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Abstract—This paper reviews in detail the various types of multiple input multiple output (MIMO) detector algorithms. The current MIMO 

detectors are not suitable for massive MIMO (mMIMO) scenarios where there are a large number of antennas. Their performance degrades 

with the increase in number of antennas in the MIMO system. For combatting the issues, machine learning (ML) and deep learning (DL) based 

detection algorithms are being researched and developed. An extensive survey of these detectors is provided in this paper, alongwith their 

advantages and challenges. The issues discussed have to be resolved before using them for final deployment. 
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I.  INTRODUCTION  

The core problem of any type of communication is to 

accurately or nearly reproduce a message transmitted from one 

location to another [1]. In wireless communication networks, 

Multiple Input Multiple Output (MIMO) antenna technology 

has considerably improved data speeds, dependability, and 

overall performance. The advantages offered by MIMO 

systems, have revolutionized wireless communication and are 

now an essential part of any modern wireless network. Multiple 

data streams may be sent at once over the same frequency range 

thanks to MIMO. The capacity of wireless networks may be 

efficiently increased using MIMO systems, which employ 

multiple antennas at the transmitter and receiver. More users 

may be served within a given bandwidth owing to increased 

data rates and improved spectral efficiency made possible due 

to this [2].  

Multiple data streams may be sent at once over the same 

frequency range thanks to MIMO. The capacity of wireless 

networks may be efficiently increased using MIMO systems, 

which employ multiple antennas at the transmitter and receiver. 

More users may be served within a given bandwidth owing to 

increased data rates and improved spectral efficiency made 

possible due to this [3]. Wireless networks can have better 

coverage and a longer range thanks to MIMO technologies.  

MIMO may concentrate energy in certain directions by 

utilizing spatial multiplexing and beamforming methods, 

enabling messages to travel further distances and scale barriers 

more successfully. This is especially advantageous in urban and 

interior situations, where signal attenuation and obstruction are 

frequent problems. In busy wireless scenarios, MIMO can 

reduce interference. MIMO systems may recognize and divide 

signals from multiple sources, even when they share the same 

frequency ranges, by taking advantage of spatial dimension. 

This enhances the overall quality of service and allows for a 

more harmonious union of various wireless networks.  

Wi-Fi, LTE, and 5G are just a few of the wireless 

communication technologies that MIMO technology is 

compatible with [4]. It is a flexible and scalable approach for 

enhancing wireless networks since current equipment may be 

upgraded using firmware or software. MIMO is still a crucial 

component of higher-capacity and more dependable 

communication networks as wireless technologies develop. 

In MIMO wireless communication, despite the several 

added advantages, a big obstacle is the subpar performance of 

detection techniques resulting from the trade-off between 

computational complexity and error rate performance [5]. The 

computational complexity is extraordinarily high while 

performance is at its best, and vice versa. In this research paper, 

a survey of various advances in AI for effective MIMO 

detection is done. The organization of the rest of the paper is 

described as follows. In the next section, the applications of 

different types of artificial intelligence (AI) techniques in 
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wireless communication are discussed which is followed by 

discussion on the importance of implementation of a good 

MIMO detection system in the following section. Then in the 

next section, the usage of metaheuristics for MIMO detection is 

discussed. In the upcoming section, a survey on MIMO 

detection using AI techniques is discussed in detail which is 

followed by the concluding remarks. 

II. AI FOR WIRELESS COMMUNICATION  

For finding solutions to complex problems in wireless 

communications, AI techniques such as machine learning (ML) 

and deep learning (DL) are replacing the conventionally used 

metaheuristics and classical optimization approaches. Better 

accuracy, automatic feature extraction, scalability, ability to 

handle large amounts of data that is changing (evolving), need 

for lesser human intervention, improved decision making and 

fewer chances of falling into local optimum are few of the many 

advantages offered by DL and ML techniques.A novel type of 

artificial neural networks (ANNs) forms the foundation of deep 

learning (DL) which are known as Deep Neural Networks 

(DNNs) [6]. Reinforcement Learning (RL) is also emerging as 

a solution to solve many issues and challenges in existing 

MIMO systems [7-8]. These technologies have provided 

numerous solutions for various MIMO communication issues, 

including resource allocation, positioning, sensing, and 

localization, as well as signal detection, classification, and 

compression. AI-enabled MIMO communication is the best tool 

for giving wireless systems the adaptability, wisdom, and 

productivity required to manage the limited radio resource 

effectively and provide consumers with the highest level of 

service. Various supervised and unsupervised learning 

techniques are used for solving complex challenges in MIMO 

wireless communication systems. 

Federated learning (FL) is also being used for MIMO 

wireless communication system's performance enhancement 

[9]. By training AI models without allowing anyone else to see 

or access the data, federated learning offers a method for 

releasing data to power new AI applications. It is a distributed 

DL method. FL is applied to wireless communication for 

channel estimation, symbol detection, vehicular networks 

(V2X), network slicing, the internet of things, computational 

offloading at the edge, etc [10]. In [11], a new scheme for cell-

free massive MIMO (CFmMIMO) is proposed for networks to 

support any FL framework. 

In [12], FL's deployment is investigated in an energy-

harvesting mMIMO wireless system for serving different user 

equipment which is fueled by independent energy-harvesting 

sources. In [13], FL is used for the estimation of CSI for both 

simple and reflective intelligent surface (RIS) aided mMIMO 

systems. A lot of research work has been done for the 

improvement of the performance of MIMO systems in wireless 

communications using ML and  DL which is briefly described 

in Figure 1. 

 

Figure 1. Survey Roadmap of Applications of AI in Performance 

Enhancement of MIMO Wireless Communication Systems 

III. THE PROBLEM OF MIMO DETECTION  

A. Importance of an Efficient MIMO Detection 

Algorithm 

Multiple antennas are utilized at the transmitter and receiver in 

a MIMO system to establish numerous signal channels between 

the two components. As a result, the system performs the 

transmission and reception of numerous streams of data 

concurrently over the same frequency range. Channel 

estimation and signal detection are the two fundamental 

processes in the MIMO detection process, which are described 

as follows: 

(i.) Channel Estimation: Estimating the channel between the 

transmitter and receiver is the initial stage in MIMO detection. 

To do this, known pilot symbols are transmitted from each 

transmitting antenna which is measured by receiving antennas. 

These observations are used by the receiver to calculate the 

channel coefficients between each set of antennas. 

(ii.) Signal Detection: The receiver uses the received signals and 

the estimated channel coefficients to identify the broadcast 

symbols after the channel has been estimated. In MIMO 

systems, a number of signal detection methods are available, 

such as Maximum Likelihood (ML), Zero-Forcing (ZF), and 

Minimum Mean Square Error (MMSE). 
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Thus, MIMO detection is a challenging procedure that starts 

with calculating the transmitter-receiver’s channel before 

utilizing a variety of signal detection [46]. 

B. Optimal MIMO Receiver 

Data detection from noisy measurements of the sent signals 

is a challenge in the design of MIMO receivers for wireless 

communication systems. Every practical circumstance 

inevitably results in the receiver making sporadic mistakes 

because of the noise. Consequently, from both a theoretical and 

practical standpoint, it is appealing to build a receiver that has 

the quality that this likelihood of error is modest. For MIMO 

signal detection, Maximum Likelihood (ML) and Maximum A 

Posteriori Probability (MAP) Detectors are the ideal or optimal 

receivers. 

In ML detection, the receiver evaluates all potential symbol 

combinations in order to identify the most likely sent symbols. 

Though computationally expensive, this method offers the best 

error rate performance. The vector that minimizes the Euclidean 

distance between the received vector and all potential 

combinations of the sent symbol vectors is the one that ML 

detection produces, as given in equation 1. Here, y denotes the 

received symbol, x is the transmitted symbol, H is the channel 

matrix, and 𝑥̂ is the estimated symbol. 

𝑥̂  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑥|| 𝑦 −  𝐻𝑥||
2
          (1) 

 In order to maximize the probability function as stated in 

equation 2, the ideal symbol vector for ML detection must be 

identified [47]. 

𝑥̂  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋𝑁𝑇  𝑓(𝑦|𝑥)          (2) 

 Here, f(y | x) denotes the likelihood function for x for the given 

received vector y and NT stands for the number of transmitting 

antennas. It is well known that the ML detection problem is NP-

hard. This indicates that no existing algorithms for solving the 

problem under consideration are polynomially complicated in 

the number of symbols jointly identified unless there is some 

additional underlying structure. For this reason, many 

suboptimal receivers that are computationally simpler have 

been considered in the literature. The MAP detector is an 

additional ideal detector that estimates the transmitted symbols 

using the prior knowledge of the transmitted symbol vector x 

and the received signal vector y [48]. The likelihood function 

and prior probability of the sent symbols are both taken into 

account by the MAP detector while estimating the transmitted 

symbols. In low SNR scenarios, this method outperforms the 

ML detector, but it is computationally complex. Due to their 

lower complexity and effective performance, suboptimal 

detection approaches like Minimum Mean Square Error 

(MMSE) and Zero-Forcing (ZF) detection are utilized in 

practice [49].  

C. Sub-optimal MIMO Receiver 

 Various other types of sub optimal MIMO detectors are also 

used which are discussed in this section. The first category is 

linear sub-optimal MIMO detectors such as ZF, MMSE, and 

matched filter (MF). The advantage of this type of MIMO 

detector is that these are computationally efficient for small-

scale MIMO systems and provide good performance. However, 

the disadvantage is that these involve a matrix inversion of O(N 

cube) complexity and thus offer limited performance for 

massive MIMO. 

In ZF detection, the channel effects are eliminated by 

multiplying the received signals by the inverse of the channel 

matrix. The transmitted symbols are then recovered by 

demodulating the resulting signal. This approach makes the 

assumption that the channel matrix is invertible and that the 

system is noise-free. In reality, the channel matrix might not be 

invertible and the system is almost always noisy. ZF detection 

experiences signal distortion and noise amplification despite 

how straightforward it is. To balance computational complexity 

and performance in MMSE detection, the receiver applies a 

weighted sum of the ZF and ML detection techniques. The 

second category is linear iterative sub optimal MIMO receivers 

include Gauss Seidal (GS), Conjugate Gradient (CG), 

Successive Over Relaxation (SOR), Jacobi, etc. The main 

advantage of these types of MIMO receivers is that there is no 

need for performing the computationally expensive task of 

matrix inversion and thus only a complexity of O(N square) 

makes them implementation-friendly. The disadvantage, 

however, is that their performance is bounded by minimum 

mean square error (MMSE).  

Interference cancellation (IC) is another category of non-

linear sub-optimal MIMO detectors . These are of two types i.e., 

successive interference cancellation (SIC) and parallel 

interference cancellation (PIC). The benefit of using these is 

that error correction coding is integrated into the multi-user 

detection (MUD) process. However, their disadvantage is that 

these add higher complexity to the system [50-51]. 

Tree search-based non-linear sub-optimal MIMO receivers 

are of two types i.e., depth-first based and breadth-first based. 

Their advantage is reduced complexity as compared to optimal 

ones, with near-optimal performance. Their disadvantage is that 

there is a possibility of exponential worst-case computational 

complexity and it is thus impractical for massive MIMO 

systems [52].  

The message parsing (MP) nonlinear sub-optimal MIMO 

receivers such as approximate MP (AMP), orthogonal AMP 
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(OAMP), belief propagation (BP), and expectation propagation 

(EP) perform better as compared to MMSE with acceptable 

complexity. The AMP detector is implementation friendly, 

simple, and cheap and is used for many practical scenarios. 

However, the disadvantage of using these is that they suffer 

from convergence problems due to loopy factor graphs. AMP, 

being an iterative method, may diverge in problematic settings. 

It works fine for known channel distributions but not for 

complex channel environments such as the Saleh-Valenzuela 

channel. Another category is the sub-optimal semi-definite 

relaxation (SDR) MIMO detector which is more robust thaan 

AMP and has polynomial complexity [53]. However, it is much 

slower than AMP in practice. Thus, to overcome the issues of 

conventionally used sub-optimal MIMO detection algorithms, 

metaheuristic techniques as well as AI techniques are used 

which are described in the next two sections. 

IV. MIMO DETECTION USING METAHEURISTICS 

For MIMO detection, metaheuristic algorithms have been 

investigated, especially in cases when there are few transmit and 

receive antennas. Through effective exploration of the solution 

space, metaheuristics may be applied to enhance the detection 

process. The performance of several detection methods, such as 

maximum likelihood (ML) detection or sphere decoding, can be 

enhanced by combining metaheuristics with them. 

Metaheuristics are flexible enough to adapt to various MIMO 

system configurations, such as varied numbers of antennas, 

modulation types, and channel parameters. Some of the MIMO 

detection algorithms by the usage of metaheuristics are 

described in Table I. 

TABLE I.  RECENT ADVANCES ON MIMO DETECTION ALGORITHMS USING 

METAHEURISTICS 

Sr. No. Year Authors Ideas 

1 2007 

A. A. Khan, 

M. Naeem and 

S. I. Shah [54] 

A Particle Swarm Optimization 

(PSO) based MIMO detection 

algorithm that provides almost near 

optimal BER performance and that 

too in lesser number of iterations is 

demonstrated. 

2 2010 

K. Khurshid, 

S. Irteza and 

A. A. Khan 

[55] 

An Ant Colony Optimization (ACO) 

based MIMO system receiver 

detection algorithm for symbol 

detection in MIMO system is 

proposed. 

3 2010 
J.-K. Lain and 

J. Y. Chen [56] 

A modified version ACO for MIMO 

detection is used which outperforms 

the older inefficient detection 

schemes such as the ML Detector as 

they need exhaustive search. 

     4 2014 

J. C. Marinello 

and T. Abrão 

[57] 

A combination of ACO with lattice 

reduction (LR) algorithm is done to 

obtain the LR-ACO based MIMO 

receiver which provides betterment 

in the performance and complexity 

tradeoff in MIMO systems’ 

Sr. No. Year Authors Ideas 

detection schemes at the receiver 

side. 

5 2017 
A. Datta and 

V. Bhatia [58] 

A robust detection algorithm called 

modified gravitational search 

algorithm (MGSA) is proposed for 

MIMO detection which exploits the 

concept of the gravitational search 

algorithm for MIMO detection. 

6 2019 
A. Datta and 

V. Bhatia [59] 

For large MIMO detection, a 

stochastic bio-inspired meta-

heuristic method is put forth in this 

research.  The bioluminescence of 

fireflies serves as the inspiration for 

the proposed method, which updates 

results in the search space using a 

probabilistic measure. 

7 2021 

B. Trotobas, 

Y. Akourim, 

A. Nafkha, et. 

al. [60] 

The benefits of adding exploration 

to the traditional tree-based MIMO 

detectors are accomplished by the 

usage of a new interpretation of the 

bio-inspired detector based on the 

firefly algorithm (FA). 

 

However, there are a few considerations. In comparison to 

certain machine learning techniques, metaheuristics may have a 

higher computational cost depending on the particular method 

utilized. For large-scale MIMO systems, this factor is very 

crucial.For metaheuristics to work at their best, parameters must 

frequently be manually adjusted. This tweaking procedure 

might take a while and calls for subject knowledge.  

V. MIMO DETECTION USING AI 

Deep learning techniques in particular have shown potential 

for MIMO detection problems. In MIMO systems, deep 

learning models like DNNs and convolutional neural networks 

(CNNs) can extract relevant features from the received signals 

and learn complicated mappings. They have the capacity to 

handle massive MIMO setups and achieve great detection 

accuracy. Deep learning models are well suited for MIMO 

detection as nonlinear mappings are frequently used in MIMO. 

Deep learning models can capture complex correlations 

between received signals and sent symbols. In MIMO channels, 

deep learning models can take use of the spatial and temporal 

correlations to enhance detection performance. The entire 

detection process may be made simpler by using end-to-end 

deep learning models that directly translate incoming signals to 

identified symbols [61]. Especially in massive MIMO systems, 

the conventionally used detectors don’t show good performance 

and hence quite a lot of learning-based detectors are being 

developed. However, despite the advantages, there are a few 

considerations as well. Large quantities of labelled training data 

are often needed for machine learning models, especially deep 

learning models. When employing machine learning for MIMO 

detection, the accessibility of labelled MIMO datasets may be a 
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factor. Deep learning model deployment and training can be 

computationally demanding, particularly for large-scale MIMO 

systems. It could be necessary to use effective training 

techniques and enough processing power.  

The offline training stage of a DNN detector incorporates 

the majority of its computational complexity. A DNN detector, 

on the other hand, provides data detection during runtime with 

substantially reduced computing complexity. To do this, the 

operation may be completed in batches, which offers 

polynomial time complexity for data detection based on 

straightforward matrix additions and multiplications. These 

operations are far more straightforward than the 

computationally intensive matrix inversions/pseudo-inversions 

or searching methods used in traditional linear or nonlinear 

detection systems. Another important contrast between the two 

is that batch operations used in DNN designs are more suited to 

hardware implementation than hand-engineered methods. Some 

of the MIMO detectors based on AI are discussed in this section. 

In [62], a model-driven DL network called as OAMPNet is 

proposed for MIMO detection. This network has good 

performance because it inherits the advantages of the Bayes-

optimal signal recovery algorithm and deep learning methods. 

The network can be trained quickly and easily because there 

aren't many parameters that need to be optimised. Additionally, 

the time-varying channel may be handled by this network. 

However, there are a few cons to its performance as 

well.Though it outperforms the traditional OMAP MIMO 

detection algorithm, its performance is very poor as compared 

to the ML detectors. It is also suitable only for simple settings 

such as unitarily-invariant channels and since it uses matrix 

inversion operations, it is quite computationally expensive. 

In [63], a twin-neural network based architecture is 

proposed for MIMO symbol detection and its performance is 

found to be quite close to that of the ML detector. A model-

driven DL-based MIMO detection is accomplished by DetNet 

(Detection Network) [64]. For neural network ML detection, it 

was made utilizing the Projected Gradient Descent Method (or 

PGDM). It outperforms the more widely used expectation 

propagation-based MIMO detectors and iterative MIMO detec-

tors like AMP, which are unable to operate at their best when 

faced with challenging circumstances and uncertain channel 

distribution. DetNet also beats MIMO detectors based on sphere 

decoding in terms of Symbol Error Rate (SER). Compared to 

Semi Definite Relaxation (SDR) MIMO detectors, it is more 

than 30 times faster and delivers higher accuracy. DetNet 

receives input in the form of signals that were received and 

accurate Channel Status Information (CSI). With a known 

channel distribution, it has shown to be reliable under 

challenging fixed channel conditions and varying channel 

cases. Due to DetNet's speed, real-time, near-optimal 

performance is feasible. It simply needs to train once in order to 

apply it to several models. Also, in the DetNet architecture, at 

each layer, there is an input of the weighted average of the 

outputs of all the previous layers, just like in ResNet. The 

limitations of DetNet are as follows. 

  Though it is better than LMMSE, it is more 

computationally expensive owing to its sophisticated structure. 

Training of DetNet is unstable for realistic channels. It is only 

suitable for simpler settings such as low-order modulation 

schemes, independent and identically distributed Gaussian 

channels etc, & doesn’t work for practical channel. In [65], a 

large scale MIMO detector is proposed which uses a DNN and 

a low-density parity-check (LDPC) code for working. In [66], a 

neural network based MIMO detection technique is developed 

and it is found out that DNN works better than convolutional 

neural networks (CNNs). Also, this MIMO detector is shown to 

provide better BER performance & robustness than ZF, MMSE 

and DetNet detectors even when the channel conditions are not 

perfectly known. In [67], a deep CNN based network is 

proposed for removing the effects of correlated noise 

environments in MIMO detectors. It can be used with any linear 

MIMO detector such as ZF, MMSE, etc. Similarly, in [68], a 

deep CNN network is proposed to be used along with an ML 

detector to suppress interference in vehicular MIMO networks. 

Further, in [69], an improved version of OAMPNet, termed as 

OAMPNet2 was developed. However, even though its 

performance was 5 dB better than OAMPNet, it was only able 

to work for unitarily-invariant channels and shows poor 

performance for realistic channels. It also had higher 

complexity than OAMP-Net. 

MMNet, which is a deep learning based massive MIMO 

detector, is ten times less computationally expensive and even 

then achieves the same error rate performance as OAMPNet 

[70]. Though it works for massive MIMO detection, its 

hardware implementation has yet to be studied and 

corresponding challenges have to be solved. It has the ability to 

work with any type of channel but since it requires online 

retraining, it is very computationally expensive. In [71], an extra 

neural network which taken in channel input and outputs 

weights of the detector, called hypernetwork is added to the 

neural network-based MIMO detector. The combination is 

called HyperMIMO and it achieves a performance close to that 

of MMNet trained for each channel realization, and outperforms 

OAMPNet. It is robust to user mobility up to a certain point, 

which is encouraging for practical use.  

In [72], a learning to learn iterative search algorithm (LISA) 

is proposed for the detection of signals in MIMO. It shows 

better performance than ZF, MMSE, MMNet, and DetNet 

MIMO detectors. A BiLSTM-DetNet (BD-Net) is developed in 

[73] that shows better performance than DetNet and is easier to 
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train comparatively. In [74], to overcome the limitations of the 

existing DL-based MIMO detectors, such as low convergence 

speed and low robustness to new scenarios, a new MIMO 

receiver that supports training in online mode is proposed. For 

this EPNet and TurboNet are developed along with an LSTM-

based online training method for meta-learning. In [75], a 

recurrent neural network (RNN) - reservoir computing (RC) 

MIMO-OFDM detector called RCNet is developed which 

performs online training. In [76], a recurrent equivariant MIMO 

detector (RE-MIMO) is developed which shows robustness 

towards misspecification of the channel and is extendable for 

any number of users. It shows better symbol error rate (SER) 

performance than OAMPNet, SDR, AMP, DetNet, etc. It has to 

be tested for more realistic channels before further deployment. 

In [77], a variational Bayesian inference based MIMO detector, 

termed VBINet is developed and it shows better performance 

than OAMPNet and MMNet as it has the ability to learn noise 

variance from the given data.  

In [78], the already existing EPNet is enhanced by utilizing 

a hypernetwork and developing the new HyperEPNet MIMO 

detector. In [79], SRN, a low complexity, deep unfolded sparse 

refinement network based on mMIMO uplink detection is 

shown to have good performance in terms of BER. In [80], a 

dynamic neural network (DyNN) is developed for the 

enhancement of the efficiency and lowering of the cost of 

computation in the wireless communication network. Also, two 

improved versions of DetNet are proposed, i.e., a confidence 

criterion-based dynamic improved DetNet (CD-IDetNet) and a 

policy network-based dynamic improved DetNet (PD-IDetNet). 

These have the advantage of reducing computational 

complexity and still achieving good accuracy. In [81], a model-

driven MIMO OFDM detector, known as conjugate gradient 

OAMPNet (CG-OAMPNet) is developed, which is an 

improved version of the OAMPNet in terms of complexity.   

In [82], for MIMO OFDM detection, a structure-based 

neural network, termed as RC-Sruct which uses reservoir 

computing(RC) is developed. When rank and link adaptation is 

used, its benefits over current techniques become more obvious. 

With regard to 5G/5G-Advanced and beyond, the newly 

announced RC-Struct provides insight into how to combine 

communication domain knowledge with learning-based receive 

processing. In [83], a real-time learning DL-based MIMO 

OFDM detector is constructed by using RNN and extreme 

machine learning (ELM). In [84], an improved version of 

ADMM-based DNN is developed to reduce the computational 

complexity which is termed a penalized ML problem via the 

sharing-alternating direction method of multipliers (PS-

ADMMNet). Though it performs better than DetNet, MMSE, 

and several ADMM-based detectors, it has more run time 

complexity. Further, a penalized sharing-ADMM detector with 

a hidden layer network (PS-ADMM-HNet) is also developed. 

Though it has less computational time complexity than PS-

ADMMNet, its performance falls behind it. In [85], a real-time 

ML-enhanced AMP massive MIMO detector, termed as 

LAMANet is developed which shows better performance than 

previous DL-based detectors such as OAMPNet, MMNet etc. A 

lot of research work has been and is being conducted for 

developing the best possible MIMO detector and AI plays an 

important role in it. Before deployment of these AI based 

MIMO detectors, the challenges discussed in this paper have to 

be addressed. Further, for other types of MIMO scenarios, such 

as cell-free mMIMO, distributed MIMO etc, work has to be 

done in future for development of efficient detection 

algorithms. 

VI. CONCLUSIONS  

A review of various types of methods and techniques for 

MIMO detection has been discussed in detail in this paper. The 

problem of MIMO detection has been discussed in detail which 

is followed by the need of development of a MIMO detector 

which is both computationally efficient and accurate. The role 

of AI in designing of MIMO detectors has been discussed along 

with some of the AI based detectors, their challenges and their 

advantages. It has been highlighted that for deployment of AI 

based MIMO detectors, a lot of improvement has to be done and 

the existing challenges have to be resolved. 
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