548 research outputs found

    Diffusive MIMO Molecular Communications: Channel Estimation, Equalization and Detection

    Full text link
    In diffusion-based communication, as for molecular systems, the achievable data rate is low due to the stochastic nature of diffusion which exhibits a severe inter-symbol-interference (ISI). Multiple-Input Multiple-Output (MIMO) multiplexing improves the data rate at the expense of an inter-link interference (ILI). This paper investigates training-based channel estimation schemes for diffusive MIMO (D-MIMO) systems and corresponding equalization methods. Maximum likelihood and least-squares estimators of mean channel are derived, and the training sequence is designed to minimize the mean square error (MSE). Numerical validations in terms of MSE are compared with Cramer-Rao bound derived herein. Equalization is based on decision feedback equalizer (DFE) structure as this is effective in mitigating diffusive ISI/ILI. Zero-forcing, minimum MSE and least-squares criteria have been paired to DFE, and their performances are evaluated in terms of bit error probability. Since D-MIMO systems are severely affected by the ILI because of short transmitters inter-distance, D-MIMO time interleaving is exploited as countermeasure to mitigate the ILI with remarkable performance improvements. The feasibility of a block-type communication including training and data equalization is explored for D-MIMO, and system-level performances are numerically derived.Comment: Accepted paper at IEEE transaction on Communicatio

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201

    On Investigations of Machine Learning and Deep Learning Techniques for MIMO Detection

    Get PDF
    This paper reviews in detail the various types of multiple input multiple output (MIMO) detector algorithms. The current MIMO detectors are not suitable for massive MIMO (mMIMO) scenarios where there are a large number of antennas. Their performance degrades with the increase in number of antennas in the MIMO system. For combatting the issues, machine learning (ML) and deep learning (DL) based detection algorithms are being researched and developed. An extensive survey of these detectors is provided in this paper, alongwith their advantages and challenges. The issues discussed have to be resolved before using them for final deployment

    Symbol Error Rate Performance of Box-relaxation Decoders in Massive MIMO

    Get PDF
    The maximum-likelihood (ML) decoder for symbol detection in large multiple-input multiple-output wireless communication systems is typically computationally prohibitive. In this paper, we study a popular and practical alternative, namely the Box-relaxation optimization (BRO) decoder, which is a natural convex relaxation of the ML. For iid real Gaussian channels with additive Gaussian noise, we obtain exact asymptotic expressions for the symbol error rate (SER) of the BRO. The formulas are particularly simple, they yield useful insights, and they allow accurate comparisons to the matched-filter bound (MFB) and to the zero-forcing decoder. For BPSK signals the SER performance of the BRO is within 3dB of the MFB for square systems, and it approaches the MFB as the number of receive antennas grows large compared to the number of transmit antennas. Our analysis further characterizes the empirical density function of the solution of the BRO, and shows that error events for any fixed number of symbols are asymptotically independent. The fundamental tool behind the analysis is the convex Gaussian min-max theorem

    Turbo codes and turbo algorithms

    Get PDF
    In the first part of this paper, several basic ideas that prompted the coming of turbo codes are commented on. We then present some personal points of view on the main advances obtained in past years on turbo coding and decoding such as the circular trellis termination of recursive systematic convolutional codes and double-binary turbo codes associated with Max-Log-MAP decoding. A novel evaluation method, called genieinitialised iterative processing (GIIP), is introduced to assess the error performance of iterative processing. We show that using GIIP produces a result that can be viewed as a lower bound of the maximum likelihood iterative decoding and detection performance. Finally, two wireless communication systems are presented to illustrate recent applications of the turbo principle, the first one being multiple-input/multiple-output channel iterative detection and the second one multi-carrier modulation with linear precoding

    On the Achievable Rates of Decentralized Equalization in Massive MU-MIMO Systems

    Full text link
    Massive multi-user (MU) multiple-input multiple-output (MIMO) promises significant gains in spectral efficiency compared to traditional, small-scale MIMO technology. Linear equalization algorithms, such as zero forcing (ZF) or minimum mean-square error (MMSE)-based methods, typically rely on centralized processing at the base station (BS), which results in (i) excessively high interconnect and chip input/output data rates, and (ii) high computational complexity. In this paper, we investigate the achievable rates of decentralized equalization that mitigates both of these issues. We consider two distinct BS architectures that partition the antenna array into clusters, each associated with independent radio-frequency chains and signal processing hardware, and the results of each cluster are fused in a feedforward network. For both architectures, we consider ZF, MMSE, and a novel, non-linear equalization algorithm that builds upon approximate message passing (AMP), and we theoretically analyze the achievable rates of these methods. Our results demonstrate that decentralized equalization with our AMP-based methods incurs no or only a negligible loss in terms of achievable rates compared to that of centralized solutions.Comment: Will be presented at the 2017 IEEE International Symposium on Information Theor
    corecore