97,610 research outputs found

    Bounded Languages Meet Cellular Automata with Sparse Communication

    Full text link
    Cellular automata are one-dimensional arrays of interconnected interacting finite automata. We investigate one of the weakest classes, the real-time one-way cellular automata, and impose an additional restriction on their inter-cell communication by bounding the number of allowed uses of the links between cells. Moreover, we consider the devices as acceptors for bounded languages in order to explore the borderline at which non-trivial decidability problems of cellular automata classes become decidable. It is shown that even devices with drastically reduced communication, that is, each two neighboring cells may communicate only constantly often, accept bounded languages that are not semilinear. If the number of communications is at least logarithmic in the length of the input, several problems are undecidable. The same result is obtained for classes where the total number of communications during a computation is linearly bounded

    Fast cellular automata with restricted inter-cell communication: computational capacity

    Get PDF
    A d-dimensional cellular automaton with sequential input mode is a d-dimensional grid of interconnected interacting finite automata. The distinguished automaton at the origin, the communication cell, is connected to the outside world and fetches the input sequentially. Often in the literature this model is referred to as iterative array. We investigate d-dimensional iterative arrays and one-dimensional cellular automata operating in real and linear time, whose inter-cell communication is restricted to some constant number of bits independent of the number of states. It is known that even one-dimensional one-bit iterative arrays accept rather complicated languages such as {ap│prim} or {a2n│n∈N}[16]. We show that there is an infinite strict double dimension-bit hierarchy. The computational capacity of the one-dimensional devices in question is compared with the power of communication-restricted two-way cellular automata. It turns out that the relations are quite diferent from the relations in the unrestricted case. On passing, we obtain an infinite strict bit hierarchy for real-time two-way cellular automata and, moreover, a very dense time hierarchy for every k-bit cellular automata, i.e., just one more time step leads to a proper superfamily of accepted languages.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Fast cellular automata with restricted inter-cell communication: computational capacity

    Get PDF
    A d-dimensional cellular automaton with sequential input mode is a d-dimensional grid of interconnected interacting finite automata. The distinguished automaton at the origin, the communication cell, is connected to the outside world and fetches the input sequentially. Often in the literature this model is referred to as iterative array. We investigate d-dimensional iterative arrays and one-dimensional cellular automata operating in real and linear time, whose inter-cell communication is restricted to some constant number of bits independent of the number of states. It is known that even one-dimensional one-bit iterative arrays accept rather complicated languages such as {ap│prim} or {a2n│n∈N}[16]. We show that there is an infinite strict double dimension-bit hierarchy. The computational capacity of the one-dimensional devices in question is compared with the power of communication-restricted two-way cellular automata. It turns out that the relations are quite diferent from the relations in the unrestricted case. On passing, we obtain an infinite strict bit hierarchy for real-time two-way cellular automata and, moreover, a very dense time hierarchy for every k-bit cellular automata, i.e., just one more time step leads to a proper superfamily of accepted languages.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Transductions Computed by One-Dimensional Cellular Automata

    Full text link
    Cellular automata are investigated towards their ability to compute transductions, that is, to transform inputs into outputs. The families of transductions computed are classified with regard to the time allowed to process the input and to compute the output. Since there is a particular interest in fast transductions, we mainly focus on the time complexities real time and linear time. We first investigate the computational capabilities of cellular automaton transducers by comparing them to iterative array transducers, that is, we compare parallel input/output mode to sequential input/output mode of massively parallel machines. By direct simulations, it turns out that the parallel mode is not weaker than the sequential one. Moreover, with regard to certain time complexities cellular automaton transducers are even more powerful than iterative arrays. In the second part of the paper, the model in question is compared with the sequential devices single-valued finite state transducers and deterministic pushdown transducers. It turns out that both models can be simulated by cellular automaton transducers faster than by iterative array transducers.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Receptor uptake arrays for vitamin B12, siderophores and glycans shape bacterial communities

    Full text link
    Molecular variants of vitamin B12, siderophores and glycans occur. To take up variant forms, bacteria may express an array of receptors. The gut microbe Bacteroides thetaiotaomicron has three different receptors to take up variants of vitamin B12 and 88 receptors to take up various glycans. The design of receptor arrays reflects key processes that shape cellular evolution. Competition may focus each species on a subset of the available nutrient diversity. Some gut bacteria can take up only a narrow range of carbohydrates, whereas species such as B.~thetaiotaomicron can digest many different complex glycans. Comparison of different nutrients, habitats, and genomes provide opportunity to test hypotheses about the breadth of receptor arrays. Another important process concerns fluctuations in nutrient availability. Such fluctuations enhance the value of cellular sensors, which gain information about environmental availability and adjust receptor deployment. Bacteria often adjust receptor expression in response to fluctuations of particular carbohydrate food sources. Some species may adjust expression of uptake receptors for specific siderophores. How do cells use sensor information to control the response to fluctuations? That question about regulatory wiring relates to problems that arise in control theory and artificial intelligence. Control theory clarifies how to analyze environmental fluctuations in relation to the design of sensors and response systems. Recent advances in deep learning studies of artificial intelligence focus on the architecture of regulatory wiring and the ways in which complex control networks represent and classify environmental states. I emphasize the similar design problems that arise in cellular evolution, control theory, and artificial intelligence. I connect those broad concepts to testable hypotheses for bacterial uptake of B12, siderophores and glycans.Comment: Added many new references, edited throughou

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable
    • …
    corecore