 8–10] and class with tr𝑚/𝑛 in [7] is unknown.
The solution to these problems will be a significant topic in
algebra and cryptography in the future.
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