300 research outputs found

    Montgomery's method of polynomial selection for the number field sieve

    Get PDF
    The number field sieve is the most efficient known algorithm for factoring large integers that are free of small prime factors. For the polynomial selection stage of the algorithm, Montgomery proposed a method of generating polynomials which relies on the construction of small modular geometric progressions. Montgomery's method is analysed in this paper and the existence of suitable geometric progressions is considered

    On the coefficients of the polynomial in the number field sieve

    Get PDF
    Polynomial selection is very important in number field sieve. If the yield of a pair of polynomials is closely correlated with the coefficients of the polynomials, we can select polynomials by checking the coefficients first. This can speed up the selection of good polynomials. In this paper, we aim to study the correlation between the polynomial coefficients and the yield of the polynomials. By theoretical analysis and experiments, we find that a polynomial with the ending coefficient containing more small primes is usually better in yield than the one whose ending coefficient contains less. One advantage of the ending coefficient over the leading coefficient is that the ending coefficient is bigger and can contain more small primes in root optimizing stage. Using the complete discrimination system, we also analyze the condition on coefficients to obtain more real roots

    Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.--2017) and another new proof

    Full text link
    In this article, we provide a comprehensive historical survey of 183 different proofs of famous Euclid's theorem on the infinitude of prime numbers. The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions. All the references concerning the proofs of Euclid's theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into 8 subsections of Section 2 in dependence of the methods that are used in them. {\bf Related new 14 proofs (2012-2017) are given in the last subsection of Section 2.} In the next section, we survey mainly elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet's theorem. In Section 4, we give a new simple "Euclidean's proof" of the infinitude of primes.Comment: 70 pages. In this extended third version of the article, 14 new proofs of the infnitude of primes are added (2012-2017

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Glosarium Matematika

    Get PDF

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research
    corecore