
On the Number Field Sieve:
Polynomial Selection and Smooth Elements in Number Fields

Nicholas Vincent Coxon

BSc (hons)

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in June 2012

School of Mathematics and Physics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15154606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The number field sieve is the asymptotically fastest known algorithm for factoring large integers that

are free of small prime factors. Two aspects of the algorithm are considered in this thesis: polynomial

selection and smooth elements in number fields. The contributions to polynomial selection are twofold.

First, existing methods of polynomial generation, namely those based on Montgomery’s method, are

extended and tools developed to aid in their analysis. Second, a new approach to polynomial generation

is developed and realised. The development of the approach is driven by results obtained on the

divisibility properties of univariate resultants.

Examples from the literature point toward the utility of applying decoding algorithms for algebraic

error-correcting codes to problems of finding elements in a ring with a smooth representation. In this

thesis, the problem of finding algebraic integers in a number field with smooth norm is reformulated as

a decoding problem for a family of error-correcting codes called NF-codes. An algorithm for solving the

weighted list decoding problem for NF-codes is provided. The algorithm is then used to find algebraic

integers with norm containing a large smooth factor. Bounds on the existence of such numbers are

derived using algorithmic and combinatorial methods.

ii



Declaration by the Author

This thesis is composed of my original work, and contains no material previously published or written

by another person except where due reference has been made in the text. I have clearly stated the

contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance,

survey design, data analysis, significant technical procedures, professional editorial advice, and any

other original research work used or reported in my thesis. The content of my thesis is the result of

work I have carried out since the commencement of my research higher degree candidature and does

not include a substantial part of work that has been submitted to qualify for the award of any other

degree or diploma in any university or other tertiary institution. I have clearly stated which parts of

my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the General Award Rules of The University of Queensland, immediately made available for

research and study in accordance with the Copyright Act 1968.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s)

of that material. Where appropriate I have obtained copyright permission from the copyright holder

to reproduce material in this thesis.

iii



Publications During Candidature

[47] Nicholas Coxon. On nonlinear polynomial selection for the number field sieve. ArXiv e-Print

archive, arXiv:1109.6398 [math.NT], September 2010. http://arxiv.org/abs/1109.6398.

[48] Nicholas Coxon. List decoding of number field codes. Designs, codes and cryptography, 2013.

doi:10.1007/s10623-013-9803-x.

Publications Included in the Thesis

Publications [47] and [48] have been incorporated into Chapter 3 and Chapter 5, respectively.

Contributions by Others to the Thesis

As supervisor, Victor Scharaschkin helped guide the research presented in the thesis. There has been

no contribution by others to the writing of the thesis.

Statement of Parts of the Thesis Submitted to Qualify for the Award of Another Degree

None.

iv



Acknowledgements

I am greatly indebted to Victor Scharaschkin for his supervision during my candidature. The support

he has extended to me, and his informed guidance and advice, have been critically important through-

out my postgraduate and undergraduate studies. I would like to thank Gary Carter, Eric Mortenson

and Graham Norton for helpful discussions and their comments on draft chapters of this thesis.

I would like to acknowledge financial support of the Australian Postgraduate Award.

I have had the pleasure of working with and learning from many of the staff and students of the

Mathematics Department. I am proud to call many of you my friends, and wish you all the best in

your future endeavours.

It would not have been possible to write this thesis without the help and encouragement of my fellow

postgraduate students. In particular, I would like to thank Tristan Dunning, Peter Finch, Samuel

Hambleton, Dejan Jovanovic, Geoff Martin, Thomas McCourt and Sian Stafford with whom daily

conversations have been constructive, disruptive when needed most, and always greatly appreciated.

To all the friends with whom I have shared many adventures whilst working on this thesis, thank you.

Finally, to my family, thank you for always being there with love and support.

v



Keywords

Integer factorisation, number field sieve, polynomial selection, smooth numbers, list decoding, number

field codes, geometry of numbers, resultants.

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 010101, Algebra and Number Theory, 89.939%

ANZSRC code: 080201, Analysis of Algorithms and Complexity, 10.061%

Fields of Research (FoR) Classification

FoR code: 0101, Pure Mathematics, 100.000%

vi



Contents

List of Tables ix

Nomenclature xi

1 Introduction 1

1.1 Congruence of Squares Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Morrison–Brillhart Approach . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Finding Smooth Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Complexity Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Number Field Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Outline of the Number Field Sieve . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Complexity Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 The Polynomial Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Smooth Elements in Number Fields . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Preliminaries on Polynomial Selection 17

2.1 Quantifying Properties which Influence Polynomial Yield . . . . . . . . . . . . . . . . 17

2.1.1 Quantifying Size Properties: Skewed Polynomial Norms . . . . . . . . . . . . . 18

2.1.2 Quantifying Root Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Ranking Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Number Field Sieve Polynomial Generation . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 The Montgomery–Murphy Algorithm . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Kleinjung’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Nonlinear Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



2.2.4 A Lower Bound on Polynomial Generation . . . . . . . . . . . . . . . . . . . . 42

3 Nonlinear Polynomial Selection 45

3.1 Preliminaries on Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Nonlinear Polynomial Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 The Orthogonal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Nonlinear Polynomial Generation in Detail . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Existing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Length d+ 1 Construction Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Parameter Selection for Algorithm 3.3.3 . . . . . . . . . . . . . . . . . . . . . . 59

3.4 The Koo–Jo–Kwon Length d+ 2 Construction Revisited . . . . . . . . . . . . . . . . . 61

3.4.1 Parameter Selection for Algorithm 3.4.2 . . . . . . . . . . . . . . . . . . . . . . 63

4 An Approach to Polynomial Selection 65

4.1 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Divisibility Properties of Univariate Resultants . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Definition and Properties of Resultants . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Proof of Lemma 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Combinatorial Bounds on Polynomial Selection . . . . . . . . . . . . . . . . . . . . . . 79

4.4 An Initial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Parameter Selection for Algorithm 4.4.2 . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Algorithmic Bounds on Polynomial Selection . . . . . . . . . . . . . . . . . . . 93

4.5 Future Directions: Improvements and Generalisations . . . . . . . . . . . . . . . . . . 95

4.5.1 Special-q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.2 Lattice Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.3 A Multivariate Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Smooth Elements in Number Fields 111

5.1 Review of NF-codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Combinatorial Bounds on List Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Weighted List Decoding of NF-codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Additional Notes on Implementing Algorithm 5.3.2 . . . . . . . . . . . . . . . . 119

viii



5.3.2 Analysis of the Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.3 Decoding with Integral Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.4 Parameter Selection for Algorithm 5.3.2 . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Smooth Algebraic Integers in Number Fields . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.1 Finding Smooth Algebraic Integers in Number Fields . . . . . . . . . . . . . . . 128

5.4.2 Bounds on Smooth Algebraic Integers in Number Fields . . . . . . . . . . . . . 131

6 Conclusions and Future Research 135

References 139

Appendix 153

A Appendices for Chapter 5 155

A.1 Number Field Codes with Known Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Decoding with Nonzero Shift Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 157

ix



List of Tables

4.1 Bounds for Example 4.3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Parameters for Example 4.4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Bounds for Example 4.4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Parameters for Example 4.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Bounds for Example 5.4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Bounds for Example 5.4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

x



Nomenclature

The following is a list of abbreviations and symbols that appear in the thesis. Where possible, a page

number is provided to indicate where an abbreviation or symbol first appears. The list of symbols is

incomplete, with only those symbols that are not defined elsewhere in the thesis, or that appear in

multiple chapters, being listed. All remaining symbols are possibly used for several different purposes

throughout the thesis, but are always used consistently within the confines of a single chapter, where

the relevant definition is found.

List of Abbreviations

CFRAC Continued fractions method, p. 1.

GP Geometric progression, p. 41.

NFS Number field sieve, p. 1.

QS Quadratic Sieve, p. 1.

SNFS Special number field sieve, p. 1.

List of Symbols

Z, Q, R, C The set of integers, rationals, real numbers and complex numbers, respectively.

Fq The finite field of order q, where q is a prime power.

Z/nZ The ring of integers modulo n.

A× The group of units of a ring A.

GLn(A) The general linear group of n× n invertible matrices with entries in a ring A.

〈a1, . . . , an〉 The ideal generated by elements a1, . . . , an of a ring.

xi



bxc, dxe, bxe The floor, ceiling and nearest integer (defined to be bx+ 1/2c) of x ∈ R, respectively.

Re(x), Im(x) The real and imaginary parts of x ∈ C, respectively.

νp(x) The p-adic valuation of x ∈ Q, p. 14.

ψ(x, y) The number of y-smooth integers in the interval [1, x], p. 3.

lc(f) The leading coefficient of a polynomial f .

disc(f) The discriminant of a polynomial f .

‖f‖p,s The skewed p-norm of a polynomial f ∈ R[x], p. 18.

‖f‖p The skewed p-norm of a polynomial f ∈ R[x] in the special case where s = 1, p. 19.

‖f‖L2,s The skewed L2-norm of a polynomial f ∈ R[x], p. 19.

Syl(f1, f2) The Sylvester matrix of f1, f2 ∈ A[x], where A is an integral domain, p. 70.

Res(f1, f2) The resultant of f1, f2 ∈ A[x], where A is an integral domain, p. 71.

α(f, y) The α-value over primes up to y > 0 of an irreducible polynomial f ∈ Z[x], p. 23.

OK The ring of algebraic integers in a number field K, p. 9.

DK The discriminant of a number field K, p. 113.

NK(x) The (field) norm of x ∈ K, where K is a number field, p. 9.

Na The norm of an ideal a in the ring of integers of a number field, p. 113.

sizes(x) The s-shifted size of x ∈ K, where K is a number field, p. 113.

T2 The map T2 : K → R defined by x 7→
∑

σ σ(x)σ(x), where K is a number field and

σ ranges over the field embeddings of K in the field C, p. 117.

δR The Minkowski map, p. 118.

〈 , 〉 The usual inner product in Rn, p. 46.

‖.‖2 The norm on Rn induced by 〈 , 〉, p. 40.

‖.‖2,s For s > 0 and x ∈ Rn+1, ‖x‖2,s = ‖xS‖2, where S = s−
n
2 · diag(1, s, . . . , sn), p. 53.

xii



det Λ The determinant of a lattice Λ ⊂ Rn, p. 40.

λi(Λ) The ith minimum of a lattice Λ ⊂ Rn, p. 46.

γn Hermite’s constant for dimension n, p. 47.

EΛ The Q-vector subspace of Qn generated by any basis of a lattice Λ ⊆ Zn, p. 48.

Λ⊥ The orthogonal lattice of a lattice Λ ⊆ Zn, p. 48.

ΛS The lattice {x · S | x ∈ Λ}, where Λ ⊂ Rn is a lattice and S ∈ GLn(R), p. 49.

(b1, . . . , bk)S The basis (b1S, . . . , bkS) for the lattice ΛS , where (b1, . . . , bk) is a basis of a lattice

Λ ⊂ Rn and S ∈ GLn(R), p. 49.

[c0, . . . , cl−1] A vector with entries that form a geometric progression modulo N , p. 41.

diag(a1, . . . , an) The n× n diagonal matrix with entries a1, . . . , an on the main diagonal.

xiii



The problem of factoring integers is a good one to test our mettle as mathematicians. First

it is a fundamental as a problem can be. Second, while having the patina of centuries of

history, the problem has taken on a new urgency for its connection with public-key cryp-

tography. Third, it it is a very hard problem, but not so hard that we do not occasionally

gain an insight and make an advance.

Carl Pomerance [145]



Chapter 1

Introduction

This chapter introduces the number field sieve (NFS) and the two problems that are the focus of this

thesis: the selection of polynomials for the number field sieve and finding smooth elements in number

fields. The congruence of squares approach to integer factorisation is described. Then concepts central

to the number field sieve are introduced through an examination of the Morrison-Brillhart approach

to constructing a congruence of squares. This is followed by a brief description of the number field

sieve, including a discussion of its asymptotic advantage over previous algorithms. Throughout, special

attention is given to the polynomial selection problem and the problem of finding smooth elements in

number fields. The chapter concludes with an outline of the remainder of the thesis.

Throughout the thesis, N denotes a positive odd integer that requires factorisation.

1.1 Congruence of Squares Factoring

Congruence of squares factoring algorithms attempt to factor a composite integer N by finding so-

lutions to the congruence x2 ≡ y2 (mod N). For each solution to the congruence, a factor of N

can potentially be obtained by computing gcd(x± y,N). For N containing at least two distinct odd

prime factors, the computation of gcd(x − y,N) yields a factor of N for at least half of the pairs

(x, y) ∈ Z/NZ × Z/NZ with x2 ≡ y2 (mod N) and gcd(xy,N) = 1. This approach to factoring has

been adopted in many algorithms including, but not limited to, Dixon’s random squares method [52],

Morrison and Brillhart’s continued fractions method (CFRAC) [123], Pomerance’s quadratic sieve

(QS) [143], the special number field sieve (SNFS) [104] and finally the number field sieve (NFS) [29].

At a high level, existing congruence of squares factoring algorithms may each be described by a choice

of ring A and homomorphism ϕ : A→ Z/NZ×Z/NZ, together with a method for generating elements

in A whose image under ϕ lies on the diagonal D = {(x, x) | x ∈ (Z/NZ)×}. Such elements, called

relations, are usually constructed in a random or pseudo-random manner. Then common to existing

algorithms is an approach whereby relations are combined multiplicatively to obtain squares in A. For

1



2 1. Introduction

a square a2 ∈ A, such that a ∈ A and ϕ(a2) ∈ D, the image of a yields a congruence of squares: if

ϕ(a) = (x, y), then ϕ(a2) = (x2, y2) ∈ D, thus x2 ≡ y2 (mod N). Therefore, provided such a square

a2 ∈ A, with ϕ(a) = (x, y), computing gcd(x± y,N) may yield a factorisation of N .

The random squares, continued fractions and the quadratic sieve algorithms share a common choice of

A and ϕ: in each algorithm, A = Z× Z and the homomorphism ϕ is defined by (u, v) 7→ (u mod N, v

mod N). Further to sharing a common choice of A and ϕ, the algorithms each employ the Morrison–

Brillhart approach [123] to constructing products of relations which form squares in Z × Z. In the

remainder of this section, the Morrison–Brillhart approach is discussed and a primitive analysis of

algorithms based on the approach provided.

1.1.1 The Morrison–Brillhart Approach

The Morrison–Brillhart approach to constructing squares in Z×Z involves combining relations of the

form (u2, v(u)), where v(u) denotes the least absolute remainder of u2 modulo N . This approach

appears in algorithms that predate Morrison and Brillhart’s continued fractions algorithm. However,

it was Morrison and Brillhart who introduced an efficient linear algebra based approach for identifying

combinations of relations (u2, v(u)) forming squares in Z × Z. The relations (u2, v(u)) combined in

their approach are restricted to those where v(u) is a y-smooth integer.

Definition 1.1.1. A nonzero integer v is called y-smooth if it has no prime factor exceeding y.

Let π(y) denote the number of primes less than or equal to y. To each y-smooth integer v, one can

assign a (π(y) + 1)-dimensional vector v(v), with entries indexed by −1 and the primes p ≤ y, such

that an entry indexed by a prime p contains its exponent in the factorisation of v, and the entry index

by −1 contains 0 or 1 depending on whether v is positive or negative respectively. Then a product

of nonzero y-smooth integers v1, . . . , vn is a square in Z if and only if
∑n

i=1 v(vi) contains all even

entries. Since only the parity of the entries in the final vector is of concern, the exponent vectors can

simply be viewed as elements of the vector space Fπ(y)+1
2 . Therefore, given nonzero y-smooth integers

v1, . . . , vn such that there exists a subset of the vi’s whose product is a square in Z, such a subset may

be identified by finding a linear dependence among the exponent vectors v(vi) ∈ Fπ(y)+1
2 .

For positive integer parameters y and k, the Morrison–Brillhart approach begins with a search to

find π(y) + 1 + k distinct relations (u2
i , v(ui)) such that v(ui) is y-smooth. If the search is successful,

then there exists at least k distinct subsets S of indices such that
∑

i∈S v(v(ui)) = 0 in Fπ(y)+1
2 . By

performing linear algebra over F2, t ≥ k such subsets S1, . . . ,St are identified. For each subset Sj ,
setting

xj =
∏
i∈Sj

ui and yj =

√∏
i∈Sj

v(ui)

leads to a congruence of squares x2
j ≡ y2

j (mod N). Consequently, the final step of the approach is to

attempt to factor N by computing gcd(xj ± yj , N), for 1 ≤ j ≤ t. The task of finding dependencies



1.1. Congruence of Squares Factoring 3

among the exponent vectors may be performed by algorithms such as Gaussian elimination (see [93]),

structured Gaussian elimination [136, 98, 147, 17], the block Lanczos algorithm [41, 121, 138] or the

block Wiedemann algorithm [42, 163]. For a matrix of dimension n, the running time of Gaussian

elimination is O(n3); the running time of the block Lanczos and Wiedemann algorithms is O(nw),

where w is the number of nonzero entries in the matrix (called the weight of the matrix).

Algorithms based on the Morrison–Brillhart approach differ in how the relations (u2
i , v(ui)), with

v(ui) y-smooth, are constructed. Existing algorithms such as the random squares method, CFRAC

and QS find relations by generating a stream of quadratic residues v1, v2, . . ., which are then tested

for smoothness. The time taken by this approach then depends on the smoothness probabilities of the

residues vi. For integers for x, y ≥ 1, define

ψ(x, y) = |{v ∈ [1, x] ∩ Z | v is y-smooth}|.

Canfield et al. [30] showed that

ψ
(
x, x1/u

)
= xu−u+o(1),

uniformly as u → ∞ and u < (1 − ε) log x/ log log x. By setting u = log x/ log y, the approximation

ψ(x, y) ≈ xu−u is obtained for y > log1+ε x and x large. Suppose the residues vi all lie in some

interval [1, x]. Under the heuristic assumption that the residues are as likely to be smooth as a

randomly chosen integer in [1, x], the probability that a randomly chosen residue vi is y-smooth is

approximately ψ(x, y)/x ≈ u−u, where u = log x/ log y. The assumption on the residues is necessary,

since they form a special subset of the interval [1, x] and may not be as likely to be smooth a randomly

chosen integer from the interval. However, as a heuristic, the following principle is obtained: smaller

residues lead to faster factorisations.

1.1.2 Finding Smooth Residues

Dixon’s random squares method generates residues by randomly choosing integers u from the interval

[1, N ] and computing v(u). The residues are of size O(N) and are tested individually for smoothness

by trial division by primes up to the smoothness bound y. Morrison and Brillhart’s continued fractions

method employs an idea due to Lehmer and Powers [100] whereby quadratic residue modulo N are

computed from the continued fractions expansions of
√
lN , for small square-free l ∈ Z: if ai/bi is the

i-th convergent of
√
lN , then vi = a2

i − lNb2i is a quadratic residue modulo N . Like Dixon’s algorithm,

the continued fractions algorithm tests for smoothness by trial division. The residues obtained from

the continued fractions expansion of
√
lN are of size O(

√
lN). Therefore, the continued fractions

algorithm generates resides with substantially higher smoothness probabilities than those occurring

in Dixon’s algorithm.

Based on an idea due to Schroeppel (see [143, Section 6]) for collectively identifying smooth polynomial

values, Pomerance introduced the quadratic sieve algorithm. The algorithm generates quadratic resides



4 1. Introduction

of size O(
√
N) by evaluating the polynomial f = x2 −N at x near

√
N . The identification of smooth

residues is then based on the observation that p | f(r), for some r ∈ Z, if and only if p | f(r+kp), for all

k ∈ Z. In particular, to identify smooth values of f , the quadratic sieve begins by selecting a positive

number M and initialising an array containing the values |f(x)|, for all x ∈ [
√
N −M,

√
N +M ] ∩ Z.

For each prime p ≤ y and each root r of f modulo p, the values |f(r + kp)|, where k ∈ Z, that are

contained in the array are retrieved one at a time, divided by the highest power of p that divides

them, and the quotient returned to the array. Once this process, called sieving, has been completed

for all primes p ≤ y, those values in the array containing 1 correspond to y-smooth values of f . The

y-smooth values identified by sieving are then trial divided to obtain their factorisations. Using a

sieve to identify smooth values eliminates unnecessary and expensive trial divisions of non-smooth

residues. In practice, sieving can be made more efficient by initialising the array with approximations

to log |f(x)| instead of |f(x)| and subtracting integer multiples of log p from those entries such that

p | f(x). For this approach, the effect of numerical rounding must be taken into account.

When sieving, the residues produced by f grow as |x −
√
N | does. If sieving is performed over

the interval [
√
N − M,

√
N + M ] ∩ Z, where M � N , the values taken by |f(x)| for x near the

boundary of the interval are of approximate size 2M
√
N . Multiple polynomial variants of the quadratic

sieve (see [144]) aim to limit the growth of residues by sieving multiple quadratic polynomials over

shorter intervals. The most successful of these approaches, due to Montgomery [156], uses quadratic

polynomials of the form f(x) = a2x2 + bx + c, with gcd(a,N) = 1 and b2 − 4a2c ≡ 0 (mod N).

Polynomials of this form are seen to produce quadratic residues modulo N :

f(x) =

(
ax+

b

2a

)2

− b2 − 4a2c

4a2
≡
(
ax+

b

2a

)2

(mod N).

Therefore, the quadratic sieve can proceed as before by consecutively sieving each polynomial for y-

smooth values. However, there is now the advantage that, once the residues produced by a polynomial

become too large, smaller residues may be obtained by switching to a new polynomial. Switching

polynomials comes at the cost of recomputing the roots of the new polynomial modulo primes up to

the smoothness bound. This problem is overcome by another variant of the quadratic sieve called

the self initialising quadratic sieve. Details of this algorithm and its development are not given here.

Instead, the reader is referred to the literature [148, 137, 6, 39].

The time spent sieving may be reduced by weakening the requirement that the residues be y-smooth,

thus increasing the supply of relations. Variants of the quadratic sieve that use this approach, called

large prime variants, introduce an additional bound y1 and require that residues be y-smooth with

the exception of one, two, or sometimes three prime factors in the interval [y, y1]. Relations that are

y-smooth are then called full-relations and those containing additional large primes are called partial

relations. Large prime variants of the quadratic sieve combine partial relations multiplicatively to

obtain new residues that are the product of a square and a y-smooth integer. Exponent vectors can

then be formed for the y-smooth factors of the resulting residues and linear algebra performed as



1.1. Congruence of Squares Factoring 5

normal. Overall, the construction of additional exponents vectors from partial relations can be used

to significantly reduce the time spent sieving. Details of large prime variants of the quadratic sieve

can be found in the literature [105, 24, 111].

1.1.3 Complexity Estimates

The relationship between the time spent generating relations and the running time of an algorithm

based on the Morrison–Brillhart approach is clear: the running time of the algorithm is governed by

the effort required to find sufficiently many smooth residues as to guarantee the existence of a linear

dependence among the exponent vectors. In Section 1.1.1, heuristics were provided to illustrate the

dependence of smoothness probabilities on the size of the quadratic residues produced. In this section,

the arguments presented there are extended to provide a foundation for analysing the complexity of

algorithms based on the Morrison–Brillhart approach. The reader is referred to the discussion by

Buhler, Lenstra and Pomerance [29, Section 10] for an in depth treatment of the results stated in this

section.

For the analysis of this section, the following function is introduced: for real variables x, u, v with

0 ≤ u ≤ 1, the L-function Lx[u, v] is defined by

Lx[u, v] = exp
(
v(log x)u(log log x)1−u) .

As the parameter u varies from 0 to 1, the L-function varies between polynomial and exponential

functions of log x.

The Morrison–Brillhart approach requires that as N →∞, y1+o(1) y-smooth quadratic residues v(ui)

are found. Suppose that some procedure produces residues v(ui) with absolute value lying in the

interval [1, x]. If the residues are just as likely to be y-smooth as random integers in [1, x], and can

each be tested for smoothness in time yo(1), then the expected effort required to find the required

number of y-smooth residues is xy1+o(1)/ψ(x, y). In general, it can not be asserted that the residues

are random. However, xy1+o(1)/ψ(x, y) provides a heuristic estimate for the time required to find

sufficiently many y-smooth residues v(ui). With this heuristic, the following theorem due to Buhler

et al. [29, Theorem 10.1] bounds the effort required as a function of x:

Theorem 1.1.2. Let g(y) be a function that is defined for all y ≥ 2 such that g(y) ≥ 1 and g(y) =

y1+o(1) as y →∞. Then as x→∞,

xg(y)

ψ(x, y)
≥ Lx[1/2,

√
2 + o(1)]

uniformly for all y ≥ 2. Moreover, equality holds for x→∞ if and only if y = Lx[1/2, 1/
√

2 + o(1)].

For each of the algorithms discussed in Section 1.1.2, there exists a constant c > 0 such that the



6 1. Introduction

residues tested for smoothness are bounded in absolute value by x = N1/c+o(1), for N → ∞. By

choosing the smoothness parameter y in each algorithm such that

y = LN1/c+o(1) [1/2, 1/
√

2 + o(1)] = LN [1/2, 1/
√

2c+ o(1)], for N →∞,

it follows that the residues can each be tested for smoothness in time yo(1) using, for instance, the ellip-

tic curve smoothness test [110]. In the case of the quadratic sieve, residues are tested for smoothness

in the same time by sieving. Moreover, Theorem 1.1.2 implies that heuristic estimate xy1+o(1)/ψ(x, y)

for the time spent searching for the residues is minimised for this choice of y, with the time equaling

LN1/c+o(1) [1/2,
√

2 + o(1)] = LN [1/2,
√

2/c+ o(1)] = y2+o(1), for N →∞.

If block Wiedemann or block Lanzcos are used for the matrix step, then the time taken is proportional

to the product of the dimension and weight of the matrix. The number of nonzero entries in each row

is O(log(N)) = yo(1) and each dimension of the matrix is y1+o(1). Therefore, the matrix step takes

time y2+o(1). As a result, the heuristic running time of each algorithm discussed in Section 1.1.2 is

the form LN [1/2,
√

2/c+ o(1)], for some constant c > 0 and N →∞. For the quadratic sieve, c = 2,

resulting in a heuristic running time of LN [1/2, 1 + o(1)], for N → ∞. For further examples, see

Examples 10.5–10.7 provided by Buhler et al. [29, Section 10].

Each of the algorithms discussed in Section 1.1.2 produce residues of size exponential in logN . The

above analysis shows that such an algorithm has a heuristic running time of LN [1/2, v+o(1)], for some

constant v > 0. To obtain an algorithm with running time LN [u, v+ o(1)], where u < 1/2, the bound

x on the numbers tested for smoothness must be at most subexponential in logN . Such a bound is

achieved by the number field sieve.

1.2 The Number Field Sieve

The number field sieve [102] was introduced by Pollard [141] in 1988 for the factorisation of integers

of the form x3 + k, where x and k are integers such that x is large and k is small. The algorithm was

subsequently developed further by Lenstra, Lenstra, Manasse, and Pollard [104] to obtain an algorithm

for factoring integers of the form re − s, where r and |s| are small positive integers and e is large.

Their algorithm, now referred to as the special number field sieve, may be applied more generally to

the factorisation of integers of the form are + bsj (see [56]). The designation as special results from

the development of the general number field sieve by Buhler, Lenstra and Pomerance [29], which is

capable of factoring integers without special form. In this section, a brief description and analysis of

the number field sieve is provided. Then the polynomial selection problem for the number field sieve

is defined. The section concludes by introducing the definition of smooth elements in number fields

and discussing their role in the number field sieve.



1.2. The Number Field Sieve 7

In this section and throughout the thesis, results from algebraic number theory are extensively used.

For relevant background, the reader is referred to the texts of Marcus [114] and Narkiewicz [128].

1.2.1 Outline of the Number Field Sieve

The number field sieve begins with the selection of two integer polynomials

f1(x) =

d1∑
i=0

a1,ix
i and f2(x) =

d2∑
i=0

a2,ix
i,

with f1 6= ±f2, that are primitive and irreducible over Q, and for which there exists an integer

m such that fi(m) ≡ 0 (mod N), for i = 1, 2. Associated with each polynomial fi is a number

field Ki = Q(αi), where αi ∈ C is a root of fi. Let QN denote the ring of rational numbers with

denominator coprime to N . Then the requirement that f1 and f2 share m as a root modulo N gives

rise to reduction homomorphisms φi : QN [αi]→ Z/NZ induced by φi(αi) ≡ m (mod N), for i = 1, 2.

In terms of the general algebraic approach to congruence of squares factoring discussed in Section 1.1,

the number field sieve may be described by the choice of ring A = QN [α1]×QN [α2] and homomorphism

ϕ : A → Z/NZ× Z/NZ defined by (δ1, δ2) 7→ (φ1(δ1), φ2(δ2)). A congruence of squares modulo N is

therefore obtained by finding a square in QN [α1]×QN [α2] with ϕ-image that lies on the diagonal of

Z/NZ× Z/NZ.

The method used in the number field sieve to construct a square in QN [α1]×QN [α2] involves multi-

plicatively combining elements of the form (a− bα1, a− bα2), for coprime integers a and b. That is, a

set S of coprime integer pairs (a, b) is constructed such that, for i = 1, 2,

∏
(a,b)∈S

(a− bαi) = γ2
i , for some γi ∈ QN [αi]. (1.1)

For all (a, b) ∈ Z2, the ϕ-image of (a− bα1, a− bα2) lies on the diagonal of Z/NZ×Z/NZ. Therefore,

after a set S of coprime integer pairs satisfying (1.1) is constructed by the algorithm, a congruence of

squares modulo N is obtained:

φ1(γ1)2 ≡ φ2(γ2)2 (mod N).

The approach used in the number field sieve to construct a congruence of squares requires that three

problems be solved:

1. The problem of constructing the polynomials f1 and f2.

2. The problem of finding a set S of coprime integer pairs satisfying (1.1).

3. Given a set S satisfying (1.1), the problem of computing the roots γ1 and γ2.



8 1. Introduction

In the remainder of this section, the methods used in the number field sieve to solve the first two

problems are briefly outlined. The methods used to address the third problem are not discussed in

this thesis. Instead, the reader is referred to the literature [29, 44, 19, 120, 54, 129] for details. In

Section 1.2.2, a fourth problem is considered: determining the asymptotic complexity of the number

field sieve.

Polynomial Selection Briefly

A particularly simple method for generating polynomials for the number field sieve is the base-m

method. The method, introduced by Buhler et al. [29, Section 3], begins with the selection of a degree

parameter d ≥ 2 (selection of d is discussed in Section 1.2.2). After setting m =
⌊
N1/d

⌋
, N is then

written in base-m:

N = adm
d + ad−1m

d−1 + . . .+ a1m+ a0,

where the coefficients a0, . . . , ad ∈ [0,m) ∩ Z. Finally, the polynomials f1 =
∑d

i=0 aix
i and f2 =

x − m, with common root m modulo N , are obtained. For N > 2d
2
, the polynomial f1 is monic

[29, Proposition 3.2] (in fact, ad = 1 whenever N > 1.5(d/ log 2)d [49, Exercise 6.8]) and is therefore

primitive. However, the polynomial f1 may have a nontrivial factorisation f1 = gh. In this case,

a result (implicitly) obtained by Brillhart, Filaseta, Odlyzko [26] implies that g(m)h(m) = N is a

nontrivial factorisation of N whenever m ≥ 3 (see also [49, Exercise 6.9]). Therefore, f1 is either

irreducible over Q or can be factored in time polynomial in logN (see [103]) and a factorisation of N

obtained.

Polynomial selection for the special number field sieve exploits the special form of N to produce the

polynomials f1 and f2. Suppose that N = re − s, where r and |s| are small positive integers and e is

large. Then polynomial selection proceeds by choosing a degree parameter d and letting k be the least

positive integer such that k · d ≥ e. For t = s · rk·d−e and m = rk, the polynomials f1 = xd − t and

f2 = x −m satisfy fi(m) ≡ 0 (mod N), for i = 1, 2. Lenstra et al. [104, Section 2.5] describe simple

criteria that may be used to determine if f1 is irreducible. If f1 is not irreducible, either a factor of N

is found, or f1 can be replaced by one of its irreducible factors. For improvements to this method and

details on polynomial selection for the larger class of integers of the form N = are + bsj , the reader is

referred to [56].

A method of specialised polynomial selection also exists for N of the form
∑w

i=1 bi2
ci , with b1, . . . , bw ∈

{−1, 1} and w small. Numbers of this from are said to have low weight and polynomial selection may

be performed by the algorithm described by Schirokauer [151, Algorithm 2.1].

Constructing Squares in Number Fields

The construction of a nonzero square in QN [α1] × QN [α2] is, by a large margin, the most time

consuming and challenging stage of the number field sieve algorithm. In the number field sieve, this



1.2. The Number Field Sieve 9

problem is approached by multiplicatively combining elements of the form (a− bα1, a− bα2), where a

and b are coprime integers. The special form of the elements (a− bα1, a− bα2) then permits the use

of ideas from the Morrison–Brillhart approach and the quadratic sieve algorithm, such as using sieves

to efficiently identify smooth polynomial values and combining relations using linear algebra.

Let σi,1, . . . , σi,di denote the field embeddings of Ki in the field C, for i = 1, 2. Then the norm map

NKi : Ki → Q is defined by NKi(x) =
∏di
j=1 σi,j(x), for all x ∈ Ki. It follows immediately from

the definition that the norm map is multiplicative. As a result, if
∏

(a,b)∈S(a − bαi) is a square in

Ki, then its norm
∏

(a,b)∈S NKi(a − bαi) must be a square in Q. Define homogeneous polynomials

Fi(x, y) = fi(x/y) · ydi , for i = 1, 2. Then, for all (a, b) ∈ Z2,

NKi(a− bαi) =

di∏
j=1

(a− bσi,j(αi)) = bdi
di∏
j=1

(
ab−1 − σi,j(αi)

)
= a−1

di
Fi(a, b). (1.2)

Therefore, if |S| is even and
∏

(a,b)∈S Fi(a, b) is a square in Z, then
∏

(a,b)∈S NKi(a− bαi) is a square

in Q. In the number field sieve, such a set S is constructed by selecting smoothness bounds y1, y2 > 0

and using sieving to identify coprime integer pairs (a, b) such that Fi(a, b) is yi-smooth, for i = 1, 2.

Each pair with this property is called a relation. For each relation, a corresponding exponent vector

in an F2-vector space is created from the prime factorisations of F1(a, b) and F2(a, b). Then given

sufficiently many relations, linear algebra over F2 is used to find a subset S such that
∏

(a,b)∈S Fi(a, b)

is a square in Z, for i = 1, 2. To ensure that |S| is even, an extra entry containing 1 is appended to

each exponent vector. Thus any linearly dependent subset of the exponent vectors must contain an

even number of vectors.

Remark 1.2.1. Throughout the thesis, given a polynomial f ∈ Z[x], upper case F is used to denote the

homogeneous polynomial F (x, y) = f(x/y) · ydeg f . Similar notation is also used for the remaining letters of the

alphabet.

Although necessary for x to be a square in a number field K, the requirement that NK(x) is a rational

square is far from sufficient. For example, if K = Q(
√

2), then NK(3±
√

2) = 7. Therefore the product

NK(3+
√

2)NK(3−
√

2) = 72 is a square in Q. However, the product (3+
√

2)(3−
√

2) = 7 is certainly

not a square in K. In order to describe why the norm being a square is not sufficient, some notation

must first be introduced. Throughout the thesis, the ring of algebraic integers in a number field K is

denoted by OK . The abelian group of fractional ideals of OK is denoted by IK . It is well-known that

each ideal in IK factors uniquely (up to order) into a product of prime ideals of OK . An ideal a ∈ IK
with prime ideal factorisation a = pε11 · · · pεnn is said to be a square if and only if each εi is even. If

x ∈ K× is a square in K, then the principal fractional ideal it generates, denoted 〈x〉, is a square in

IK . Each prime ideal in the factorisation of 〈x〉 contributes a prime power to NK(x). The norm of an

element combines these factors together therefore losing information about which primes contributed

to the norm. As a result, the norm of an element x ∈ K× may be a square in Q without 〈x〉 being a

square in IK . For example, the ring of integers in K = Q(
√

2) is Z[
√

2]. The ideal generated by 7 in



10 1. Introduction

Z[
√

2] factors as the product of prime ideals p1 =
〈
3 +
√

2
〉

and p2 =
〈
3−
√

2
〉
. Each of the ideals p1

and p2 contributes a factor of 7 to NK(7). Therefore, NK(7) = 72 is a square in Q, whereas the ideal

〈7〉 = p1p2 is not a square in IK .

To address the problem of the norm failing to be sufficient to determine if a square has been found, the

exponent vector created in the number field sieve for a relation (a, b) almost completely separates the

contributions of the prime ideals in the factorisation of 〈a− bαi〉. However, for x ∈ K×, the principal

ideal 〈x〉 may be a square in IK , while x is not a square in K. For example, in Z[
√

2] the associates

±(3 −
√

2) have the same prime ideal factorisation. Therefore,
〈
3−
√

2
〉 〈
−3 +

√
2
〉

=
〈
3−
√

2
〉2

is

the square of an ideal. However, the product (3−
√

2)(−3 +
√

2) = −1 · (3−
√

2)2 is not a square in

Q(
√

2). This example demonstrates an obstruction associated with units. Unfortunately, this is not

the sole obstruction that prevents 〈x〉 being a square in IK from implying that x is a square in K.

A detailed description of the obstructions is provided by Buhler et al. [29, Section 6]. There it is

shown that the obstructions may be described by a F2-vector space of low dimension. In particular, if

the polynomials are generated with the base-m method, d ≥ 2, and N > d2d2 , then the dimension of

the vector space is less than logN/ log 2. Adleman [3] described how to construct maps χi,1, . . . , χi,ni ,

called quadratic characters, from a subset of Z[αi] to the multiplicative group {−1, 1} such that the

condition
∏

(a,b)∈S χi,j(a − bαi) = 1, for 1 ≤ j ≤ ni, is necessary for
∏

(a,b)∈S(a − bαi) to be a square

in Ki. Moreover, the quadratic characters have the property that if ni is large when compared to

the dimension of the F2-vector space describing the obstructions, then it is highly likely that the

condition is also sufficient (see [29, Section 8]). By identifying {−1, 1} with the additive group {0, 1},
entries corresponding to χi,j(a − bαi) are appended to the exponent vector of each relation (a, b).

Then a linearly dependent subset of the exponent vectors leads to a set S of relations such that∏
(a,b)∈S(a− bαi) is very likely a square in Ki, for i = 1, 2.

Summary of the Algorithm

The number field sieve can be summarised by the following steps:

Polynomial Selection: The selection of two integers polynomials f1 and f2 with f1 6= ±f2, that

are primitive and irreducible over Q, and for which there exists an integer m such that fi(m) ≡ 0

(mod N), for i = 1, 2.

Sieving: The identification of relations by means of a sieve. Relations are coprime integer pairs (a, b)

such that Fi(a, b) is yi-smooth, for i = 1, 2. The smoothness bounds y1 and y2 are parameters of the

algorithm. For large prime variants of the number field sieve, the sieve step is also used to identify

partial relations: coprime integer pairs (a, b) such that Fi(a, b) is yi-smooth with the exception of a

small number of large primes, for i = 1, 2.

Linear Algebra: Exponent vectors are created for the relations found in the sieve step and linear



1.2. The Number Field Sieve 11

algebra over F2 used to find a set S of relations that satisfy (1.1). In practice, multiple sets of relations

satisfying (1.1) are usually found.

Square Root: For each set S, the roots γ1 and γ2 in (1.1) are computed.

On the completion of all steps of the algorithm, each set S yields a congruence of squares modulo

N : φ1(γ1)2 ≡ φ2(γ2)2 (mod N). Then a factor of N is potentially found by computing gcd(φ1(γ1)±
φ2(γ2), N). If this fails to return a factor for each set S, the algorithm returns to the sieve step and

gathers more relations. Then the linear algebra and square root steps are repeated.

1.2.2 Complexity Estimates

Algorithms based on the Morrison–Brillhart approach that test numbers of size NΘ(1) for smoothness,

have heuristic running times that are restricted to the form LN [1/2, v+o(1)], for constants v > 0, and

N → ∞. The number field sieve greatly improves over previous algorithms based on the Morrison–

Brillhart approach, such as those mentioned in Section 1.1.2, by only requiring numbers of size No(1) to

be tested for smoothness. The resulting increase in smoothness probabilities leads to the number field

sieve having a conjectured running time [29, Conjecture 11.2], under an optimal choice of parameters,

of

LN

[
1/3, (64/9)1/3 + o(1)

]
, for N →∞. (1.3)

In this section, the choices of parameters leading to this estimate are briefly reviewed. The reader is

referred to the original analysis of Buhler et al. [29] for an in-depth treatment of the results stated in

this section.

For the analysis, it is assumed that the polynomials f1 and f2 are generated with the base-m method.

Denote by d the degree of the nonlinear polynomial. The smoothness bounds are assumed to be

equal with y = yi, for i = 1, 2. Finally, it is assumed that sieving is performed over all pairs (a, b)

contained in the region A = [−u, u]× [1, u], where u ≥ 1 is a parameter to be chosen later. The choice

of polynomials guarantees that the coefficients of F1(x, y) and F2(x, y) are bounded by m ≤ N1/d.

Therefore, the values taken by F1(a, b)F2(a, b), for (a, b) ∈ A, are bounded in absolute value by

(u+ um)(d+ 1)mud ≤ 2dm2ud+1 ≤ 2dN
2
dud+1.

Hence, the numbers tested for smoothness in the sieve stage of the algorithm are bounded by

x = 2dN
2
dud+1. (1.4)

Throughout this section, all o(1) terms are for N →∞. The dimension of the exponent vectors, and

thus the number of relations required, is y1+o(1). Therefore, under the assumption that the values

F1(a, b)F2(a, b) are just as likely to be smooth as an integer chosen at random from the interval [1, x],



12 1. Introduction

it follows from Theorem 1.1.2 that the time spent sieving is minimised for y = Lx[1/2, 1/
√

2 + o(1)].

Moreover, the expected number of coprime integer pairs (a, b) ∈ A that are required to be tested for

smoothness in order for y1+o(1) relations to be found is Lx[1/2,
√

2 + o(1)]. The number of coprime

integer pairs (a, b) ∈ A is approximately 12u2/π2, where the factor of 6/π2 takes into account the

(asymptotic) probability that a and b are coprime (see [9, Theorem 3.9]). Therefore, u should satisfy

u2 ≥ Lx[1/2,
√

2 + o(1)].

Here the factor of 12/π2 has been absorbed into the o(1) term on the right hand side. Taking logarithms

and squaring gives

2 log2 u ≥ (1 + o(1)) log x log log x.

Since t/ log t is increasing for t ≥ e, it follows that u should satisfy

log2 u

log log u
≥ (1 + o(1)) log x ≥ (1 + o(1))

(
2

d
logN + (d+ 1) log u

)
.

Applying a technical lemma of Buhler et al. [29, Lemma 10.9], with k ≥ (1 + o(1))(d + 1) and

l ≥ (2 + o(1)) logN1/d, results in the lower bound

u ≥ exp

[(
1

2
+ o(1)

)(
d log d+

√
(d log d)2 + 4 log(N1/d) log log(N1/d)

)]
. (1.5)

Since y = Lx[1/2, 1/
√

2 + o(1)], it follows that y satisfies the same lower bound. Buhler et al. [29,

Section 11] showed that the time taken by sieve step is u2+o(1), whilst the time taken by the matrix

and square root steps is y2+o(1). Therefore, setting u and y equal to the right hand side of (1.5), the

(conjectured) asymptotic running time of the number field sieve, for fixed d, is

exp

[
(1 + o(1))

(
d log d+

√
(d log d)2 + 4 log(N1/d) log log(N1/d)

)]
. (1.6)

Choosing d to minimise this expression results in the optimal choice of

d =
(

31/3 + o(1)
)( logN

log logN

)1/3

. (1.7)

Then substituting (1.7) into (1.6) leads to the conjectured running time (1.3).

With values of y, u and d used to establish the running time, the bound (1.4) on the size of the

numbers tested for smoothness in the sieve stage becomes

x = LN

[
2/3, (64/3)1/3 + o(1)

]
.

As a result, the values tested for smoothness in the number field sieve are asymptotically smaller than



1.2. The Number Field Sieve 13

those appearing in the quadratic sieve.

For fixed d, (1.6) simplifies to

LN

[
1/2,

√
4/d+ o(1)

]
, for N →∞.

Recall that the running time of the quadratic sieve is LN [1/2, 1 + o(1)], for N → ∞. This suggests

that the number field sieve will surpass the quadratic sieve only when d ≥ 5. By substituting d = 5

into (1.7) and naively ignoring the o(1) term, solving for N suggests that the crossover point, where

the number field sieve will surpass the quadratic sieve, is somewhere around 100 decimal digits.

1.2.3 The Polynomial Selection Problem

Asymptotically, the number field sieve obtains a greater number of smooth values over previous algo-

rithms as a result of the reduction in size from exponential to subexponential of the values tested for

smoothness. The complexity analysis of Section 1.2.2 used base-m polynomials to demonstrate this

advantage over previous algorithms. Considered asymptotically and for general N , the base-m method

is, in a weak sense, optimal [29, Section 12.10] (see also Section 2.2.4). However, in practice, N is

fixed rather than tending to infinity. Furthermore, o(1) terms in the analysis of the number field sieve

conceal the true influence of a particular choice of polynomials. Therefore, in practice, improvements

to the base-m method are possible.

The polynomial selection problem is concerned with determining a choice of polynomials that guar-

antees the best practical performance. For a given N , the polynomial selection problem is to find a

pair of integer polynomials f1 and f2 with the following properties:

Structural: The polynomials satisfy the conditions necessary for use with the number field sieve:

f1 6= ±f2; f1 and f2 are both primitive and irreducible over Q; there exists a known integer m such

that fi(m) ≡ 0 (mod N), for i = 1, 2.

High yield: The associated homogeneous polynomials F1(x, y) and F2(x, y) yield many smooth values

thus reducing the time spent sieving.

Throughout the thesis, polynomials that satisfy the required structural properties are referred to as

number field sieve polynomials. Consequently, the polynomial selection problem requires that a pair

of number field sieve polynomials, that maximise yield, be found.

The polynomial selection problem may be viewed as being comprised of two parts: polynomial gener-

ation and ranking. The polynomial generation problem is concerned with constructing good number

field polynomials, while the polynomial ranking problem is concerned with determining the best poly-

nomials among many given pairs. Both the generation and ranking problems require an understanding

of the properties which influence polynomial yield. Due largely to the work of Brent, Murphy and



14 1. Introduction

Montgomery [124, 125, 126], these properties and their influence are well understood. Moreover, out

of that work evolved effective methods for ranking number field sieve polynomials.

Polynomial generation for the special number field sieve is well understood [56]. In contrast, polynomial

generation for numbers without special form remains an area of active research. The efforts of research

on this problem have focused on two different approaches. The first and most successful approach,

is to modify or extend the base-m method. Algorithms based on this approach [126, 91, 90] have

been used in a string of record factorisations [45, 33, 32, 11, 92] and remain the state of the art. The

second approach, employs techniques from the algorithmic geometry of numbers to produce nonlinear

polynomials of equal degree. Algorithms based on this approach remain the best known for numbers

up to approximately 120 digits. Examples of numbers factored using nonlinear polynomials can be

found in [54].

In this thesis, attention is focused primarily on the polynomial generation problem for numbers with-

out special form. The contributions to this problem are twofold: existing methods for polynomial

generation are generalised and a new approach to polynomial generation is developed.

1.2.4 Smooth Elements in Number Fields

The concept of a y-smooth integer may be naturally generalised to number fields:

Definition 1.2.2. Let K be a number field. A nonzero element x ∈ OK is called y-smooth if NK(x)

is a y-smooth integer.

An element x ∈ OK is y-smooth if for every prime ideal p ⊂ OK , p | 〈x〉 implies that p ∩ Z = 〈p〉 for

a rational prime p ≤ y. Therefore, the smoothness of an element x ∈ OK describes how the principal

ideal that it generates factors over prime ideals. For each rational prime p, let νp : Q → Z ∪ {∞}
denote the p-adic valuation, which is defined as follows: for nonzero x ∈ Q, νp(x) is the unique integer

v such that x = pv(s/t), where s and t are integers not divisible by p; and νp(0) =∞. The concept of

smoothness may be extended to entire of K× by defining x ∈ K× to be y-smooth if νp(NK(x)) 6= 0

implies that p ≤ y. In the special case K = Q, a quotient u/v ∈ Q of coprime integers u and v

is y-smooth if and only if uv is y-smooth. The smoothness of an element x ∈ K describes how the

principal fractional ideal that it generates factors over prime ideals.

Smooth elements in number fields play a role in the number field sieve whenever one of the polynomials

f1 or f2 is monic: if fi is monic, then (1.2) implies that each relation gives rise to a yi-smooth element

in Ki. More generally, relations give rise to yi-smooth elements in Ki whenever the leading coefficient

of fi is yi-smooth. In practice, it is beneficial to force the polynomials f1 and f2 to satisfy this property

[126, Section 5.1.1]. In addition to the number field sieve, smooth elements in number fields appear

in algorithms for computing discrete logarithms in finite fields [64, 86], finding solutions to the Pell

equation [109] and computing class groups [28].



1.3. Outline of the Thesis 15

1.3 Outline of the Thesis

Chapter 2 introduces preliminaries on the polynomial selection problem relevant to Chapters 3 and 4

of the thesis. In addition, existing literature on the problem is surveyed.

Chapters 3 and 4 contain new algorithms for generating good number field sieve polynomials. Chap-

ter 3 focuses on lattice-based algorithms for nonlinear polynomial generation. There existing algo-

rithms are reviewed and generalised. In Chapter 4, an entirely new approach to polynomial generation

is developed. The development is driven by newly obtained results on the divisibility properties of

univariate resultants. An initial realisation of the approach is provided and analysed. In addition,

bounds on the existence of number field sieve polynomials with favourable properties are derived using

algorithmic and combinatorial methods. Finally, possible improvements and generalisations of the new

approach are discussed.

In Chapter 5, the problem of finding smooth algebraic integers in a number field is reformulated as

a decoding problem for a family of error-correcting codes called NF-codes. The first algorithm for

solving the weighted list decoding problem for NF-codes is provided. Then the algorithm is used to

find algebraic integers with norm containing a large smooth factor. Finally, bounds on the existence

of such elements are derived using algorithmic and combinatorial methods.

Chapter 6 contains conclusions and suggestions for future avenues of research.





Chapter 2

Preliminaries on Polynomial Selection

This chapter introduces background material on the polynomial selection problem relevant to Chap-

ter 3 and Chapter 4 of the thesis. Existing literature on the problem is also surveyed. Where appro-

priate, certain topics such as polynomial resultants and lattices are only briefly touched upon, with

formal treatments deferred until they are required.

In Chapter 1, it was noted that polynomial selection problem may be considered as being comprised

of two parts: polynomial generation and ranking. Accordingly, this chapter is also comprised of two

parts. The first part, Section 2.1, begins by examining the properties which influence polynomial

yield and methods for their quantification. Then methods for ranking number field sieve polynomials

according to their yield are discussed. The second part, Section 2.2, reviews current methods for

generating number field sieve polynomials.

2.1 Quantifying Properties which Influence Polynomial Yield

There are two main factors which influence the yield of a number field sieve polynomial. The first of

these two factors, called a polynomial’s size properties, refers to the magnitude of the values taken by

the polynomial over the sieve region. The influence of size properties was demonstrated in Section 1.2.2,

where the number field sieve’s asymptotic advantage over previous algorithms based on the Morrison–

Brillhart approach was shown to result from a reduction, from exponential to subexponential, of the

size of the values tested for smoothness. The second factor which influences yield, called a polynomial’s

root properties, refers to the distribution of its roots modulo small prime powers. This factor was

excluded from the asymptotic considerations of Section 1.2.2, since its effect is hidden within the o(1)

terms. However, due largely to the work of Brent, Montgomery and Murphy [124, 125, 126], it is

known that in practice, a polynomial with many roots modulo small prime powers produces values

that behave, with regard to smoothness probabilities, as if they are much smaller than their true size.

Therefore, polynomials with good root properties experience an increased likelihood of producing

17



18 2. Preliminaries on Polynomial Selection

smooth values on average.

In this section, methods for quantifying the size and root properties number field sieve polynomials

are reviewed. Section 2.1.1 begins by introducing polynomial norms used to measure a polynomial’s

size properties. Then a lower bound on the coefficient size of pairs of number field sieve polynomials

is derived. In Section 2.1.2, quantifying the root properties of number field sieve polynomials is

considered. There the influence of root properties is discussed further. Finally, Section 2.1.3 reviews

approximate methods for ranking polynomial pairs according to their yield.

2.1.1 Quantifying Size Properties: Skewed Polynomial Norms

In this section, polynomial norms used throughout the thesis to measure size properties are introduced.

Then a lower bound on the coefficient size of polynomial pairs with a common root modulo N is

derived. Throughout, it is assumed that sieving is used to identify all relations contained in a region

A of the form A = [−A,A]× [0, B]. The actual form of the region depends on the method of sieving.

Furthermore, it is known that a rectangular sieve region is not optimal in general [157]. The area of

A is approximately determined by the size of the input N . Therefore, it is assumed that the region’s

area is fixed. Consequently, A is determined by the parameter s = A/B, called the skew of the region.

Skewed Polynomial Norms

Given two polynomials f1 and f2, the size of the values taken by their respective homogenisations F1

and F2 over the sieve region A can be roughly quantified by the integral∫
A
|F1(x, y)F2(x, y)| dxdy.

Using Hölder’s inequality to bound this integral suggests that some indication of the size properties

of a degree d polynomial f can be obtained by considering the integral

∫
A
F (x, y)2dxdy = (AB)d+1 ·

∫ 1

0

∫ 1

−1

(
f

(
sx

y

)
·
(
y√
s

)d)2

dxdy. (2.1)

The integrand on the right motivates the following choice of coefficient norms:

Definition 2.1.1. Let f =
∑d

i=0 aix
i ∈ R[x] be a degree d polynomial and s a positive real number.

For any real number p ≥ 1, the skewed p-norm of f is defined by

‖f‖p,s =

(
d∑
i=0

∣∣∣aisi− d2 ∣∣∣p)
1
p

.



2.1. Quantifying Properties which Influence Polynomial Yield 19

Furthermore, the skewed ∞-norm of f is defined by

‖f‖∞,s = max
i

∣∣∣aisi− d2 ∣∣∣ .
If s = 1, then ‖f‖p,s is simply called the p-norm of f and denoted by ‖f‖p, for real p ≥ 1 and p =∞.

The skewed ∞-norm is also referred to in the literature as the sup-norm by Kleinjung [91].

The norms introduced in Definition 2.1.1 may be used to measure the coefficient size of a number field

sieve polynomial. However, they do not consider the size of the values taken by a polynomial over

the sieve region, thus ignoring the main factor used to determine the (asymptotic) yield of number

field sieve polynomials in the complexity analysis of Section 1.2.2. Therefore, the skewed p-norms

only provide a coarse measure of size properties. A finer measure of size properties can be obtained

by considering the entire integral (2.1) rather than just the integrand. In particular, the right-hand

integral of (2.1), in combination with the assumption that the area of A is fixed, suggests the following

choice of norms:

Definition 2.1.2. Let f ∈ R[x] be a degree d polynomial. For a given positive real number s, the

skewed L2-norm of f is defined by

‖f‖L2,s =

√√√√∫ 1

0

∫ 1

−1

(
f

(
sx

y

)
·
(
y√
s

)d)2

dxdy.

Suppose that two nonzero polynomials f1, f2 ∈ Z[x], both of degree d, are to be sieved over respective

regions A1 and A2 with equal area. Then (2.1) implies that∫
A1
F1(x, y)2dxdy∫

A2
F2(x, y)2dxdy

=
‖f1‖2L2,s1

‖f2‖2L2,s2

,

where si denotes the skew of Ai, for i = 1, 2. Therefore, the measure of size properties provided by

the skewed L2-norm is sufficiently fine as to allow the comparison of number field sieve polynomials.

Accordingly, a skew of a polynomial f ∈ R[x], is defined to be any value s > 0 such that ‖f‖L2,s is

minimal.

The Resultant Bound

For nonzero coprime polynomials f1, f2 ∈ Z[x] with a common root modulo N , the resultant bound

provides a lower bound on the 2-norms of f1 and f2:

‖f1‖deg f2
2 · ‖f2‖deg f1

2 ≥ N. (2.2)



20 2. Preliminaries on Polynomial Selection

The 2-norm may greatly overestimate the coefficient size of polynomials with large skew. To provide

tighter bounds, a generalisation of inequality (2.2) is now derived for the skewed 2-norm. To begin,

the definition and some properties of the resultant of two polynomials must first be introduced.

Let f =
∑m

i=0 aix
i and g =

∑n
i=0 bix

i be non-constant polynomials with complex coefficients and

am, bn 6= 0. The Sylvester matrix of f and g, denoted Syl(f, g), is the (m+ n)× (m+ n) matrix

Syl(f, g) =



am am−1 . . . . . . a0

am am−1 . . . . . . a0

. . . . . . . . . . . . . . .

am am−1 . . . . . . a0

bn bn−1 . . . . . . b0

bn bn−1 . . . . . . b0

. . . . . . . . . . . . . . .

bn bn−1 . . . . . . b0


where there are n rows containing the ai, m rows containing the bi, and all empty entries are 0. The

resultant of f and g, denoted Res(f, g), is equal to the determinant of the Sylvester matrix Syl(f, g).

The following two well-known properties of resultants are used to generalise the resultant bound:

• If α1, . . . , αm ∈ C are the roots of f , and β1, . . . , βn ∈ C the roots of g, then

Res(f, g) = anmb
m
n

∏
i,j

(αi − βj). (2.3)

• If f, g ∈ Z[x], then Res(f, g) belongs to the ideal 〈f, g〉 ∩ Z.

Proofs of these two properties can be found in [50, Section 1.3.2]. The two properties imply that

coprime non-constant polynomials f1, f2 ∈ Z[x] with a common root modulo N must satisfy N ≤
|Res(f1, f2)|. The resultant bound (2.2) is then obtained by using Hadamard’s inequality [72] to bound

the absolute value of det Syl(f1, f2). The following lemma generalises the upper bound obtained from

Hadamard’s inequality:

Lemma 2.1.3. Let f =
∑m

i=0 aix
i and g =

∑n
i=0 bix

i be non-constant polynomials with complex

coefficients and am, bn 6= 0. Then |Res(f, g)| ≤ ‖f‖n2,s · ‖g‖
m
2,s, for all s > 0. If m 6= n, then the

inequality is strict, for all s > 0.

Proof. Let α1, . . . , αm be the roots of f , and β1, . . . , βn the roots of g. For s > 0,

Res(f, g) = anmb
m
n

∏
i,j

(αi − βj) =
(
ams

m
2

)n (
bns

n
2

)m∏
i,j

(
αi
s
− βj

s

)
= Res

(
s−

m
2 f(sx), s−

n
2 g(sx)

)
.



2.1. Quantifying Properties which Influence Polynomial Yield 21

Hence,

∣∣Res (f, g)
∣∣ =

∣∣det Syl
(
s−

m
2 f(sx), s−

n
2 g(sx)

)∣∣ ≤ ∥∥s−m2 f(sx)
∥∥n

2
·
∥∥s−n2 g(sx)

∥∥m
2

=
∥∥f∥∥n

2,s
·
∥∥g∥∥m

2,s
, (2.4)

for all s > 0, where the inequality is obtained by applying Hadamard’s inequality.

To prove the second assertion of the lemma, suppose for contradiction that m 6= n and |Res(f, g)| =
‖f‖n2,s · ‖g‖

m
2,s, for some value of s > 0. Then (2.4) implies that the determinant of the Sylvester

matrix Syl(s−
m
2 f(sx), s−

n
2 g(sx)) attains Hadamard’s bound, and thus its row vectors are orthogonal.

If m < n, then the inner product of the first and (m + 1)th row of Syl(s−
m
2 f(sx), s−

n
2 g(sx)) is

ama0. Thus, a0 = 0, since am is nonzero. Similarly, the inner product of the first and mth row of

Syl(s−
m
2 f(sx), s−

n
2 g(sx)) is ama1s + am−1a0 = ama1s, and thus a1 = 0. Continuing in this manner,

it follows that if m < n, then f = amx
m. Similarly, if m > n, then computing the inner product of

the (n+ 1)th and kth row of Syl(s−
m
2 f(sx), s−

n
2 g(sx)), for n+ 2 ≤ k ≤ 2n+ 1, shows that g = bnx

n.

Therefore, in either case, the inner product of the first and (n+ 1)th row of Syl(s−
m
2 f(sx), s−

n
2 g(sx))

is s(m+n)/2ambn 6= 0, which contradicts orthogonality.

Corollary 2.1.4. Let N be a positive integer and f1, f2 ∈ Z[x] be non-constant coprime polynomials

with a common root modulo N . Then ‖f1‖deg f2
2,s · ‖f2‖deg f1

2,s ≥ N , for all s > 0. If deg f1 6= deg f2, then

the inequality is strict, for all s > 0.

Remark 2.1.5. The bound in Lemma 2.1.3 is attained, for s > 0 and d ≥ 1, by polynomials f1 = xd − sd and

f2 = xd + sd: the product formula (2.3) implies that Res(f1, f2) = (2sd)d; and ‖f1‖d2 · ‖f2‖
d
2 = (sd/2

√
2)2d =

(2sd)d. If d = 1 and s is an integer, then the lower bound in Corollary 2.1.4 is also attained, since x − s and

x+ s have a common root modulo 2s.

The complexity of the number field sieve is largely determined by the size of N and the degree sum

deg f1 + deg f2 of the polynomials used (see Section 1.2.2). For values of N within the current range

of interest, the optimal choice of degree sum remains small (see [126, Section 3.1] for a relevant

discussion). For example, the factorisation of a 768-bit RSA modulus by Kleinjung et al. [92] and the

special number field sieve factorisation of 21039−1 by Aoki et al. [7] both used polynomial pairs which

had a degree sum of 7. Corollary 2.1.4 shows that the restriction to small degree sum implies that a

pair of number field sieve polynomials will necessarily have large coefficients.

A Note on Measuring Coefficient Size

The resultant of two coprime polynomials f1, f2 ∈ Z[x] is a homogeneous polynomial of degree deg f1 +

deg f2 in their coefficients. As a result, some authors consider a pair of number field sieve polynomials

f1, f2 ∈ Z[x] to have optimal coefficient size whenever Res(f1, f2) = ±N . In practical circumstances,

the resultant does appear to provide a fair indication of coefficient size. However, the resultant only

provides a lower bound on coefficient size. Therefore, on its own, the resultant of two polynomials



22 2. Preliminaries on Polynomial Selection

may not serve as an accurate measure of coefficient size. This is demonstrated by the following lemma,

which proves the existence of integer polynomial pairs with arbitrarily large coefficients and resultant

equal to ±N :

Lemma 2.1.6. Let X and s be positive real numbers. For integers d ≥ 2 and N > 1.5(d/ log 2)d,

there exist degree d polynomials f1, f2 ∈ Z[x] such that Res(f1, f2) = ±N and ‖fi‖2,s ≥ X, for i = 1, 2.

Proof. Let m =
⌊
N1/d

⌋
and write N in base-m:

N = adm
d + ad−1m

d−1 + . . .+ a1m+ a0,

where the coefficients a0, . . . , ad ∈ [0,m)∩Z. Then ad = 1, since N > 1.5(d/ log 2)d [49, Exercise 6.8].

Define polynomials

f1(x) = c1 · (x−m) +

d∑
i=0

aix
i and f2(x) = c2 · f1(x) + (x−m),

where c1, c2 ∈ Z, c2 6= 0, are chosen sufficiently large as to ensure ‖fi‖2,s ≥ X, for i = 1, 2. Then f1

and f2 are degree d integer polynomials and f1(m) = N . Finally, by subtracting c2 times row i of

Syl(f1, f2) from row d+ i, for 1 ≤ i ≤ d, it follows that

Res (f1, f2) = Res (f1(x), c2 · f1(x) + (x−m)) = ad−1
d · Res (f1(x), x−m) = ±f1(m).

Remark 2.1.7. Lemma 2.1.6 additionally shows that the quotient |Res(f, g)|/ ‖f‖deg g
2,s ‖g‖deg f

2,s , for coprime

polynomials f, g ∈ R[x], can be arbitrarily smaller than the upper bound of 1 provided by Lemma 2.1.3.

2.1.2 Quantifying Root Properties

The root properties of a number field sieve polynomial f can be quantified by the parameter α(f, y),

introduced by Murphy [126] (denoted α(F ) by Murphy). The parameter α(f, y) heuristically compares

the effect of sieving on the polynomial values F (a, b), for coprime pairs (a, b) ∈ Z2, with the effect

of sieving on the integers. Thus α(f, y) provides a heuristic measure of the practical advantage or

disadvantage resulting from a particular choice of polynomial.

The definition of α(f, y) is based on ideas developed for the analysis of the multiple polynomial

quadratic sieve [22, 23] and the continued fractions method [94, Section 4.5.4]. Common to all three

is the comparison of the behaviour of νp(z) as z ranges across different subsets of the integers. In

particular, the parameter α(f, y) is obtained by comparing the behaviour for the integers with that

of the polynomials values F (a, b), for some polynomial f ∈ Z[x]. To this end, for each prime p and



2.1. Quantifying Properties which Influence Polynomial Yield 23

irreducible f ∈ Z[x], the following quantities are introduced: define (if the limits exist)

cont(p) = lim
X→∞

1

X

∑
x∈[1,X]∩Z

νp(x) and cont(f, p) = lim
X→∞

1

|A(X)|
∑

(a,b)∈A(X)

νp(F (a, b)),

where A(X) = {(a, b) ∈ Z2 | −X ≤ a, b ≤ X and gcd(a, b) = 1}, for all X ≥ 1. In what follows, it is

assumed that the limits always exist.

Consider the following idealised model for sieving a set S ⊆ Z \ {0} by all primes p ≤ y:

1. an array is initialised with entries indexed by z ∈ S, such that entry z is equal to log |z|; and

2. for each prime p ≤ y and each z ∈ S, νp(z) · log p is subtracted from the entry z.

If S = Z \ {0}, then, in an informal sense, the value contained in entry z ∈ S after sieving is, on

average, equal to

log |z| −
∑
p≤y

cont(p) · log p, (2.5)

where the sum ranges over all primes p ≤ y. Similarly, if S contains polynomial values F (a, b), for an

irreducible polynomial f ∈ Z[x] and all coprime pairs (a, b) ∈ Z2, then the value contained in entry

F (a, b) after sieving is, on average, equal to

log |F (a, b)| −
∑
p≤y

cont(f, p) · log p.

For an irreducible polynomial f ∈ Z[x] and a real number y > 0, the parameter α(f, y) is defined by

α(f, y) =
∑
p≤y

(cont(p)− cont(f, p)) · log p,

where the sum ranges over all primes p ≤ y. Then

log |F (a, b)| −
∑
p≤y

cont(f, p) · log p = log
(
|F (a, b)| · eα(f,y)

)
−
∑
p≤y

cont(p) · log p.

Comparing the right hand side with (2.5) suggests that a polynomial value F (a, b), for a randomly

chosen coprime pair (a, b) ∈ Z2, is, in an informal sense, as likely to be y-smooth as a randomly

chosen integer of size F (a, b) · eα(f,y). This heuristic does not contradict the assumptions made in

the complexity analysis of Section 1.2.2, as those were asymptotic considerations. However, it does

suggest that in practice, it may be possible to produce polynomials with higher yield by leveraging

root properties, i.e., by finding polynomials with negative α-values of large absolute value. This

possibility was confirmed by the computational study of Murphy [126, Chapter 4] (see also [125]),

where root properties were shown to exert a significant influence on polynomial yield. For example,

Murphy [126, Section 4.2.4] used theoretical estimates of polynomial yield to show that varying α



24 2. Preliminaries on Polynomial Selection

across the “practical range” of α-values for the factorisation of the 140 digit number RSA-140 could

influence yield by up to a factor of four. In particular, the example used a practical range of [−7, 0],

with the theoretical yield corresponding to an α-value of −7 found to be four times larger than the

yield corresponding to an α-value of 0.

Estimation of α(f, y)

In this section, estimates for cont(p) and cont(f, p) developed by Murphy and Montgomery [126,

Section 3.2.2] are reviewed. These estimates allow for α(f, y) to be estimated in practice. In addition,

the estimates provide information on how the distribution of a polynomials roots influences its α-value.

By definition, given a nonzero integer z, νp(z) = k if and only if pk | z and pk+1 - z. Therefore,

1

X

∑
x∈[1,X]∩Z

νp(x) =

⌊
logX
log p

⌋∑
k=0

k

[
1

pk

(
1− 1

p

)
+O

(
1

X

)]
=

⌊
logX
log p

⌋∑
k=0

k

pk

(
1− 1

p

)
+O

(
log2X

X

)
,

for X →∞. It follows that

cont(p) =

∞∑
k=0

k

pk

(
1− 1

p

)
=

1

p− 1
.

In practice, cont(f, p) is usually estimated empirically: the approximation

cont(f, p) ≈ 1

|B|
∑

(a,b)∈B

νp(F (a, b)) (2.6)

is computed for a large set B of pairs (a, b) chosen uniformly at random from A(X), for some large

value of X. However, it is illustrative to obtained a closed form expression for cont(f, p). Mur-

phy [126, Section 3.2.2] used probabilistic arguments to obtain a (conjectured) closed form expression

for cont(f, p), for all primes p such that p - disc(f). Details absent from Murphy’s arguments were

then provided by Schmidt-Samoa [152, Section 4.2.2]. In the remainder of the section, the arguments

of Murphy and Schmidt-Samoa are reviewed.

Given an irreducible polynomial f ∈ Z[x], if p is a prime such that the only root of F (x, y) modulo

p is the trivial root (0, 0), then νp(F (a, b)) = 0 for all coprime pairs (a, b) ∈ Z2, i.e., cont(f, p) =

0. Therefore, for those primes p with cont(f, p) 6= 0, it is necessary to consider the roots of the

homogeneous polynomial F (x, y) modulo pk, for k ≥ 1. To this end, define

Vpk =
(

(Z/pkZ)× × (Z/pkZ)
)
∪
(

(Z/pkZ)× (Z/pkZ)×
)
, for all k ≥ 1.

Define an equivalence relation on Vpk by (x1, y1) ∼pk (x2, y2) if and only if (x1, y1) = (λx2, λy2),

for some λ ∈ (Z/pkZ)×. Then the projective line P(Z/pkZ) is defined to be the quotient Vpk/ ∼pk ,

and the equivalence class of (x, y) ∈ Vpk denoted (x : y). For a prime p and f ∈ Z[x], a class



2.1. Quantifying Properties which Influence Polynomial Yield 25

(r1 : r2) ∈ P(Z/pkZ) such that F (r1, r2) ≡ 0 (mod pk) is called a root of F (x, y) in P(Z/pkZ).

The definition of the roots of F (x, y) as classes in P(Z/pkZ) excludes from consideration the trivial

roots (0, 0) modulo pk, for k ≥ 1. Therefore, cont(f, p) can be estimated by determining the proportion

of points (a, b) ∈ A(X) for which the class (a : b) ∈ P(Z/pkZ) is also a root of F (x, y), for all k ≥ 1

and X →∞. It follows from a result of Nymann [135, Theorem 3] that the pairs (a+ pkZ, b+ pkZ),

for (a, b) ∈ A(X), are asymptotically equidistributed in Vpk , for k ≥ 1. For each (x, y) ∈ Vpk , the

corresponding class (x : y) ∈ P(Z/pkZ) contains the elements (λx, λy), for λ ∈ (Z/pkZ)×. Since either

x or y is a unit in Z/pkZ, it follows that the class (x : y) contains exactly |(Z/pkZ)×| elements of

Vpk . As a result, the classes (a+ pkZ : b+ pkZ), for (a, b) ∈ A(X), are asymptotically equidistributed

in P(Z/pkZ), for k ≥ 1. Therefore, the limit as X → ∞ of the proportion of points (a, b) ∈ A(X)

for which the class (a : b) ∈ P(Z/pkZ) is also a root of F (x, y) is equal to the proportion of classes

in P(Z/pkZ) that are roots of F (x, y). The later proportion is determined for all but finitely many

primes by the two lemmas that follow.

Lemma 2.1.8. For k ≥ 1, the number of classes in P(Z/pkZ) is pk−1(p+ 1).

Proof. Each class in P(Z/pkZ) contains exactly |(Z/pkZ)×| elements of Vpk . Therefore, the number of

classes in P(Z/pkZ) is

|Vpk |
|(Z/pkZ)×|

=
(pk)2 − (pk − ϕ(pk))2

ϕ(pk)
=
p2k−2(p2 − 1)

pk−1(p− 1)
= pk−1(p+ 1),

where ϕ is Euler’s totient function.

For each prime p and f ∈ Z[x], let σ(f, p) denote the number of roots of F (x, y) in P(Z/pZ). Given a

polynomial f ∈ Z[x], the following lemma determines, for all but finitely many primes p, the number

of classes in P(Z/pkZ) that are roots of F (x, y), for k ≥ 1:

Lemma 2.1.9. Let f be an integer polynomial and p be a prime such that p - disc(f). Then F (x, y)

has exactly σ(f, p) roots in P(Z/pkZ), for all k ≥ 1.

The proof presented here adapts arguments of Murphy [126, Section 3.2.2] and Schmidt-Samoa [152,

Satz 4.27 and Satz 4.28].

Proof. Let f =
∑d

i=0 aix
i be a degree d integer polynomial and p be a prime such that p - disc(f).

For k ≥ 1, define : Z/pkZ → Z/pZ by a+ pkZ = a + pZ. Then the induced map from P(Z/pkZ)

to P(Z/pZ), defined by (x : y) 7→ (x : y), sends roots of F (x, y) in P(Z/pkZ) to roots in P(Z/pZ). To

complete the proof, it is shown that the induced map defines a bijection between the roots of F (x, y)

in P(Z/pkZ) and the roots in P(Z/pZ), for all k ≥ 1.

Suppose that (r1 : r2) ∈ P(Z/pZ) is a root of F (x, y) such that r2 6≡ 0 (mod p). Then f(r1r
−1
2 ) ≡ 0

(mod p). Therefore, as p does not divide disc(f), Hensel’s lemma implies that for each k ≥ 1, there



26 2. Preliminaries on Polynomial Selection

exists a unique element xk ∈ Z/pkZ such that f(xk) ≡ 0 (mod pk) and xk ≡ r1r
−1
2 (mod p). Hence,

for each k ≥ 1, (xk : 1) ∈ P(Z/pkZ) is a root of F (x, y) and

(xk, 1) ∼p (xkr2, r2) ∼p (r1, r2).

Moreover, if (r1,k : r2,k) ∈ P(Z/pkZ) is a root of F (x, y) such that (r1,k, r2,k) ∼p (r1, r2), then the

uniqueness of xk implies that r1,kr
−1
2,k ≡ xk (mod pk). Thus,

(r1,k, r2,k) ∼pk (r1,kr
−1
2,k, 1) ∼pk (xk, 1).

Suppose now that (r1 : r2) ∈ P(Z/pZ) is a root of F (x, y) such that r2 ≡ 0 (mod p). Then 0 a root of

F (1, y) modulo p or, equivalently, p divides ad. If f ′ denotes the derivative of f , then the discriminant

of f and the resultant Res(f, f ′) are related as follows (see [99, p. 204]):

disc(f) = (−1)
d(d−1)

2 a−1
d Res(f, f ′).

Each entry in the first (resp. second) column of the Sylvester matrix Syl(f, f ′) is an integer multiple

of ad (resp. gcd(ad, ad−1)). It follows that ad · gcd(ad, ad−1) divides Res(f, f ′). Therefore, p does not

divide gcd(ad, ad−1), since otherwise p divides disc(f). In particular, this implies that 0 is not a root

of F ′(1, y) modulo p. Consequently, Hensel’s lemma implies that for each k ≥ 1, there exists a unique

element tk ∈ Z/pkZ such that F (1, tk) ≡ 0 (mod pk) and tk ≡ 0 (mod p). Hence, for each k ≥ 1,

(1 : tk) ∈ P(Z/pkZ) is a root of F (x, y) and

(1, tk) ∼p (1, 0) ∼p (r1, 0) ∼p (r1, r2).

Moreover, if (r1,k : r2,k) ∈ P(Z/pkZ) is a root of F (x, y) such that (r1,k, r2,k) ∼p (r1, r2), then the

uniqueness of tk implies that r−1
1,kr2,k ≡ tk (mod pk). Thus,

(r1,k, r2,k) ∼pk (1, r−1
1,kr2,k) ∼pk (1, tk).

Remark 2.1.10. The following terminology, introduced by Murphy [126, Section 3.2.2], is adopted throughout:

for f ∈ Z[x], a root (r1 : r2) ∈ P(Z/pZ) of the polynomial F (x, y) is called projective if r2 ≡ 0 (mod p), and non-

projective otherwise. Accordingly, a polynomial f ∈ Z[x] is said to have a projective root modulo p whenever

p divides its leading coefficient. Similarly, an element r ∈ Z/pZ such that f(r) ≡ 0 (mod p) is referred to as a

non-projective root of f modulo p.

Let f ∈ Z[x] and p be a prime such that p - disc(f). Then Lemma 2.1.8 and Lemma 2.1.9 imply that

the proportion of classes in P(Z/pkZ) that are roots of F (x, y) is

σ(f, p)

pk−1(p+ 1)
.



2.1. Quantifying Properties which Influence Polynomial Yield 27

Hence, it is conjectured that

cont(f, p) =

∞∑
k=1

kσ(f, p)

pk−1(p+ 1)

(
1− 1

p

)
= σ(f, p)

p

p2 − 1
. (2.7)

For primes that divide disc(f), computing the proportion of classes in P(Z/pkZ) that are roots of

F (x, y) is substantially more difficult (details are omitted here). For these primes, the approximation

(2.6) may simply be used. Murphy [126, Section 3.2.2] performed computational experiments which

compared (2.7) with the numerical approximation (2.6) for many polynomials. The two estimates

were found to typically yield similar values.

From (2.7), it is clear that roots modulo small primes make the greatest contributions to a polyno-

mial’s α-value. Therefore, to obtain a negative α-value of large absolute value, it is important that a

polynomial have many roots modulo small primes.

2.1.3 Ranking Polynomials

The most reliable method for determining those polynomial pairs with highest yield among a collection

of pairs is to perform sieve experiments: an equal amount of sieving is performed for each pair and

yield compared. However, for a large collection of pairs, performing sieve experiments may become too

time-consuming. Therefore, efficient and reliable methods are needed for ranking polynomial pairs,

according to their yield and without sieving. In this section, the now-standard method for ranking

pairs in this manner, introduced by Murphy [126, Section 5.2], is reviewed.

Estimating Yield with the Dickman function

Recall that ψ(x, y) denotes the number of y-smooth integers in the interval [1, x]. For nonnegative

u ∈ R, the Dickman function [51] is defined as follows:

ρ(u) = lim
x→∞

ψ(x, x1/u)

x
, for u > 1;

and ρ(u) = 1, otherwise. The Dickman function can be thought of as the limiting probability that a

randomly chosen integer in [1, x] is x1/u-smooth. The function is known to satisfy

ψ(x, x1/u) = xρ(u) +
x(1− γ)ρ(u− 1)

log x
+O

(
x

log2 x

)
, (2.8)

where γ is Euler’s constant [95]. Therefore, an estimate of the probability that an integer, chosen uni-

formly at random from [1, x], is y-smooth is obtained from ρ(u) by setting u = log x/ log y. Moreover,

(2.8) implies that this estimate is accurate to approximately log log x/ log 10 decimal places.

Given number field sieve polynomials f1 and f2, Kleinjung [91, Section 1] suggests the following “first



28 2. Preliminaries on Polynomial Selection

approximation” of the number of relations found in the sieve stage:

6

π2

∑
(a,b)∈A∩Z2

ρ

(
log |F1(a, b)|

log y1

)
ρ

(
log |F2(a, b)|

log y2

)
,

where yi is the smoothness bound corresponding to fi, for i = 1, 2; and the factor of 6/π2 accounts for

the probability of (a, b) ∈ A ∩ Z2 satisfying gcd(a, b) = 1 (see [9, p. 63]). This estimate neglects the

effect of root properties on smoothness properties: recall from Section 2.1.2 that Fi(a, b) is heuristically

as likely to be yi-smooth as a randomly chosen integer of size Fi(a, b) ·eα(fi,yi). Accordingly, Kleinjung

suggests that a better approximation of yield is provided by

6

π2

∑
(a,b)∈A∩Z2

ρ

(
log |F1(a, b)|+ α(f1, y1)

log y1

)
ρ

(
log |F2(a, b)|+ α(f2, y2)

log y2

)
. (2.9)

This estimate may be used to rank polynomials according to their yield. However, evaluating (2.9) is

expensive in practice. Instead, it is preferable to use Murphy’s method.

Murphy’s E-Value

Consider degree d number field sieve polynomials f1, f2 ∈ Z[x] that are to be sieved over respective

regions A1 and A2 with equal area. In Section 2.1.1, the corresponding homogeneous polynomials F1

and F2 were shown to satisfy ∫
A1
F1(x, y)2dxdy∫

A2
F2(x, y)2dxdy

=
‖f1‖2L2,s1

‖f2‖2L2,s2

,

where si denotes the skew of Ai, for i = 1, 2. Therefore, given a number field sieve polynomial f with

skew s, the size of F over the region [−
√
s,
√
s ] × [ 0, 1/

√
s ] provides sufficient information to allow

f to be ranked according to its size properties. Murphy’s method for ranking polynomials applies

this observation to pairs of number field sieve polynomials by considering the sum (2.9) over points in

[−
√
s,
√
s ]×[ 0, 1/

√
s ], rather than the integral points of the entire sieve region. The points considered

by Murphy all lie on the ellipse

(x, y) =

(√
s cos θ,

1√
s

sin θ

)
, for θ ∈ [0, 2π).

In particular, the points are given by k uniformly distributed values of θ ∈ [0, π]:

θi =
π

k

(
i− 1

2

)
, for i = 1, . . . , k.



2.1. Quantifying Properties which Influence Polynomial Yield 29

Given a pair of number field sieve polynomials f1, f2 ∈ Z[x] and the skew s of their sieve region,

Murphy defines their rating E(f1, f2) (commonly referred to as Murphy’s E-value) as follows: let

ui(θj) =
log |Fi(

√
s cos θj , (1/

√
s) sin θj)|+ α(fi, yi)

log yi
,

for 1 ≤ i ≤ 2, 1 ≤ j ≤ k; and

E(f1, f2) =
k∑
j=1

ρ(u1(θj))ρ(u2(θj)). (2.10)

Then the pairs of number field sieve polynomials in a collection are ranked according to descending

order of E(f1, f2) values.

For the purpose of computing (2.10), Murphy [126, Section 2.2.1] suggests using the Patterson–Rumsey

algorithm (described in the next section) to efficiently evaluate the Dickman function with small error.

The reliability of E as a method for rating polynomials, according to yield and without sieving, has

been examined by Murphy [126, Chapter 6]. There examples are provided which show that Murphy’s

E-value consistently identifies polynomial pairs with highest actual yield.

Evaluating ρ(u)

In this section, the Patterson–Rumsey algorithm (as described by Bach and Peralta [10]) for evaluating

the Dickman function is briefly described. The algorithm is based on the following observation made

by Dickman [51]:

Theorem 2.1.11. The Dickman function ρ(u) is the (unique) continuous solution to the differential-

difference equation

uρ′(u) + ρ(u− 1) = 0, for u > 1, (2.11)

that satisfies the initial condition ρ(u) = 1, for 0 ≤ u ≤ 1.

The differential-difference equation (2.11) implies that there exists an analytic function ρk(u), for all

integers k ≥ 1, such that ρk(u) agrees with ρ(u) on the interval [k − 1, k]. For example, it follows

immediately from Theorem 2.1.11 that ρ1(u) = 1 and ρ2(u) = 1− log u. Bach and Peralta [10, Section

4] showed that the remaining functions, ρk(u) for all integers k ≥ 3, can be recursively computed by

using the Taylor series of ρk−1(u) to compute the Taylor series of ρk(u). In particular, they proved

the following:



30 2. Preliminaries on Polynomial Selection

Theorem 2.1.12. Define real numbers ck,i, for k ≥ 1 and i ≥ 0, as follows: c1,0 = 1, c2,0 = 1− log 2;

c1,i = 0, c2,i =
1

i2i
, for i ≥ 1;

ck,i =
i−1∑
j=0

ck−1,j

iki−j
, for k > 2 and i > 0;

ck,0 =
1

k − 1

∞∑
j=1

ck,j
j + 1

, for k > 2.

Then for each positive integer k, the function ρk(u) :=
∑∞

i=0 ck,i(k − u)i agrees with the Dickman

function ρ(u) on the interval [k − 1, k].

The Patterson–Rumsey algorithm precomputes the coefficients ck,i, for all (k, i) ∈ {1, . . . , kmax} ×
{0, . . . , imax}, where kmax and imax are parameters of the algorithm. Then given a nonnegative real

u0 ≤ kmax, the algorithm evaluates ρ(u0) by evaluating the truncated Taylor series of ρdue(u) at u0.

Bach and Peralta empirically found that computing the coefficients ck,i for 1 ≤ i ≤ 55 is sufficient to

give an relative error approximately equal to 10−17, for all u in the range 0 ≤ u ≤ 20. For numbers that

are currently within reach of factorisation by the number field sieve, this range and error is adequate

for the computation of Murphy’s E-Value.

2.2 Number Field Sieve Polynomial Generation

Current methods for polynomial selection employ a three-stage process. In the first stage, which herein

is referred to as the generation stage, a large initial sample of polynomial pairs with good size and

root properties is generated. In the second stage, the methods described in Section 2.1.3 are used to

identify the best polynomial pairs in the sample without performing expensive sieve experiments. The

third stage consists of using sieve experiments to identify, among those pairs that remain after the

second stage, the polynomial pair with the highest yield in practice. In this section, existing methods

for generating the initial sample of polynomial pairs are reviewed.

Existing algorithms for number field sieve polynomial generation are often divided into two classes. The

first class, so-called linear algorithms, contains those generation algorithms that produce polynomial

pairs such that one polynomial is linear. The second class, so-called nonlinear algorithms, contains

those generation algorithms that produce pairs of nonlinear polynomials. The class of linear algorithms

contains the base-m algorithm and its subsequent refinements by Montgomery and Murphy [126], and

Kleinjung [91, 90]. The algorithms in this class have been used in a string of record factorisations

[45, 33, 32, 11, 92] and remain the state of the art. The class of nonlinear algorithms contains

Montgomery’s two quadratics algorithm (see [54, Section 5] and [126, Section 2.3.1]) and its subsequent

generalisations by Montgomery [119, 122], Williams [167], Prest and Zimmermann [149], and Koo, Jo



2.2. Number Field Sieve Polynomial Generation 31

and Kwon [97]. The algorithms in this class differ substantially from linear algorithms, with techniques

from the geometry of numbers used to produce pairs of nonlinear polynomials with equal degree.

The linear algorithms of Montgomery and Murphy, and Kleinjung are reviewed in Section 2.2.1 and

Section 2.2.2 respectively. An overview of the general approach used in nonlinear algorithms is provided

in Section 2.2.3. An extensive review of nonlinear algorithms is delayed until Chapter 3. Finally, a

lower bound on the performance of polynomial generation algorithms is derived in Section 2.2.4.

2.2.1 The Montgomery–Murphy Algorithm

In their algorithm, Montgomery and Murphy [126] introduced several improvements to the base-m

method. The details of their improvements are reviewed here.

Overview of the Algorithm

The Montgomery–Murphy algorithm generates number field sieve polynomials in two stages: a mod-

ified base-m method is used to generated an initial polynomial pair, which is then either rejected or

proceeds to the second stage where it is goes through an optimisation process. Throughout, the degree

parameters d1 and d2 are fixed with (d1, d2) = (d, 1), for some d > 1. Initial polynomial pairs are

determined by parameters (ad,m) ∈ (Z \ {0})2 such that m ≈ (N/ad)
1/d. For parameters (ad,m), the

initial polynomials

f1 = adx
d + ad−1x

d−1 + . . .+ a0 and f2 = x−m,

are generated with f1 obtained from the base-m representation of N by adding integer multiples of

xi(x −m), 1 ≤ i ≤ d − 1, so that |ai| ≤ m/2, for 0 ≤ i ≤ d − 1. Recall from Section 2.1.2 that the

projective roots of a polynomial are determined by the prime factors of its leading coefficients. As a

result, Montgomery and Murphy suggest choosing ad to contain a product of small prime powers.

In the second stage, an initial polynomial pair (f1, f2) is optimised to find a new pair (f̃1, f̃2) with

improved size and root properties by two methods:

Translation: Set f̃1 = f1(x− t) and f̃2 = f2(x− t), for some t ∈ Z. Then f̃1 and f̃2 have a common

root m+ t modulo N .

Rotation: Set f̃1 = f1 + r(x−m) and f̃2 = f2, for some r ∈ Z[x] with degree less than d.

The following lemma suggests that it is natural to consider rotation and translation as methods for

improving the size and root properties of the initial polynomial pairs:

Lemma 2.2.1. Let f1 be a nonzero degree d1 integer polynomial such that f1(m1/p1)pd11 = N , for

coprime integers m1 and p1 with gcd(p1, N) = 1. If f2 ∈ Z[x] has degree d2 ≤ d1 and satisfies



32 2. Preliminaries on Polynomial Selection

f2(m2/p2) ≡ 0 (mod N), for integers m2 and p2 with gcd(p2, N) = 1, then there exist t, q ∈ Z and a

polynomial r ∈ Z[x] of degree at most d1 − 1 such that

f2 = qf1(x− t) + r(p1(x− t)−m1).

Proof. Choose an integer t ≡ (p1m2−m1p2)/p1p2 (mod N). Then there exists an integer k such that

f2(m1/p1 + t)pd21 = kN . It follows that

f2

(
m1

p1
+ t

)
pd21 − kf1

(
m1

p1

)
pd11 = kN − kN = 0.

By assumption, gcd(m1, p1) = 1 and d2 ≤ d1. Therefore, Gauss’ lemma implies that there exists a

polynomial r0 ∈ Z[x] of degree at most d1 − 1 such that

f2(x+ t)pd21 − kf1(x)pd11 = pd21 r0(x)(p1x−m1).

Hence,

f2(x) = f2((x− t) + t) = kf1(x− t)pd1−d21 + r0(x− t)(p1(x− t)−m1).

More generally, if f1(m1/p1)pd11 is only known to equal some integer multiple of N , or gcd(m1, p1) 6= 1,

then only the following can be shown:

Lemma 2.2.2. Let f1, f2 ∈ Z[x] be nonzero of degree at most d such that there exist mi, pi ∈ Z with

fi(mi/pi) ≡ 0 (mod N) and gcd(pi, N) = 1, for i = 1, 2. If f1(m1/p1) 6= 0, then there exists an integer

t, a rational number q, and a polynomial r ∈ Q[x] of degree at most d− 1 such that

f2 = qf1(x− t) + r(p1(x− t)−m1).

The proof of Lemma 2.2.2 applies similar ideas to that of Lemma 2.2.1 and is therefore omitted.

On one hand, translation does not alter root properties. Rather, it is used to improve size properties.

On the other, rotation alters both size and root properties. The effect of rotations on root properties

is exploited in the Montgomery–Murphy algorithm by the use of a sieve to identify rotations that

provide good non-projective root properties. However, this process will often lead to an increase in

the coefficient size of lower order terms. To compensate for this effect, and to allow rotations with large

coefficients to be used (thus increasing supply and potential for finding good rotations), polynomials

with large skew are sought. Such polynomials, often referred to as highly skewed, are also favourable

for reason specific to the implementation of the sieve stage of the number field sieve (see [54, Section

6] and [90]).

The Montgomery–Murphy algorithm ensures that only highly skewed polynomials are found by al-

lowing only those initial polynomials with ad, ad−1 and ad−2 sufficiently small to continue through



2.2. Number Field Sieve Polynomial Generation 33

to the optimisation stage. Polynomials that survive are then subjected to two rotations phases. The

first is aimed at producing a highly skewed polynomial with excellent size properties, while the second

is aimed at producing a polynomial with excellent root properties. Those polynomials for which the

first rotation phase does not produce a sufficiently small polynomial are rejected. In the second phase,

rotations are restricted to low degrees to help retain size properties.

Throughout the algorithm, an initial rating is used to rejected polynomial pairs with poor size or root

properties at several stages. The Murphy E-value (see Section 2.1.3) is too expensive to compute for

this task. Instead, a polynomial pair (f1, f2) is rated according to the size of

inf
s>0

log ‖f1‖L,s + α(f1, y), (2.12)

where y is a bound on the primes considered in the sieve for the second phase of rotation. The rating

ignores the properties of f2 since each linear polynomial will have similar size and root properties.

Moreover, log |F2(a, b)| is relatively uniform over the sieve region when compared to log |F1(a, b)|.
Therefore, those polynomial pairs for which (2.12) is smallest are likely to maximise (2.9) among all

pairs found by the algorithm.

Summary of the Algorithm

To summarise the discussion of the previous section, the main steps of Montgomery-Murphy algorithm

are now described. The description follows that given by Murphy [126, Procedure 5.1.6], which is

implicitly optimised for degree 5 nonlinear polynomials, i.e., d = 5. Modifications to the description

for d 6= 5 are briefly discussed in Remark 2.2.3.

For all integer pairs (ad,m) such that 0 < ad < ad,max contains a product of small prime powers, and

m ≈ (N/ad)
1/d, the following steps are performed:

1. Compute the integral and fractional parts of

N − admd

md−1
= ad−1 +

ad−2

m
+O

(
1

m2

)
.

If these two values are sufficiently small (i.e., ad−1 and ad−2 are sufficiently small), use the

modified base-m method to compute an initial nonlinear polynomial f and proceed to Step 2.

Otherwise, reject parameters (ad,m) and proceed to the next pair.

2. Apply a multivariable optimisation procedure, such as the method described by Jedlička [81], to

find real parameters t, c0, c1 and s that minimise the skewed L2-norm (Definition 2.1.2) of the

polynomial

f(x− t) + (c1x+ c0)((x− t)−m).



34 2. Preliminaries on Polynomial Selection

Compute the polynomial

f̃ := f(x− dtc) + (dc1cx+ dc0c) ((x− dtc)−m).

If log ‖f̃‖L2,s is sufficiently small, proceed to Step 3. Otherwise, proceed to the next pair of

parameters (ad,m).

3. For all (j0, j1) ∈ Z2, define

f̃j1,j0 = f̃ + (j1x+ j0)((x− t)−m).

Use a sieve over primes p ≤ pmax to find those integer pairs (j0, j1) ∈ [−J0, J0]× [−J1, J1], where

J0 � J1, for which α(f̃j1,j0 , pmax) is sufficiently small. If no such pairs (j0, j1) are found, proceed

to the next pair of parameters (ad,m). Otherwise, proceed to Step 4 .

4. For each pair (j1, j0) found in the Step 3, compute an initial rating

log ‖f̃j1,j0‖L2,s + α(f̃j1,j0 , pmax),

where s is from Step 2. For those pairs (j1, j0) with sufficiently small rating, perform a final

translation of f̃j1,j0 to improve size properties and compute the resulting polynomials skew. Add

the polynomial, its corresponding linear polynomial, and its skew to the collection of polynomial

pairs found. Proceed to the next pair of parameters (ad,m).

Remark 2.2.3. Modifying the above description for d 6= 5 may require changing the degree of the rotations

used in Step 2 and Step 3 and inspecting the size of more or less coefficients in Step 1. In order to not impinge

upon the size properties of higher order coefficients, rotations of degree less than (d− 1)/2 should be used. As

a result, for d > 5 it may be worthwhile to inspect the size of more higher order coefficients in Step 1.

2.2.2 Kleinjung’s Algorithm

Kleinjung [91] suggested an improved method for generating the initial polynomials in the first step

of the Montgomery–Murphy algorithm. The improvements made by Kleinjung are twofold. First,

the linear polynomial is no longer required to be monic, leading to improved size and projective

root properties. The second and more important improvement, is the introduction of an efficient

method for determining parameters such that the coefficients ad, ad−1 and ad−2 of the nonlinear

polynomial f1 =
∑d

i=0 aix
i are small, without the explicit computation of ad−1 and ad−2. Kleinjung’s

improvement of the Montgomery–Murphy algorithm remains the state of the art in number field sieve

polynomial generation algorithms. In particular, the algorithm has been used in a string of record

setting factorisations, culminating in that of RSA-768 [92]. The improvements made by Kleinjung are

reviewed in this section.



2.2. Number Field Sieve Polynomial Generation 35

Nonmonic Linear Polynomials

Kleinjung’s algorithm replaces the modified base-m construction used in the Montgomery–Murphy

algorithm with a construction based on finding base-(m, p) representations of N :

N = adm
d + ad−1m

d−1p+ . . .+ a1mp
d−1 + a0p

d, (2.13)

for integers a0, . . . , ad, p and m. For each representation with gcd(m, p) = 1 and gcd(p,N) = 1,

polynomials f1 =
∑d

i=0 aix
d and f2 = px −m are obtained with common root m/p modulo N and

resultant Res(f1, f2) = ±N . Polynomials generated in this manner were first considered by Buhler et

al. [29, Section 12.2]. For (2.13) to hold, it is necessary that the congruences

aim
i ≡

N −
∑d

j=i+1 ajm
jpd−j

pd−i
(mod p), for 0 ≤ i ≤ d, (2.14)

are satisfied. Given consecutive coefficients ad, . . . , ak ∈ Z, such that k ≥ 1 and (2.14) holds for

k ≤ i ≤ d, a polynomial f =
∑d

i=0 aix
d, satisfying f(m/p)pd = N , can be constructed by computing

the remaining coefficients ak−1, . . . , a0 with the following algorithm suggested by Kleinjung:

Algorithm 2.2.4.

Input: Coprime integers m and p. Integers ad, . . . , ak such that k ≥ 1 and (2.14) holds for k ≤ i ≤ d.

Output: Integers ak−1, . . . , a0 such that the polynomial f =
∑d

i=0 aix
d satisfies f(m/p)pd = N .

1. If k = d, set rk = N ; otherwise, set

rk =
N −

∑d
j=k+1 ajm

jpd−j

pd−k
.

2. For i = k − 1, . . . , 0, compute

ri =
ri+1 − ai+1m

i+1

p
and ai =

ri
mi

+ δi,

where δi is chosen to satisfy 0 ≤ δi < p and ri ≡ aimi (mod p).

3. Return ak−1, . . . , a0.

By applying Algorithm 2.2.4 with k = d, Kleinjung [91, Lemma 2.1] obtained the following existence

result:

Lemma 2.2.5. Let N , d, ad, p and m be integers satisfying adm
d ≡ N (mod p). Define m̃ = d

√
N
ad

and assume that m ≥ m̃. Then there exists an integer polynomial f =
∑d

i=0 aix
i such that

1. f
(
m
p

)
· pd = N ;



36 2. Preliminaries on Polynomial Selection

2. |ad−1| < p+ dad
m−m̃
p ; and

3. |ai| < p+m, for 0 ≤ i ≤ d− 2.

Lemma 2.2.5 suggests extending the Montgomery–Murphy algorithm to search over positive integer

parameters (ad,m, p), where ad and p both contain a product of small prime powers, m ≈ (N/ad)
1/d,

and adm
d ≡ N (mod p). Then Algorithm 2.2.4 may be used in Step 1 of the Montgomery–Murphy

algorithm to compute the coefficients ad−1 and ad−2. For those parameters (ad,m, p) with |ad−1| and

|ad−2| below respective bounds ad−1,max and ad−2,max, the remaining steps of the algorithm can then

be performed as normal. As noted by Kleinjung, the extended algorithm is slower than the original

Montgomery–Murphy algorithm, since it is more time consuming to compute initial polynomials with

Algorithm 2.2.4 instead of the modified base-m method. To address this problem, Kleinjung imposes

restrictions on the now larger parameter space so that good parameters (ad,m, p) can be efficiently

identified without explicitly computing ad−1 and ad−2. Details of this improvement are provided in

the next section.

Identifying Good Parameters

Here the goal is efficiently identify parameters (ad,m, p) for which there is a corresponding nonlin-

ear polynomial f =
∑d

i=1 aix
i such that |ad|, |ad−1| and |ad−2| are below respective bounds ad,max,

ad−1,max and ad−2,max. Kleinjung [91, Section 3] discusses how to appropriately select these bounds.

However, here they are treated as free parameters that satisfy ad,max ≤ ad−1,max ≤ ad−2,max. To begin,

restrictions on the parameter space imposed Kleinjung are reviewed.

Kleinjung requires that ad satisfies the inequalities 0 < ad < ad,max, with no further restrictions.

Therefore, it is assumed that ad is provided, leaving only the parameters p and m to be found. Given

ad and a prime q ≡ 1 (mod d) such that gcd(q, adN) = 1, the congruence adx
d ≡ N (mod q) has

either no solutions or d solutions. Kleinjung requires that the parameter p be a product of small

distinct primes p1, . . . , pl such that pi ≡ 1 (mod d) and gcd(pi, adN) = 1, for 1 ≤ i ≤ l. Given a

parameter p of this form for which the congruence adx
d ≡ N (mod p) has a solution, each of the dl

solutions are then indexed by a vector µ = (µ1, . . . , µl) ∈ {1, . . . , d}l, and expressed in the form

xµ =

l∑
i=1

xi,µi ,

where 0 ≤ xi,µi < p and p
pi
| xi,µi , for 1 ≤ i ≤ l; and xi,1, . . . , xi,d are the d solutions of adx

d ≡ N

(mod pi), for 1 ≤ i ≤ l. Let m0 be the least integer multiple of p greater than m̃ = (N/ad)
1/d. By

setting mµ = m0 + xµ, for each µ ∈ {1, . . . , d}l, parameters (ad,mµ, p) satisfying adm
d
µ ≡ N (mod p)

are obtained.



2.2. Number Field Sieve Polynomial Generation 37

Lemma 2.2.6. With notation as above, let ad−1 ∈ Z satisfy

ad−1m
d−1
µ ≡

N − admd
µ

p
(mod p), (2.15)

and integers a0, . . . , ad−2 be obtained by applying Algorithm 2.2.4 to inputs p, mµ, ad and ad−1. If

ad−2/mµ − bad−2/mµe < ad−2,max/mµ, then there exists a polynomial f̃ =
∑d

i=0 ãix
i such that

1. f̃
(
mµ
p

)
· pd = N ;

2. |ãd−1| < 2|ad−1|+ dad (l + 1) + p (p/mµ + 1/2), |ãd−2| < ad−2,max; and

3. |ãi| < p+mµ, for 0 ≤ i ≤ d− 3.

Proof. Let ad−1 ∈ Z satisfy (2.15) and a0, . . . , ad−2 be obtained by applying Algorithm 2.2.4 to p, mµ,

ad and ad−1. Then the polynomial f =
∑d

i=0 aix
i satisfies f(mµ/p)p

d = N and

|ai| ≤
|ri|
mi
µ

+ |δi| ≤
|ri+1 − ai+1m

i
µ|

pmi
µ

+ p =
|δi+1m

i+1
µ |

pmi
µ

+ p < p+mµ, for 0 ≤ i ≤ d− 3.

Let f̃ = f − bad−2/mµe · (px−mµ)xd−2, and write f̃ =
∑d

i=0 ãix
i. Then f̃(mµ/p)p

d = N and

|ãd−1| ≤ |ad−1|+ p

(
|ad−2|
mµ

+
1

2

)
≤ |ad−1|+

p

mµ

(
|rd−2|
md−2
µ

+ |δd−2|

)
+
p

2

< |ad−1|+
|N − admd

µ − ad−1m
d−1
µ p|

md−1
µ p

+
p2

mµ
+
p

2

< |ad−1|+
dad(mµ − m̃)md−1

µ + |ad−1|md−1
µ p

md−1
µ p

+ p

(
p

mµ
+

1

2

)
< 2|ad−1|+ dad (l + 1) + p

(
p

mµ
+

1

2

)
.

Moreover, |ãd−2| = |ad−1 − bad−2/mµemµ| < ad−2,max and |ãi| = |ai|, for 0 ≤ i ≤ d− 3.

For d = 5 or d = 6, the bound on the coefficients ã0, . . . , ãd−3 in Lemma 2.2.6 is sufficiently small.

Therefore, if p is restricted to sufficiently small values (Kleinjung suggests that p should satisfy p ≤
ad−1,max and p � m̃), then Lemma 2.2.6 implies that good parameters (ad,mµ, p) are found by

identifying those µ ∈ {1, . . . , d}l such that there exists a small choice of ad−1 satisfying (2.15), and for

which ad−2/mµ, where ad−2 is obtained from Algorithm 2.2.4, is within ad−2,max/mµ of an integer.

For each µ ∈ {1, . . . , d}l, define ad−1,µ to be the coefficient ad−1 obtained from Algorithm 2.2.4 on

the input of ad, p and mµ. Then all other permissible choices of the coefficient ad−1, i.e., those that

satisfy (2.15), are obtained as follows:



38 2. Preliminaries on Polynomial Selection

Lemma 2.2.7. With notation as above, ad−1 ∈ Z satisfies (2.15) if and only if there exist integers

e1,µ1 , . . . , el,µl such that ad−1 =
∑l

i=1 ei,µi and

e1,µ1 ≡ ad−1,(µ1,1,...,1) (mod p),

ei,µi ≡ ad−1,(1,...,1︸︷︷︸
i−1

,µi,1,...,1) − ad−1,(1,...,1) (mod p), for 2 ≤ i ≤ l. (2.16)

Kleinjung [91, Lemma 3.4] proved the existence of integers e1,µ1 , . . . , el,µl that satisfy (2.16) and

for which ad−1 =
∑l

i=1 ei,µi satisfies (2.15). Therefore, given an integer a′d−1 such that a′d−1 =∑l
i=1 e

′
i,µi

, for integers e′1,µ1 , . . . , e
′
l,µl

that satisfy (2.16), then a′d−1 ≡ ad−1 (mod p), and thus satisfies

(2.15). Additionally, the converse of the lemma can be deduced from the existence result, since (2.15)

determines ad−1 uniquely modulo p. Alternatively, Lemma 2.2.7 is proved directly as follows:

Proof. By construction, ad−1,µ satisfies (2.15). As a result, and since gcd(mµ, p) = 1, an integer ad−1

satisfies (2.15) if and only if ad−1 ≡ ad−1,µ (mod p). Therefore, if there exist integers e1,µ1 , . . . , el,µl

such that ad−1,µ =
∑l

i=1 ei,µi and (2.16) holds, then an integer ad−1 satisfies (2.15) if and only if (2.16)

holds for integers

e′1,µ1 = e1,µ1 + (ad−1 − ad−1,µ) and e′i,µi = ei,µi , for 2 ≤ i ≤ l,

which, by definition, satisfy ad−1 =
∑l

i=1 e
′
i,µi

. Hence, it is sufficient to show that there exist integers

e1,µ1 , . . . , el,µl such that ad−1,µ =
∑l

i=1 ei,µi and (2.16) holds.

Define l-dimensional vectors νi = (1, . . . , 1, µi, 1, . . . , 1), where the entry µi appears in the ith coordi-

nate, for 1 ≤ i ≤ l. To prove the existence of integers e1,µ1 , . . . , el,µl such that ad−1,µ =
∑l

i=1 ei,µi and

(2.16) holds, it is sufficient to show that

∆ := ad−1,µ − ad−1,ν1 −
l∑

i=2

(
ad−1,νi − ad−1,(1,...,1)

)
≡ 0 (mod p).

Multiplying (2.15) by admµ/N shows that

ad−1,µ ≡
admµ

N

N − admd
µ

p
(mod p).

Analogous congruences hold for ad−1,νi , for 1 ≤ i ≤ l; and ad−1,(1,...,1). Therefore, by substituting and



2.2. Number Field Sieve Polynomial Generation 39

rearranging, it follows that

∆ ≡ ad
N

(
mµ

N − admd
µ

p
−mνk

N − admd
νk

p

−
∑
i 6=k

(
mνi

N − admd
νi

p
−m(1,...,1)

N − admd
(1,...,1)

p

))
(mod p),

for 1 ≤ k ≤ l.

By construction, mµ = m0 +
∑l

i=1 xi,µi , with similar expressions holding for mν1 , . . . ,mνl and m(1,...,1).

It follows that mµ ≡ xk,µk (mod pk), for 1 ≤ k ≤ l, with similar congruences holding for mν1 , . . . ,mνl

and m(1,...,1). Moreover,

(mµ −mνk)−
∑
i 6=k

(
mνi −m(1,...,1)

)
=

(xk,µk − xk,µk) +
∑
i 6=k

(xi,µi − xi,1)

−∑
i 6=k

(xi,µi − xi,1) = 0,

for 1 ≤ k ≤ l. Therefore,

∆ ≡−
a2
d

p
pk
N

md+1
µ −md+1

νk

pk
−
∑
i 6=k

md+1
νi −m

d+1
(1,...,1)

pk


≡− ad

p
pk

(mµ −mνk)

pk

dadx
d
k,µk

N
−
∑
i 6=k

(
mνi −m(1,...,1)

)
pk

dadx
d
k,1

N


≡− add

p
pk

mµ −mνk −
∑

i 6=k
(
mνi −m(1,...,1)

)
pk

≡ 0 (mod pk),

for 1 ≤ k ≤ l. Hence, ∆ ≡ 0 (mod p) as required.

For each µ ∈ {1, . . . , d}l, Kleinjung isolates the particular choice of the coefficient ad−1 =
∑l

i=1 ei,µi ,

where e1,µ1 , . . . , el,µl are the unique integers that satisfy (2.16) and the inequalities 0 ≤ ei,µi < p, for

1 ≤ i ≤ l. Then the prior restriction to small p guarantees that |ad−1| is small. To determine whether

ad−2/mµ is near an integer, Kleinjung provides the approximation

ad−2

mµ
≈ N − admd

0

p2md−1
0

−
l∑

i=1

(
addxi,µi
p2

+
ei,µi
p

)
,

where the error made is O(dl2(dad + p)/m0). Then, using a meet-in-the-middle algorithm, Kleinjung

is able to identify in time O(dl/2 log d) those µ ∈ {1, . . . , d}l for which the approximation on the right

hand side is sufficiently close to an integer. As a result, the average time spent checking one of the

dl choices of parameters (ad,mµ, p) is O(d−l/2 log d). Therefore, the parameter l should be chosen as

large as possible.



40 2. Preliminaries on Polynomial Selection

The method of identifying good parameters described in this section has since been modified by

Kleinjung [90], with the aim of producing polynomials with extremely large skews. Details of the

modifications are not provided here.

2.2.3 Nonlinear Algorithms

Polynomials produced by linear algorithms experience an imbalance in the size of the values F1(a, b)

and F2(a, b): for most pairs (a, b) ∈ Z2, the nonlinear polynomial produces values that are larger and

thus less likely to be smooth. Nonlinear polynomial generation algorithms address this problem by

producing pairs of nonlinear polynomials with equal or almost equal degrees. Current methods for

nonlinear generation map the coefficients of number field sieve polynomials to vectors contained in

some lattice. Then the problem of finding polynomials with small coefficients reduces to an instance of

the well-studied problem of finding short vectors in a lattice. The principles behind the construction

of those lattices used in current nonlinear algorithms are discussed in this section. To begin, the

definition and some properties of lattices are introduced.

A lattice in Rn is a subgroup Λ of Rn with the following property: there exist R-linear independent

vectors b1, . . . , bk ∈ Rn such that Λ =
∑k

i=1 Zbi. The vectors b1, . . . , bk are said to form a basis for

Λ, denoted throughout by a k-tuple (b1, . . . , bk); and k is called the dimension or rank of Λ. When

written with respect to the canonical orthonormal basis of Rn, if bi = (bi,1, . . . , bi,n), for 1 ≤ i ≤ k,

then the k × n matrix B = (bi,j)1≤i≤k,1≤j≤n is called a basis matrix for Λ. Given a basis matrix

B for Λ, the determinant of Λ is defined to be det Λ =
√

detBBt. The determinant of a lattice is

independent of the choice of basis. Algorithms for lattice reduction aim to produce bases consisting

of short vectors. Given a basis for a k-dimensional lattice Λ, the LLL algorithm [103] returns a basis

(b1, . . . , bk) for Λ consisting of short vectors in polynomial time. In particular, for k ≥ 2, the basis

vectors b1 and b2 satisfy the following inequalities:

‖b1‖2 ≤ 2(k−1)/4 det Λ
1
k and ‖b1‖2 · ‖b2‖2 ≤ 2k−3(k + 4) det Λ

2
k , (2.17)

where ‖.‖2 is the Euclidean norm on Rn.

Before nonlinear algorithms are discussed, it is illustrative to first review the lattice-based linear al-

gorithm of Buhler et al. [29, Section 12.2]. Their algorithm is based on the observation that integer

polynomials of bounded degree with a common root m modulo N can be characterised by an orthogo-

nality condition on their coefficient vectors modulo N : an integer polynomial f =
∑d

i=0 aix
i of degree

at most d has m as a root modulo N if and only if the coefficient vector (a0, . . . , ad) is orthogonal to

(1,m, . . . ,md) modulo N . The set of all such coefficient vectors

Lm,d :=

{
(a0, . . . , ad) ∈ Zd+1 |

d∑
i=0

aim
i ≡ 0 mod N

}
, (2.18)



2.2. Number Field Sieve Polynomial Generation 41

forms a lattice in Zd+1 [29, Section 12.2]. A basis for Lm,d is given by the (d+1)× (d+1) basis matrix

Mm,d =



N 0 0 . . . 0

−m 1 0 . . . 0

−m2 0 1 . . . 0
...

...
...

. . .
...

−md 0 0 . . . 1


.

Therefore, Lm,d is (d+ 1)-dimensional and detLm,d = |detMm,d| = N .

The algorithm of Buhler et al. begins with the selection of integers m, p ≈ N1/(d+1) such that

gcd(p,N) = 1. Lattice reduction is then used to find a basis (b1, . . . , bd+1) consisting of short

vectors for the lattice Lt,d, for some integer t ≡ mp−1 (mod N). At least one of the basis vec-

tors bi = (a0, . . . , ad) must satisfy
∑d

i=0 aim
ipd−i 6= 0. For such a basis vector, the polynomials

f1 =
∑d

i=0 aix
i and f2 = px−m, with common root m/p modulo N , are taken. The bound on b1 in

(2.17) suggests that the algorithm is capable of producing nonlinear polynomials with 2-norm of order

det(Lm,d)
1/(d+1) = N1/(d+1). The algorithm is readily modified to produce skewed polynomials by in-

troducing a skew parameter s > 0 and using lattice reduction to find a basis consisting of short vectors

for the lattice with basis matrix Mt,d · diag(S0, . . . , Sd), where Si = si−
d
2 , for 0 ≤ i ≤ d. Once again,

the skewed algorithm is capable of producing nonlinear polynomials f1 with skewed 2-norm ‖f1‖2,s
of order N1/(d+1), whenever ‖px−m‖2,s ≈ N1/(d+1). However, both the skewed and non-skewed al-

gorithms are not competitive with the algorithms of Montgomery and Murphy, and Kleinjung. As a

result, lattice-based linear generation algorithms have received little attention in the literature.

Trivial modifications can be made to the algorithm of Buhler et al. in order to produce pairs of nonlinear

polynomials with equal degree. However, the large determinant of Lm,d, and (2.17), imply that this

approach is only expected to produce two degree d polynomials f1 and f2 such that ‖f1‖2,s · ‖f2‖2,s is

of order N2/(d+1). When compared against the lower bound ‖f1‖2,s · ‖f2‖2,s ≥ N1/d, provided by the

resultant bound (Corollary 2.1.4), it follows that such a product of coefficient norms is likely far from

optimal. To address this problem, current nonlinear algorithms employ a further modification of the

approach, introduced by Montgomery (see [54, Section 5] and [126, Section 2.3.1]), whereby sublattices

of Lm,d with small determinant are constructed from “small” geometric progressions modulo N .

A geometric progression (GP) of length l and ratio r modulo N , denoted throughout by a vector

[c0, . . . , cl−1], is an integer sequence with the property that ci ≡ c0r
i (mod N), for 0 ≤ i < l. Central

to the construction of lattices for nonlinear algorithms is the observation that

Lm,d =

{
(a0, . . . , ad) ∈ Zd+1 |

d∑
i=0

aici ≡ 0 mod N

}
,

for any length d + 1 geometric progression [c0, . . . , cd], with ratio m modulo N , nonzero terms and



42 2. Preliminaries on Polynomial Selection

gcd(c0, N) = 1. Given such a geometric progression, nonlinear algorithms consider a sublattice of

Lm,d contained in the Q-vector space orthogonal to [c0, . . . , cd]. The role of N in the definition of

the sublattice is therefore made implicit. Consequently, the determinant of the sublattice depends on

the terms of the geometric progression, and not on N itself. Roughly speaking, a geometric progres-

sion with small terms is then expected to give rise to a sublattice of Lm,d with small determinant.

More generally, a lattice contained in the Q-vector space orthogonal to multiple linearly independent

geometric progressions is considered.

Montgomery’s original algorithm (reported in [54, Section 5]) produces pairs of quadratic polynomials

with optimal coefficient size, i.e., the resultant bound is attained (up to a constant factor). However,

quadratic polynomial pairs are only competitive for the factorisation of integers containing at most

110-120 digits (see [126, Section 2.3.1]). To address this problem, Montgomery [119, 122] outlined

a generalisation of the quadratic algorithm to arbitrary degrees. The generalisation relies on the

construction of multiple geometric progressions from a long initial geometric progression. How to

construct initial geometric progressions that meet the requirements of the generalisation remains a

largely open problem.

Recent advances in geometric progression construction, in combination with relaxations of the re-

quirements of Montgomery’s approach, have lead to a string of new nonlinear algorithms. This line of

research begins with Williams’ [167] algorithms for producing quadratic and cubic polynomial pairs.

Refinements to Williams’ algorithms and extensions to arbitrary degree were provided by Prest and

Zimmermann [149]. Finally, Koo, Jo and Kwon [97] extended methods for constructing geometric pro-

gressions. A detail review of these developments and Montgomery’s algorithms appears in Chapter 3.

2.2.4 A Lower Bound on Polynomial Generation

Buhler et al. [29, Proposition 12.11] proved an asymptotic lower bound on the performance of any

method for linear polynomial generation that is guaranteed to produce, for all N , polynomial pairs

such that the nonlinear and linear polynomials have ∞-norms bounded by N t1 and N t2 respectively.

In particular, they showed if such an algorithm produces nonlinear polynomials of degree at most d,

then N t1+t2 can not be expected to be substantially smaller than N2/(d+2). In this section, their result

is extended to arbitrary methods of polynomial generation.

For positive integers d, C and a positive real s, let M(d,C, s) denote the set of non-constant poly-

nomials f ∈ Z[x] with deg f ≤ d and ‖f‖2,s ≤ C. For positive integers d1, d1, C1, C2 and a posi-

tive real s, let R(d1, d2;C1, C2; s) denote the set of nonzero integers of the form |Res(f1, f2)|, where

f1 ∈ M(d1, C1, s) and f2 ∈ M(d2, C2, s). Then given an integer N such that there exists coprime

polynomials f1 ∈M(d1, C1, s) and f2 ∈M(d2, C2, s) that share a common root modulo N , it follows

that R(d1, d2;C1, C2; s) contains a nonzero multiple of N . Therefore, if there exists a polynomial

generation algorithm with the property that, for each N ∈ [1, X] ∩ Z, the algorithm can produce



2.2. Number Field Sieve Polynomial Generation 43

coprime polynomials f1 ∈M(d1, C1, s) and f2 ∈M(d2, C2, s) with a common root modulo N , then it

is necessary that R(d1, d2;C1, C2; s) contains a nonzero multiple of each integer in the interval [1, X].

Theorem 2.2.8. For each ε > 0, there exists a number X(ε) with the following property. Suppose

there exist positive integers d1, d2, C1, C2, X and a real number s ≥ 1 such that

1. X > X(ε);

2. C1 ≥ sd1/2, C2 ≥ sd2/2; and

3. R(d1, d2;C1, C2; s) contains a nonzero multiple of each integer in the interval [1, X].

Then C1C2 ≥ 3−1X
2−ε

d1+d2+1 .

Proof. Suppose positive integers d1, d2, C1, C2, X and a real number s ≥ 1 satisfy the conditions of

the theorem. Then Corollary 2.1.4 and the assumption that R(d1, d2;C1, C2; s) contains a nonzero

multiple of X imply that

X ≤ Cd21 Cd12 . (2.19)

It may be assumed that C1C2 ≤ X2/(d1+d2), otherwise there is nothing left to prove. Then Lemma 2.1.3

implies that each element of R(d1, d2;C1, C2; s) has absolute value at most

Cd21 Cd12 ≤ (C1C2)d1+d2 ≤ X2.

Let D = max{τ(j) | j ∈ [1, X2] ∩ Z}, where τ(j) denotes the number of divisors of j. Since each

integer in the interval [1, X] is required to have a nonzero multiple in R(d1, d2;C1, C2; s), it follows

that

X ≤ D · |R(d1, d2;C1, C2; s)|.

For all f ∈ Z[x], ‖f‖2,s = ‖−f‖2,s and the inequality ‖f‖∞,s ≤ ‖f‖2,s holds. Moreover, for all

f1, f2 ∈ Z[x], the four resultants Res(±f1,±f2) have equal absolute value. Therefore,

|R(d1, d2;C1, C2; s)| ≤ 1

4

2∏
i=1

|M(di, Ci, s)| ≤
1

4

2∏
i=1

di∏
j=0

(
2Cis

di
2
−j + 1

)
≤ 1

4

2∏
i=1

di∏
j=0

3Cis
di
2
−j ,

where the final inequality follows from the inequalities Ci ≥ sdi/2, for i = 1, 2. Consequently,

X ≤ D · |R(d1, d2;C1, C2; s)| ≤ 3d1+d2+1DCd1+1
1 Cd2+1

2 .

Multiplying this inequality by (2.19) gives

X2 ≤ 3d1+d2+1DCd1+d2+1
1 Cd1+d2+1

2 (2.20)



44 2. Preliminaries on Polynomial Selection

The function τ satisfies τ(j) = jo(1), for j → ∞ (see [9, Theorem 13.12]). Therefore, given ε > 0,

there exists a number X(ε) such that D ≤ Xε, for all X > X(ε). Hence, for all X > X(ε), it follows

from (2.20) that

C1C2 ≥ 3−1D
− 1
d1+d2+1X

2
d1+d2+1 ≥ 3−1X

2−ε
d1+d2+1 .

In the special case of Theorem 2.2.8 where d1 = d2, the resultant bound (Corollary 2.1.4) implies that

C1 and C2 must satisfy the inequality C1C2 ≥ X2/(d1+d2), for all X.



Chapter 3

Nonlinear Polynomial Selection

Existing algorithms for number field sieve polynomial generation are divided into two classes: the class

of linear algorithms, containing the algorithms of Montgomery–Murphy [126] and Kleinjung [91, 90];

and the class of nonlinear algorithms, containing those algorithms based on Montgomery’s method.

Linear algorithms have been employed in many record setting factorisations. However, polynomials

produced by linear algorithms experience an imbalance in the size of the values F1(a, b) and F2(a, b)

as a result of the large difference in their degrees. In contrast, nonlinear algorithms have received

little practical attention, yet they produce pairs of nonlinear polynomials with equal or almost equal

degrees. The lack of practical applications of nonlinear algorithm is explained by the fact that, until

recently, nonlinear algorithms were only able to produce pairs of quadratic polynomials. Thus the

range of numbers for which nonlinear algorithm were competitive with linear algorithms was restricted

to integers of at most 110-120 digits (see [126, Section 2.3.1]). Consequently, their development has

fallen behind that of linear algorithms.

Recent developments in nonlinear generation have broken the quadratic degree barrier, thus making

nonlinear algorithms once again relevant to numbers in the current range of interest. In this chapter,

these developments (see [167, 149, 97]) and Montgomery’s algorithms (see [54, Section 5] and [119, 122])

are reviewed. Tools from the geometry of numbers are developed to aid in the analysis of nonlinear

algorithms. In particular, they allow precise criteria for the selection of geometric progressions to be

obtained. A family of geometric progressions modulo N , containing those used in existing algorithms,

is characterised. The characterisation enables extensions to existing nonlinear algorithms to be made.

Parameter selection for the extended algorithms is considered.

The importance of generating polynomials with a good combination of size and root properties was

established in Chapter 2. However, existing nonlinear algorithms tend to focus solely on producing

polynomials with small coefficients, thus leaving root properties to chance. As a result, rotations

must be employed to improve the root properties of the polynomials they produce. In Chapter 4, a

rotation free approach to generating polynomials with a good combination of size and root properties

45



46 3. Nonlinear Polynomial Selection

is developed. There methods developed in this chapter are incorporated into a much more general

setting. This chapter therefore acts as a stepping stone in that direction.

The remainder of the chapter is organised as follows. In Section 3.1, preliminaries on lattices relevant

to this chapter and the remainder of the thesis are provided. The brief outline of nonlinear polynomial

generation provided in Section 2.2.3 is built upon in Section 3.2, with a detailed review of the method

and existing algorithms provided. There the analysis of nonlinear algorithms is aided by results

obtained in Section 3.2.1 on the properties of orthogonal lattices. Finally, new nonlinear generation

algorithms are introduced and analysed in Section 3.3 and Section 3.4.

3.1 Preliminaries on Lattices

Throughout this thesis, results and algorithms from the geometry of numbers are extensively used.

Here necessary background on lattices and lattice algorithms is reviewed. The reader is referred to

[36, 115, 108, 134] for further background on the concepts discuss in this section.

A lattice in Rn is a subgroup Λ of Rn with the following property: there exist R-linear independent

vectors b1, . . . , bk ∈ Rn such that Λ =
∑k

i=1 Zbi. The vectors b1, . . . , bk are said to form a basis for

Λ, denoted throughout by a k-tuple B = (b1, . . . , bk); and k is called the dimension or rank of Λ. If

k = n, then Λ is referred to as full-rank. When written with respect to the canonical orthonormal

basis of Rn, if bi = (bi,1, . . . , bi,n), for 1 ≤ i ≤ k, then the k × n matrix B = (bi,j)1≤i≤k,1≤j≤n is called

a basis matrix for Λ. The Gram matrix of B is the k × k symmetric matrix BBt. Let B1 and B2 be

bases for Λ with respective basis matrices B1 and B2. Then there exists a matrix U ∈ GLk(Z) such

that UB1 = B2. Thus the Gram matrix of B2 is Q2 = UQ1U
t, where Q1 is the Gram matrix of B1.

Therefore, the determinant of the Gram matrix is independent of the choice of basis. The determinant

of Λ is defined to be det Λ =
√

detQ, where Q is the Gram matrix of one of its bases.

The sublattices of a lattice are its subgroups. A sublattice Λ′ of a lattice Λ is referred to as a full-rank

sublattice whenever dim Λ′ = dim Λ. This occurs if and only if [Λ : Λ′] is finite. In this case, the

determinants of Λ and Λ′ satisfy the relationship det Λ′ = [Λ : Λ′] · det Λ. Let 〈x,y〉 7→ x · y denote

the usual inner product in Rn. The dual lattice of Λ is

Λ× = {x ∈ span(Λ) | 〈x,y〉 ∈ Z, for all y ∈ Λ}.

For any basis B of Λ, the dual basis B× for span(Λ) is a basis for Λ×. A lattice with Λ× = Λ is called

unimodular. The lattice Zn is unimodular.

Let ‖.‖2 be the norm on Rn induced by 〈 , 〉. For a k-dimensional lattice Λ and all 1 ≤ i ≤ k, the

ith minimum λi(Λ) of Λ is defined to be the minimum of max1≤j≤i ‖vj‖2 over all sets of i linearly

independent lattice vectors {v1, . . . ,vi} ⊂ Λ. Minkowski’s second theorem (see [134, Theorem 5 p. 35])

provides an upper bound on the geometric mean of consecutive minima: if Λ is a k-dimensional lattice



3.1. Preliminaries on Lattices 47

and t an integer satisfying 1 ≤ t ≤ k, then

(
t∏
i=1

λi(Λ)

) 1
t

≤ √γk det(Λ)
1
k ,

where γk denotes Hermite’s constant (see [134, p. 20] for a definition). Hermite’s constant is known

[118, p. 17] to satisfy the linear bound γk ≤ 1 + k/4, for all k ≥ 1.

Algorithms for lattice reduction aim to produce bases consisting of short vectors. The most widely

used reduction algorithm, due to Lenstra, Lenstra and Lovás [103], is the LLL algorithm. Given a

basis for a lattice Λ ⊆ Zn, the LLL algorithm produces an LLL-reduced basis for Λ in polynomial

time.

Definition 3.1.1. Let Λ ⊂ Rn be a k-dimensional lattice and B = (b1, . . . , bk) one of its bases.

Let (b∗1, . . . , b
∗
k) be the Gram–Schmidt orthogonalisation of B and define µi,j = 〈bi, b∗j 〉/〈b∗j , b∗j 〉, for

1 ≤ j < i ≤ k. Then B is LLL-reduced with factor δ ∈ (1/4, 1], if and only if the following conditions

hold:

1. |µi,j | ≤ 1/2, for 1 ≤ j < i ≤ k; and

2.
∥∥b∗i+1 + µi+1,ib

∗
i

∥∥2

2
≥ δ ‖b∗i ‖

2
2, for 1 ≤ i < k.

For simplicity, it is assumed throughout the thesis that LLL-reduced means LLL-reduced with factor

δ = 3/4. Accordingly, the following properties of LLL-reduced bases hold:

Theorem 3.1.2. Let (b1, . . . , bk) be an LLL-reduced basis of a k-dimensional lattice Λ ⊂ Rn. Then

1. ‖b1‖2 ≤ 2(k−1)/4 det Λ1/k.

2. ‖bi‖2 ≤ 2(k−1)/2λi(Λ), for 1 ≤ i ≤ k.

3. If Λ ⊆ Zn, then ‖bi‖2 ≤ 2
k(k−1)

4(k−i+1) det Λ
1

k−i+1 , for 1 ≤ i ≤ k.

The first two properties of the theorem were obtained by Lenstra et al. [103]. The third property is

due to May [116, Theorem 4].

Given a basis (b1, . . . , bk) of a k-dimensional lattice Λ ⊆ Zn, with maxi ‖bi‖2 ≤M , the LLL algorithm

returns an LLL-reduced basis in time O(k5n log3M) with arithmetic operations performed on integers

of bit-length O(k logM). For instances where logM is large, it is preferable to use a floating point

variant of the LLL algorithm such as the L2 algorithm [132, 131]. The L2 algorithm returns an LLL-

reduced basis in time O(k4n(k + logM) logM) and requires a precision of (log2 3) · k bits thus giving

an improved overall complexity and requiring precision independent of logM .



48 3. Nonlinear Polynomial Selection

3.2 Nonlinear Polynomial Selection

There are two main problems that immediately arise from the approach to nonlinear polynomial

generation described in Section 2.2.3: first, establishing a relationship between the size of terms in

the geometric progressions and the determinant of the resulting lattices; and second, the construction

of geometric progressions with small terms. In Section 3.2.1, tools are developed to address the first

problem. There the object of study is the orthogonal lattice. A detailed description of nonlinear

algorithms appears in Section 3.2.2. Based on the results of Section 3.2.1, criteria for the selection of

geometric progressions are also provided. In Section 3.2.3, existing solutions to the second problem

are reviewed.

Throughout the remainder of this chapter, big-O estimates may have implied constants depending on

the degree parameter d.

3.2.1 The Orthogonal Lattice

Given a lattice Λ ⊆ Zn, denote by EΛ the unique Q-vector subspace of Qn that is generated by any of

its bases. The dimension of EΛ over Q is equal to the dimension of Λ. Let E⊥Λ denote the orthogonal

complement of EΛ with respect to 〈 , 〉. For a lattice Λ ⊂ Zn of dimension less than n, the orthogonal

lattice of Λ is defined to be Λ⊥ = Zn ∩ E⊥Λ . By a result due to Martinet [115, Proposition 1.3.4],

dim Λ⊥ = dimE⊥Λ = n− dim Λ

if and only if the dimension of (Zn)×∩E⊥⊥Λ is equal to dimEΛ. The latter holds since (Zn)×∩E⊥⊥Λ =

Zn ∩ EΛ is a lattice (see [115, Proposition 1.1.3]) which contains Λ as a sublattice.

Given a lattice Λ ⊆ Zn, let Λ denote the lattice Zn ∩EΛ. Nguyen and Stern [130, Theorem 1] showed

that for a lattice Λ ⊂ Zn of dimension less than n, the determinants of Λ and Λ⊥ are related as follows:

det Λ =
[

Λ : Λ
]
· det Λ⊥.

Therefore, det Λ⊥ ≤ det Λ, with equality if and only if Λ = Λ. A lattice Λ ⊆ Zn for which Λ = Λ holds

is called primitive. Let B be a basis matrix for a k-dimensional lattice Λ ⊆ Zn. Then Λ is primitive if

and only if the greatest common divisor of all k × k minors of B is 1 (see [153, Corollary 4.1c]). The

following lemma determines the index
[

Λ : Λ
]

in general:

Lemma 3.2.1. Let Λ ⊆ Zn be a k-dimensional lattice and B one of its basis matrices. Let Ω denote

the greatest common divisor of all k × k minors of B. Then
[

Λ : Λ
]

= Ω.

Proof. Let B denote a basis matrix for Λ. The lattice Λ is a full-rank sublattice of Λ, thus there exists

a k × k integer matrix U such that B = U · B and |detU | =
[

Λ : Λ
]
. Hence, the lemma will follow

by showing that Ω = |detU |.



3.2. Nonlinear Polynomial Selection 49

For indices 1 ≤ i1 < . . . < ik ≤ n, let Bi1,...,ik (resp. Bi1,...,ik) denote the k × k submatrix of B (resp.

B) formed by columns i1, . . . , ik. Then Bi1,...,ik = U ·Bi1,...,ik , for all 1 ≤ i1 < . . . < ik ≤ n. Therefore,

Ω = |detU | · Ω, where Ω is the greatest common divisor of all k × k minors of B. However, Ω = 1 as

the lattice Λ is primitive.

The Determinant Under Transformation

For a k-dimensional lattice Λ ⊂ Rn and S ∈ GLn(R), define ΛS = {x · S | x ∈ Λ}. Given a basis

(b1, . . . , bk) of Λ, define (b1, . . . , bk)S = (b1S, . . . , bkS). Then ΛS is a k-dimensional lattice in Rn with

basis (b1, . . . , bk)S .

Lemma 3.2.2. Let Λ ⊂ Zn be a lattice of dimension less than n, and S ∈ GLn(R). Then

det Λ⊥S = |detS| · det ΛS−t ,

where S−t = (S−1)t denotes the inverse transpose of S.

Proof. Fix a basis (b1, . . . , bk) for Λ. The lattice Λ is primitive, thus (b1, . . . , bk) can be extended to a

basis (b1, . . . , bn) for Zn [31, Lemma 2, Chapter 1]. Since Zn is unimodular, the dual basis (b×1 , . . . , b
×
n )

for Rn forms a basis for Zn. The dual basis is characterised by the equalities 〈b×i , bj〉 = δi,j , where δi,j

is the Kronecker delta. Therefore, (b×k+1, . . . , b
×
n ) forms a basis for the orthogonal lattice Λ⊥. Hence,

(b1, . . . , bn)S−t forms a basis for ZnS−t , (b1, . . . , bk)S−t forms a basis for ΛS−t and (b×k+1, . . . , b
×
n )S forms

a basis for Λ⊥S .

For all 1 ≤ i, j ≤ n,

〈b×i S, bjS
−t〉 = b×i SS

−1bj
t = 〈b×i , bj〉 = δi,j .

Thus (b×1 , . . . , b
×
n )S is a dual basis of (b1, . . . , bn)S−t . Therefore, by applying a result of Martinet [115,

Corollary 1.3.5], with E = Rn and F equal to the subspace of Rn generated by (b1, . . . , bk)S−t , it

follows that

|detS|−1 = detZnS−t = det
(
ΛS−t

)
· det

(
Λ⊥S
)−1

.

Given a basis for a lattice Λ ⊂ Zn, and a diagonal matrix S ∈ GLn(R), the following theorem provides

a method for computing the determinant of Λ⊥S :

Theorem 3.2.3. Let Λ ⊂ Zn be a lattice of dimension k < n, and B be one of its basis matrices.

For all indices 1 ≤ i1 < . . . < ik ≤ n, denote by Bi1,...,ik the k × k submatrix of B formed by columns

i1, . . . , ik. For nonzero real numbers S1, . . . , Sn, define S = diag(S1, . . . , Sn). Then

det Λ⊥S = |S1 · · ·Sn| · Ω−1 ·

√√√√ ∑
1≤i1<...<ik≤n

(
detBi1,...,ik
Si1 · · ·Sik

)2

,



50 3. Nonlinear Polynomial Selection

where Ω is the greatest common divisor of all k × k minors of B.

Proof. The index of Λ in Λ is invariant under scaling by the matrix S−1, i.e.,
[

ΛS−1 : ΛS−1

]
=
[

Λ : Λ
]
.

Therefore, it follows from Lemma 3.2.1 and Lemma 3.2.2 that

det Λ⊥S = |detS| · det ΛS−1 = |S1 · · ·Sn| · Ω−1 · det ΛS−1 .

The matrix P = BS−1 forms a basis matrix for ΛS−1 . For all indices 1 ≤ i1 < . . . < ik ≤ n, let Pi1,...,ik

denote the k × k submatrix of P formed by columns i1, . . . , ik. Using the Cauchy-Binet formula (see

[4, p. 86]) to compute detPP t, shows that

det ΛS−1 =

√ ∑
1≤i1<...<ik≤n

det (Pi1,...,ik)2,

The theorem then follows from the fact that Pi1,...,ik = Bi1,...,ik · diag(Si1 , . . . , Sik)−1, for all 1 ≤ i1 <

. . . < ik ≤ n.

Computing a Basis for the Orthogonal Lattice

Let Λ be a k-dimensional lattice in Zn and B = (bi,j) one of its basis matrices. A basis for the

orthogonal lattice Λ⊥ can be found by using either Algorithm 2.4.10 or Algorithm 2.7.2 described

by Cohen [36] to compute a basis for the integer kernel of the matrix B. The former algorithm is

based on Hermite normal form computation (see [36, Section 2.4.2]) and the latter algorithm on the

MLLL algorithm of Pohst [140]. In practice, the MLLL based algorithm is preferable since it is more

likely to avoid large integer arithmetic (see [36, Section 2.4.3]). Similarly, the LLL HNF algorithm of

Havas, Majewski and Matthews [74, Section 6] may be used. If M = maxj ‖(b1,j , . . . , bk,j)‖22, then the

LLL HNF algorithm performs O((n+ k)4 log(nM)) operation on integers of size O(n log(nM)) [164].

The algorithm of Nguyen and Stern [130, Algorithm 5] directly computes an LLL-reduced basis for

Λ⊥. Given an n × n diagonal matrix S with integer entries and nonzero determinant, the following

modification of their algorithm produces an LLL-reduced basis for Λ⊥S .

Algorithm 3.2.4.

Input: A basis matrix B = (bi,j)1≤i≤k,1≤j≤n for a lattice Λ ⊂ Zn, where k < n. An n × n diagonal

matrix S with integer entries and nonzero determinant.

Output: An LLL-reduced basis for Λ⊥S .

1. Select an integer X > 2
n−1
2

+
(n−k)(n−k−1)

4 det Λ⊥S .



3.2. Nonlinear Polynomial Selection 51

2. Let S = diag(S1, . . . , Sn). Compute the n× (n+ k) matrix

D =


S1 0 . . . 0 Xb1,1 Xb2,1 . . . Xbk,1

0 S2 . . . 0 Xb1,2 Xb2,2 . . . Xbk,2
...

...
. . .

...
...

...
. . .

...

0 0 . . . Sn Xb1,n Xb2,n . . . Xbk,n

 .

3. Compute an LLL-reduced basis (x1, . . . ,xn) for the lattice with basis matrix D.

4. Let π↓ denote the projection that maps any vector in Rn+k to the vector in Rn obtained from

its first n consecutive entries. Return the basis X = (π↓(x1), . . . , π↓(xn−k)).

Accordingly, a generalisation of [130, Theorem 4] holds:

Theorem 3.2.5. Algorithm 3.2.4 returns an LLL-reduced basis for Λ⊥S .

Proof. Let ∆ be the lattice with basis matrix D. Given a vector y = (y1, . . . , yn) ∈ Zn,

yD = (y1S1, . . . , ynSn, X〈y, b1〉, . . . , X〈y, bk〉) .

Therefore, y ∈ Λ⊥ if and only if (y1S1, . . . , ynSn, 0, . . . , 0) ∈ ∆. Consequently, if x ∈ ∆ and ‖x‖2 < X,

then π↓(x) ∈ Λ⊥S .

The existence of an LLL-reduced basis for Λ⊥S and Theorem 3.1.2, imply the existence of linearly

independent vectors y1, . . . ,yn−k ∈ ∆ such that

max
1≤i≤n−k

‖yi‖2 ≤ 2
(n−k)(n−k−1)

4 det Λ⊥S .

Let (x1, . . . ,xn) be the LLL-reduced basis for ∆ computed in Step 3 of the algorithm. Then Theo-

rem 3.1.2 implies that

max
1≤i≤n−k

‖xi‖2 ≤ 2
n−1
2 max

1≤i≤n−k
‖yi‖2 ≤ 2

n−1
2

+
(n−k)(n−k−1)

4 det Λ⊥S < X.

Thus X = (π↓(x1), . . . , π↓(xn−k)) forms a basis for a sublattice of Λ⊥S . If X is not a basis of Λ⊥S ⊆
π↓(∆), then there exist integers zn−k+1, . . . , zn, not all zero, such that the last k consecutive entries

of the vector
∑n

j=n−k+1 zjxj are zero. That is, Λ⊥S contains n− k + 1 linearly independent vectors

π↓(x1), . . . , π↓(xn−k),

n∑
j=n−k+1

zjπ↓(xj),

which is absurd. Hence, X forms a basis for Λ⊥S .



52 3. Nonlinear Polynomial Selection

It remains to show that X is LLL-reduced. From the definition of an LLL-reduced basis, it follows

that (x1, . . . ,xn−k) inherits the property of being LLL-reduced from (x1, . . . ,xn). If (x∗1, . . . ,x
∗
n−k) is

the Gram–Schmidt orthogonalisation of (x1, . . . ,xn−k), then the last k consecutive entries of x∗i must

be 0, for 1 ≤ i ≤ n− k. Therefore,

〈
xi,x

∗
j

〉
=
〈
π↓(xi), π↓(x

∗
j )
〉

and
〈
x∗i ,x

∗
j

〉
=
〈
π↓(x

∗
i ), π↓(x

∗
j )
〉
, for 1 ≤ i, j ≤ n− k.

Hence, the Gram–Schmidt orthogonalisation of X is equal to (π↓(x
∗
1), . . . , π↓(x

∗
n−k)). Thus X inherits

the property of being LLL-reduced from (x1, . . . ,xn−k).

As noted by Nguyen and Stern, the bounds on LLL-reduced bases (Theorem 3.1.2) are “quite pes-

simistic.” Therefore, the lower bound on X occurring in Algorithm 3.2.4 can be reduced in practice.

By using the L2 algorithm in Step 3, Algorithm 3.2.4 takes time O(n4(n+k)(n+logM) logM), where

M is an upper bound on the row vector norms of the matrix D from Step 2.

3.2.2 Nonlinear Polynomial Generation in Detail

To address the problem of constructing lattices with small determinants, the use of small geometric

progressions modulo N was briefly introduced in Section 3.2. To make matters more concrete, the

ideas introduced there are now discussed in detail.

Nonlinear algorithms search for polynomials with coefficient vectors contained in the lattice orthogonal

to linearly independent geometric progressions with ratio m modulo N :

c1 = [c1,0, . . . , c1,d], c2 = [c2,0, . . . , c2,d], . . . , ck = [ck,0, . . . , ck,d], 1 ≤ k < d.

Let L denote the k-dimensional lattice with basis (c1, . . . , ck). Geometric progressions that are also

rational geometric progressions must be avoided. Otherwise, any nonlinear polynomial with coefficient

vector in L⊥ will be reducible. In general, L⊥ may not be a sublattice of Lm,d, defined in (2.18).

However, L⊥ ⊆ Lm,d whenever at least one GP ci has nonzero terms and gcd(ci,0, N) = 1. To

obtained skewed polynomials, a skew parameter s > 0 is introduced and weights Si = si−d/2 computed

for 0 ≤ i ≤ d. With S = diag(S0, . . . , Sd), lattice reduction is then used to find an LLL-reduced basis

(b1, . . . , bd−k+1)S , with bi ∈ L⊥, for the lattice L⊥S . Finally, those polynomials with corresponding

coefficient vectors b1 and b2 are returned.

In practice, the weights Si can be replaced by arbitrary positive real values. However, defining

Si = si−d/2 ensures that the length of a vector (a0S0, . . . , adSd) ∈ L⊥S and the skewed 2-norm of

the corresponding polynomial f =
∑d

i=0 aix
i are related:

‖f‖2,s = s
d−deg f

2 · ‖(a0S0, . . . , adSd)‖2 .



3.2. Nonlinear Polynomial Selection 53

Therefore, if the vectors b1 and b2 correspond to degree d polynomials f1, f2 ∈ Z[x] with nonzero

resultant, then Corollary 2.1.4 and Theorem 3.1.2 imply that

N
1
d ≤ ‖f1‖2,s · ‖f2‖2,s ≤ 2d−k · γd−k+1 · det(L⊥S )

2
d−k+1 . (3.1)

Consequently, when aiming to produce two polynomials of equal degree d ≥ 2, the determinant of L⊥S

is of optimal size whenever detL⊥S = O(N (d−k+1)/2d).

The determinant of L⊥S can be computed exactly using Theorem 3.2.3. However, this approach does

not provide a clear intuition as to the relationship between the size of detL⊥S and the size of the

geometric progressions c1, . . . , ck. For s > 0 and (x0, . . . , xn) ∈ Rn+1, define

‖(x0, . . . , xn)‖2,s =

√√√√ n∑
i=0

∣∣∣xisi−n2 ∣∣∣2.
Then a more illustrative relationship between the size of detL⊥S and the size of the geometric progres-

sions is provided by the following theorem:

Theorem 3.2.6. For linearly independent geometric progressions

c1 = [c1,0, . . . , c1,d], c2 = [c2,0, . . . , c2,d], . . . , ck = [ck,0, . . . , ck,d], 1 ≤ k < d,

with ratio m modulo N and gcd(c1,0, N) = 1, let L denote the lattice with basis (c1, . . . , ck). Then L⊥S

is (d− k + 1)-dimensional and

detL⊥S ≤
1

Nk−1
‖c1‖2,s−1 · · · ‖ck‖2,s−1 .

Proof. Observe that ci − (ci,0c
−1
1,0)c1 ≡ 0 (mod N), for 2 ≤ i ≤ k. Thus Nk−1 divides each k × k

minor of the basis matrix (ci,j) for L. Hence, Lemma 3.2.1 and Lemma 3.2.2 imply that L⊥S is a

(d− k + 1)-dimensional lattice and

detL⊥S ≤ (S0 · · ·Sd) ·
1

Nk−1
· detLS−1 =

1

Nk−1
· detLS−1 .

The proof is completed by using Hadamard’s inequality (see [153, Section 1.3]) to bound detLS−1 .

Theorem 3.2.6 provides a simple criterion for selecting geometric progressions: for a given skew s > 0,

the best geometric progressions c1, . . . , ck are precisely those for which ‖ci‖2,s−1 are small.

The construction of small geometric progressions is, by a large margin, the most difficult part of

nonlinear polynomial generation. One approach to this problem, introduced by Montgomery [119, 122]

and later extended by Koo, Jo and Kwon [97, Section 3], suggests constructing an initial GP c =

[c0, . . . , cl−1] of length l, where d < l < 2d. Then l − d geometric progressions of length d + 1 are



54 3. Nonlinear Polynomial Selection

obtained by taking successive terms:

c1 = [c0, . . . , cd], c2 = [c1, . . . , cd+1], . . . , cl−d = [cl−d−1, . . . , cl−1].

If the vectors c1, . . . , cl−d do not form a basis for an (l − d)-dimensional sublattice of Lm,d, then c is

rejected. For s > 0, the product of the norms ‖ci‖2,s−1 is bounded in terms of the initial GP:

l−d∏
i=1

‖ci‖2,s−1 =
l−d∏
i=1

s
l−d−1

2
−(i−1) · ‖ci‖2,s−1 ≤ ‖c‖l−d2,s−1 .

Therefore, to generate two degree d polynomials with optimal size, Theorem 3.2.6 and (3.1) suggests

that the initial geometric progression c should satisfy

‖c‖2,s−1 = O

(
N

(2d−1)(l−d)−(d−1)
2d(l−d)

)
. (3.2)

For fixed d, the exponent of N in (3.2) is a strictly increasing function of l. Therefore, the weakest size

requirements on c occur for l = 2d− 1 (corresponding to Montgomery’s algorithm). For this case, the

orthogonal lattice is 2-dimensional and thus two linearly independent vectors of shortest length can

be found in polynomial time by using Lagrange’s algorithm (often called Gauss’ algorithm, see [133]

and references therein). For large N , the problem of efficiently constructing geometric progressions

satisfying (3.2) remains open for all parameters (d, l) /∈ {(2, 3), (3, 5)}.

Koo, Jo and Kwon observed that at least one degree d polynomial can be obtained for all l/2 ≤ d < l.

Therefore, distinct degree polynomial pairs can be obtained by varying the parameter d. This approach

allows for nonlinear algorithms to be applied to N of any size.

3.2.3 Existing Algorithms

In this section, existing nonlinear generation algorithms are briefly reviewed. A uniform analysis of the

algorithms that appear in this section is provided in Section 3.3 and Section 3.4. Therefore, attention

is limited to the methods of GP and basis construction employed in each algorithm. Examples are

provided for comparison between the algorithms.

Montgomery’s Two Quadratics Algorithm

In Montgomery’s two quadratics algorithm (see [54, Section 5] and [126, Section 2.3.1]), geometric

progressions of length d+ 1 = 3 are constructed by first selecting an integer p ≥ 2 (usually chosen to

be prime) such that gcd(p,N) = 1 and N is quadratic residue modulo p. Then one of the two possible

values of m ∈ Z satisfying m2 ≡ N (mod p) and |m−N1/2| ≤ p/2 is chosen. Finally, the GP is taken

to be [c0, c1, c2] = [p,m, (m2−N)/p], with ratio mp−1 modulo N . For any integer t ≡ c2c
−1
1 (mod c0),



3.2. Nonlinear Polynomial Selection 55

the matrix (
c1 −c0 0

c1t−c2
c0

−t 1

)
,

forms a basis matrix for the orthogonal lattice of [c0, c1, c2]Z.

For a given skew s > 0, choosing p = O(s−1
√
N) guarantees that (3.2) holds. As a result, Mont-

gomery’s algorithm is capable of producing polynomials with optimal coefficient size. However, the

restriction to quadratic polynomials means that the algorithm is not suitable for N containing more

than 110–120 digits [126, Section 2.3.1]. Examples of polynomials generated with Montgomery’s two

quadratics algorithm can be found in [54, Section 10].

The Williams and Prest–Zimmermann Algorithms

Williams [167, Chapter 4] introduced another length 3 GP construction for producing pairs of quadratic

polynomials. Roughly speaking, the new geometric progressions are obtained by setting p = 1 in

Montgomery’s construction. Williams also provided a length 4 GP construction for producing pairs of

cubic polynomials. In both of Williams’ algorithms, the skew parameter is restricted to s = 1. Prest

and Zimmermann [149] extended Williams’ algorithms to include skews s 6= 1, leading to a reduction

in coefficient norms for the cubic algorithm. In addition, they generalised their algorithm to arbitrary

degrees.

In the algorithms of Williams and Prest–Zimmermann, geometric progressions of length d + 1 are

constructed by first selecting an integer m with |md −N | = O(N1−1/d). Then the GP is taken to be

[c0, . . . , cd] = [1,m, . . . ,md−1,md −N ],

with ratio m modulo N . The matrix 
−c1 1 0 . . . 0

−c2 0 1 . . . 0
...

...
...

. . .
...

−cd 0 0 . . . 1

 ,

forms a basis matrix for the orthogonal lattice of [c0, . . . , cd]Z.

Examples of polynomials found with the Williams and Prest–Zimmermann algorithms are found in

[167, Chapter 5] and [149]. For comparison between the algorithms of this section, the following

example is considered throughout:



56 3. Nonlinear Polynomial Selection

Example 3.2.7. Let

N = c91 =4567176039894108704358752160655628192034927306

969828397739074346628988327155475222843793393.

With m =
⌈
N1/3

⌉
= 1659138281147271980794587079218, Williams [167, Chapter 5] obtained the

cubic polynomials:

f1 = 8962732699933084116x3 f2 = 62526200906654277101x3

− 20270774434332188756x2 − 141413847455697130658x2

− 9743458171161776159x − 161279695637696264892x

+ 98228473793261830482 − 88601408057407884491

The product of coefficient norms ‖f1‖2 · ‖f2‖2 is approximately N0.445. The product ‖f1‖2,s · ‖f2‖2,s
is minimised for sopt ≈ 1.763 with ‖f1‖2,sopt · ‖f2‖2,sopt ≈ N

0.443.

Applying Prest and Zimmermann’s algorithm with m =
⌈
N1/3

⌉
and s = 108, the following pair of

cubic polynomials is obtained:

g1 = 10363104x3 − 23437957x2 − 21147168576512214234486x− 109084939899748327411476171840,

g2 = 4776851x3 − 10803677x2 + 150352771504116048021555x− 100087822514431510434061442231.

The product of coefficient norms ‖g1‖2,108 · ‖g2‖2,108 is approximately N0.422. The product ‖g1‖2,s ·
‖g2‖2,s is minimised for sopt ≈ 45278023 with ‖g1‖2,sopt · ‖g2‖2,sopt ≈ N0.419. Consequently, the

polynomials g1 and g2 have an optimised product of coefficient norms that is approximately 147 times

smaller than that of f1 and f2.

The Koo–Jo–Kwon Algorithms

Koo, Jo and Kwon [97, Section 4.1] generalised Montgomery’s GP construction to arbitrary degrees.

They construct geometric progressions of length d+1 by first selecting positive integers p = O((kN)1/d)

and k = O(1) such that xd ≡ kN (mod p) has a nonzero solution. An integer m satisfying md ≡ kN

(mod p) and |m− d
√
kN | ≤ p/2 is chosen. Then the GP is taken to be

[c0, . . . , cd] =

[
pd−1, pd−2m, . . . ,md−1,

md − kN
p

]
,

with ratio mp−1 modulo N . This construction is seen to reduce to Montgomery’s construction for

parameters d = 2, k = 1; and the constructions of Williams and Prest–Zimmerman for p = k = 1.

The Koo–Jo–Kwon and Prest–Zimmermann algorithms each produce polynomials which satisfy the



3.3. Length d+ 1 Construction Revisited 57

same theoretical bounds on coefficient norms (see Section 3.3.1). However, for any given N , the

additional parameters p and k allow for a wealth of new geometric progressions to be constructed. As

a result, polynomials with significantly smaller coefficients may be found in practice.

Example 3.2.8. Let N = c91. Applying the Koo–Jo–Kwon algorithm with s = 108, k = 1, p =

776112641898 and m =
⌈
N1/3

⌉
+ 5, the following pair of cubic polynomials is obtained:

h1 = 124932x3 − 276x2 + 590020231905564605626x+ 79893857071973416869543365671,

h2 = 156165x3 − 345x2 + 737525290075983917507x− 314917248946851224111717562717.

The product of coefficient norms ‖h1‖2,108 · ‖h2‖2,108 is approximately N0.383. The product ‖h1‖2,s ·
‖h2‖2,s is minimised for sopt ≈ 106759349 with ‖h1‖2,sopt · ‖h2‖2,sopt ≈ N

0.383.

By extending their length d + 1 GP construction, Koo, Jo and Kwon [97, Section 4.2] obtained a

construction for length d + 2 geometric progressions. The construction begins by selecting positive

integers p = Θ((kN)1/d) and k = O(1) such that xd ≡ kN (mod p2) has a nonzero solution m = Θ(p).

Then the GP is taken to be

[c0, . . . , cd+1] =

[
pd−1, pd−2m, . . . ,md−1,

md − kN
p

,
m(md − kN)

p2

]
,

with ratio mp−1 modulo N . Koo, Jo and Kwon do not analyse their algorithm for skews s 6= 1. This

analysis is undertaken in Section 3.4, where it is shown that the algorithm improves upon previous al-

gorithms for d ≥ 3, with polynomials of optimal size produced when d = 3. However, the improvement

is offset in part by the additional complexity of determining suitable parameters m, p and k.

3.3 Length d+ 1 Construction Revisited

Each of the length d + 1 GP constructions discussed in Section 3.2.3 led to geometric progressions

[c0, . . . , cd] for which [c0, . . . , cd−1] forms a rational GP. The following theorem determines all such

geometric progressions that, in addition, satisfy the properties necessary for polynomial generation:

Theorem 3.3.1. Let [c0, . . . , cd] be a GP modulo N with d ≥ 2 and nonzero terms. Suppose that the

following properties are satisfied:

1. gcd(c0, N) = 1;

2. [c0, . . . , cd−1] is a rational GP; and

3. [c0, . . . , cd−1, cd] is not a rational GP.



58 3. Nonlinear Polynomial Selection

Then there exist nonzero integers a p, m and k, with gcd(m, p) = 1, such that

[c0, . . . , cd] =

[
apd−1, apd−2m, . . . , amd−1,

amd − kN
p

]
. (3.3)

Proof. Let [c0, . . . , cd] satisfy the conditions of the theorem. Then the second property implies the

existence of nonzero integers a p andm, with gcd(m, p) = 1, such that ci = apd−i−1mi, for 0 ≤ i ≤ d−1.

Consequently, gcd(ap,N) = 1 as a result of the first property, and

cbd/2ccdd/2e − c0cd = apd−2
(
amd − pcd

)
.

Therefore, cbd/2ccdd/2e − c0cd 6= 0, since otherwise [c0, . . . , cd] forms rational GP, violating the third

property. However, [c0, . . . , cd] is a GP modulo N , with ratio r ≡ mp−1 (mod N). Thus

cbd/2ccdd/2e − c0cd ≡
(
c0r
bd/2c

)(
c0r
dd/2e

)
− c0

(
c0r

d
)
≡ c2

0

(
rbd/2c+dd/2e − rd

)
≡ 0 (mod N).

Hence, amd − pcd = kN , for some nonzero k ∈ Z.

Given an arbitrary GP [c0, . . . , cl−1] with nonzero terms and length l ≥ 3, [c0, c1] forms a rational GP

with ratio c1c
−1
0 . The following corollary is therefore a direct consequence of Theorem 3.3.1:

Corollary 3.3.2. Let [c0, . . . , cl−1] is a GP modulo N with l ≥ 3 and nonzero terms. Suppose that

the following properties are satisfied:

1. gcd(c0, N) = 1; and

2. [c0, . . . , cl−1] is not a rational GP.

If 2 ≤ d < l is the largest index such that [c0, . . . , cd−1] forms a rational GP, then there exist nonzero

integers a p, m and k, with gcd(m, p) = 1, such that [c0, . . . , cd] is given by (3.3).

As a consequence of Theorem 3.3.1, the following nonlinear generation algorithm is obtained:

Algorithm 3.3.3.

Input: An integer d ≥ 2. Positive integers a, p, m and k such that gcd(ap,N) = 1, gcd(m, p) = 1,

and (amd − kN)/p is a nonzero integer. A positive integer s.

Output: A pair of integer polynomials f1 and f2 with common root mp−1 modulo N .

1. Compute ci = apd−i−1mi, for 0 ≤ i ≤ d− 1; and cd = (amd − kN)/p.

2. Compute weights Si = si−d/2, for 0 ≤ i ≤ d.

3. Let L = [c0, . . . , cd]Z and S = diag(S0, . . . , Sd). Use Algorithm 3.2.4 to compute an LLL-reduced

basis (b1, . . . , bd)S for the lattice L⊥S (see Remark 3.3.4 below).



3.3. Length d+ 1 Construction Revisited 59

4. For i = 1, 2, write bi = (ai,0, . . . , ai,d) and return the polynomial fi =
∑d

j=0 ai,jx
j .

The length d + 1 GP construction in Step 1 of Algorithm 3.3.3 reduces to the construction of Mont-

gomery’s two quadratics algorithm for parameters d = 2, a = k = 1; the constructions of the Williams

and Prest–Zimmerman algorithms for a = p = k = 1; and the construction of the Koo–Jo–Kwon

algorithm for a = 1. In the next section, parameter selection for Algorithm 3.3.3 is considered.

Remark 3.3.4. In Step 3 of Algorithm 3.3.3, a reduced basis for L⊥S may be found by first computing an

LLL-reduced basis for L⊥S′ , where S′ = diag(1, s, . . . , sd). Given a reduced basis (b1, . . . , bd)S′ for L⊥S′ , the

definition of LLL-reduced bases (Definition 3.1.1) then implies that (s−
d
2 b1, . . . , s

− d
2 bd)S′ is also reduced. The

latter is equal to (b1, . . . , bd)S , a basis for L⊥S . The restriction in the algorithm to s ∈ Z ensures that a reduced

basis for L⊥S′ is able to be found with Algorithm 3.2.4.

3.3.1 Parameter Selection for Algorithm 3.3.3

Throughout this section, notation from Algorithm 3.3.3 is retained. In addition, let c = [c0, . . . , cd].

Then the polynomials f1 and f2 satisfy

fi

(
m

p

)
· pd =

p

a
〈bi, c〉+

ai,d k

a
N =

ai,d k

a
N, for i = 1, 2. (3.4)

In Section 2.1.2, it was noted that root properties play a key role in determining the yield of number

field sieve polynomials. There polynomial roots were divided into two classes: projective and non-

projective. When a = 1, Koo, Jo and Kwon [97, Remark 5] noted that choosing k to contain a product

of small primes improves the non-projective root properties of f1 and f2. More generally, (3.4) shows

that selecting a and k to contain small prime factors may be used to aid both projective and non-

projective root properties. However, the parameters a and k should be chosen small as a/ gcd(a, k)

divides ai,d, for i = 1, 2; and kN/ gcd(a, k) divides Res(f1, f2).

For k = 1, the parameter spaces of Algorithm 3.3.3 and Kleinjung’s algorithm [91] coincide. Methods

discussed by Kleinjung for efficiently generating parameters may be carried over to this setting and

are readily extended to include k 6= 1. Additionally, parameter generation when a = 1 has been

considered previously by Koo, Jo and Kwon [97, Section 4.1]. Consequently, the problem of generating

parameters is not considered here. Instead, it is shown that under an appropriate choice of parameters,

Algorithm 3.3.3 may be used to obtain degree d polynomials f1, f2 ∈ Z[x] with

‖fi‖2,s = O
(
N (1/d)(d2−2d+2)/(d2−d+2)

)
, for i = 1, 2. (3.5)

This yields polynomials of size O(N1/4), for d = 2; O(N5/24), for d = 3; and O(N5/28), for d = 4. The

exponent for d = 2 is optimal as a result of Corollary 2.1.4. The bound (3.5) is obtained without any

assumptions on the size of vectors in LLL-reduced bases. This is in contrast to the previous analyses

of [149, 97].



60 3. Nonlinear Polynomial Selection

Applying Theorem 3.2.6, the determinant of L⊥S satisfies

detL⊥S ≤ (S0 · · ·Sd) ·

√
c2

0

S2
0

+ . . .+
c2
d

S2
d

=

√
c2

0

S2
0

+ . . .+
c2
d

S2
d

.

For 0 ≤ i ≤ d− 1,

ci
Si

= apd−i−1mis
d
2
−i = apd−1s

d
2

(
m

ps

)i
.

Let m̃ = d

√
kN
a and assume m ≥ m̃. Then

cd
Sd

=
amd − kN

p
s−

d
2 =

a

p
(md − m̃d)s−

d
2 <

d(m− m̃)

ps
apd−1s

d
2

(
m

ps

)d−1

.

Therefore, for parameters p and s satisfying
√
d (m− m̃) ≤ ps ≤ m,

detL⊥S ≤
√

2d as1− d
2md−1. (3.6)

To minimise the determinant of L⊥S , it follows that the skew parameter s should be chosen as large

as possible and m ≈ m̃. However, the size of s is limited by the requirement that two degree d

polynomials are found.

For a nonzero polynomial f with coefficient vector x ∈ L⊥ and degree less than d, (3.4) implies that

f(mp−1) = 0. Thus f must contain a monomial with nonzero coefficient divisible by m. Accordingly,

the coefficient vector x satisfies ‖x‖2,s > s−d/2m. Therefore, if the basis vectors b1 and b2 in the

reduced basis for L⊥S both satisfy ‖bi‖2,s ≤ s−d/2m, then f1 and f2 each have degree equal to d. Below

it is shown that selecting s so that ‖b1‖2,s ≤ s−d/2m holds is sufficient to guarantee that two degree

d polynomial satisfying (3.5) can be found.

Theorem 3.1.2 and (3.6) imply that ‖b1‖2,s ≤ s−d/2m whenever

2
d−1
4

(√
2d as1− d

2md−1
) 1
d ≤ s−

d
2m.

Rearranging for s gives the bound

s ≤ 1√
2

(
m√
d a

) 2
d2−d+2

.

Recall that s should be chosen as large as possible and m ≈ m̃ in order to minimise the determinant

of L⊥S . Therefore, parameters should be chosen to satisfy

m ≥
(
kN

a

) 1
d

, s =

⌊
1√
2

(
m√
d a

) 2
d2−d+2

⌋
,
√
d (m− m̃) ≤ ps ≤ m,



3.4. The Koo–Jo–Kwon Length d+ 2 Construction Revisited 61

with m = Θ(m̃). For such parameters, f1 is of degree d with f1(mp−1) 6= 0, and substituting into the

bound ‖b1‖2,s ≤ s−d/2m shows that

‖f1‖2,s = O

(
a

1
d

2(d−1)

d2−d+2 · k
1
d
d2−2d+2

d2−d+2 ·N
1
d
d2−2d+2

d2−d+2

)
. (3.7)

Setting a = O(1) and k = O(1) leads to f1 satisfying the bound in (3.5).

Repeating the analysis for m ≤ m̃ once again leads to parameters for which (3.7) is obtained. In both

cases, the parameters satisfy

m = Θ

((
kN

a

) 1
d

)
, s = Θ

((
kN

ad+1

) 2
d(d2−d+2)

)
,
√
d |m− m̃| ≤ ps ≤ m. (3.8)

For parameters satisfying (3.8), the condition ‖b1‖2,s ≤ s−d/2m is now used to show that b2 satisfies

‖b2‖2,s = O(s−d/2m). Therefore, if the degree of f2 is equal to d, then (3.5) holds. Otherwise, (3.5) is

satisfied by the degree d polynomials f1 and f1 + f2.

Assume (3.8) holds and ‖b1‖2,s ≤ s−d/2m. Then the vector b = (−m, p, 0, . . . , 0) in L⊥ satisfies

‖b‖2,s =

√
(s−

d
2m)2 + (s1− d

2 p)2 ≤
√

2s−
d
2m.

Moreover, the vectors b1, b ∈ L⊥ are linearly independent since deg f1 = d. Hence, λ2(L⊥S ) =

O(s−d/2m) and Theorem 3.1.2 implies that ‖b2‖2,s = O(s−d/2m).

Remark 3.3.5. The above arguments show that a degree d polynomial

fj1,j2,j3(x) = j1 · f1(x) + j2 · f2(x) + j3 · (px−m), j1, j2, j3 ∈ Z,

will satisfy ‖fj1,j2,j3‖2,s = O(s−d/2m) whenever ji = O(1), for i = 1, 2, 3. Therefore, it is possible to obtain

multiple pairs of degree d polynomials that satisfy (3.5). Moreover, a sieve-like procedure such as that used

in the Montgomery-Murphy algorithm [126, Procedure 5.1.6] (see also Section 2.2.1) may be used to identify

polynomials fj1,j2,j3 with good root properties.

3.4 The Koo–Jo–Kwon Length d+ 2 Construction Revisited

By utilising their length d + 2 GP construction, Koo, Jo and Kwon [97, Corollary 4] obtained an

algorithm for producing nonlinear polynomials of degree at most d such that the coefficient of xd−1

in each polynomial is equal to zero. Number field sieve polynomials with second highest coefficient

equal to zero had previously been considered for linear algorithms by Kleinjung [90]. There the

motivation was to produce polynomials with large skew in order to leverage practical advantages. In

this section, it is shown that larger skews, when compared to those in Section 3.3.1, are able to be

used in the Koo–Jo–Kwon algorithm. As a result, nonlinear polynomial pairs with smaller coefficient



62 3. Nonlinear Polynomial Selection

norms are obtained. To begin this section, minor improvements to the Koo–Jo–Kwon algorithm are

now provided.

It follows immediately from Corollary 3.3.2 that the length d + 2 GP construction of Koo, Jo and

Kwon [97, Section 4.2] may be extended: if a, p, k, andm are positive integers that satisfy gcd(ap,N) =

1, gcd(m, p) = 1 and amd ≡ kN (mod p2), then

[c0, . . . , cd+1] =

[
apd−1, apd−2m, . . . , amd−1,

amd − kN
p

,
m(amd − kN)

p2

]
, (3.9)

is a GP with ratio mp−1 modulo N . The Koo–Jo–Kwon construction then corresponds to the special

case where a = 1. Given a GP defined by (3.9), the proof of a result by Koo, Jo and Kwon [97,

Corollary 4] is readily modified to show that an integer polynomial f =
∑d

i=0 aix
i with coefficient

vector orthogonal to both [c0, . . . , cd] and [c1, . . . , cd+1] must have ad−1 = 0. A stronger statement is

provided by the following lemma:

Lemma 3.4.1. Let a, p, m, k and N be nonzero integers and [c0, . . . , cd+1] be defined by (3.9). For

any vector (a0, . . . , ad) ∈ Zd+1, the following conditions are equivalent:

1. (a0, . . . , ad) is orthogonal to [c0, . . . , cd] and [c1, . . . , cd+1].

2. ad−1 = 0 and (a0, . . . , ad) is orthogonal to (c1, . . . , cd−1, 0, cd+1).

Proof. By construction,

[c0, . . . , cd]− pm−1[c1, . . . , cd+1] = [0, . . . , 0,m−1kN, 0].

Hence, (a0, . . . , ad) ∈ Zd+1 is orthogonal to [c0, . . . , cd] and [c1, . . . , cd+1] if and only if ad−1 = 0 and

(a0, . . . , ad) is orthogonal to vectors (c0, . . . , cd−2, 0, cd) and (c1, . . . , cd−1, 0, cd+1), which are linearly

dependent.

Lemma 3.4.1 permits a somewhat smaller lattice to be used in the Koo–Jo–Kwon algorithm, thus

offering a minor practical advantage. The improved algorithm may be described as follows:

Algorithm 3.4.2.

Input: An integer d ≥ 3. Nonzero integers a, p, k and m such that gcd(ap,N) = 1, gcd(m, p) = 1,

and (amd − kN)/p2 is a nonzero integer. A positive integer s.

Output: A pair of integer polynomials f1 and f2 with common root mp−1 modulo N .

1. Compute ci = apd−i−2mi, for 0 ≤ i ≤ d− 2; and cd−1 = (amd − kN)/p2.

2. Compute weights Si = si−d/2, for 0 ≤ i ≤ d− 2; and Sd−1 = sd/2.



3.4. The Koo–Jo–Kwon Length d+ 2 Construction Revisited 63

3. Let L = (c0, . . . , cd−1)Z and S = diag(S0, . . . , Sd−1). By modifying the approach described in

Remark 3.3.4, use Algorithm 3.2.4 to compute an LLL-reduced basis (b1, . . . , bd−1)S for L⊥S .

4. For i = 1, 2, write bi = (ai,0, . . . , ai,d−2, ai,d) and return the polynomial fi = ai,dx
d+
∑d−2

j=0 ai,jx
j .

In the next section, parameter selection for Algorithm 3.4.2 is considered.

In Section 3.2.2, it was noted that a length l geometric progression may be used to generate degree d

polynomials for all l/2 ≤ d < l. Given a geometric progression c = [c0, . . . , cd+1] defined by (3.9), it is

therefore possible to generate polynomials of degrees d and d+ 1, for d ≥ 2. Generating polynomials

of degree less than d should not be considered as [c0, . . . , cd−1] forms a rational GP. A degree d + 1

polynomial f =
∑d+1

i=0 aix
i with coefficient vector orthogonal to c will satisfy

f

(
m

p

)
· pd+1 =

kN

a
(ad+1m+ adp) .

Hence, following the approach of Section 3.3.1 and choosing parameters so that f(mp−1) 6= 0 is not

sufficient to guarantee that f has degree equal to d+1. Parameter selection is therefore a more difficult

problem, and is not addressed here.

3.4.1 Parameter Selection for Algorithm 3.4.2

Throughout this section, notation from Algorithm 3.4.2 is retained. In addition, let c = [c0, . . . , cd].

Then the polynomials f1 and f2 satisfy

fi

(
m

p

)
· pd =

p2

a
〈bi, c〉+

ai,d k

a
N =

ai,d k

a
N, for i = 1, 2.

Therefore, similar to Section 3.3.1, the parameters a and k may be utilised to aid the root properties

of f1 and f2. Generating parameters for Algorithm 3.4.2 is significantly more difficult than for Algo-

rithm 3.3.3. This problem has, in effect, been considered by Kleinjung [90] and Koo–Jo–Kwon [97,

Section 4.2]. Therefore, the problem is not considered here. Instead, the problem of selecting param-

eters that minimise the coefficient norms of f1 and f2 is considered.

Theorem 3.2.3 implies that

detL⊥S ≤ (S0 · · ·Sd−1) ·

√
c2

0

S2
0

+ . . .+
c2
d−1

S2
d−1

= s1− d
2 ·

√
c2

0

S2
0

+ . . .+
c2
d−1

S2
d−1

.

By following the analysis of Section 3.3.1, the parameter space of Algorithm 3.4.2 can be restricted in

such a way as to guarantee the degree of f1 is equal to d and

‖f1‖2,s = O

(
a

3d−4

d(d2−3d+4) · p−
d

d2−3d+4 · k
1
d ·N

1
d

)
.



64 3. Nonlinear Polynomial Selection

The restricted parameters then satisfy

m = Θ

((
kN

a

) 1
d

)
, s = Θ

((p
a

) 2
d2−3d+4

)
,
√
d

∣∣∣∣∣m−
(
kN

a

) 1
d

∣∣∣∣∣ ≤ ps ≤ m.
Clearly, the parameter p should be chosen as large as possible. By enforcing p = Θ(m/s),

‖f1‖2,s = O

(
a

2(2d−3)

d(d2−3d+6) · k
d2−4d+6

d(d2−3d+6) ·N
d2−4d+6

d(d2−3d+6)

)
,

where s = Θ((kN/ad+1)(2/d)/(d2−3d+6)). Similar to Section 3.3.1, if the degree of f2 is not equal to d,

then a second degree d polynomial can be found by considering linear combinations of the polynomials

f1, f2 and px−m. Finally, by setting a = O(1) and k = O(1), it follows that Algorithm 3.4.2 can be

used to obtain a pair of degree d polynomials with

‖fi‖2,s = O
(
N (1/d)(d2−4d+6)/(d2−3d+6)

)
, for i = 1, 2.

This yields polynomials of size O(N1/6), for d = 3; and O(N3/20), for d = 4. The exponent for d = 3

is optimal as a result of Corollary 2.1.4.



Chapter 4

An Approach to Polynomial Selection

We emphasize that polynomial-searching is highly underdeveloped. There is much unexploited

structure in the polynomial-searching problem. It appears far more tractable than factoring

itself. Surely we can do better than brute force?

Bernstein and Lenstra [19]

Current best methods involve extensive searches, are guided by experience, helped by luck,

and profit from patience.

Kleinjung et al. [92]

Current methods for polynomial selection generate polynomials in two stages: first polynomials with

good size properties are found, then each polynomial is optimised by performing translation, rotation,

and by computing its skew. There are two negative consequences that result from this approach. First,

rotations are limited to low degree and small coefficient size in order to preserve the size properties of

the initial polynomials. As a result, the expectation of finding good rotations is reduced, thus some

luck is required to find polynomials with good root properties. This luck is usually provided in the

form of a large initial sample of polynomials. However, this approach only amplifies the effect of the

second negative consequence of the two-stage approach: only after optimisation can polynomials that

rate poorly against measures such as the Murphy E-value be discarded. Therefore, time is wasted on

those polynomials that are generated, optimised, rated and then ultimately discarded.

In this chapter, a new approach to problem of number field sieve polynomial generation is developed.

The approach targets only those polynomials with a good combination of size and root properties.

As a result, the number of polynomials that require optimisation, and the time spent optimising each

polynomial, are reduced. The development of the approach begins in Section 4.1, where new light

is shed on the underlying algebraic structure of the polynomial generation problem by revisiting the

resultant bound. At first, this may appear to be an unlikely place to start. However, the resultant

bound was obtained by relating information about the combined size and root properties of two

polynomials through upper and lower bounds on their resultant (see Section 2.1.1). By generalising

65



66 4. An Approach to Polynomial Selection

the relationship hinted at by the proof of the resultant bound, it is shown that concepts from the

theory of algebraic error-correcting codes apply naturally to the polynomial generation problem. This

observation ultimately leads to the development of an approach to polynomial generation which is

based on the framework for list decoding of algebraic error-correcting codes described by Guruswami

et al. [69, Appendix A].

The approach of this chapter is not the first application of list decoding of algebraic error-correcting

codes in number theory. Cheng and Wan [35] showed that a list decoding algorithm for Reed–Solomon

codes can be used to find smooth polynomials over finite fields. This problem arises as part of the

index calculus algorithm for computing discrete logarithms. Boneh [25] used a list decoding algorithm

for Chinese remainder codes to find smooth integers in short intervals. Additionally, Boneh gave

an algorithm for finding smooth values of a univariate polynomial. A final example is provided in

Chapter 5, where a list decoding algorithm for a family of number field codes is used to find smooth

algebraic integers in a number field.

The remainder of the chapter is organised as follows. Section 4.2 contains technical results on the divis-

ibility properties of resultants, which allow for the resultant bound to be generalised. The generalised

bound is then combined with a purely combinatorial result in Section 4.3, and used to derive bounds

on the existence of number field sieve polynomials with small coefficients and good non-projective

root properties. In Section 4.4, an initial realisation of the approach described in Section 4.1 is devel-

oped. The resulting algorithm is analysed and its performance compared against the combinatorially

derived bounds of Section 4.3. To end the chapter, potential avenues for generalising the approach of

Section 4.1 and improving its realisation are discussed in Section 4.5.

4.1 Overview of the Approach

The resultant bound was obtained by using information about the combined size and root properties

of two coprime polynomials to provide respective upper and lower bounds on their resultant. In this

section, the lower bound is generalised and used to establish a more general relationship between the

size and root properties of two coprime polynomials. The relationship is then used to develop a new

approach to polynomial generation. To begin, some notation that is used throughout the remainder

of the chapter is introduced.

Define U to be the set of all integer pairs (p, r) such that p is prime and 0 ≤ r < p. Then the non-

projective roots of a number field sieve polynomial f are in bijection with the pairs (p, r) ∈ U such that

f(r) ≡ 0 (mod p). For each element (p, r) ∈ U , there is an associated maximal ideal pp,r := 〈p, x− r〉
of Z[x]. Given a nonzero polynomial f ∈ Z[x] and an ideal a ⊆ Z[x], define σ(f, a) = 1, if f ∈ a; and

σ(f, a) = 0, otherwise. Furthermore, define σ∗(f, a) to be the maximum value σ ≥ 0 such that f ∈ aσ.

The lower bound used to obtain the resultant bound stems from the observation that the resultant of

two coprime polynomials f1, f2 ∈ Z[x] with a common root modulo N belongs to the ideal 〈f1, f2〉∩Z ⊆



4.1. Overview of the Approach 67

〈N〉. Thus, their resultant must satisfy N ≤ |Res(f1, f2)|. A more general inequality can be obtained

as an immediate consequence of the following lemma:

Lemma 4.1.1. Let N be a nonzero integer and p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the

form pi = ppi,ri , with pi - N , for 1 ≤ i ≤ n. If f1, f2 ∈ Z[x] are nonzero and f1 is primitive, then

Nσ∗(f1,〈N,x−m〉)σ∗(f2,〈N,x−m〉) ·
n∏
i=1

p
σ∗(f1,pi)σ∗(f2,pi)
i divides Res(f1, f2),

for all m ∈ Z.

A proof of Lemma 4.1.1 is provided in Section 4.2. Importantly, the lemma allows greater information

about the combined root properties of two polynomials to be incorporated into the lower bound used

to obtain the resultant bound. The tightened bound is summarised by the following lemma, which is

the main technical result that underlies the approach of this chapter:

Lemma 4.1.2. Let N be a nonzero integer and p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the

form pi = ppi,ri , with pi - N , for 1 ≤ i ≤ n. Suppose there exist non-constant polynomials f1, f2 ∈ Z[x]

such that f1 is primitive and

‖f1‖deg f2
2,s · ‖f2‖deg f1

2,s < Nσ∗(f1,〈N,x−m〉)σ∗(f2,〈N,x−m〉) ·
n∏
i=1

p
σ∗(f1,pi)σ∗(f2,pi)
i , (4.1)

for some m ∈ Z and s > 0. Then Res(f1, f2) = 0.

Proof. Let f1, f2 ∈ Z[x] satisfy the conditions of the lemma and define

R(f1, f2) = Nσ∗(f1,〈N,x−m〉)σ∗(f2,〈N,x−m〉) ·
n∏
i=1

p
σ∗(f1,pi)σ∗(f2,pi)
i .

Then, on one hand, Lemma 4.1.1 implies that R(f1, f2) divides Res(f1, f2). On the other hand,

Lemma 2.1.3 and (4.1) imply that

|Res(f1, f2)| ≤ ‖f1‖deg f2
2,s · ‖f2‖deg f1

2,s < R(f1, f2).

Hence, if Res(f1, f2) 6= 0, then

R(f1, f2) ≤ ‖f1‖deg f2
2,s · ‖f2‖deg f1

2,s < R(f1, f2),

which is absurd. Therefore, Res(f1, f2) = 0.

The proof of Lemma 4.1.2 extends arguments made by Shparlinski and Steinfeld [154, Theorem 1].

The lemma may viewed as a generalisation of Howgrave-Graham’s [78, Section 2] well-known sufficient

condition for a modular root of an integer polynomial to also be an integer root.



68 4. An Approach to Polynomial Selection

Corollary 4.1.3. Let non-constant polynomials f1, f2 ∈ Z[x] be irreducible with deg fi ≤ d and

‖fi‖2,s ≤M , for i = 1, 2. If

∑
(p,r)∈U

σ∗(f1, pp,r)σ
∗(f2, pp,r) log p > 2d logM, (4.2)

then f1 = ±f2.

Proof. It follows from (2.3) that the resultant of two integer polynomials vanishes if and only if they

have a nontrivial common divisor in Q[x]. Therefore, suppose that f1, f2 ∈ Z[x] satisfy the conditions

of the corollary and (4.2) holds. Then Lemma 4.1.2 implies that Res(f1, f2) = 0, i.e., f1 and f2 have

a nontrivial common divisor in Q[x]. However, f1 and f2 are both primitive and irreducible over Q.

Hence, f1 = ±f2.

Corollary 4.1.3 shows that an irreducible polynomial f ∈ Z[x] is uniquely determined (up to units),

given sufficient information about its non-projective roots. Here, “sufficient” depends on the coefficient

size and the degree of f . Moreover, once sufficient information about the non-projective roots of f

is known, any additional information may be viewed as redundant. This observation motivates the

approach of this chapter: use ideas from the theory of algebraic error-correcting codes to exploit any

redundant information. To realise this approach, ideas are adapted from the ideal-theoretic framework

for list decoding of algebraic error-correcting codes described by Guruswami et al. [69, Appendix A]

(see also [68, Section 7]). Explicitly, based on the framework and Lemma 4.1.2, the following approach

to generating polynomials with root m modulo N and a good combination of size and root properties

is deduced:

1. Choose pairwise comaximal ideals p1, . . . , pn ⊂ Z[x] of the form pi = ppi,ri , with pi - N ; and

positive integer weights z0, . . . , zn.

2. Find a nonzero polynomial h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i such that deg h and ‖h‖2,s are small.

3. Factor h over Q and search among its factors for polynomials with root m modulo N and a good

combination of size and root properties.

Given such a polynomial h, Lemma 4.1.2 guarantees that any non-constant irreducible polynomial

f ∈ Z[x] with f(m) ≡ 0 (mod N) and

N z0 ·
n∏
i=1

p
ziσ
∗(f,pi)

i > ‖f‖deg h
2,s · ‖h‖deg f

2,s (4.3)

will divide h (over Q). The parameters z1, . . . , zn therefore allow the contributions of the roots of f

modulo pi to be weighted. Weighting the contributions is necessary since roots modulo large primes



4.2. Divisibility Properties of Univariate Resultants 69

naturally contribute more to the product
∏n
i=1 p

σ∗(f,pi)
i , whereas primes modulo small primes con-

tribute more to the root properties of f (cf. Section 2.1.2). Thus, a careful selection of the parameters

z1, . . . , zn will, at least in theory, enable this bias to be corrected. In addition, since attention is limited

in this setting to f with σ∗(f, 〈N, x−m〉) > 0, a careful selection of the corresponding parameter z0

may be used to weaken the degree and size requirements on the polynomial h.

The inequality (4.3) shows that this approach to polynomial generation favours finding polynomials

with small degree and skewed 2-norm. It follows that the approach naturally lends itself to nonlinear

polynomial selection, where the degree and coefficient size of the polynomials considered is inherently

smaller than for linear selection. In particular, the approach lends itself most readily to generating

pairs of number field sieve polynomials with equal degree and, less favourably, pairs with degrees

differing by one. In either of these cases, it is proposed that polynomial pairs are constructed from

those factors f of h with f(m) ≡ 0 (mod N). However, as with existing methods of polynomial

generation, the proposed method requires a brute-force search to be performed over the parameter

m. Therefore, in order to be competitive with existing methods, an extremely efficient realisation of

Steps 1–3 above is required.

The approach developed in this section is applied in Section 4.4. However, before proceeding further,

the validity of Lemma 4.1.1 must be established.

4.2 Divisibility Properties of Univariate Resultants

It is well-known that for two integer polynomials f1 and f2, a prime p divides Res(f1, f2) whenever

f1 and f2 share a common root modulo p. More generally, p divides Res(f1, f2) whenever f1 and f2

share a common factor modulo p. These two facts were certainly known to Sylvester [162] and his

contemporaries. Using p-adic methods, Konyagin and Shparlinski [96, Lemma 5.3] showed that pµ

divides the resultant whenever f1 and f2 share µ roots modulo p such that the roots of one polynomial

are simple. They then asked [96, Question 5.4] if it were possible to remove the condition that the

roots of one polynomial are simple. In response to this question, Gomez et al. [63] showed that if

A is a unique factorisation domain, then a prime p ∈ A divides the resultant of two polynomials

f1, f2 ∈ A[x] \ 〈p〉 with multiplicity at least the degree of the gcd of their reductions modulo p. Their

result answered the question raised by Konyagin and Shparlinski.

Although univariate resultants have been extensively studied, more is known about the divisibility

properties of multivariate resultants than in the univariate case. In particular, Jouanolou [85, Section

6.2] proved the following:

Theorem 4.2.1. Let A be an integral domain and f1, . . . , fn, g1, . . . , gn ∈ A[x1, . . . , xn] be non-

constant homogeneous polynomials. Assume nonnegative integers µ1, . . . , µn are given such that

fi ∈ 〈g1, . . . , gn〉µi ⊆ A[x1, . . . , xn], for 1 ≤ i ≤ n.



70 4. An Approach to Polynomial Selection

Then Res(g1, . . . , gn)µ1···µn divides Res(f1, . . . , fn) in A.

Unfortunately, the obvious analogue of Theorem 4.2.1 for univariate resultants does not hold:

Example 4.2.2. The nontrivial ideal
〈
2x2 − 2, 2x− 1

〉
⊂ Z[x] contains the linear polynomial x − 2.

However, Res(x− 2, 2x− 1) = 3 and Res(2x2 − 2, 2x− 1) = 6.

In the remainder of this section, the validity of Lemma 4.1.1 is established, thus improving upon

the result of Gomez et al. and helping to close the gap between the known divisibility properties of

univariate and multivariate resultants. In Section 4.2.1, the definition of the resultant of two univariate

polynomials is extended to arbitrary integral domains. Then properties of resultants that are relevant

to the remainder of the section (and the thesis) are discussed. In Section 4.2.2, an analogue of

Theorem 4.2.1 is deduced for generic univariate polynomials and used to prove Lemma 4.1.1.

4.2.1 Definition and Properties of Resultants

The resultant of two polynomials f1 and f2 with coefficients in an integral domain A, denoted

Res(f1, f2), is an integer polynomial in the coefficients of f1 and f2 which vanishes if and only if

the polynomials share a common root in a field containing A. Resultants provide a tool for elim-

inating a variable between two polynomials and, as a result, play an important role in the field of

computational algebraic geometry. Examples of resultants appear as far back as the late 1600’s in the

work of Leibniz [101]. There a method for computing the resultant of two quintic polynomials with

the Euclidean algorithm was presented. The development of the theory of resultants can be attributed

to the work of Euler [57], Bézout [20], Jacobi [80] and Cayley [34] (see [166, 168] for historical discus-

sions). Here, Sylvester’s [161] method for computing the resultant of two univariate polynomials is

described.

Let fi =
∑mi

j=0 ui,jx
j be a non-constant polynomial with coefficients in an integral domain A and

ui,mi 6= 0, for i = 1, 2. Then the Sylvester matrix of f1 and f2, denoted Syl(f1, f2), is defined to be

the (m1 +m2)× (m1 +m2) matrix

Syl(f1, f2) =



u1,m1 u1,m1−1 . . . . . . u1,0

u1,m1 u1,m1−1 . . . . . . u1,0

. . . . . . . . . . . . . . .

u1,m1 u1,m1−1 . . . . . . u1,0

u2,m2 u2,m2−1 . . . . . . u2,0

u2,m2 u2,m2−1 . . . . . . u2,0

. . . . . . . . . . . . . . .

u2,m2 u2,m2−1 . . . . . . u2,0


(4.4)



4.2. Divisibility Properties of Univariate Resultants 71

where there are m2 rows containing the u1,j , m1 rows containing the u2,j , and all empty entries are

0. Then the resultant of f1 and f2 is equal to the determinant of the Sylvester matrix Syl(f1, f2). For

nonzero u1, u2 ∈ A, the definition of the resultant is extended by setting

Res(u1, f1) = Res(f1, u1) = um1
1 and Res(u1, u2) = 1.

Finally, for all f ∈ A[x], define Res(0, f) = Res(f, 0) = 0. When A is a polynomial ring, the notation

Resx(f1, f2) may be used to emphasise the polynomial variable.

Generalisations of resultants to multivariate polynomials were introduced in the works of Euler,

Sylvester, Cayley and Macaulay and their contemporaries [166, p. 186]. Multivariate resultants are

defined for n ≥ 2 homogeneous polynomials in n variables. There are several formulations of multivari-

ate resultants (see, for example, [89]). However, the resultant is uniquely determined by its properties

(see [165, Chapter 11] or [61, Chapter 13]). For n = 2, the resultant of homogeneous polynomials

fi =
∑mi

j=0 ui,jx
jymi−j , for i = 1, 2, is given by the determinant of the Sylvester matrix Syl(f1, f2)

defined in (4.4). Resultants of polynomials in three or more variables are not considered here.

Throughout, the following well-known properties of univariate resultants are used:

Lemma 4.2.3 (Properties of Resultants). Let A be an integral domain and fi =
∑mi

j=0 ui,jx
j ∈ A[x]

with ui,mi 6= 0 and mi ≥ 1, for i = 1, 2. Then the following properties holds:

(4.5) If the coefficients ui,j are algebraically independent indeterminates over Z, then Res(f1, f2) is

irreducible as an element of Z[u1,0, . . . , u1,m1 , u2,0, . . . , u2,m2 ].

(4.6) Res(f1, f2) = 0 if and only if f1 and f2 have a common root in a field containing A.

(4.7) Res(f1, f2) = (−1)m1m2 · Res(f2, f1).

(4.8) Res(f1(x+ y), f2(x+ y)) = Res(f1, f2), for all y ∈ A.

(4.9) If f3 ∈ A[x], then Res(f1, f2 f3) = Res(f1, f2) · Res(f1, f3).

(4.10) Res(f1, f2) belongs to the ideal 〈f1, f2〉 ∩ A.

(4.11) Let B be an integral domain and ϕ : A → B a ring homomorphism. Let ϕ̃ : A[x] → B[x]

be the induced homomorphism given by ϕ̃(
∑

i aix
i) =

∑
i ϕ(ai)x

i. If deg ϕ̃(f1) = m1 and

deg ϕ̃(f2) = k, 0 ≤ k ≤ m2, then

ϕ(Res(f1, f2)) = ϕ(u1,m1)m2−k · Res(ϕ̃(f1), ϕ̃(f2)).

A proof of property (4.5) in Lemma 4.2.3 is provided by Macaulay [112, p. 5]. Proofs of the remaining

properties stated in the lemma are provided by Apéry and Jouanolou [8].



72 4. An Approach to Polynomial Selection

4.2.2 Proof of Lemma 4.1.1

In this section, Lemma 4.1.1 is established. However, the majority of the section is devoted to proving

the following generalisation of a result of Gomez et al. [63, Theorem 1], from which the lemma is

obtained as a consequence:

Theorem 4.2.4. Let A be an integral domain, h ∈ A be nonzero, and g1, . . . , gn ∈ A[x] be non-

constant with unit leading coefficients. Suppose there exist polynomials f1, f2 ∈ A[x] with f1 /∈ 〈h〉 and

f2 /∈ 〈h〉. Then given nonnegative integers µ1,1, . . . , µ1,n, µ2,1, . . . , µ2,n such that

fi ∈ 〈g1, h〉µi,1 · · · 〈gn, h〉µi,n ⊆ A[x], for i = 1, 2,

it follows that
∏n
k=1 Res(gk, h)µ1,kµ2,k divides Res(f1, f2) in A.

The proof of Theorem 4.2.4 provided in this section employs generic polynomials: a univariate poly-

nomial f is said to be complete whenever each monomial of degree at most deg f appears in f with a

nonzero coefficient; it is said to be generic if it is complete and has coefficients that are algebraically in-

dependent indeterminates over Z. The use of generic polynomials can aid in the derivation of universal

properties of resultants. To help illustrate this observation, and to clarify what is meant by “universal”,

consider generic polynomials f̄i =
∑mi

j=0 ūi,j x
j , for i = 1, 2. Define U = Z[ūi,j | 0 ≤ j ≤ mi, i = 1, 2], so

that the polynomials f̄i belong to the ring U[x]. Let A be an integral domain and suppose polynomials

f1, f2 ∈ A[x], of degree m1 and m2 respectively, are given:

fi =

mi∑
j=0

ui,j x
j ∈ A[x], for i = 1, 2.

Then there exists a homomorphism ϕ : U → A defined by ūi,j 7→ ui,j corresponding to the spe-

cialisation of the polynomials f̄i to the polynomials fi. Therefore, (4.11) implies that Res(f1, f2) =

ϕ
(
Res(f̄1, f̄2)

)
. As a result, a property of the resultant of two generic polynomials that is preserved

under homomorphism is universal in the sense that it will also hold for any specialisation of the

coefficients. In particular, this observation applies to the divisibility properties of resultants, thus mo-

tivating the use of generic polynomials in the proof of Theorem 4.2.4. The importance of ensuring each

generic polynomial is specialised to a polynomial of equal degree must be emphasized: if u1,m1 = 0

or u2,m2 = 0 in the above example, then (4.11) implies that ϕ
(
Res(f̄1, f̄2)

)
and Res(f1, f2) are not

necessarily equal. As a consequence, extreme care is taken whenever (4.11) is applied in this section.

A series of lemmas is now used to establish an appropriate generic polynomial analogue of Theo-

rem 4.2.4. The last of these lemmas is then used to prove the theorem. Throughout this section, for

generic polynomials gi =
∑di

j=0 vi,jx
j , 1 ≤ i ≤ k, the ring Z[vi,j | 1 ≤ i ≤ k, 0 ≤ j ≤ dj ] will often be

denoted by Z[{coeff. of g1, . . . , gk}].



4.2. Divisibility Properties of Univariate Resultants 73

Lemma 4.2.5. Let g1 and g2 be non-constant generic polynomials with distinct coefficients. Let

µ1, µ2 be nonnegative integers and define polynomials f1 and f2 by

fi =

µi∑
j=0

ai,j g
j
1 g

µi−j
2 , for i = 1, 2,

where ai,j is either a generic polynomial or 0, for 1 ≤ i ≤ 2, 0 ≤ j ≤ µi; and the coefficients of g1, g2

and the nonzero ai,j are all distinct. Then Res(g1, g2)µ1µ2 divides Res(f1, f2) in Z[{coeff. of ai,j , gi}].

Proof. Assume that Res(f1, f2) 6= 0, otherwise the lemma holds trivially. Let Fi denote the homogeni-

sation of fi, i.e., Fi(x, y) = ydeg fifi(x/y), for i = 1, 2. Similarly, let G1 and G2 be the respective

homogenisations of g1 and g2. Then Res(f1, f2) = Res(F1, F2) and Res(g1, g2) = Res(G1, G2) by

definition. With U = Z[{coeff. of ai,j , gi}], the lemma is therefore equivalent to the statement

Res(G1, G2)µ1µ2 divides Res(F1, F2) in U. (4.12)

Let gi =
∑ni

j=0 vi,j x
j , for i = 1, 2. Then ai,j g

j
1 g

µi−j
2 is homogeneous of degree j in the coefficient

v1,0, . . . , v1,n1 and homogeneous of degree µi − j in the coefficients v2,0, . . . , v2,n2 . As the coefficients

of g1, g2 and the nonzero ai,j are all distinct, it follows that there cannot be any cancellation between

the terms ai,j g
j
1 g

µi−j
2 and ai,k g

k
1 g

µi−k
2 of the polynomial fi, for 0 ≤ j < k ≤ µi. Consequently,

deg fi ≥ deg ai,j + j · deg g1 + (µi − j) · deg g2,

for 1 ≤ i ≤ 2, 0 ≤ j ≤ µi. Hence,

Fi = ydeg fi ·
µi∑
j=0

ai,j(x/y) g1(x/y)j g2(x/y)µi−j =

µi∑
j=0

bi,j G
j
1G

µi−j
2 , for i = 1, 2,

where the coefficient polynomials bi,j ∈ U[x, y] are homogeneous. That is, Fi ∈ 〈G1, G2〉µi in U[x, y],

for i = 1, 2. The polynomials F1, F2, G1 and G2 are non-constant. Hence, (4.12) is obtained by

applying Theorem 4.2.1 (with A = U).

Example 4.2.6. Let g1 = v1,1 x+ v1,0 and g2 = v2,2 x
2 + v2,1 x+ v2,0, where the vi,j are algebraically

independent indeterminates over Z. Then

Res(g1, g2) = v2
1,1 v2,0 − v1,0 v1,1 v2,1 + v2

1,0 v2,2.

Let f1 = a1,2 g
2
1 + a1,1 g1 g2 + a1,0 g

2
2 and f2 = a2,1 g1 + a2,0 g2, for indeterminates ai,j . Then

Res(f1, f2) = v2
2,2

(
a1,2 a

2
2,0 − a1,1 a2,0 a2,1 + a1,0 a

2
2,1

)2 (
v2

1,1 v2,0 − v1,0 v1,1 v2,1 + v2
1,0 v2,2

)2
.

Thus Res(g1, g2)2 divides Res(f1, f2) in Z[ai,j , vi,j ], as expected.



74 4. An Approach to Polynomial Selection

The following example shows that Lemma 4.2.5 does not hold without modification if the polynomials

g1 and g2 are permitted to be constant:

Example 4.2.7. Let g1 = v1,2 x
2 + v1,1 x + v1,0 and g2 = h, where h and the vi,j are algebraically

independent indeterminates over Z. Then Res(g1, g2) = h2. Let f1 = a1,1 g1 g2 + a1,0 g
2
2 and f2 =

a2,1 g1 g2 + a2,0 g
2
2, for indeterminates ai,j . Then

Res(f1, f2) = h6 v2
1,2 (a1,1 a2,0 − a1,0 a2,1)2 .

Thus, Res(g1, g2)4 does not divide Res(f1, f2) in Z[ai,j , v1,j ][h].

Lemma 4.2.8. Let h be an indeterminate over Z and g be a non-constant generic polynomial with

coefficients distinct from h. Let µ1, µ2 be nonnegative integers and define polynomials f1 and f2 by

fi =

µi∑
j=0

ai,jg
jhµi−j , for i = 1, 2,

where ai,j is either a generic polynomial or 0, for 1 ≤ i ≤ 2, 0 ≤ j ≤ µi; the coefficients of g, h and

the nonzero ai,j are all distinct; and ai,µi 6= 0, for i = 1, 2. Then Res(g, h)µ1µ2 divides Res(f1, f2) in

Z[{coeff. of ai,j , g, h}].

Proof. Assume that µ1µ2 6= 0, otherwise the lemma holds trivially. Define U = Z[{coeff. of ai,j , g, h}]
and let g =

∑n
j=0 vjx

j , where vn 6= 0. Since g · gjhµi−j = h · gj+1hµi−j−1, the polynomial fi may be

written in the form

fi =

µi∑
j=0

bi,jg
jhµi−j ,

where bi,j ∈ U[v−1
n ][x], for 0 ≤ j ≤ µi; and deg bi,j ≤ (n − 1)(µi − j), for 0 ≤ j < µi. The condition

ai,µi 6= 0 implies that deg fi ≥ nµi, for i = 1, 2. Therefore, by comparing degrees, it follows that

bi,µi 6= 0, for i = 1, 2.

For each polynomial bi,j , let b̄i,j be a generic polynomial of equal degree, if bi,j 6= 0; and b̄i,j = 0,

otherwise. Furthermore, impose the requirement that the coefficients of g, h and the nonzero b̄i,j are

algebraically independent over Z. Define U = Z[{coeff. of b̄1,0, . . . , b̄1,µ1 , b̄2,0, . . . , b̄2,µ2 , g, h}] and let

y /∈ U be an indeterminate. Finally, define polynomials

f̄i =

µi∑
j=0

b̄i,jg
j(h+ yx)µi−j ∈ U[y][x], for i = 1, 2. (4.13)

Then there exists an evaluation homomorphism ϕ : U[y] → U[v−1
n ], with induced homomorphism

ϕ̃ : U[y][x] → U[v−1
n ][x], such that ϕ(y) = 0; ϕ̃(g) = g, ϕ̃(h + yx) = h; and ϕ̃(f̄1) = f1, ϕ̃(f̄2) = f2.

Moreover, the observation that bi,µi 6= 0 combined with the inequalities deg bi,j ≤ (n− 1)(µi − j), for



4.2. Divisibility Properties of Univariate Resultants 75

0 ≤ j < µi, imply that deg ϕ̃(f̄1) = deg f̄1 and deg ϕ̃(f̄2) = deg f̄2. Consequently, (4.11) implies that

ϕ(Res(f̄1, f̄2)) = Res(ϕ̃(f̄1), ϕ̃(f̄2)) = Res(f1, f2).

From (4.13) and Lemma 4.2.5, it follows that

Res(h+ yx, g)µ1µ2 divides Res(f̄1, f̄2) in U[y].

Thus

ϕ (Res(h+ yx, g))µ1µ2 divides Res(f1, f2) in U[v−1
n ].

Properties (4.7) and (4.11) imply that ϕ (Res(h+ yx, g)) = (−1)nvnRes(g, h). Therefore, Res(g, h)µ1µ2

divides Res(f1, f2) in U[v−1
n ]. However, Res(f1, f2) ∈ U and h - vn. Hence, Res(g, h)µ1µ2 must divide

Res(f1, f2) in U.

Lemma 4.2.9. Let h1, . . . , hn be algebraically independent indeterminates over Z; g1 . . . gn be non-

constant generic polynomials with algebraically independent coefficients over Z[h1, . . . , hn]. For non-

negative integers µ1,1, . . . , µ1,n, µ2,1, . . . , µ2,n, define polynomials f1 and f2 by

fi =
∑

0≤j1≤µi,1
...

0≤jn≤µi,n

ai,j1,...,jn · g
j1
1 · · · g

jn
n · h

µi,1−j1
1 · · ·hµi,n−jnn , for i = 1, 2.

where ai,j1,...,jn is either a generic polynomial or 0; ai,µi,1,...,µi,n 6= 0, for i = 1, 2; and the coefficients of

h1, . . . , hn, g1, . . . , gn and the nonzero ai,j1,...,jn are all distinct. Then
∏n
k=1 Res(gk, hk)

µ1,kµ2,k divides

Res(f1, f2), in Z[{coeff. of ai,j1,...,jn , g1 . . . gn, h1, . . . , hn}].

Proof. For simplicity, let U = Z[{coeff. of ai,j1,...,jn , g1 . . . gn, h1, . . . , hn}]. By assumption, h1, . . . , hn

are algebraically independent indeterminates over Z and Res(gk, hk) = hdeg gk
k , for 1 ≤ k ≤ n. There-

fore, it is sufficient to show that

Res(gk, hk)
µ1,kµ2,k divides Res(f1, f2) in U, for 1 ≤ k ≤ n. (4.14)

Here, (4.14) is shown to hold for k = 1 only. The remaining cases follow in a similar fashion.

Assume that µ1,1µ2,1 6= 0, otherwise (4.14) holds trivially for k = 1. Consequently, f1 and f2 are

non-constant since deg g1 ≥ 1 and ai,µi,1,...,µi,n 6= 0, for i = 1, 2. Define

bi,j =
∑

0≤j2≤µi,2
...

0≤jn≤µi,n

ai,j,j2,...,jn · g
j2
2 · · · g

jn
n · h

µi,2−j2
2 · · ·hµi,n−jnn ,



76 4. An Approach to Polynomial Selection

for 1 ≤ i ≤ 2, 0 ≤ j ≤ µi,1. Then

fi =

µi,1∑
j=0

bi,j g
j
1 h

µi,1−j
1 , for i = 1, 2.

Moreover, b1,µ1,1 and b2,µ2,1 are both nonzero since ai,µi,1,...,µi,n 6= 0, for i = 1, 2. For each polynomial

bi,j , let b̄i,j be a generic polynomial of equal degree, if bi,j 6= 0; and b̄i,j = 0, otherwise. Further-

more, impose the requirement that the coefficients of the g1, h1 and the nonzero b̄i,j are algebraically

independent over Z. Define U = Z[{coeff. of b̄1,0, . . . , b̄1,µ1,1 , b̄2,0, . . . , b̄2,µ2,1 , g1, h1}] and polynomials

f̄i =

µi,1∑
j=0

b̄i,j g
j
1 h

µi,1−j
1 ∈ U[x], for i = 1, 2. (4.15)

Then there exists a homomorphism ϕ : U → U, with induced homomorphism ϕ̃ : U[x] → U[x], such

that ϕ̃(g1) = g1, ϕ̃(h1) = h1; and ϕ̃(f̄1) = f1, ϕ̃(f̄2) = f2. As the coefficients of g1 . . . gn, h1, . . . , hn

and the nonzero ai,j1,...,jn are algebraically independent, it follows that deg f̄i = deg fi, for i = 1, 2.

Therefore, (4.11) implies that

ϕ(Res(f̄1, f̄2)) = Res(ϕ̃(f̄1), ϕ̃(f̄2)) = Res(f1, f2).

In addition, ϕ(Res(g1, h1)) = Res(g1, h1), since ϕ(h1) = h1. Hence, (4.14) will hold for k = 1 if

Res(g1, h1)µ1,1µ2,1 divides Res(f̄1, f̄2) in U. (4.16)

Now b̄1,µ1 and b̄2,µ2 are both nonzero since bi,µi,1 6= 0, for i = 1, 2. Therefore, (4.15) and Lemma 4.2.8

imply (4.16).

Lemma 4.2.9 is sufficient to establish Theorem 4.2.4.

Proof of Theorem 4.2.4. Assume that Res(f1, f2) 6= 0, otherwise the lemma holds trivially. Without

loss of generality, it is assumed that µ1,kµ2,k 6= 0, for 1 ≤ k ≤ n. Define sets

Ji = {(j1, . . . , jn) ∈ Zn | 0 ≤ j1 ≤ µi,1, . . . , 0 ≤ jn ≤ µi,n}, for i = 1, 2.

Define a well-ordering ≺i on Ji by (j1, . . . , jn) ≺i (j′1, . . . , j
′
n) if and only if the left most nonzero entry

of the vector (j′1 − j1, . . . , j′n − jn) is positive. Then (µi,1, . . . , µi,n) is the greatest element of Ji under

≺i, for i = 1, 2.

It follows from the definition of the product of two ideals, that there exist polynomials ai,j1,...,jn ∈ A[x]

such that

fi =
∑

(j1,...,jn)∈Ji

ai,j1,...,jn · g
j1
1 · · · g

jn
n · h(µi,1−j1)+...+(µi,n−jn), for i = 1, 2. (4.17)



4.2. Divisibility Properties of Univariate Resultants 77

Given a vector (j1, . . . , jn) ∈ Ji \ {(µi,1, . . . , µi,n)}, the coefficient polynomial ai,j1,...,jn is henceforth

referred to as reduced if there exists an index k, 1 ≤ k ≤ n, such that jk 6= µi,k and deg ai,j1,...,jn <

deg gk. It follows that

deg ai,j1,...,jn · g
j1
1 · · · g

jn
n < deg g

µi,1
1 · · · gµi,nn , (4.18)

for any (j1, . . . , jn) ∈ Ji \ {(µi,1, . . . , µi,n)} such that ai,j1,...,jn is reduced.

Suppose there exists a vector (j1, . . . , jn) ∈ Ji \ {(µi,1, . . . , µi,n)} such that ai,j1,...,jn is not reduced.

Let k, 1 ≤ k ≤ n, be some index such that jk 6= µi,k. Since A is an integral domain and the leading

coefficient of gk is a unit, there exist polynomials qi,j1,...,jn , ri,j1,...,jn ∈ A[x] such that ai,j1,...,jn =

qi,j1,...,jngk + ri,j1,...,jn and deg ri,j1,...,jn < deg gk. Therefore, ai,j1,...,jn is made to be reduced by

subtracting qi,j1,...,jngk from ai,j1,...,jn and adding qi,j1,...,jnh to ai,j1,...,jk−1,jk+1,jk+1,...,jn . After this

procedure, the polynomial fi remains unchanged. In addition, the choice of k guarantees that

(j1, . . . , jk−1, jk + 1, jk+1, . . . , jn) ∈ Ji, thus

(j1, . . . , jn) ≺i (j1, . . . , jk−1, jk + 1, jk+1, . . . , jn).

Hence, the procedure just described can be applied repeatedly to the least element of (j1, . . . , jn) ∈
Ji \ {(µi,1, . . . , µi,n)} under ≺i such that ai,j1,...,jn is not reduced until no such element remains. That

is, it may be assumed without loss of generality that the coefficients ai,j1,...,jn in (4.17) are reduced for

all (j1, . . . , jn) ∈ Ji \ {(µi,1, . . . , µi,n)} and i = 1, 2.

For i = 1, 2, the coefficient ai,µi,1,...,µi,n in (4.17) must be nonzero, otherwise fi ∈ 〈h〉. It follows that

deg fi ≥ deg ai,j1,...,jn · g
j1
1 · · · g

jn
n , for all (j1, . . . , jn) ∈ Ji and i = 1, 2. (4.19)

In particular, (4.18) implies that equality holds if and only if (j1, . . . , jn) = (µi,1, . . . , µi,n). Con-

sequently, f1 and f2 are non-constant. Let h̄1, . . . , h̄n be algebraically independent indeterminates

over Z. To each of the polynomials g1, . . . , gn and the nonzero ai,j1...,jn , assign respective generic

polynomials ḡ1, . . . , ḡn and āi,j1...,jn of equal degree and with coefficients that are algebraically inde-

pendent over Z[h̄1, . . . , h̄n]. Additionally, for those ai,j1...,jn = 0, define āi,j1...,jn = 0. Finally, define

U = Z[{coeff. of h̄1, . . . , h̄n, ḡ1 . . . ḡn, āi,j1,...,jn}] and polynomials

f̄i =
∑

(j1,...,jn)∈Ji

āi,j1,...,jn · ḡ
j1
1 · · · ḡ

jn
n · h̄

µi,1−j1
1 · · · h̄µi,n−jnn ∈ U[x], for i = 1, 2.

Then (4.19) implies that deg f̄i = deg fi, for i = 1, 2. Moreover, there exists a homomorphism

ϕ : U → A, with induced homomorphism ϕ̃ : U[x] → A[x], such that ϕ̃(h̄k) = h, for 1 ≤ k ≤ n;

ϕ̃(ḡk) = gk, for 1 ≤ k ≤ n; and ϕ̃(f̄i) = fi, for i = 1, 2. Hence, (4.11) implies that

ϕ(Res(ḡk, h̄k)) = Res(gk, h), for 1 ≤ k ≤ n; and ϕ(Res(f̄1, f̄2)) = Res(f1, f2). (4.20)



78 4. An Approach to Polynomial Selection

As a1,µ1,1,...,µ1,n and a2,µ2,1,...,µ2,n are nonzero, it follows that āi,µi,1,...,µi,n 6= 0, for i = 1, 2. Therefore,

Lemma 4.2.9 and the definition of f̄1 and f̄2 imply that
∏n
k=1 Res(ḡk, h̄k)

µ1,kµ2,k divides Res(f̄1, f̄2) in

U. Hence, (4.20) implies that
∏n
k=1 Res(gk, h)µ1,kµ2,k divides Res(f1, f2) in A.

Before ending the section with a proof of Lemma 4.1.1, Theorem 4.2.4 is now compared with the result

of Gomez et al. [63, Theorem 1]:

Example 4.2.10. For any p, k ∈ Z with k > 0, let f1 = x(x − 1) and f2 = (x − pk)(x − 2). Then

Res(f1, f2) = 2pk(pk − 1). Gomez et al. [63, Example 2] showed that p divides Res(f1, f2), whenever

p is an odd prime. The polynomials f1 and f2 are primitive and f1, f2 ∈ 〈2pk, x〉, for all p ∈ Z.

Therefore, for any p ∈ Z, Theorem 4.2.4 implies that Res(2pk, x) = 2pk divides Res(f1, f2). Moreover,

f2 = (x− pk)(x− 2) = (x− 1 + 1− pk)(x− 2) = (x− 1)(x− 2)− (pk − 1)(x− 2).

It follows that f1, f2 ∈ 〈pk− 1, x− 1〉, for all p ∈ Z. Hence, Theorem 4.2.4 implies that Res(pk− 1, x−
1) = pk − 1 divides Res(f1, f2), for all p ∈ Z.

Proof of Lemma 4.1.1. Let f1 and f2 be nonzero integer polynomials such that f1 is non-constant and

primitive. The proof of the lemma is based on the following claim: if h, r1, . . . , rw are integers such

that h is nonzero and gcd(rj − rk, h) = 1, for 1 ≤ j < k ≤ w, then

w∏
k=1

hσ
∗(f1,〈h,x−rk〉)σ∗(f2,〈h,x−rk〉) divides Res(f1, f2) in Z. (4.21)

Given the claim, Lemma 4.1.1 then follows from the definition of the ideals p1, . . . , pn and the assump-

tion that pi - N , for 1 ≤ i ≤ n.

To simplify notation throughout the proof of the claim, define µi,j = σ∗(fi, 〈h, x− rj〉), for 1 ≤ i ≤ 2,

1 ≤ j ≤ w. If f2 /∈ 〈h〉, then the assumption that f1 is primitive and Theorem 4.2.4 imply (4.21).

Therefore, assume that f2 ∈ 〈h〉. Then there exists a value of t ≥ 1 and a polynomial f∗2 ∈ Z[x] \ 〈h〉
such that f2 = ht · f∗2 . As a result, (4.9) implies that

Res(f1, f2) = Res(f1, h
t · f∗2 ) = Res(f1, h

t) · Res(f1, f
∗
2 ) = ht deg f1 · Res(f1, f

∗
2 ). (4.22)

Fix an index k, 1 ≤ k ≤ w, then f2 ∈ 〈h, x− rk〉µ2,k . It follows that there exist polynomials

a0, . . . , aµ2,k ∈ Z[x] such that f2 =
∑µ2,k

j=0 aj · (x − rk)
jhµ2,k−j . Furthermore, it may be assumed

that the coefficients a0, . . . , aµ2,k−1 are integers, since

(x− rk) · (x− rk)jhµ2,k−j = h · (x− rk)j+1hµ2,k−j−1.



4.3. Combinatorial Bounds on Polynomial Selection 79

From the observation that

f2(x+ rk) = ht · f∗2 (x+ rk) = aµ2,k(x+ rk) · xµ2,k +

µ2,k−1∑
j=0

(
ajh

µ2,k−j
)
· xj ,

it is readily deduced that ht−(µ2,k−j) divides aj , for µ2,k − t ≤ j ≤ µ2,k. Therefore, there exists a

polynomial a′µ2,k−t ∈ Z[x] such that

f2 = ht ·

a′µ2,k−t · (x− rk)µ2,k−t +

(µ2,k−t)−1∑
j=0

aj · (x− rk)jh(µ2,k−t)−j


It follows immediately that f∗2 ∈ 〈h, x− rk〉

µ2,k−t. Moreover, since k was arbitrary and the ideals

〈h, x− rk〉, for 1 ≤ k ≤ w, are pairwise comaximal, it follows that f∗2 ∈
∏w
k=1 〈h, x− rk〉

µ2,k−t.

Therefore, Theorem 4.2.4 implies that

w∏
k=1

hµ1,k(µ2,k−t) divides Res(f1, f
∗
2 ) in Z. (4.23)

Finally, from the assumption that f1 /∈ 〈h〉 and the inequality (4.19) in the proof of Theorem 4.2.4, it

follows that

deg f1 ≥ µ1,1 + . . .+ µ1,w. (4.24)

Hence, (4.22), (4.23) and (4.24) imply (4.21).

4.3 Combinatorial Bounds on Polynomial Selection

A polynomial generation algorithm that is based on the approach of Section 4.1 is guaranteed to return

all polynomials with sufficiently small coefficients and good non-projective root properties. Therefore,

a necessary condition for such an algorithm to run in polynomial time is that only polynomially many

polynomials are found. In this section, a purely combinatorial result is used to derive bounds on

the existence of number field sieve polynomials with small coefficients and good non-projective root

properties. Then a condition under which polynomial generation is combinatorially feasible is derived.

To begin, the main combinatorial result used in this section, due to Guruswami [68, Theorem 7.10],

is stated:

Lemma 4.3.1. Let Σ1, . . . ,Σn be finite nonempty sets and C ⊆ Σ1 × . . . × Σn be nonempty. Let

vectors α = (α1, . . . , αn) and β = (β1, . . . , βn) contain positive real entries. Define d(C)α to be the

minimum of
∑

i:xi 6=yi αi over all pairs of distinct vectors (x1, . . . , xn), (y1, . . . , yn) ∈ C. Then, for any



80 4. An Approach to Polynomial Selection

vector (t1, . . . , tn) ∈ Σ1 × . . .× Σn and l > 0, there exist at most l vectors (x1, . . . , xn) ∈ C such that

∑
i:xi=ti

βi ≥

√√√√( n∑
i=1

αi −
(

1− 1

l

)
d(C)α

)
n∑
i=1

β2
i

αi
.

By combining Lemma 4.3.1 with Lemma 4.1.2, the following combinatorial bound on the existence

of number field sieve polynomials with small coefficients and good non-projective root properties is

obtained:

Theorem 4.3.2. Let C, s be positive reals with C ≥ 1; d,m,N be integers with d,N ≥ 1; and

p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the form pi = ppi,ri, with pi - N , for 1 ≤ i ≤ n.

Given positive real weights β1, . . . , βn and a real number l ≥ 1, there are at most 2l non-constant

irreducible polynomials f ∈ 〈N, x−m〉 with deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d such that

n∑
i=1

σ(f, pi)βi ≥

√√√√((1− 1

l

)
2d logC +

1

l

n∑
i=1

log pi

)
n∑
i=1

β2
i

log pi
. (4.25)

Proof. For all f ∈ Z[x], σ(f, pi) = σ(−f, pi), for 1 ≤ i ≤ n. Therefore, it is sufficient to show that

there are at most l polynomials that satisfy the conditions of the theorem and have positive leading

coefficient. LetM be the set of all non-constant irreducible polynomials f ∈ 〈N, x−m〉 with positive

leading coefficient that satisfy deg f ≤ d and ‖f‖2,s ≤ C · N
1
2d . Then M is finite due to the degree

and size requirements on its elements. For 1 ≤ i ≤ n, define Ei :M→M∪{0} by Ei(f) = 0, if f ∈ pi;

and Ei(f) = f , otherwise. Finally, define C ⊂ (M∪ {0})n by

C = {(E1(f), · · · , En(f)) | f ∈M}.

Then, applying Lemma 4.3.1 with α = (log p1, . . . , log pn), β = (β1, . . . , βn) and (t1, . . . , tn) =

(0, . . . , 0), it follows that there are at most l vectors (E1(f), · · · , En(f)) ∈ C such that

∑
i:Ei(f)=0

βi ≥

√√√√( n∑
i=1

log pi −
(

1− 1

l

)
d(C)α

)
n∑
i=1

β2
i

log pi
, (4.26)

where d(C)α is the minimum value of the sum
∑

i:Ei(f1)6=Ei(f2) log pi, over all distinct pairs of vectors

(E1(f1), · · · , En(f1)), (E1(f2), · · · , En(f2)) ∈ C.

If f1, f2 ∈M are distinct, then (4.6) implies that Res(f1, f2) 6= 0. Consequently, Lemma 4.1.2 implies

that

N ·
n∏
i=1

p
σ∗(f1,pi)σ∗(f2,pi)
i ≤ ‖f1‖deg f2

2,s · ‖f2‖deg f1
2,s ≤ C2d ·N.



4.3. Combinatorial Bounds on Polynomial Selection 81

Therefore, if (E1(f1), · · · , En(f1)), (E1(f2), · · · , En(f2)) ∈ C are distinct vectors, then

∑
i:Ei(f1)6=Ei(f2)

log pi =
n∑
i=1

(1− σ(f1, pi)σ(f2, pi)) log pi ≥
n∑
i=1

log pi − 2d logC.

Hence, d(C)α ≥
∑n

i=1 log pi − 2d logC.

For all (E1(f), · · · , En(f)) ∈ C, the right hand side of (4.26) is
∑

i:Ei(f)=0 βi =
∑n

i=1 σ(f, pi)βi. There-

fore, if f ∈ M satisfies (4.25), then the corresponding vector (E1(f), · · · , En(f)) ∈ C satisfies (4.26).

Hence, there exist at most l polynomials f ∈M such that (4.25) holds.

Remark 4.3.3. Guruswami remarked [68, p. 163] that a stronger bound than that provided by Lemma 4.3.1

can be obtained by taking into account the size of the alphabet Σ. Furthermore, Guruswami notes that for large

alphabets, the difference between the bounds “becomes negligible”. Therefore, it may be possible to tighten the

bound in Theorem 4.3.2 by strengthening Lemma 4.3.1. However, the difference between the resulting bounds

depends on the alphabet size, which, in the proof of Theorem 4.3.2, is equal to |M|+ 1, i.e., one more than the

number of non-constant irreducible polynomials f ∈ 〈N, x−m〉 with deg f ≤ d and ‖f‖2,s ≤ C · N 1
2d . If this

number is sufficiently small for small d and C, then it may be worthwhile further investigating this avenue.

Recall that the root properties of a number field sieve polynomial f can be quantified by the parameter

α(f, y) (see Section 2.1.2). The contribution of non-projective roots to α(f, y) is approximated by the

quantity ᾱ(f, y), defined for all f ∈ Z[x] and y > 0 by

ᾱ(f, y) =
∑
p≤y

(
1− p

p+ 1

p−1∑
r=0

σ(f, pp,r)

)
log p

p− 1
, (4.27)

where the sum is over all primes p ≤ y. The error of this approximation is determined by those

primes p ≤ y that divide disc(f). Throughout this chapter, the quantity ᾱ(f, y) is studied rather than

α(f, y). The motivation for this departure is twofold. First, Lemma 4.1.2 is not sufficiently strong as

to allow for projective root properties to be handled naturally throughout the chapter. Second, unlike

the contribution of non-projective roots to α(f, y), the approximation ᾱ(f, y) is given by a simple

closed-form expression. Therefore, in the context of this chapter, it is reasonable to study ᾱ(f, y).

The following corollary to Theorem 4.3.2 provides a bound on the number of non-constant irreducible

polynomials with size and ᾱ(f, y) bounded:

Corollary 4.3.4. Let C, s, y be positive reals with C ≥ 1; and d,m,N be integers with d,N ≥ 1.

Suppose that p - N , for all primes p ≤ y. Then, for any real number l ≥ 1, there are at most 2l

non-constant irreducible polynomials f ∈ 〈N, x−m〉 with deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d such that

ᾱ(f, y) ≤
∑
p≤y

log p

p− 1
−

√√√√√
(1− 1

l

)
2d logC +

1

l

∑
p≤y

p log p

∑
p≤y

p3 log p

(p2 − 1)2
.



82 4. An Approach to Polynomial Selection

Proof. The corollary is obtained from Theorem 4.3.2 by setting

{(p1, β1), . . . , (pn, βn)} =

{(
pp,r,

p log p

p2 − 1

)
| (p, r) ∈ U and p ≤ y

}
,

and noting that

ᾱ(f, y) =
∑
p≤y

log p

p− 1
−

n∑
i=1

σ(f, pi)βi.

Example 4.3.5. Table 4.1 contains examples of the bounds obtained from Corollary 4.3.4. Let m and

N be integers such that N is nonzero and free of prime divisors less than 10000. Then a nonempty

entry in Table 4.1a corresponding to C and y contains an upper bounds on the number of non-constant

irreducible polynomials f ∈ 〈N, x−m〉 with deg f ≤ 3, ‖f‖2,s ≤ C ·N
1
6 and ᾱ(f, y) ≤ 0. Similarly, the

entries of Tables 4.1b, 4.1c and 4.1d contain upper bounds on the number of all such polynomials with

ᾱ(f, y) ≤ ε, for ε = 1, −1 and −2, respectively. In each table, an entry containing a dash corresponds

to a value of C and y for which Corollary 4.3.4 does not apply.

Table 4.1: Bounds for Example 4.3.5.

Table 4.1a: ᾱ(f, y) ≤ 0

C y = 100 y = 1000 y = 10000

1 1899 144167 11066636
2 26995 378128 20574633
3 - 7461248 41362338
4 - - 146083942

Table 4.1b: ᾱ(f, y) ≤ −1

C y = 100 y = 1000 y = 10000

1 1229 107670 8891047
2 3084 200167 14141365
3 26503 402373 21604070
4 - 1420518 34534713
5 - - 64461042
6 - - 220779227

Table 4.1c: ᾱ(f, y) ≤ −1.5

C y = 100 y = 1000 y = 10000

1 1020 94414 8036340
2 2035 158733 12095321
3 4883 263899 17167487
4 741073 497996 24438859
5 - 1596512 36396308
6 - - 60637371
7 - - 138796736

Table 4.1d: ᾱ(f, y) ≤ −2

C y = 100 y = 1000 y = 10000

1 860 83463 7299206
2 1484 130046 10499454
3 2581 193086 14121084
4 5434 294311 18696869
5 38188 496011 24973925
6 - 1127183 34414014
7 - - 50578542
8 - - 85275302
9 - - 215937570

To end the section, a final corollary to Theorem 4.3.2 is now given. The corollary provides a sufficient

condition under which the approach to polynomial generation described in Section 4.1 is combina-

torially feasible. This condition is used to evaluate the performance of the polynomial generation

algorithm developed in the next section.



4.4. An Initial Algorithm 83

Corollary 4.3.6. Let C, s be positive reals with C > 1; and d,m,N be integers with d,N ≥ 1. Let

p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the form pi = ppi,ri , with pi - N , for 1 ≤ i ≤ n;

and
∑n

i=1 log pi > 2d logC. Given positive real weights z1, . . . , zn and any tolerance parameter ε > 0,

there are at most polynomially many (in 1/ε and
∑n

i=1 log pi) non-constant irreducible polynomials

f ∈ 〈N, x−m〉 with deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d such that

n∑
i=1

σ(f, pi)zi log pi ≥

√√√√2d logC

(
n∑
i=1

z2
i log pi + εz2

max

)
, (4.28)

where zmax = max1≤i≤n zi.

Proof. It is sufficient to show that there are at most 2l polynomials that satisfy the conditions of the

corollary, where

l =
1

εz2
max

(∑n
i=1 log pi

2d logC
− 1

) n∑
i=1

z2
i log pi > 0.

If l < 1, then an application of the Cauchy-Schwarz inequality shows that the right hand side of (4.28)

is greater than
∑n

i=1 zi log pi, and thus (4.28) is never satisfied:√√√√2d logC

(
n∑
i=1

z2
i log pi + εz2

max

)
>

√√√√( n∑
i=1

log pi

)(
n∑
i=1

z2
i log pi

)
≥

n∑
i=1

zi log pi.

Therefore, assume that l ≥ 1. Then applying Theorem 4.3.2 with βi = zi log pi, for 1 ≤ i ≤ n, shows

that there are at most 2l polynomials that satisfy the conditions of the corollary.

4.4 An Initial Algorithm

An integer polynomial h may be factored over Q in time polynomial in deg h and log ‖h‖2 using existing

algorithms [103, 16]. Therefore, the problem of developing an algorithm based on the approach to

polynomial generation introduced in Section 4.1 reduces to that of determining an efficient method for

constructing a nonzero polynomial h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i such that deg h and ‖h‖2,s are small.

Such a method has already been developed by Guruswami, Sahai and Sudan [69] as part of their

weighted list decoding algorithm for Chinese remainder codes. Here, their method is used to develop

an initial realisation of the approach described in Section 4.1. In Section 4.4.1, parameter selection for

the algorithm is considered. There it is found that the algorithm’s complexity is too large to justify

its practical application. In Section 4.5, possible improvements to the algorithm and generalisations

of the approach of Section 4.1 are discussed. To begin this section, the method used to construct a

suitable polynomial h in the decoding algorithm of Guruswami et al. is briefly reviewed in the context

of polynomial generation.



84 4. An Approach to Polynomial Selection

Guruswami, Sahai and Sudan observe that the polynomials of degree at most l in 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i

may be viewed as an integer lattice L ⊂ Zl+1. Therefore, by appropriately scaling L, the problem of

finding a polynomial h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i with deg h ≤ l and ‖h‖2,s small, is reduced to that of

finding a short vector in a lattice. Provided a basis for L can be computed efficiently, lattice reduction

may then be used to find a short vector in the scaled lattice. Guruswami et al. provide such a method

based on the following lemma [69, Lemma 2]:

Lemma 4.4.1. Let q, r, z, l ∈ Z with q 6= 0 and z, l > 0. Suppose that f ∈ 〈q, x− r〉z and deg f ≤ l.

Then f can be expressed as an integer combination of the polynomials qz−j (x − r)j , for 0 ≤ j ≤
min{z, l}; and, if l > z, the additional polynomials xj(x− r)z, for 1 ≤ j ≤ l − z.

Lemma 4.4.1 provides a basis for the lattice L0,z0 , corresponding to the polynomials of degree at most

l in 〈N, x−m〉z0 ; and a basis for the lattice Li,zi , corresponding to the polynomials of degree at most

l in pzii , for 1 ≤ i ≤ n. These bases are then used to compute a basis for the lattice L =
⋂n
i=0 Li,zi

by repeatedly applying the method described by Guruswami et al. [69, Appendix B] for computing a

basis for the intersection of two lattices.

Using the approach just described, the following algorithm is obtained:

Algorithm 4.4.2.

Input: Nonzero integers m and N , with 0 ≤ m < N , and pairwise comaximal ideals p1, . . . , pn ⊂ Z[x]

of the form pi = ppi,ri , with pi - N . Positive integers s, z0, . . . , zn and l.

Output: A list of integer polynomials.

0. For 1 ≤ i ≤ n, define the following families of polynomials in Z[x]:

bi,j(x) = pzi−ji (x− ri)j , for 0 ≤ j ≤ min{zi, l}; and

bi,j(x) = xj−zi(x− ri)zi , for zi + 1 ≤ j ≤ l.

Similarly, define polynomials

b0,j(x) = N z0−j (x−m)j , for 0 ≤ j ≤ min{z0, l}; and

b0,j(x) = xj−z0(x−m)z0 , for z0 + 1 ≤ j ≤ l.

1. Let δl be the map that sends an integer polynomial
∑l

i=0 aix
i of degree at most l to the vector

(a0, . . . , al) ∈ Zl+1. Compute the vectors bi,j = δl(bi,j), for 0 ≤ i ≤ n, 0 ≤ j ≤ l.

2. For 0 ≤ i ≤ n, let Li,zi ∈ Zl+1 be the lattice generated by the vectors bi,0 . . . , bi,l. By repeat-

edly applying the method described by Guruswami et al. [69, Appendix B], compute a basis

(b1, . . . , bl+1) for the intersection lattice L =
⋂n
i=0 Li,zi .



4.4. An Initial Algorithm 85

3. Let S = diag(1, s, . . . , sl). Compute an LLL-reduced basis (v1, . . . ,vl+1) for the lattice LS .

4. Use the polynomial time algorithm of Lenstra, Lenstra and Lovás [103] to find all non-constant

irreducible factors of h = δ−1
l (v1S

−1) in Z[x].

5. Return all factors found in Step 4.

The following theorem provides a condition under which a polynomial is returned by Algorithm 4.4.2:

Theorem 4.4.3. Amongst the polynomials returned by Algorithm 4.4.2 are all non-constant irreducible

polynomials f ∈ Z[x] such that

Nσ∗(f,〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f,pi)zi
i > ‖f‖l2,s ·

2
l
4 ·

(
N(z0+1

2 ) ·
n∏
i=1

p
(zi+1

2 )
i

) 1
l+1

deg f

. (4.29)

Moreover, the algorithm runs in time polynomial in n, l, log s, z0, . . . , zn, log p1, . . . , log pn and logN .

Proof. For each i, 0 ≤ i ≤ n, it is readily verified that the degrees of the l + 1 polynomials bi,j are all

distinct and less than l+1. Therefore, it is possible to construct an (l+1)×(l+1) lower triangular matrix

Bi with row vectors bi,0 . . . , bi,l such the diagonal elements are precisely the leading coefficients of the

polynomials bi,0, . . . , bi,l. Hence, Bi is a basis matrix for the lattice Li,zi , for 0 ≤ i ≤ n. Consequently,

Li,zi is a full-rank sublattice of Zl+1 and

detLi,zi = | detBi| =
min{zi,l}∏
j=0

pzi−ji ≤ p(
zi+1

2 )
i , for 1 ≤ i ≤ n.

Similarly, L0,z0 is a full-rank sublattice of Zl+1 and detL0,z0 = N(z0+1
2 ). Since L =

⋂n
i=0 Li,zi and

[Zl+1 : Li,zi ] is finite for 0 ≤ i ≤ n, it follows that

[
Zl+1 : L

]
≤

n∏
i=0

[
Zl+1 : Li,zi

]
=

n∏
i=0

detLi,zi = N(z0+1
2 ) ·

n∏
i=1

p
(zi+1

2 )
i .

Hence, L is a full-rank sublattice of Zl+1. Thus,

detLS = |detS| · detL = | detS| · [Zl+1 : L] · detZl+1 = s(
l+1
2 ) · [Zl+1 : L].

The vector v1 is nonzero and Theorem 3.1.2 implies that ‖v1‖ ≤ 2l/4 det(LS)1/(l+1). Hence, h is

nonzero and

‖h‖2,s = s−
deg h

2 · ‖v1‖2 ≤ s
l−deg h

2 · 2
l
4 ·

(
N(z0+1

2 ) ·
n∏
i=1

p
(zi+1

2 )
i

) 1
l+1

. (4.30)

By construction, h is contained in the intersection of the ideals pz11 , . . . , p
zn
n and 〈N, x−m〉z0 . However,

these ideals are pairwise comaximal, since p1, . . . , pn are pairwise comaximal and pi - N , for 1 ≤ i ≤ n.



86 4. An Approach to Polynomial Selection

Therefore, h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i .

If no polynomial satisfies the conditions of the theorem, then its first assertion is vacuously true.

Therefore, assume there exists a polynomial f ∈ Z[x] that satisfies the conditions of the theorem.

Then

‖f‖deg h
2,s · ‖h‖deg f

2,s ≤

(
‖f‖2,s
s

deg f
2

)deg h−l

· ‖f‖l2,s ·

2
l
4 ·

(
N(z0+1

2 ) ·
n∏
i=1

p
(zi+1

2 )
i

) 1
l+1

deg f

< Nσ∗(f,〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f,pi)zi
i ,

since ‖f‖2,s ≥ s
deg f

2 . Moreover, Lemma 4.1.1 implies that Nσ∗(f,〈N,x−m〉)z0 ·
∏n
i=1 p

σ∗(f,pi)zi
i divides

Res(f, h). As a result, if h is a constant polynomial, then

Nσ∗(f,〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f,pi)zi
i ≤ |h|deg f ≤ ‖f‖deg h

2,s · ‖h‖deg f
2,s < Nσ∗(f,〈N,x−m〉)z0 ·

n∏
i=1

p
σ∗(f,pi)zi
i ,

since ‖f‖2,s ≥ 1, which is absurd. Therefore, h is non-constant and Lemma 4.1.2 implies that

Res(f, h) = 0. Consequently, the irreducibility of f and (4.6) imply that f divides h over Q. Hence,

f is returned by Algorithm 4.4.2, thus proving the first assertion of the theorem.

Steps 1 and 2 of Algorithm 4.4.2 require time polynomial in n, l z0, . . . , zn, log p1, . . . , log pn and logN .

Steps 3 and 4 require time polynomial n, l, log s, z0, . . . , zn, log p1, . . . , log pn and logN , with the time

bound for Step 4 following from (4.30). Algorithm 4.4.2 therefore runs in the stated time.

4.4.1 Parameter Selection for Algorithm 4.4.2

In this section, parameter selection for Algorithm 4.4.2 is used to develop an algorithm for generating

number field sieve polynomials with specified size and root properties. To begin, polynomial gener-

ation with arbitrary (positive) real weights z1, . . . , zn is considered through the careful selection of

parameters for Algorithm 4.4.2. Then the performance of the resulting algorithm is evaluated against

the theoretical bounds obtained in Section 4.3. Finally, polynomial generation under appropriate

choices of weights is considered.

Theorem 4.4.4. Let C ≥ 1 be a real number; d, s,N be positive integers; m be an integer such that

0 ≤ m < N ; and p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the form pi = ppi,ri, with pi - N ,

for 1 ≤ i ≤ n. Given positive real weights z1, . . . , zn and any tolerance parameter ε > 0, there exists

an algorithm that returns all non-constant irreducible polynomials f ∈ 〈N, x−m〉 with deg f ≤ d and



4.4. An Initial Algorithm 87

‖f‖2,s ≤ C ·N
1
2d such that

n∑
i=1

σ∗(f, pi)zi log pi ≥

√√√√2d log
(

2
d
4C
)( n∑

i=1

z2
i log pi + εz2

max

)
, (4.31)

where zmax = max1≤i≤n zi. Moreover, the algorithm runs in time polynomial in n, d, log s, logC,∑n
i=1 log pi, logN and 1/ε.

The proof of Theorem 4.4.4 presented here adapts arguments of Guruswami, Sahai, and Sudan [69,

Theorem 4] (see also [68, Theorem 7.12]).

Proof. The condition (4.31) is invariant under scaling of the parameters z1, . . . , zn. Thus, assume

without loss of generality that zmax ≤ 1. Set z∗i = dAzie, for 1 ≤ i ≤ n, where A is a positive real

parameter to be specified later in the proof. Additionally, let z∗0 and l be positive integers parameters

to be specified later. Consider following algorithm: first, apply Algorithm 4.4.2 with parameters m,

N , p1, . . . , pn, s, z∗0 , . . . , z
∗
n and l; second, return only those polynomials f ∈ Z[x] from the output of

Algorithm 4.4.2 that satisfy f ∈ 〈N, x−m〉, deg f ≤ d, ‖f‖2,s ≤ C · N
1
2d and (4.31). By specifying

the parameters z∗0 , l and A it is shown that this algorithm works and satisfies the condition of the

theorem.

Theorem 4.4.3 implies that Algorithm 4.4.2, when applied with parameters m, N , p1, . . . , pn, s,

z∗0 , . . . , z
∗
n and l, has amongst its outputs all polynomials f ∈ 〈N, x−m〉 such that deg f ≤ d,

‖f‖2,s ≤ C ·N
1
2d and

n∏
i=1

p
σ∗(f,pi)z∗i
i > 2

dl
4 · C l ·N

l
2d

+ d
l+1(z

∗
0+1
2 )−z∗0 ·

(
n∏
i=1

p
(z
∗
i +1

2 )
i

) d
l+1

. (4.32)

Moreover, it follows from Theorem 4.4.3 that the algorithm described above runs in time polynomial

in n, l, log s, logC, z∗0 , A, log p1, . . . , log pn and logN . The proof that the algorithm works and

satisfies the condition of the theorem is completed by specifying the parameters z∗0 , l and A that are

polynomial in d, logC,
∑n

i=1 log pi, logN and 1/ε, and for which (4.32) is satisfied by all polynomials

f ∈ Z[x] that satisfy (4.31).

Set z∗0 =
⌊

1
d(l + 1)

⌋
, i.e., the integer nearest to the (real) value of z∗0 that minimises the exponent of

N in (4.32), and impose the additional requirement that l ≥ d, so that z∗0 is positive. Then

l + 1

d
− 1

2
< z∗0 ≤

l + 1

d
or

l + 1

d
− 1 < z∗0 ≤

l + 1

d
− 1

2
,

and, in either case, the exponent of N in (4.32) is at most (2d− 1)/2d. Hence, for l ≥ d, the condition



88 4. An Approach to Polynomial Selection

(4.32) is satisfied whenever

n∏
i=1

p
σ∗(f,pi)z∗i
i > 2

dl
4 · C l ·N1− 1

2d ·

(
n∏
i=1

p
(z
∗
i +1

2 )
i

) d
l+1

. (4.33)

The inequalities Azi ≤ z∗i < Azi + 1, for 1 ≤ i ≤ n, imply that (4.33) is satisfied whenever

n∑
i=1

σ∗(f, pi)zi log pi ≥
l

A
log
(

2
d
4C
)

+
1

A
logN1− 1

2d +
dA

2(l + 1)

n∑
i=1

(
z2
i +

3

A
zi +

2

A2

)
log pi. (4.34)

Define Zi = z2
i + 3

Azi + 2
A2 , for 1 ≤ i ≤ n, and set

l =

⌈
A

√
d
∑n

i=1 Zi log pi

2 log(2
d
4C)

⌉
− 1.

Then (4.34) is satisfied whenever

n∑
i=1

σ∗(f, pi)zi log pi ≥
1

A
logN1− 1

2d +

√√√√2d log
(

2
d
4C
)
·
n∑
i=1

Zi log pi. (4.35)

If A is chosen to satisfy

A ≥ max

10zmax

ε

n∑
i=1

log pi,
1

B
logN1− 1

2d , (d+ 1)

√
2 log(2

d
4C)

d
∑n

i=1 Zi log pi

 ,

for some positive constant B, then l ≥ d and

1

A
logN1− 1

2d +

√√√√2d log
(

2
d
4C
)
·
n∑
i=1

Zi log pi ≤ B +

√√√√2d log
(

2
d
4C
)( n∑

i=1

z2
i log pi +

ε

2

)
.

Furthermore, if

B ≤ ε

4
·

√
2d log(2

d
4C)∑n

i=1 z
2
i log pi + ε

,

then

B +

√√√√2d log
(

2
d
4C
)( n∑

i=1

z2
i log pi +

ε

2

)
≤

√√√√2d log
(

2
d
4C
)( n∑

i=1

z2
i log pi + ε

)
.

(The upper bound on B is obtained by using the mean value theorem to bound the difference of the

two roots occurring in this inequality.) Therefore, set

A = max

10zmax

ε

n∑
i=1

log pi,
4

ε
logN1− 1

2d

√∑n
i=1 z

2
i log pi + ε

2d log(2
d
4C)

, (d+ 1)

√
2 log(2

d
4C)

d
∑n

i=1 z
2
i log pi

 .



4.4. An Initial Algorithm 89

Then l ≥ d and (4.35) holds for all f ∈ Z[x] that satisfy (4.31). Moreover, for this choice of A, the

parameters z∗0 , l and A are all polynomial in d, logC,
∑n

i=1 log pi, logN and 1/ε.

Remark 4.4.5. It is not clear under which choices of parameters the conditions on the polynomials returned by

the algorithm described in Theorem 4.4.4 are satisfiable. If the conditions are not satisfiable, then the algorithm

proves it in polynomial time, and this information may be used to narrow the search space for polynomials.

However, there is also potential for computational effort to be wasted by having to repeatedly adjust parameters

and re-execute the algorithm so that polynomials are found. Therefore, it is of theoretical and practical interest

to determine under which choices of parameters the conditions in Theorem 4.4.4 are satisfiable.

The performance of the algorithm described in Theorem 4.4.4 is now evaluated by comparing against

Corollary 4.3.6. At first glance, the bounds (4.31) and (4.28) appear to be incomparable, since the

left hand sides of the two inequalities are not necessary equal, due to the appearance of both σ∗ and

σ. However, the following lemma allows parameters to be constructed for which the two bounds are

comparable:

Lemma 4.4.6. Let f ∈ Z[x] be primitive and (p, r) ∈ U . Then pσ
∗(f,pp,r)(σ∗(f,pp,r)−1) divides Res(f, f ′).

Proof. Let f ∈ Z[x] be primitive and z = σ∗(f, pp,r), where (p, r) ∈ U . If z = 0 or 1, then pz(z−1)

trivially divides Res(f, f ′). Therefore, assume that z ≥ 2.

Lemma 4.4.1 implies that f can be written as an integer linear combination of the polynomials

bi = pz−i (x− r)i, for 0 ≤ i ≤ z; and bi = xi−z(x− r)z, for i > z.

Thus deg f ≥ z, otherwise f is not primitive. Furthermore, f ′ is an integer linear combination of the

polynomials b′i, for i ≥ 1. By computing derivatives, it is readily verified that σ∗(b′i, pp,r) ≥ z − 1, for

all i ≥ 1. Therefore, σ∗(f ′, pp,r) ≥ z− 1, where z− 1 ≥ 1 by assumption. Hence, Lemma 4.1.1 implies

that pz(z−1) divides Res(f, f ′).

For any non-constant irreducible polynomial f ∈ Z[x] with σ∗(f, pp,r) > 1, property (4.6) and

Lemma 4.4.6 imply that p ≤
√
|Res(f, f ′)|. Additionally, for any polynomial f ∈ Z[x] that satis-

fies the size and degree constraints of Theorem 4.4.4,

|Res(f, f ′)| ≤ ‖f‖d−1
2,s ·

∥∥f ′∥∥d
2,s
≤ dds−

d
2 ‖f‖2d−1

2,s ≤ dds−
d
2C2d−1N1− 1

2d .

Hence, for any choice of parameters d, s, C, m, N and ε, it is possible to select ideals p1, . . . , pn and

their corresponding weights z1, . . . , zn such that, for any non-constant irreducible polynomials f ∈ Z[x]

that satisfies the corresponding size and degree constraints of Theorem 4.4.4, the difference between∑n
i=1 σ

∗(f, pi)zi log pi and
∑n

i=1 σ(f, pi)zi log pi is arbitrarily small. Comparing conditions (4.31) and

(4.28) for these parameters therefore suggests that the algorithm described in Theorem 4.4.4 does not

perform optimally.



90 4. An Approach to Polynomial Selection

The following alternative to Theorem 4.4.4 considers polynomial generation with Algorithm 4.4.2 when

the parameter l, which determines the dimension of the lattices in the algorithm, is fixed:

Theorem 4.4.7. Let C ≥ 1 be a real number; d, s,N be positive integers; m be an integer such that

0 ≤ m < N ; and p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the form pi = ppi,ri, with pi - N , for

1 ≤ i ≤ n. Given positive real weights z1, . . . , zn and any integer l ≥ d, there exists an algorithm that

returns all non-constant irreducible polynomials f ∈ 〈N, x−m〉 with deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d

such that

n∑
i=1

σ∗(f, pi)zi log pi ≥

√√√√ 2d

l + 1

(
l log

(
2
d
4C
)

+ logN1− 1
2d +

d

l + 1

n∑
i=1

log pi

)
n∑
i=1

z2
i log pi

+
3d

2(l + 1)

n∑
i=1

zi log pi. (4.36)

Moreover, the algorithm runs in time polynomial in n, d, log s, logC,
∑n

i=1 log pi, logN and l.

Proof. The proof follows that of Theorem 4.4.4, apart from the selection of the parameters A and l.

Here, the parameter l is provided and, accordingly, does not require selection. The condition l ≥ d

implies that z∗0 =
⌊

1
d(l + 1)

⌋
is nonzero, as required. The bound (4.36) is obtained by choosing the

parameter A to minimise the right hand side of (4.34). That is, set A =
√
X/Y , where

X = l log
(

2
d
4C
)

+ logN1− 1
2d +

d

l + 1

n∑
i=1

log pi and Y =
d

2(l + 1)

n∑
i=1

z2
i log pi.

Then the right hand side of (4.34) becomes

1

A
X +AY +

3d

2(l + 1)

n∑
i=1

zi log pi = 2
√
XY +

3d

2(l + 1)

n∑
i=1

zi log pi.

By substituting in X and Y , this is seen to equal the right hand side of (4.36). Finally, for this choice

of A, the parameters z∗0 , . . . , z
∗
n are all polynomial in d, logC,

∑n
i=1 log pi, logN and l.

To end this section, polynomial generation under two common choices of weights is considered: first,

the contributions of roots modulo distinct primes are weighted uniformly; secondly, weights are chosen

to bound ᾱ(f, y). For the latter choice of weights, an example of parameter selection is then provided.

Corollary 4.4.8. Let C ≥ 1 be a real number; d, s,N be positive integers; and m be an integer such

that 0 ≤ m < N . Given positive real numbers y and ε such that all prime factors of N exceed y,

there exists an algorithm that returns all non-constant irreducible polynomials f ∈ 〈N, x−m〉 with



4.4. An Initial Algorithm 91

deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d such that

∑
p≤y

σ∗(f, p) ≥

√√√√√2d log
(

2
d
4C
)∑

p≤y

p

log p
+ ε

,
where the sums are over all primes p ≤ y. Moreover, the algorithm runs in time polynomial in d, log s,

logC, logN ,
∑

p≤y p and 1/ε.

Proof. Apply Theorem 4.4.4 with

{(p1, z1), . . . , (pn, zn)} =

{(
pp,r,

1

log p

)
| (p, r) ∈ U and p ≤ y

}
.

For this choice of parameters, n =
∑

p≤y p, leading to the stated running time.

Corollary 4.4.9. Let C ≥ 1 be a real number; d, s,N be positive integers; and m be an integer such

that 0 ≤ m < N . Given positive real numbers y and ε such that all prime factors of N exceed y,

there exists an algorithm that returns all non-constant irreducible polynomials f ∈ 〈N, x−m〉 with

deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d such that

ᾱ(f, y) ≤
∑
p≤y

log p

p− 1
−

√√√√√2d log
(

2
d
4C
)∑

p≤y

p3 log p

(p2 − 1)2
+ ε

, (4.37)

where the sums are over all primes p ≤ y. Moreover, the algorithm runs in time polynomial in d, log s,

logC, logN ,
∑

p≤y p and 1/ε.

Proof. By applying Theorem 4.4.4 with

{(p1, z1), . . . , (pn, zn)} =

{(
pp,r,

p

p2 − 1

)
| (p, r) ∈ U and p ≤ y

}
, (4.38)

it follows that there exists an algorithm that returns all irreducible polynomials f ∈ 〈N, x−m〉 with

deg f ≤ d and ‖f‖2,s ≤ C ·N
1
2d such that

∑
p≤y

log p

p− 1
−

n∑
i=1

σ∗(f, pi)
pi log pi
p2
i − 1

≤
∑
p≤y

log p

p− 1
−

√√√√√2d log
(

2
d
4C
)∑

p≤y

p3 log p

(p2 − 1)2
+ ε

. (4.39)

Moreover, the algorithm runs in time polynomial in d, log s, logC, logN ,
∑

p≤y p and 1/ε. The

corollary then follows from the observation that the left hand side of (4.39) is less than or equal to

ᾱ(f, y), for all f ∈ Z[x].



92 4. An Approach to Polynomial Selection

Example 4.4.10. Let N = 10170 + 7. This choice of N is free of prime factors less than 10000 and

is representative of a mid-sized value suitable for factorisation by a pair of cubic polynomials. In

this example, parameter selection for Algorithm 4.4.2 is considered with the aim of producing cubic

polynomials f ∈ Z[x] with ‖f‖2,s ≤ C · N1/6, for some C > 0, and ᾱ(f, y) ≤ −2. Accordingly, set

d = 3 and let parameters p1, . . . , pn and z1, . . . , zn be chosen according to (4.38), for some y ≥ 2. In

the parameter selections of both Theorem 4.4.4 and Theorem 4.4.7, the parameter s affects neither

the bounds obtained nor the choice of the remaining parameters. As a result, its selection is not

considered in this example. Moreover, it is assumed that a brute-force search is performed over the

parameter m. Therefore, only the parameters C, y and, depending on whether parameters are chosen

according to Theorem 4.4.4 or Theorem 4.4.7, the parameter ε or l remain to be chosen.

Table 4.2 contains example of parameters (n, C, A and l) obtained from the proof of Theorem 4.4.4.

For each value of y, the tolerance parameter ε = 2/3 is used and the parameter C is chosen so that the

right hand side of (4.37) is equal to −2, i.e., C is taken as large as possible. The values in Table 4.2

show that C is restricted to extremely small values. For such small values of C, it is unlikely that a

pair of cubics with nonzero resultant exists for most values of m.

Table 4.2: Parameters for Example 4.4.10

Theorem 4.4.4 Theorem 4.4.7

y n C A l A l

10 17 1.78 607.2 937 617.7 808
20 77 1.99 845.2 1496 726.5 1142
30 129 2.06 1599.8 2918 774.1 1275
40 197 2.12 2666.7 4977 820.5 1399
50 328 2.20 4866.5 9324 890.3 1578
100 1060 2.41 18886.5 38102 1128.7 2157
1000 76127 3.39 2153390.2 4905092 5505.0 12411

From Table 4.2, it is clear that larger values of C can be achieved by increasing the bound y on the

primes considered. However, the remaining parameters in the table exhibit two negative consequences

of an increase in y: first, the parameter n increases, thus increasing the number of lattice intersection

computations required in Step 2 of Algorithm 4.4.2; and second, the dimension of all lattices in the

algorithm (i.e., l+ 1) also increases. The cost of computing the lattice intersections may be amortised

in part by reusing computations from Step 2 (namely, a basis for
⋂n
i=1 Li) for many values of m. In

contrast, the problem presented by the growth of lattice dimension appears to be insurmountable.

A much greater concern is the large lattice dimension that occurs for each value of y. As a brute-

force search is performed over the parameter m, the large lattice dimension means that Steps 2–4

of Algorithm 4.4.2 are far too time consuming for the algorithm to be of practical value. For each

value of y in Table 4.2, the parameters obtained from the proof of Theorem 4.4.7, with corresponding

value of C taken from the table and l chosen so that the right hand side of (4.37) is equal to −2, are



4.4. An Initial Algorithm 93

significantly smaller (see Table 4.2 once more). However, the improved parameters are once again far

too large.

4.4.2 Algorithmic Bounds on Polynomial Selection

Algorithm 4.4.2 is guaranteed to find all polynomials with sufficiently small coefficients and good

non-projective root properties. Each polynomial found by the algorithm occurs as a factor of the

polynomial h ∈ Z[x] computed in Step 4. Therefore, the number of degree d polynomials returned

by the algorithm is bounded by (2/d) deg h, where the factor of two accounts for units and deg h is

bounded by the parameter l. As a result, Theorem 4.4.3 admits bounds on the existence of number

field sieve polynomials with small coefficients and good non-projective root properties. This approach

to algorithmically deriving bounds on polynomial is analogous to the use of a list decoding algorithm

for Chinese remainder codes by Boneh [25, Section 3.1] to bound the number of smooth integers in

short intervals. Here, bounds on polynomial generation parallel to those obtained in Section 4.3 are

derived by carefully selecting parameters for Algorithm 4.4.2.

It follows from Minkowski’s second theorem (see Section 3.1) that every n-dimensional lattice Λ ⊂ Rn

contains a nonzero vector x satisfying ‖x‖2 ≤
√
γn det(Λ)1/n, where γn ≤ 1 + n

4 is Hermite’s constant.

By using this fact and modifying arguments from the proofs of Theorem 4.4.3 and Theorem 4.4.4, the

following bound on polynomial selection is obtained:

Theorem 4.4.11. Let C, s be positive reals with C > 1; d,m,N be integers with d,N ≥ 1; and

p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the form pi = ppi,ri, with pi - N , for 1 ≤ i ≤ n.

Given positive real weights β1, . . . , βn and an integer l ≥ d, there exist at most 2l/d (resp. 2l) non-

constant irreducible polynomials f ∈ 〈N, x−m〉 with deg f = d (resp. deg f ≤ d) and ‖f‖2,s ≤ C ·N
1
2d

such that

n∑
i=1

σ∗(f, pi)βi ≥

√√√√ 2d

l + 1

(
l logC +

d

l + 1

n∑
i=1

log pi + log

(
γ
d
2
l+1N

1− 1
2d

)) n∑
i=1

β2
i

log pi
+

3d

2(l + 1)

n∑
i=1

βi.

Proof. For positive integers z0, . . . , zn, modifying the proof of Theorem 4.4.3 to use the bound on

the shortest vector in the lattice LS provided by Minkowski’s second theorem in place of the bound

provided by Theorem 3.1.2 shows that there exists a nonzero polynomial h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i

such that deg h ≤ l and

‖h‖2,s ≤ s
l−deg h

2 · √γl+1 ·

(
N(z0+1

2 ) ·
n∏
i=1

p
(zi+1

2 )
i

) 1
l+1

.

As a result, if h is constant and there exists a non-constant irreducible polynomial f ∈ 〈N, x−m〉



94 4. An Approach to Polynomial Selection

such that deg f ≤ d, ‖f‖2,s ≤ C ·N
1
2d and

n∏
i=1

p
σ∗(f,pi)zi
i > γ

d
2
l+1 · C

l ·N
l
2d

+ d
l+1(z0+1

2 )−z0 ·

(
n∏
i=1

p
(zi+1

2 )
i

) d
l+1

, (4.40)

then Lemma 4.1.1 implies that

N z0 ·
n∏
i=1

p
σ∗(f,pi)zi
i ≤ |h|deg f ≤ ‖f‖deg h

2,s · ‖h‖deg f
2,s < N z0 ·

n∏
i=1

p
σ∗(f,pi)zi
i ,

which is absurd. Therefore, either h is non-constant or there is no non-constant irreducible polynomial

f ∈ 〈N, x−m〉 such that deg f ≤ d, ‖f‖2,s ≤ C · N
1
2d and (4.40) holds. If h is non-constant, then

Lemma 4.1.2 implies that any non-constant irreducible polynomial f ∈ 〈N, x−m〉 with deg f ≤ d

and ‖f‖2,s ≤ C ·N
1
2d that satisfies (4.40) must divide h over Q. Hence, regardless of the degree of h,

all non-constant irreducible f ∈ 〈N, x−m〉 such that deg f ≤ d, ‖f‖2,s ≤ C · N
1
2d and (4.40) holds

divide h over Q. By considering the maximum number of degree d factors of h, it follows that there

can only exist at most 2l/d such polynomials with deg f = d. Similarly, by considering the case where

h factors completely into linear polynomials, it follows that there exist at most 2l such polynomials

with deg f ≤ d.

Let A > 0 be a parameter to be chosen later and set zi = dAβi/ log pie, for 1 ≤ i ≤ n; and z0 =⌊
1
d(l + 1)

⌋
, which is nonzero since l ≥ d. By substituting into (4.40), it follows that, for any A > 0,

there exist at most 2l/d (resp. 2l) non-constant irreducible polynomials f ∈ 〈N, x−m〉 with deg f = d

(resp. deg f ≤ d) and ‖f‖2,s ≤ C ·N
1
2d such that

n∑
i=1

σ∗(f, pi)βi ≥
1

A

(
l logC + log

(
γ
d
2
l+1N

1− 1
2d

))
+

dA

2(l + 1)

n∑
i=1

(
β2
i

log pi
+

3

A
βi +

2

A2
log pi

)
.

The proof is completed by choosing the parameter A such that the right hand side is minimised.

It is possible to derive corollaries to Theorem 4.4.11 analogous to Corollary 4.3.4 and Corollary 4.3.6 of

Theorem 4.3.2. However, details are not provided here. To end this section, examples of the bounds

obtained from Theorem 4.4.11 are now provided and compared with the combinatorially derived

bounds of Section 4.3:

Example 4.4.12. Table 4.3 contains examples of the bounds obtained from Theorem 4.4.11. Let

m be an integer and N = 10170 + 7. This choice of N is free of prime factors less than 10000

and is representative of a mid-sized value suitable for factorisation by a pair of cubic polynomials.

In Tables 4.3a–4.3d, a nonempty entry corresponding to C and y contains an upper bound on the

number of irreducible polynomials f ∈ 〈N, x−m〉 with deg f = 3, ‖f‖2,s ≤ C ·N
1
6 and ᾱ(f, y) ≤ ε, for

ε = 0,−1,−1.5,−2, respectively. In each table, an entry containing a dash corresponds to a value of C

and y for which Theorem 4.4.11 does not apply. Corresponding bounds for the number of polynomials



4.5. Future Directions: Improvements and Generalisations 95

with deg f ≤ 3 can be obtained by multiplying each entry in Tables 4.3a–4.3d by three. In all cases,

the bounds given in this example are significantly smaller than the combinatorially derived bounds in

Example 4.3.5. However, this is a somewhat unfair comparison, since the bounds in Example 4.3.5

hold for all N rather than just N = 10170 + 7.

Table 4.3: Bounds for Example 4.4.12.

Table 4.3a: ᾱ(f, y) ≤ 0

C y = 100 y = 1000 y = 10000

1 430 1373 10201
2 6044 3196 16669
3 - 57498 30244
4 - - 97070

Table 4.3b: ᾱ(f, y) ≤ −1

C y = 100 y = 1000 y = 10000

1 300 1167 9132
2 741 1986 13140
3 6350 3749 18650
4 - 12557 27999
5 - - 49342
6 - - 159931

Table 4.3c: ᾱ(f, y) ≤ −1.5

C y = 100 y = 1000 y = 10000

1 257 1085 8678
2 507 1690 11944
3 1209 2662 15902
4 184906 4809 21469
5 - 14847 30501
6 - - 48642
7 - - 106788

Table 4.3d: ᾱ(f, y) ≤ −2

C y = 100 y = 1000 y = 10000

1 224 1014 8267
2 383 1476 10972
3 662 2093 13952
4 1387 3075 17649
5 9756 5022 22656
6 - 11100 30117
7 - - 42804
8 - - 69903
9 - - 171650

4.5 Future Directions: Improvements and Generalisations

The parameters found in Example 4.4.10 suggest that the approach to polynomial generation intro-

duced in Section 4.1 requires development beyond the initial realisation (Algorithm 4.4.2) provided in

Section 4.4. In this section, potential avenues for generalising the approach of Section 4.1 and improv-

ing its realisation are discussed. In Section 4.5.1, the approach is modified so that better parameters

for Algorithm 4.4.2 may be obtained. In Section 4.5.2, ideas central to the nonlinear algorithms de-

scribed in Chapter 3 are generalised and incorporated into the initial algorithm. Finally, a multivariate

generalisation of the approach of Section 4.1 is introduced in Section 4.5.3 and details related to its

realisation are discussed.



96 4. An Approach to Polynomial Selection

4.5.1 Special-q

In Section 4.4.2, the observation that all polynomials found by Algorithm 4.4.2 occur as a factor of

the polynomial h was used to provide bounds on the existence of number field sieve polynomials with

small coefficients and good non-projective root properties. However, this observation further imposes

a fundamental lower bound on the parameter l in the algorithm: if polynomials f1, . . . , ft are returned

by the algorithm, then 1
2

∑t
i=1 deg fi ≤ l. Therefore, it may be necessary to encounter lattices of

large dimension when applying Algorithm 4.4.2. In this section, a modification to the algorithm is

presented which is aimed reducing the number of polynomials found by the algorithm by imposing

greater restrictions on their root properties. The method used is motivated by previous work of Bai,

Brent and Thomé [12], Kleinjung [90] and Pollard [142].

Given a pair of number field sieve polynomials f, g ∈ Z[x] with a common root m modulo N , define the

rotated polynomial fu,v(x) = f(x) + (ux+ v)g(x), for all (u, v) ∈ Z2. A rotated polynomial fu,v that

has few roots modulo small prime powers is less likely to have good root properties (see Section 2.1.2).

Motivated by this observation, Bai et al. [12, Section 5] suggested a two-stage method for finding linear

rotations, which only performs sieving over pairs (u, v) ∈ Z2 such that fu,v is guaranteed to have many

roots modulo small primes. In the first stage of their algorithm, Gower’s approach [65, Section 4] is

followed and the Chinese remainder theorem used to construct an initial pair (u0, v0) ∈ Z2 such that

fu0,v0 has many roots modulo (very) small prime powers, say pe11 , . . . , p
et
t < B, for some boundB. In the

second stage, a modified root sieve is performed modulo primes powers greater than B and restricted

to those pairs (u, v) ∈ Z2 contained in the subset {(u0 + a
∏t
i=1 p

ei
i , v0 + b

∏t
i=1 p

ei
i ) | (a, b) ∈ Z2}. As

a result, only pairs (u, v) ∈ Z2 such that fu,v has many roots modulo prime powers pe11 , . . . , p
et
t are

considered by the algorithm. The approach introduced in this section uses Algorithm 4.4.2 to find

those polynomials f ∈ 〈N, x−m〉 ∩ q with good size and root properties, where q =
∏

(p,r)∈Q pp,r

for some finite set Q ⊂ U . The strategy of Bai et al. is then captured by choosing Q so that all

polynomials returned by the algorithm will have many roots modulo small primes. The ideal q is

referred to as a special-q in reference to analogous ideas that occur in linear polynomial generation

[90] and lattice sieve [142] algorithms.

Given a special-q, Algorithm 4.4.2 may be applied to pairwise comaximal ideals p1, . . . , pn+t, where

q =
∏n+t
i=n+1 pi. Then the weights zn+1, . . . , zn+t corresponding to those ideals pn+1, . . . , pn+t can be

freely chosen. Thus, a careful selection of the weights may be used to leverage an advantage. A similar

approach was applied in the proof of Theorem 4.4.4, where the parameter z∗0 corresponding to the

ideal 〈N, x−m〉 was chosen to minimise the contribution of N in (4.32). The influence of utilising a

special-q in this manner is summarised by the following theorem:

Theorem 4.5.1. Let C ≥ 1 be a real number; d, s,N be positive integers; m be an integer such that

0 ≤ m < N ; and p1, . . . , pn+t ⊂ Z[x] be pairwise comaximal ideals of the form pi = ppi,ri, with pi - N ,

for 1 ≤ i ≤ n + t. Define q =
∏n+t
i=n+1 pi, q =

∏n+t
i=n+1 pi and suppose that q1/2d < 2

d
4C. Then,

given positive real weights z1, . . . , zn and any integer l ≥ d, there exists an algorithm that returns all



4.5. Future Directions: Improvements and Generalisations 97

non-constant irreducible polynomials f ∈ 〈N, x−m〉 · q with deg f ≤ d and ‖f‖2,s ≤ C · N1/2d such

that

n∑
i=1

σ∗(f, pi)zi log pi ≥

√√√√ 2d

l + 1

(
l log

(
2
d
4C

q
1
2d

)
+

(
1− 1

2d

)
log(qN) +

d

l + 1

n∑
i=1

log pi

)
n∑
i=1

z2
i log pi

+
3d

2(l + 1)

n∑
i=1

zi log pi. (4.41)

Moreover, the algorithm runs in time polynomial in n, d, log s, logC,
∑n

i=1 log pi, log q, logN and l.

The proof follows that of Theorem 4.4.7 with only minor modifications to account for the inclusion of

the additional ideals pn+1, . . . , pn+t.

Proof. The condition (4.41) is invariant under scaling of the parameters z1, . . . , zn. Thus, assume

without loss of generality that max1≤i≤n zi ≤ 1. Let A > 0 be a parameter to be determined later and

set z∗i = dAzie, for 1 ≤ i ≤ n. Set z∗i =
⌊

1
d(l + 1)

⌋
, for n+ 1 ≤ i ≤ n+ t; and z∗0 =

⌊
1
d(l + 1)

⌋
. Then z∗0

and z∗n+1, . . . , z
∗
n+t are all nonzero since l ≥ d. Therefore, Theorem 4.4.3 implies that Algorithm 4.4.2

can be used to find all non-constant irreducible polynomials f ∈ 〈N, x−m〉 · q with deg f ≤ d and

‖f‖2,s ≤ C ·N
1
2d such that

n∑
i=1

σ∗(f, pi)zi log pi ≥
1

A

(
l log

(
2
d
4C

q
1
2d

)
+

(
1− 1

2d

)
log(qN)

)

+
dA

2(l + 1)

n∑
i=1

(
z2
i +

3

A
zi +

2

A2

)
log pi,

in time polynomial in n, d, log s, logC, A, log p1, . . . , log pn, log q, logN and l. The bound (4.41) is

obtained by choosing the parameter A to minimise the right hand side of the inequality. Moreover,

this choice of A is polynomial in d, logC,
∑n

i=1 log pi, log q, logN and l, leading to the running time

in the statement of the theorem.

A similar result may be obtained for the case where q1/2d ≥ 2
d
4C. However, the following corollary to

Lemma 4.1.2 shows that at most one polynomial (up to units) is found whenever C < q1/2d:

Corollary 4.5.2. Let C ≥ 1 be a real number; d,m,N be integers with d,N ≥ 1; and p1, . . . , pn+t ⊂
Z[x] be pairwise comaximal ideals of the form pi = ppi,ri , with pi - N , for 1 ≤ i ≤ n + t. Define

q =
∏n+t
i=n+1 pi and q =

∏n+t
i=n+1 pi. Suppose there exist non-constant irreducible polynomials f1, f2 ∈

〈N, x−m〉 · q of degree at most d such that ‖fi‖2,s ≤ C ·N1/2d, for i = 1, 2, and

n∑
i=1

σ∗(f1, pp,r)σ
∗(f2, pp,r) log p > 2d log

(
Cq−

1
2d

)
.



98 4. An Approach to Polynomial Selection

Then f1 = ±f2.

To end the section, an example of parameter selection in the presence of a special-q is now provided

and parameters compared with those obtained in Example 4.4.10:

Example 4.5.3. To allow direct comparison with Example 4.4.10, let N = 10170 + 7 and d = 3. For

each choice of parameters y and C in Table 4.2, parameter selection for Algorithm 4.4.2 with the aim

of producing cubic polynomials f ∈ 〈N, x−m〉, where m ∈ Z, with ‖f‖2,s ≤ C ·N1/6 and ᾱ(f, y) ≤ −2

is once again considered. However, unlike Example 4.4.10, the polynomials are now required to belong

to a special-q. For this example, the choice q = p2,0 p2,1 p3,0 is used, thus guaranteeing that all

polynomials have two roots modulo 2 and at least one root modulo 3. Accordingly, for each choice of

y and C, the parameters p1, . . . , pn and z1, . . . , zn are chosen as follows:

{(p1, z1), . . . , (pn, zn)} =

{(
pp,r,

p

p2 − 1

)
| (p, r) ∈ U \ {(2, 0), (2, 1), (3, 0)} and p ≤ y

}
.

Table 4.4 contains example of parameters (n, A and l) obtained from the proof of Theorem 4.5.1. For

each value of y in the table, the corresponding value of l is the least integer such that the right hand

side of (4.41) is at most

2− 4

3
log 2− 3

8
log 3 +

∑
p≤y

log p

p− 1
,

where the sum is over all primes p ≤ y. This choice of l then guarantees that all f ∈ 〈N, x−m〉 · q
with ‖f‖2,s ≤ C ·N1/6 and ᾱ(f, y) ≤ −2 are found. For each value of y in Table 4.4, the corresponding

values of A and l are significantly smaller than those provided in Example 4.4.10.

Table 4.4: Parameters for Example 4.5.3

y n C A l

10 14 1.78 563.5 607
20 74 1.99 609.0 901
30 126 2.06 613.3 969
40 194 2.12 615.7 1018
50 325 2.20 619.6 1075
100 1057 2.41 642.2 1214
1000 76124 3.39 1441.4 3232

4.5.2 Lattice Construction

The efficacy of an algorithm based on the approach outlined in Section 4.1 is determined by its

capacity to construct a polynomial h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i with small coefficients. In Section 4.4,

Algorithm 4.4.2 constructed such a polynomial by using lattice reduction to find a short vector in the

lattice L, which contained a coefficient vector for each polynomial of degree at most l in 〈N, x−m〉z0 ·



4.5. Future Directions: Improvements and Generalisations 99

∏n
i=1 p

zi
i . There the size of the quantity det(LS)1/(l+1) played a key role in determining the size of

the polynomial found. In this section, a potential method for constructing sublattices L′ ⊂ L such

that det(L′S)1/dimL′S < det(LS)1/(l+1) is proposed. Such a sublattice cannot be full-rank. Hence, it is

necessary to work with lattices which are not full-rank, thus complicating the resulting the analysis.

However, from the analysis of Section 4.4, it is deduced that the potential benefits of improved lattice

constructions are twofold: first, lattices of lower dimension may be used; and second, the output

requirements on size and root properties may be weakened. Throughout this section, notation from

Algorithm 4.4.2 is retained.

In the proof of Theorem 4.4.4, the freedom in the choice of the parameter z∗0 , corresponding to the ideal

〈N, x−m〉, was used to minimise the contribution of N in (4.32). Motivated by further leveraging the

advantage gained from this freedom, attention is limited in this section to constructing sublattices of

L that are of the form L′ = L′0,z0 ∩L1,z1 ∩ . . .∩Ln,zn , for some sublattice L′0,z0 ⊂ L0,z0 . The following

lemma provides an upper bound on the determinant of a lattice constructed in this manner:

Lemma 4.5.4. Let L′0,z0 be a sublattice of L0,z0 and define L′ = L′0,z0 ∩ L1,z1 ∩ . . . ∩ Ln,zn . Then

dimL′ = dimL′0,z0 and

detL′S ≤ det(L′0,z0)S ·
n∏
i=1

p
(zi+1

2 )
i .

Proof. Fix a value of i, 1 ≤ i ≤ n, and let h ∈ Z[x] correspond to a vector in L′0,z0 . Then the definition

of the lattice Li,zi and Lemma 4.4.1 imply that the vector corresponding to h belongs to L′0,z0 ∩ Li,zi
if and only if h ∈ pzii . Express h in the form

h = azi · (x− ri)zi +

zi−1∑
k=0

ak · (x− ri)k,

where a0, . . . , azi−1 ∈ Z and azi ∈ Z[x]. Then h ∈ pzii whenever ak ≡ 0 (mod pzi−ki ), for 0 ≤ k ≤ zi−1.

Thus, [
L′0,z0 : L′0,z0 ∩ Li,zi

]
≤

min{zi,l}∏
k=0

pzi−ki ≤ p(
zi+1

2 )
i .

Since i was arbitrary, it follows that

[
L′0,z0 : L′

]
=

[
L′0,z0 :

n⋂
i=1

(
L′0,z0 ∩ Li,zi

)]
≤

n∏
i=1

[
L′0,z0 : L′0,z0 ∩ Li,zi

]
≤

n∏
i=1

p
(zi+1

2 )
i .

Therefore, L′ is a full-rank sublattice of L′0,z0 . Hence,

detL′S = [(L′0,z0)S : L′S ] · det(L′0,z0)S = [L′0,z0 : L′] · det(L′0,z0)S ≤ det(L′0,z0)S ·
n∏
i=1

p
(zi+1

2 )
i .

Remark 4.5.5. The method described by Guruswami et al. [69, Appendix B] for computing a basis of the



100 4. An Approach to Polynomial Selection

intersection of two lattices applies to full-rank lattices only. As a result, whenever L′0,z0 is not a full-rank

sublattice of L0,z0 , a basis for L′0,z0 ∩ L1,z1 ∩ . . . ∩ Ln,zn cannot be computed by their method alone. Instead,

the method proposed by Cohen [36, Exercise 18 of Chapter 4] for computing the intersection of two lattices of

arbitrary rank may be used to address the problem.

Given a sublattice L′0,z0 of L0,z0 , Lemma 4.5.4 implies that the lattice L′ = L′0,z0 ∩ L1,z1 ∩ . . . ∩ Ln,zn
will satisfy the inequality det(L′S)1/ dimL′S < det(LS)1/(l+1) whenever

det(L′0,z0)S < det(LS)
dimL′0,z0

l+1 ·
n∏
i=1

p
−(zi+1

2 )
i .

Therefore, det(L′0,z0)
1/dimL′0,z0
S should be as small as possible. In the special case where z0 = 1, the

problem of constructing a sublattice L′0,1 ⊂ L0,1 such that det(L′0,1)
1/dimL′0,1
S is small has already been

addressed, with some success, by nonlinear polynomial selection algorithms based on Montgomery’s

method (see Chapter 3). Motivated by this success, the lattice construction used in nonlinear al-

gorithms is generalised so that sublattices L′0,z0 ⊂ L0,z0 with det(L′0,z0)
1/dimL′0,z0
S small can be con-

structed for z0 ≥ 1. To begin, the construction used in nonlinear algorithms is briefly reviewed within

the context of this section.

Nonlinear algorithms construct sublattices of L0,1 with small determinants from “small” geometric

progressions modulo N . Recall that a geometric progression (GP) of length l and ratio r modulo N ,

denoted by a vector [c0, . . . , cl−1], is an integer sequence with the property that ci ≡ c0r
i (mod N),

for 0 ≤ i < l. Central to the construction of lattices for nonlinear algorithms is the observation that

L0,1 =

{
(a0, . . . , al) ∈ Zl+1 |

l∑
i=0

aici ≡ 0 mod N

}
, (4.42)

for any length l + 1 geometric progression [c0, . . . , cl] with ratio m modulo N , nonzero terms and

gcd(c0, N) = 1. Given such a GP, the orthogonal lattice of [c0, . . . , cl]Z (see Section 3.2.1) forms a

sublattices of L0,1. More generally, sublattices of L0,1 are constructed by considering the orthogonal

lattice of a lattice generated by multiple linearly independent geometric progressions. In either case,

Theorem 3.2.6 shows that the size of the determinant of the orthogonal lattice depends on the terms of

the geometric progressions and not on N itself. Therefore, sublattices of L0,1 with small determinant

are obtained from geometric progressions with small terms.

To generalise the method of lattice construction used in nonlinear algorithms, a characterisation of L0,z0

analogous to (4.42) is required for z0 6= 1. To this end, the Hasse derivative [73] (also called the hyper-

derivative) is now introduced. For each integer k ≥ 0, the k-th Hasse derivative D(k) : R[x]→ R[x] is

defined by

D(k) =
1

k!

dk

dxk
. (4.43)

It follows immediately from the definition that a polynomial h ∈ Z[x] belongs to the ideal 〈x−m,N〉



4.5. Future Directions: Improvements and Generalisations 101

if and only if (D(0)h)(m) ≡ 0 (mod N). More generally, the following lemma provides a necessary

and sufficient condition for h to belong to the ideal 〈x−m,N〉z, for some z ≥ 1:

Lemma 4.5.6. Let h ∈ Z[x] and z ≥ 1 be an integer. Then h ∈ 〈N, x−m〉z if and only if

(D(k)h)(m) ≡ 0 (mod N z−k), for 0 ≤ k < z.

Proof. Let h =
∑l

i=0 aix
i ∈ Z[x] and suppose that (D(k)h)(m) ≡ 0 (mod N z−k), for 0 ≤ k < z. Then

h =

l∑
i=0

ai ((x−m) +m)i =

l∑
i=0

ai

i∑
k=0

(
i

k

)
mi−k(x−m)k

=

l∑
k=0

(
l∑

i=k

ai

(
i

k

)
mi−k

)
(x−m)k =

l∑
k=0

(D(k)h)(m)(x−m)k,

where each term (D(k)h)(m)(x−m)k ∈ 〈x−m,N〉z, for 0 ≤ k ≤ l. Thus, h ∈ 〈x−m,N〉z. Conversely,

suppose that h ∈ 〈x−m,N〉z. Then Lemma 4.4.1 implies that h can be written as an integer linear

combination of the polynomials

bi = N z−i (x−m)i, for 0 ≤ i ≤ z; and bi = xi−z(x−m)z, for i > z.

Therefore, the linearity of D(k) implies that the converse will hold if (D(k)bi)(m) ≡ 0 (mod N z−k),

for 0 ≤ k < z and all i ≥ 0. For 0 ≤ i ≤ z, the definition (4.43) of D(k) implies that

(D(k)bi)(m) =

N z−k if i = k,

0 if i 6= k.

Similarly, for all i > z, it follows from the definition of D(k) that (D(k)bi)(m) = 0, for 0 ≤ k < z.

Hence, the converse holds.

The following corollary to Lemma 4.5.6 provides a generalisation of the characterisation (4.42):

Corollary 4.5.7. For 0 ≤ k ≤ min{z0 − 1, l}, let [ck,0, . . . , ck,l−k] be a GP with nonzero terms, ratio

m modulo N z0−k and gcd(ck,0, N) = 1. Then

L0,z0 =

{
(a0, . . . , al) ∈ Zl+1 |

l∑
i=k

ai

(
i

k

)
ck,i−k ≡ 0 mod N z0−k, for 0 ≤ k ≤ min{z0 − 1, l}

}
.

Proof. Let (a0, . . . , al) ∈ Zl+1 and h =
∑l

i=0 aix
i. Then the definition of the lattice L0,z0 and

Lemma 4.4.1 imply that (a0, . . . , al) ∈ L0,z0 if and only if h ∈ 〈x−m,N〉z0 . Suppose that geo-

metric progressions [ck,0, . . . , ck,l−k], for 0 ≤ k ≤ min{z0− 1, l}, satisfy the conditions of the corollary.



102 4. An Approach to Polynomial Selection

Then

(D(k)h)(m) =

l∑
i=k

aj

(
i

k

)
mi−k ≡ c−1

k,0

l∑
i=k

ai

(
i

k

)
ck,0m

i−k ≡ c−1
k,0

l∑
i=k

ai

(
i

k

)
ck,i−k (mod N z0−k),

for 0 ≤ k ≤ min{z0 − 1, l}. Moreover, (D(k)h)(m) = 0, for all k > l. Therefore, Lemma 4.5.6 implies

that h ∈ 〈x−m,N〉z0 if and only if

l∑
i=k

ai

(
i

k

)
ck,i−k ≡ 0 (mod N z0−k), for 0 ≤ k ≤ min{z0 − 1, l}.

The characterisation of L0,z0 provided by Corollary 4.5.7 permits the method of lattice construction

used in nonlinear algorithms to be naturally generalised. The generalisation begins with the construc-

tion of geometric progressions ck = [ck,0, . . . , ck,l−k] with nonzero terms, ratio m modulo N z0−k and

gcd(ck,0, N) = 1, for each value of k contained in some subset I ⊆ {0, . . . ,min{z0 − 1, l}}. Then a

sublattice L′0,z0 ⊂ L0,z0 is defined as follows:

L′0,z0 = {(a0, . . . , al) ∈ L0,z0 | 〈(ak, . . . , al), ck · βk,l〉 = 0, for all k ∈ I} , (4.44)

where βk,l is the (l − k + 1)× (l − k + 1) diagonal matrix of binomial coefficients defined by

βk,l = diag

((
k

k

)
,

(
k + 1

k

)
, . . . ,

(
l

k

))
, for all 0 ≤ k ≤ l.

More generally, for each k ∈ I, a set Ck of length l − k + 1 geometric progressions with ratio m

modulo N z0−k may be constructed. Then, for each value of k ∈ I, the requirement in (4.44) that

〈(ak, . . . , al), ck · βk,l〉 = 0 is replaced by the requirement that

〈(ak, . . . , al), c · βk,l〉 = 0, for all c ∈ Ck. (4.45)

Furthermore, for each value of k ∈ I, the requirement that ck = [ck,0, . . . , ck,l−k] has nonzero terms

and gcd(ck,0, N) = 1 is replaced by the requirement that, for all (ak, . . . , al) ∈ Zl−k+1, (4.45) implies∑l
i=k ai

(
i
k

)
mi−k ≡ 0 (mod N z0−k). If Ck satisfies this property and, in addition, there exists a geomet-

ric progression [c0, . . . , cl−k] ∈ Ck with gcd(c0, N) = 1, then Ck is referred to as admissible. A set Ck

that contains at least one geometric progression [c0, . . . , cl−k] with nonzero terms and gcd(c0, N) = 1

is admissible.

For lattices constructed from admissible sets of geometric progressions in the manner just described,

the following generalisation of Theorem 3.2.6 provides an upper bound on their determinant:

Theorem 4.5.8. For 0 ≤ k ≤ min{z0 − 1, l}, let Ck be either the empty set or an admissible set of



4.5. Future Directions: Improvements and Generalisations 103

length l − k + 1 geometric progressions with ratio m modulo N z0−k. Define

C =

min{z0−1,l}⋃
k=0

{(
0, . . . , 0,

(
k

k

)
c0,

(
k + 1

k

)
c1, . . . ,

(
l

k

)
cl−k

)
∈ Zl+1 | [c0, . . . , cl−k] ∈ Ck

}
, (4.46)

If the elements of C are linearly independent, then

L′0,z0 = {x ∈ L0,z0 | 〈x, c〉 = 0, for all c ∈ C}

is an (l + 1− |C|)-dimensional sublattice of L0,z0 and

det(L′0,z0)S ≤

(∏
c∈C
‖c‖2,s−1

)min{z0−1,l}∏
k=0

N (z0−k)(1−|Ck|)

 ,

for any s > 0 and S = s−l/2 · diag(1, s, . . . , sl).

Proof. For 0 ≤ k ≤ min{z0−1, l}, let Ck be either the empty set or an admissible set of length l−k+1

geometric progressions with ratio m modulo N z0−k. Define C ⊂ Zl+1 according to (4.46) and assume

its elements are linearly independent. Then the elements of C form a basis of a |C|-dimensional lattice

Λ ⊆ Zl+1. Thus,

L′0,z0 =
{
x ∈ Zl+1 | 〈x, c〉 = 0, for all c ∈ C

}
∩ L0,z0 =

(
Zl+1 ∩ E⊥Λ

)
∩ L0,z0 = Λ⊥ ∩ L0,z0 .

Let ai = (ai,0, . . . , ai,l) ∈ Λ⊥ and define hi =
∑l

j=0 ai,jx
j ∈ Z[x], for i = 1, 2. Then the definition of

L0,z0 and Lemma 4.4.1 imply that a1−a2 ∈ L′0,z0 if and only if h1−h2 ∈ 〈N, x−m〉z0 . Furthermore,

Lemma 4.5.6 implies that h1 − h2 ∈ 〈N, x−m〉z0 if and only if

(D(k)h1)(m) ≡ (D(k)h2)(m) (mod N z0−k), for 0 ≤ k ≤ min{z0 − 1, l}. (4.47)

Given a geometric progression c = [c0, . . . , cl−k] ∈ Ck, the definition of Λ implies that

〈(ai,k, . . . , ai,l), c · βk,l〉 =

〈
ai,

(
0, . . . , 0,

(
k

k

)
c0,

(
k + 1

k

)
c1, . . . ,

(
l

k

)
cl−k

)〉
= 0, for i = 1, 2.

Consequently, for all k such that Ck is admissible, it follows that

(D(k)hi)(m) =

l∑
j=k

ai,j

(
j

k

)
mj−k ≡ 0 (mod N z0−k) for i = 1, 2.

Therefore, if the congruence in (4.47) is satisfied for all values of k such that |Ck| = 0, then a1−a2 ∈
L′0,z0 . Hence, [

Λ⊥ : L′0,z0

]
≤

∏
k:|Ck|=0

N z0−k =
∏

k:|Ck|=0

N (z0−k)(1−|Ck|). (4.48)



104 4. An Approach to Polynomial Selection

Let s be a positive real and S = s−l/2 ·diag(1, s, . . . , sl). It follows from (4.48) that L′0,z0 is a full-rank

sublattice of Λ⊥. Thus dimL′0,z0 = dim Λ⊥ = l + 1− |C| and

det(L′0,z0)S =
[
Λ⊥S : (L′0,z0)S

]
· det Λ⊥S =

[
Λ⊥ : L′0,z0

]
· det Λ⊥S ≤ det Λ⊥S ·

∏
k:|Ck|=0

N (z0−k)(1−|Ck|).

Therefore, to complete the proof, it suffices to show that

det Λ⊥S ≤

(∏
c∈C
‖c‖2,s−1

) ∏
k:|Ck|6=0

N (z0−k)(1−|Ck|)

 . (4.49)

Suppose that Ck is non-empty, for some 0 ≤ k ≤ min{z0−1, l}. Then Ck is admissible and thus contains

at least one GP, say ck,1 = [c1,0, . . . , c1,l−k], with the property that gcd(c1,0, N) = 1. Therefore, if Ck

contains a second GP, say ck,2 = [c2,0, . . . , c2,l−k], then the vectors corresponding to ck,1 and ck,2 in

the basis C for Λ,

c′k,i =

(
0, . . . , 0,

(
k

k

)
ci,0,

(
k + 1

k

)
ci,1, . . . ,

(
l

k

)
ci,l−k

)
∈ C, for i = 1, 2,

satisfy c′k,2 − (c2,0c
−1
1,0)c′k,1 ≡ 0 (mod N z0−k). It follows that

∏
k:|Ck|6=0N

(z0−k)(|Ck|−1) divides each

|C| × |C| minor of any basis matrix for Λ. Hence, Lemma 3.2.1 and Lemma 3.2.2 imply that

det Λ⊥S ≤ |detS| · det ΛS−1 ·
∏

k:|Ck|6=0

N (z0−k)(1−|Ck|) = det ΛS−1 ·
∏

k:|Ck|6=0

N (z0−k)(1−|Ck|).

Finally, (4.49) is obtained by using Hadamard’s inequality (see [153, Section 1.3]) and the basis C for

Λ to bound det ΛS−1 .

Let C be defined as in Theorem 4.5.8. Then a simple calculation shows that

∏
c∈C
‖c‖2,s−1 =

min{z0−1,l}∏
k=0

∏
c∈Ck

s−
k
2 · ‖c · βk,l‖2,s−1 .

Therefore, a sublattice L′0,z0 ⊆ L0,z0 constructed by means of Theorem 4.5.8 will have the property that

det(L′0,z)S is small whenever ‖c · βk,l‖2,s−1 is small, for all c ∈ Ck and 0 ≤ k ≤ min{z0−1, l}. Moreover,

combining Lemma 4.5.4 and Theorem 4.5.8 provides a sufficient condition for the corresponding lattice

L′ = L′0,z0 ∩ L1,z1 ∩ . . . ∩ Ln,zn to satisfy the inequality det(L′S)1/dimL′ < det(LS)1/(l+1). Hence, it

remains to determine if there exist geometric progressions that meet the required conditions and

whether they can be found efficiently.



4.5. Future Directions: Improvements and Generalisations 105

4.5.3 A Multivariate Generalisation

The approach to polynomial generation introduced in Section 4.1 required the construction of a nonzero

polynomial h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i . Given such a polynomial, Lemma 4.1.1 then implies that

Nσ∗(f,〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f,pi)zi
i divides Res(f, h), for all nonzero primitive f ∈ Z[x]. (4.50)

Therefore, Lemma 2.1.3 implies that any non-constant irreducible polynomial f ∈ Z[x] with f(m) ≡ 0

(mod N) and ‖f‖deg h
2,s · ‖h‖

deg f
2,s < N z0 ·

∏n
i=1 p

ziσ
∗(f,pi)

i divides h over Q. That is, all such f are found

by the approach of Section 4.1. However, it is clear the requirement that h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i is

stronger than needed: it is sufficient for h to satisfy the (possibly weaker) requirement that (4.50) holds.

Moreover, (4.50) is only required to hold for a subset of all nonzero primitive polynomials in Z[x],

i.e., those non-constant irreducible polynomials f ∈ Z[x] of bounded degree and size with f(m) ≡ 0

(mod N). It is also clear that the efficacy of the approach of Section 4.1 is largely determined the

existence of small h ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i . Therefore, it may be beneficial to relax the requirements

on h in the hope that it will allow smaller polynomials to be found.

In this section, the approach of Section 4.1 is generalised with the aim of weakening the requirements on

the polynomial h. This is in contrast to the previous section, where further restrictions were imposed

on h. Here, the requirements on h are relaxed by imposing further conditions on the form of the

number field sieve polynomials that are found. Explicitly, an irreducible polynomial f(x, y0, . . . , yk) ∈
Z[x][y0, . . . , yk] is chosen and each polynomial is required to be of the form f = f(x,a), for some

vector a ∈ Zk+1. Then (4.50) may be replaced by the weaker requirement that h ∈ Z[x][y0, . . . , yk]

satisfies

Nσ∗(f(x,a),〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f(x,a),pi)zi
i divides Res(f(x,a), h(x,a)), (4.51)

for all a ∈ Zk+1 such that f(x,a) is nonzero and primitive. The weakened requirement is satisfied by

any polynomial h ∈ Z[x] that satisfies (4.50).

The introduction of the additional variables y0, . . . , yk necessitates modifications to the approach of

Section 4.1. Informally, the new approach is described as follows:

1. Select an irreducible polynomial f ∈ Z[x][y0, . . . , yk] such that degx f = d; and positive reals

Y0, . . . , Yk.

2. Choose pairwise comaximal ideals p1, . . . , pn ⊂ Z[x] of the form pi = ppi,ri , with pi - N ; and

positive integer weights z0, . . . , zn.

3. Find sufficiently many nonzero polynomials h1, . . . , ht ∈ Z[x][y0, . . . , yk] such that

(4.52) hj satisfies (4.51) for all a ∈ Zk+1 such that f(x,a) is non-constant and primitive;

(4.53) deg hj(x,a) ≤ l, for all a ∈ Zk+1;



106 4. An Approach to Polynomial Selection

(4.54) ‖hj(x, a0, . . . , ak)‖2,s is small for all (a0, . . . , ak) ∈ Zk+1 with |ai| ≤ Yi, for 1 ≤ i ≤ k.

4. Using the polynomials f, h1, . . . , ht, find all irreducible polynomials of the form f(x,a), for some

a ∈ Zk+1, such that

Nσ∗(f(x,a),〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f(x,a),pi)zi
i > ‖f(x,a)‖l2,s · ‖hj(x,a)‖d2,s , for 1 ≤ j ≤ t. (4.55)

There are three main problems that arise from this approach: how to appropriately choose the poly-

nomial f ∈ Z[x][y0, . . . , yk] and the bounds Y0, . . . , Yk; given f , how to construct sufficiently many

polynomials h1, . . . , ht ∈ Z[x][y0, . . . , yk] satisfying properties (4.52)–(4.54); and finally, how to find all

irreducible polynomials f(x,a) that satisfy (4.55), given the polynomials f, h1, . . . , ht. These problems

are addressed (in reverse order) in the remainder of this section. The techniques used share much in

common with algorithms based on Howgrave-Graham’s reformulation [78] of Coppersmith’s method

[43] for finding small modular and integer roots of polynomial equations (see surveys of these methods

and their applications by Bernstein [18] and May [117]). Concepts from Coppersmith’s method have

previously been applied to polynomial generation by Herrmann, May and Ritzenhofen [75]. To begin,

the problem of finding all irreducible polynomials f(x,a) that satisfy (4.55), is considered.

For nonzero polynomials h1, . . . , ht ∈ Z[x][y0, . . . , yk] that satisfy properties (4.52)–(4.54), and any

a ∈ Zk+1 such that f(x,a) is irreducible and (4.55) holds, Lemma 4.1.2 implies that

Res(f(x,a), h1(x,a)) = Res(f(x,a), h2(x,a)) = . . . = Res(f(x,a), ht(x,a)) = 0. (4.56)

Therefore, by using resultants to successively eliminate the variables y0, . . . , yk, a polynomial R ∈ Z[x]

can be found for which all such f(x,a) divide R over Q. This method requires that there are at

least k + 2 algebraically independent polynomials among f, h1, . . . , ht. For example, suppose k =

2 and nonzero polynomials h1, . . . , h3 ∈ Z[x][y0, y1, y2] have been found such that f, h1, . . . , h3 are

algebraically independent. Then resultant polynomials R1, . . . , R6 ∈ Z[x][y0, y1, y2] can be computed:

R1(x, y0, y1) = Resy2(f, h1) }
} R4(x, y0) = Resy1(R1, R2) }

R2(x, y0, y1) = Resy2(f, h2) R6(x) = Resy0(R4, R5)

R5(x, y0) = Resy1(R2, R3)

R3(x, y0, y1) = Resy2(f, h3)

Algebraic independence implies that R6 6= 0. Furthermore, for all a ∈ Z3 such that f(x,a) is

irreducible and (4.56) holds, properties (4.6) and (4.10) imply that f(x,a) divides Rj(x,a) over Q,

for 1 ≤ j ≤ 6. Therefore, all such f(x,a) can be found by factoring R6 over Q.

In the above example, the (total) degree of the resultant polynomials R1, . . . , R6 may increase rapidly

as each of the variables y0, y1 and y2 are eliminated. Therefore, the use of resultants to address the



4.5. Future Directions: Improvements and Generalisations 107

third problem may require substantial time and memory. In practice, it may be beneficial to instead

use Gröbner bases (see [46, Chapter 2]) to address this problem. This avenue will not be explored here.

Instead, the reader is referred to Cox, Little and O’Shea [46, Chapter 3] and to a related application

of Gröbner bases by Jochemsz and May [82, Section 6].

The polynomials h1, . . . , ht may be constructed by imitating ideas from Section 4.4 and Coppersmith’s

method, such as using lattice reduction reduction to find a small polynomial within a given ideal.

Define ideals P0, . . . ,Pn ⊆ Z[x][y0, . . . , yk] as follows: P0 = 〈N, x−m〉; and Pi = piZ[x][y0, . . . , yk],

for 1 ≤ i ≤ n. Then, given a polynomial h ∈ (〈f〉 + Pi)
zi , for some 1 ≤ i ≤ n, it follows that

h(x,a) ∈ p
ziσ(f(x,a),pi)
i , for all a ∈ Zk+1. Therefore, Lemma 4.1.1 implies that (4.52) is satisfied by

all hj ∈
∏n
i=0(〈f〉+Pi)

zi . This choice of ideal directly generalises ideals from Coppersmith’s method.

However, by exploiting properties of resultants, a suitable choice of ideal that is larger (in the sense

that it contains
∏n
i=0(〈f〉+ Pi)

zi) may be obtained:

Lemma 4.5.9. Let N be a nonzero integer; p1, . . . , pn ⊂ Z[x] be pairwise comaximal ideals of the form

pi = ppi,ri , with pi - N , for 1 ≤ i ≤ n; and z0, . . . , zn be positive integers such that zi = zj whenever

pi = pj , for 1 ≤ i < j ≤ n. Suppose that f ∈ Z[x] is non-constant, primitive and gcd(lc(f), N) = 1.

Then, for all h ∈ 〈f〉+ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i ,

Nσ∗(f,〈N,x−m〉)z0 ·
∏

i:pi-lc(f)

p
σ∗(f,pi)zi
i ·

∏
i:pi|lc(f)
f ′ /∈pi

p
σ∗(f,pi)zi
i divides Res(f, h) in Z. (4.57)

Proof. Suppose that f ∈ Z[x] is non-constant, primitive and gcd(lc(f), N) = 1. Then, given a poly-

nomial h ∈ 〈f〉 + 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i , there exist polynomials a, b ∈ Z[x] such that h = a · f + b

and b ∈ 〈N, x−m〉z0 ·
∏n
i=1 p

zi
i . Therefore, (2.3) implies that

Res(f, h) = lc(f)deg h ·
∏

α:f(α)=0

h(α) = lc(f)deg h ·
∏

α:f(α)=0

b(α) = lc(f)deg h−deg b · Res(f, b). (4.58)

Moreover, since f is non-constant and primitive, Lemma 4.1.1 implies that

Nσ∗(f,〈N,x−m〉)z0 ·
n∏
i=1

p
σ∗(f,pi)zi
i divides Res(f, b) in Z. (4.59)

Suppose there exist t ≥ 1 distinct indices 1 ≤ i1, . . . , it ≤ n such that f ∈ pij and f ′ /∈ pij , for

1 ≤ j ≤ t; and pi1 = . . . = pit . Then σ∗(f, pij ) = 1, for 1 ≤ j ≤ t (cf. the proof of Lemma 4.4.6).

Moreover, Hensel’s lemma (see [36, Theorem 3.5.3]) implies that there exist integers r̄i1 , . . . , r̄it such

that f(r̄ij ) ≡ 0 (mod p
zij
ij

) and r̄ij ≡ rij (mod pij ), for 1 ≤ j ≤ t. Therefore, the assumption that the

ideals pi1 , . . . , pit are pairwise comaximal implies that

gcd
(
p
zij
ij
, r̄ij − r̄ik

)
= 1, for all 1 ≤ j < k ≤ t.



108 4. An Approach to Polynomial Selection

In particular, this implies that the ideals 〈p
zij
ij
, x− r̄ij 〉, for 1 ≤ j ≤ t, are pairwise comaximal. Finally,

since b ∈
⋂n
i=1 p

zi
i , the congruence r̄ij ≡ rij (mod pij ) implies that b ∈ 〈p

zij
ij
, x− r̄ij 〉, for 1 ≤ j ≤ t. As

a result, f, h ∈
∏t
j=1〈p

zij
ij
, x − r̄ij 〉, where p

zi1
i1

= . . . = p
zit
it

. Therefore, using the (established) claim

made at the beginning of the proof of Lemma 4.1.1 (see Section 4.2.2), it follows that
∏t
j=1 p

zij
ij

divides

Res(f, h) in Z. Hence, ∏
i:f ′ /∈pi

p
σ∗(f,pi)zi
i divides Res(f, h) in Z. (4.60)

Consequently, (4.57) is obtained by combining (4.58), (4.59) and (4.60) with the assumption that

gcd(lc(f), N) = 1.

Suppose that z0, . . . , zn satisfy zi = zj whenever pi = pj , for 1 ≤ i < j ≤ n. Then Lemma 4.5.9 implies

that (4.52) is almost satisfied by all hj ∈ 〈f〉 +
∏n
i=0 P

zi
i : there is the additional requirement that

gcd(lc(f(x,a)), N) = 1 and the contributions of some roots modulo primes that divide lc(f(x,a)) are

potentially lost. In practice, the requirement that gcd(lc(f(x,a)), N) = 1 is nonrestrictive. Moreover,

the additional requirement that the contribution of distinct roots modulo the same prime must be

weighted equally appears to be natural in the setting of polynomial generation (cf. Section 4.4.1).

Therefore, the expense, if any, for which the ideal 〈f〉 +
∏n
i=0 P

zi
i can be used may be outweighed

by the fact that it is larger than
∏n
i=0(〈f〉 + Pi)

zi . This avenue requires further investigation. In

particular, it is unknown if Lemma 4.5.9 may be improved upon. Therefore, for the remainder of the

section, it is assumed that polynomials h1, . . . , ht ∈
∏n
i=0(〈f〉+ Pi)

zi are constructed.

Let M be a set of monomials in the variables x, y0, . . . , yk. Then a polynomial g ∈ Z[x][y0, . . . , yk] is

said to be defined overM if and only if g can expressed as an integer linear combination of monomials

in M. Suppose that M is finite and L ⊆ Z|M| contains a coefficient vector for each polynomial

h ∈
∏n
i=0(〈f〉+ Pi)

zi such that h is defined over M. Then L forms an |M|-dimensional lattice. The

following lemma shows that polynomials h1, . . . , ht ∈
∏n
i=0(〈f〉 + Pi)

zi that satisfy (4.53) and (4.54)

may be found by searching for short vectors in an appropriate rescaling of L:

Lemma 4.5.10. Let h ∈ Z[x][y0, . . . , yk] have degree l in x. Suppose that h =
∑l

i=0 hix
i, where each

coefficient hi ∈ Z[y0, . . . , yk] contains at most ω distinct monomials, for 0 ≤ i ≤ l. Then

‖h(x, a0, . . . , ak)‖2,s ≤
√
ω · s−

l
2 · ‖h(xs, y0Y0, . . . , ykYk)‖2 ,

for all (a0, . . . , ak) ∈ Zk+1 such that |ai| ≤ Yi, for 0 ≤ i ≤ k, and s > 0.

As part of the proof of Lemma 4.5.10, arguments of Howgrave-Graham [78] are used to bound the

coefficients of h(x, a0, . . . , ak), for all (a0, . . . , ak) ∈ Zk+1 such that |ai| ≤ Yi, for 0 ≤ i ≤ k. This part

of the proof is included here for the sake of completeness.

Proof. For 0 ≤ i ≤ l, suppose that hi =
∑

j0,...,jk
hi,j0,...,jky

j0
0 · · · y

jk
k , where the coefficients hi,j0,...,jk ∈



4.5. Future Directions: Improvements and Generalisations 109

Z. Furthermore, let (a0, . . . , ak) ∈ Zk+1 satisfy |ai| ≤ Yi, for 0 ≤ i ≤ k. Then

|hi(a0, . . . , ak)| ≤
∑

j0,...,jk

∣∣∣hi,j0,...,jkaj00 · · · ajkk ∣∣∣ =
∑

j0,...,jk

∣∣∣∣∣hi,j0,...,jkY j0 · · ·Y jk

(
a0

Y0

)j0
· · ·
(
ak
Yk

)jk ∣∣∣∣∣
≤

∑
j0,...,jk

|hi,j0,...,jk |Y
j0 · · ·Y jk ≤

√
ω · ‖hi(y0Y0, . . . , ykYk)‖2 ,

for 0 ≤ i ≤ l. Hence,

‖h(x, a0, . . . , ak)‖2,s =

√√√√ l∑
i=0

|hi(a0, . . . , ak)|2s2i−l ≤

√√√√ l∑
i=0

ω ‖hi(y0Y0, . . . , ykYk)‖22 s2i−l

=
√
ω · s−

l
2 · ‖h(xs, y0Y0, . . . , ykYk)‖2 ,

for all s > 0.

Lemma 4.5.10 suggests the following strategy for constructing polynomials h1, . . . , ht ∈ Z[x][y0, . . . , yk]

that satisfy properties (4.52)–(4.54):

1. Select a finite set of monomialsM in the variables x, y0, . . . , yk such that t ≤ |M| and degx µ ≤ l,
for all µ ∈M.

2. Compute a basis for a lattice L ⊆ Z|M| that consists entirely of coefficient vectors from those

polynomials in
∏n
i=0(〈f〉+ Pi)

zi that are defined over M.

3. Let LS be the lattice obtained by rescaling the coordinate of L corresponding to the monomial

xjyj00 · · · y
jk
k ∈ M by sj−l/2Y j0

0 · · ·Y
jk
k . Use lattice reduction to find a basis for LS consisting of

short vectors and return the corresponding polynomials h1, . . . , ht corresponding to the t shortest

basis vectors.

Polynomials h1, . . . , ht constructed in this manner are guaranteed to be linearly independent. How-

ever, the polynomials mail fail to be algebraically independent, possibly preventing the elimination

of variables by resultant computations. The same obstruction arises in multivariate generalisations

of Coppersmith’s method. In that setting, some applications of the method have continued to work

in practice without modification. However, it has been demonstrated by Blömer and May [21] and

Hinek [76, 77] that this is not always the case. It may be that good fortune is found in this setting

and algebraic independence occurs frequently. However, this possibility must be verified in practice

by experiments. Progress toward a rigorous multivariate generalisation of Coppersmith’s method has

been made by Bauer and Joux [13]. Ideas from their approach may transfer over to this setting. The

problem of generating algebraically independent polynomials is not considered further here.

The selection of the polynomial f ∈ Z[x][y0, . . . , yk] and the corresponding bounds Y0, . . . , Yk is now

briefly considered. A straight forward choice is to take f =
∑d

i=0 yix
i. Then a bound M on ‖f(x,a)‖2,s



110 4. An Approach to Polynomial Selection

can be chosen and the bounds Y0, . . . , Yd defined by Yi = Msd/2−i, for 0 ≤ i ≤ d. However, for lattices

with small determinant to be obtained, the bounds Y0, . . . , Yk should be as small as possible. Thus, a

better approach is to exploit the fact that polynomials with root m modulo N are sought, by setting

f(x, y0, . . . , yd) =
d∑
i=1

yi(x
i −mi) + y0N.

Then a polynomial g ∈ Z[x] of degree at most d satisfies g(m) ≡ 0 (mod N) if and only if g = f(x,a),

for some a ∈ Zd+1. Moreover, f(m, a0, . . . , ad) = a0N , for all (a0, . . . , ad) ∈ Zd+1. Therefore, the

bound Y0 can be significantly reduced, with the remaining bounds Y0, . . . , Yd−1 remaining unchanged.

To help obtain polynomials with good root properties, f may be modified by selecting two products

of small prime powers a, b ∈ Z and setting

f(x, y0, . . . , yd) = ayd(x
d −md) +

d−1∑
i=1

yi(x
i −mi) + y0bN.

Accordingly, the bounds Y0 and Yd may be reduced by factors of |a| and |b| respectively. A final

modification is to assign values to y0 or yd, thus reducing the number of variables.

Determining the viability of the approach introduced in this section requires filling in many of the

details missing from the outline provided here. In particular, those details relating to the construction

of the polynomials h1, . . . , ht. The approach generalises concepts from Howgrave-Graham’s reformu-

lation of Coppersmith’s method. As a result, there is potential for the methods discussed in this

section to be utilised in new attacks on RSA, and in addressing factorisation problems (see [18, 117]).

Such an application of the methods may in practice be conceptually simpler. Consequently, furthering

their development in such a setting before attempting to apply them to polynomial generation may

be worthwhile.



Chapter 5

Smooth Elements in Number Fields

In Chapter 4, ideas extracted from the framework for list decoding of algebraic error-correcting codes

were used to develop a new approach to polynomial selection. Motivation for the approach was

provided in part by previous applications of list decoding algorithms in number theory. In particular,

the following two examples were cited: Cheng and Wan’s [35] demonstration that a list decoding

algorithm for Reed–Solomon codes can be used to find smooth polynomials over finite fields, and

Boneh’s [25] use of a list decoding algorithm for Chinese remainder codes to find smooth integers.

Both these examples provide strong evidence toward the utility of applying list decoding algorithms for

algebraic error-correcting codes to problems of finding elements in a ring with a smooth representation.

Further evidence toward this claim is provided in this chapter. Here a list decoding algorithm is

developed and used to generalise Boneh’s result to algebraic number fields.

Error-correcting codes derived from algebraic number fields were first considered by Lenstra [106] and

more recently by Guruswami [67]. These codes generalise the construction of Chinese remainder codes

(or simply, CRT codes), the number-theoretic analogues of Reed-Solomon codes. Although the two

are similar, Guruswami’s construction of number field codes, called NF-codes, is less general than the

construction given by Lenstra. However, the generalisation of CRT codes to NF-codes provides a

clearer analogue of the generalisation to algebraic-geometry codes of Reed-Solomon codes.

Currently, all known algorithms for decoding of codes derived from algebraic number fields are limited

to CRT codes. For CRT codes, decoding reduces to the following problem: given n relatively prime

integers p1 < . . . < pn, a vector (r1, . . . , rn) ∈ Zn, and an integer k < n, find all m ∈ Z with

0 ≤ m <
∏k
i=1 pi such that m ≡ ri (mod pi) for t values of i, 1 ≤ i ≤ n. For t ≥ (n+ k)/2, if such a

value of m exists, then it is unique and can be found with Mandelbaum’s [113] decoding algorithm.

For smaller values of t, uniqueness is no longer guaranteed and the problem is referred to as the list

decoding problem for CRT codes. The first efficient algorithm for list decoding of CRT codes was

provided by Goldreich, Ron and Sudan [62]. Their algorithm runs in polynomial time and solves the

111



112 5. Smooth Elements in Number Fields

problem whenever

t ≥
(

1 +
2

k

)
·

√
2kn

log pn
log p1

+
k + 6

2
.

Subsequently, Boneh [25] improved upon the algorithm of Goldreich, Ron and Sudan by providing a

polynomial time algorithm which solves the problem whenever t ≥
√
kn log pn/ log p1.

A common problem with these algorithms is a decline in decoding ability whenever p1 � pn. In the

case of Mandelbaum’s algorithm, this may cause the algorithm to no longer run in polynomial time

(see [62]). Roughly speaking, this problem occurs since the residues of an integer m modulo small

pi provide less information than the residues of m modulo large pi. This problem was overcome for

unique and list decoding by Guruswami, Sahai and Sudan [69] by weighting the contribution of each

pi. This led to the first polynomial time algorithm capable of decoding for all t ≥ (n + k)/2. In

order to overcome the problem for list decoding, Guruswami et al. gave an efficient algorithm for

solving the more general problem of weighted list decoding of CRT codes. Given positive weights

wi assigned to the pi, the weighted list decoding problem for CRT codes asks to find all m ∈ Z with

0 ≤ m <
∏k
i=1 pi such that

∑
iwi ≥ t, where the sum is over all i such that m ≡ ri (mod pi). The

list decoding problem for CRT codes then corresponds to the case where wi = 1, for 1 ≤ i ≤ n. By

carefully selecting weights, the algorithm of Guruswami et al. can solve the list decoding problem for

CRT codes whenever t ≥
√
k(n+ ε), for arbitrarily small ε > 0, in time polynomial in n, log pn and

1/ε. As a result, the decoding performance of the algorithm essentially matches that of the celebrated

list decoding algorithms for Reed-Solomon and algebraic geometry codes [159, 70].

It is natural to ask whether decoding algorithms exist for codes constructed from arbitrary number

fields. The construction of NF-codes lies within the general framework of “ideal-based” codes [69, 160],

thus lending itself to decoding by an algorithm based on the framework for list decoding of algebraic

error-correcting described by Guruswami et al. [69, Appendix A]. In this chapter, this observation is

used to generalise the algorithm of Guruswami et al. for list decoding of CRT codes to number fields,

resulting in the first algorithm for solving the weighted list decoding problem for NF-codes. The

decoding algorithm then plays a central role in the development of an algorithm for finding algebraic

integers in a number field with norm containing a large smooth factor. Finally, two different approaches

are used to derive new bounds on the existence of such elements. The first approach, uses combinatorial

arguments based on generic coding bounds. The second, generalises Boneh’s algorithmically derived

bounds on the number of smooth integers in short intervals.

The remainder of the chapter is organised as follows. In Section 5.1, relevant background material

on NF-codes is provided and notation established. In Section 5.2, generic coding bounds are used

to obtain conditions under which decoding of NF-codes is combinatorially feasible. In Section 5.3

and Section 5.3.2, an algorithm for weighted list decoding of NF-codes is developed and analysed.

Similarly, Section 5.3.3 is dedicated to the development and analysis of a computationally simpler

version of the algorithm. Section 5.3.4 focuses on choosing parameters for the decoding algorithm and



5.1. Review of NF-codes 113

the comparison of its performance against the theoretical bounds of Section 5.2. The coding theory

portion of this chapter is completed in Appendix A.1 with the derivation of a new family of codes

constructed from number fields for which their rate is easily computable. Finally, Section 5.4 contains

results on smooth elements in number fields.

While this chapter was in preparation, the work of Cohn and Heninger [38] came to the author’s

attention. There an algorithm for solving polynomial equations over number fields is provided. Their

algorithm shares much in common with algorithms presented in this chapter and leads to an alternative

approach to list decoding of NF-codes (see Remark 5.3.7). In this application, both algorithms yield

similar results.

5.1 Review of NF-codes

Introduced by Guruswami [67], NF-codes serve as a natural generalisation of CRT codes to number

fields. In this section, their construction is briefly reviewed and the weighted list decoding problem for

NF-codes introduced. For further background and motivation behind the construction of NF-codes,

the reader is referred to Guruswami’s original description. To begin, notation that is used throughout

the remainder of the chapter is introduced.

Throughout the chapter, K denotes a number field of degree d and signature (r1, r2). Denote byOK the

ring of integers in K; by DK its discriminant; and by ω1, . . . , ωd an integral basis for OK . Let σ1, . . . , σd

denote the field embeddings of K in the field C, ordered such that σ1, . . . , σr1 are the real embeddings

of K, and the complex embeddings σr1+1, . . . , σd of K satisfy σr1+i = σr1+r2+i, for 1 ≤ i ≤ r2. For

all x ∈ K, the (field) norm of x, denoted NK(x), is defined as the product NK(x) =
∏d
i=1 σi(x). For

any nonzero ideal a ⊆ OK , the quotient OK/a is finite. The norm of a nonzero integral ideal a ⊆ OK ,

denoted Na, is defined by Na = |OK/a|. For all x ∈ OK , the relationship |NK(x)| = N 〈x〉 holds,

where 〈x〉 denotes the principal ideal generated by x in OK . Given a nonzero integral ideal a ⊆ OK , it

follows that Na divides NK(x), for all x ∈ a. For background on algebraic number theory, the reader

is referred to the texts of Marcus [114] and Narkiewicz [128].

Before defining NF-codes, the following notion of the size of an element in K requires introduction:

given a vector s = (s1, . . . , sr1+r2) ∈ Rr1 × Cr2 , the s-shifted size of an element x ∈ K is defined as

sizes(x) =

r1∑
i=1

|σi(x)− si|+ 2

r2∑
i=1

|σr1+i(x)− sr1+i|.

The 0-shifted size of an element x ∈ K is simply denoted by size(x). For x, y ∈ K and s ∈ Rr1 ×Cr2 ,

it is readily verified that size(x − y) ≤ sizes(x) + sizes(y). Moreover, an application of the AM-GM

inequality shows that |NK(x)| ≤ size(x)d/dd, for all x ∈ K.

Definition 5.1.1 (NF-codes). Let K be a number field that contains pairwise relatively prime ideals



114 5. Smooth Elements in Number Fields

p1, . . . , pn ⊆ OK , ordered so that Np1 ≤ Np2 ≤ . . . ≤ Npn. An NF-code C = CK , based on K with

parameters (n, p1, . . . , pn;M, s), is defined to be the set

C =

{
(m+ p1, . . . ,m+ pn) ∈ OK

p1
× . . .× OK

pn
| m ∈ OK and sizes(m) ≤M

}
.

The set MC = {m ∈ OK | sizes(m) ≤M} is referred to as the message set of C.

The information rate (or simply, rate) of an NF-code C with parameters (n, p1, . . . , pn;M, s) is defined

to be the quotient R(C) = log |MC |/
∑n

i=1 logNpi (see [155, Section II]). The rate provides a measure of

the amount of redundancy added by encoding a messagem ∈MC as the vector (m+p1, . . . ,m+pn) ∈ C.
Determining the cardinality of MC , and thus the rate of C, is a nontrivial problem. Guruswami [67,

Section E] noted that a standard argument from the geometry of numbers suggests that |MC | ≈
2r1πr2√
|DK |

Md

d! . However, this estimate cannot be used in general since the error term may dominate.

Instead, Guruswami [67, Proposition 19] used an averaging argument due to Lenstra [106] to prove

the existence of a shift s ∈ Rr1 × Cr2 such that

∣∣∣ {x ∈ OK | sizes(x) ≤M}
∣∣∣ ≥ 2r1πr2√

|DK |
Md

d!
. (5.1)

For any such shift s, an NF-code C based on K, with parameters (n, p1, . . . , pn;M ; s), has rate R(C)
satisfying

R(C) ≥
log(2r1πr2Md)− log d!− log

√
|DK |

n logNpn
.

The existence proof is nonconstructive and it remains an open problem as to how to find a vector s

satisfying (5.1). As an aside, in Appendix A.1, the construction of NF-codes is modified to obtain a

new family of codes, each with rate that is easily computable.

Given two vectors in an NF-code C, their Hamming distance is the number of coordinates at which

they differ. The minimum distance (or simply, distance) of C is then the minimum of the Hamming

distance over all pairs of distinct vectors in C. Throughout the chapter, given an ideal a ⊆ OK and

an element x ∈ OK , define σ(x, a) = 1, if x ∈ a; and σ(x, a) = 0, otherwise. Then the distance of an

NF-code C, with parameters (n, p1, . . . , pn;M, s), is the minimum of the sum
∑n

i=1(1 − σ(x − y, pi))
over all pairs of distinct elements x, y ∈ MC . To obtain a lower bound on distance of C, denoted

herein by d(C), consider distinct elements x, y ∈MC . Then

n∏
i=1

Np
σ(x−y,pi)
i ≤ |NK(x− y)| ≤ 1

dd
size(x− y)d ≤ 1

dd
(sizes(x) + sizes(y))d ≤

(
2M

d

)d
. (5.2)

Therefore, if there exists a value of k ≤ n such that (2M/d)d ≤
∏k
i=1 Npi, then

∑n
i=1 σ(x− y, pi) ≤ k.

Since x and y were arbitrary distinct elements of MC , it follows that d(C) ≥ n − k, for any value of

k ≤ n such that (2M/d)d ≤
∏k
i=1 Npi.



5.2. Combinatorial Bounds on List Decoding 115

For an NF-code C, with parameters (n, p1, . . . , pn;M, s), decoding reduces to the following problem:

given a vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × . . . × OK/pn and t ≥ 0, find all m ∈ MC such that∑n
i=1 σ(m− ri, pi) ≥ t. For t ≥ n− (d(C)− 1)/2, if such an element m ∈MC exists, then it is unique.

Accordingly, decoding for such values of t is referred to as unique decoding. For smaller values of t,

uniqueness is no longer guaranteed and decoding referred to as list decoding. The notion of list decoding

was introduced by Elias [53] and Wozencraft [169]. A discussion of the history of list decoding and its

utility as a relaxation of unique decoding is provided by Guruswami [68, Section 1.3] (see also references

therein). The final decoding paradigm considered in this chapter, called weighted list decoding, is a

relaxation of traditional list decoding. In contrast to list decoding, weighted list decoding may not

treat the contribution of each coordinate equally. Instead, the contributions of the coordinates are

determined by individual weights. For an NF-code C, with parameters (n, p1, . . . , pn;M, s), weighted

list decoding reduces to the following problem: given a vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × . . .×
OK/pn, positive real weights β1, . . . , βn, and t ≥ 0, find all m ∈MC such that

∑n
i=1 σ(m−ri, pi)βi ≥ t.

List decoding is then captured by the special case in which all the weights are equal.

5.2 Combinatorial Bounds on List Decoding

An algorithm that performs weighted list decoding is required to return all codewords with suffi-

ciently large weighted agreement. Therefore, a necessary condition for a decoding algorithm to run

in polynomial time is that only polynomially many codewords are returned. The classical Johnson

bound [83, 84] provides an upper bound on the number of codewords in a binary code at Hamming

distance exactly e from an arbitrary word. This bound was later generalised by Guruswami and

Sudan [71] who gave a “Johnson-type” bound for the number of codewords at distance at most e

from an arbitrary word in a q-ary code. In addition, Guruswami and Sudan extended their result

to provide bounds on the number of codewords with sufficiently large weighted agreement. In this

section, a related result due to Guruswami [68, Theorem 7.10], namely Lemma 4.3.1, is used to derive

combinatorial bounds on the decoding of NF-codes. As a result, the bounds obtained in this section

are analogous to those obtain for number field sieve polynomial generation in Section 4.3. To begin,

Lemma 4.3.1 is used to provide a bound on the number of codewords in an NF-code with sufficiently

large weighted agreement.

Theorem 5.2.1. Let C be an NF-code based on a number field K with parameters (n, p1, . . . , pn;M, s).

Given positive real weights β1, . . . , βn and any vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × · · · × OK/pn,

there are at most l elements m ∈MC such that

n∑
i=1

σ(m− ri, pi)βi ≥

√√√√((1− 1

l

)
d log(2M/d) +

1

l

n∑
i=1

logNpi

)(
n∑
i=1

β2
i

logNpi

)
. (5.3)

Proof. Let α = (logNp1, . . . , logNpn), β = (β1, . . . , βn) and (t1, . . . , tn) = (r1 +p1, . . . , rn+pn). Then



116 5. Smooth Elements in Number Fields

Lemma 4.3.1 implies there exist at most l vectors (m1, . . . ,mn) ∈ C such that

∑
j:mj=tj

βj ≥

√√√√( n∑
i=1

logNpi −
(

1− 1

l

)
d(C)α

)
n∑
i=1

β2
i

logNpi
, (5.4)

where d(C)α is the minimum value, over all distinct pairs of vectors (m1, . . . ,mn), (m′1, . . . ,m
′
n) ∈ C,

of the sum
∑

j:m6=m′j
αj .

Let distinct elements m,m′ ∈ MC correspond to vectors (m1, . . . ,mn), (m′1, . . . ,m
′
n) ∈ C. Then the

inequality (5.2) implies that

∑
j:mj 6=m′j

αj =
n∑
i=1

(
1− σ(m−m′, pi)

)
logNpi ≥

n∑
i=1

logNpi − d log(2M/d).

Since m and m′ were arbitrary distinct elements of MC , it follows that d(C)α ≥
∑n

i=1 logNpi −
d log(2M/d). Similarly, an element m ∈ MC and its corresponding vector (m1, . . . ,mn) ∈ C satisfy∑

j:mj=tj
βj =

∑n
i=1 σ(m− ri, pi) logNpi. Therefore, if m ∈MC satisfies (5.3), then its corresponding

vector (m1, . . . ,mn) ∈ C satisfies (5.4). Hence, there exist at most l elements m ∈MC such that (5.3)

holds.

A condition is now derived under which decoding of NF-codes is combinatorially feasible. The proof of

the corollary follows that of Corollary 4.3.6, and is therefore omitted. In Section 5.3.4, the condition

is used to evaluate the performance of the algorithm for decoding of NF-codes developed in the next

section.

Corollary 5.2.2. Let C be an NF-code based on a number fieldK with parameters (n, p1, . . . , pn;M, s)

such that
∑n

i=1 logNpi ≥ d log(2M/d); and z1, . . . , zn be positive real numbers. Then given a vector

(r1 + p1, . . . , rn + pn) ∈ OK/p1 × · · · × OK/pn and any tolerance parameter ε > 0, there are at most

polynomially many (in 1/ε and
∑n

i=1 logNpi) elements m ∈MC such that

n∑
i=1

σ(m− ri, pi)zi logNpi ≥

√√√√d log(2M/d)

(
n∑
i=1

z2
i logNpi + εz2

max

)
, (5.5)

where zmax = max1≤i≤n zi.

5.3 Weighted List Decoding of NF-codes

In this section, an algorithm for weighted list decoding of NF-codes is developed and analysed. The al-

gorithm’s development is based on realising, for the context of NF-codes, the ideal-theoretic framework

for list decoding of algebraic error-correcting codes described by Guruswami, Sahai and Sudan [69,



5.3. Weighted List Decoding of NF-codes 117

Appendix A]. Additionally, the algorithm serves as a natural generalisation of the weighted list de-

coding algorithm for CRT codes [69] to NF-codes (see Remark 5.3.3). Currently, no method is known

for determining shift parameters s ∈ Rr1 ×Cr2 that satisfy (5.1). Therefore, it is assumed that s = 0

throughout the section. Decoding in the presence of nonzero shifts is considered in Appendix A.2.

Unless stated otherwise, throughout this section C is an NF-code based on a number field K with pa-

rameters (n, p1, . . . , pn;M,0). Furthermore, fix a vector (r1 +p1, . . . , rn+pn) ∈ OK/p1×· · ·×OK/pn.

A full description and analysis of the framework for list decoding of algebraic error-correcting codes is

provided by Guruswami [68, Section 7]. At a high level, the framework suggests the following approach

to decoding of NF-codes:

1. Define ideals I1, . . . , In ⊆ OK [x] as follows:

Ii = {µ(x) · (x− ri) + ν(x) · p | µ, ν ∈ OK [x] and p ∈ pi} , for 1 ≤ i ≤ n.

To each ideal Ii, assign a corresponding positive integer parameter zi, for 1 ≤ i ≤ n.

2. Find a nonzero polynomial h ∈
⋂n
i=1 I

zi
i of degree at most l and with small coefficients.

3. Find the roots of h over K and return all roots inMC with sufficiently large weighted agreement.

Realising the approach first requires the development of an explicit notion of a polynomial in
⋂n
i=1 I

zi
i

with “small” coefficients. For each value of i, 1 ≤ i ≤ n, the construction of the ideal Ii implies that

a polynomial h ∈ Ii satisfies the property that h(m) ∈ p
σ(m−ri,pi)
i , for all m ∈ OK . Therefore, for

h ∈
⋂n
i=1 I

zi
i and m ∈ OK , the Chinese remainder theorem implies that h(m) ∈

∏n
i=1 p

σ(m−ri,pi)zi
i . In

particular, any m ∈MC for which the product
∏n
i=1 Np

σ(m−ri,pi)zi
i is large, is a root of h modulo some

ideal of large norm. For K = Q, Howgrave-Graham [78, Section 2] provides a sufficient condition on

the coefficient size of h ∈ Z[x] for a modular root m ∈ Z, with |m| ≤M , to also be an integer root. A

modification of this condition was used by Guruswami et al. in their weighted list decoding algorithm

for CRT codes. Here, Howgrave-Graham’s condition is generalised to number fields. The condition is

then used to obtain an appropriate notion of a polynomial with “small” coefficients.

Define T2(x) =
∑d

i=1 |σi(x)|2, for all x ∈ K. Additionally, given a positive real number M , define∥∥∑
i aix

i
∥∥
K,M

=
√∑

i T2(ai)M2i, for all
∑

i aix
i ∈ K[x]. For polynomials in OK [x], the following

lemma provides a sufficient condition for a modular root to also be a root over K:

Lemma 5.3.1. Let K be a number field of degree [K : Q] = d. Let M be a positive real, a be a

nonzero ideal of OK , and h ∈ OK [x] be a polynomial of degree at most l. Suppose that

1. h(m) ∈ a, for some m ∈ OK with size(m) ≤M ; and

2. ‖h‖K,M < d (Na)1/d /
√
l + 1.

Then h(m) = 0 over K.



118 5. Smooth Elements in Number Fields

Proof. Suppose h =
∑l

i=0 hix
i ∈ OK [x] and m ∈ OK satisfy the conditions of the lemma. Then

|NK(h(m))| ≤ 1

dd
size (h(m))d ≤ 1

dd

(
l∑

i=0

size
(
him

i
))d

.

Applying the Cauchy-Schwarz inequality, it follows that

size(him
i) ≤

√
T2(hi) · T2(mi) ≤

√
T2(hi) · T2(m)i ≤

√
T2(hi) · size(m)2i, for 0 ≤ i ≤ l.

Thus

|NK(h(m))| ≤ 1

dd

(
l∑

i=0

√
T2(hi) ·M2i

)d
≤ 1

dd

(√
l + 1 ‖h‖K,M

)d
< Na.

However, Na divides NK(h(m)), since h(m) ∈ a by assumption. Therefore, NK(h(m)) = 0, otherwise

Na ≤ |NK(h(m))| < Na, which is absurd. Hence, h(m) = 0 over K.

It follows from Lemma 5.3.1 that a polynomial h ∈
⋂n
i=1 I

zi
i of degree at most l will have among its

roots all m ∈MC such that

n∏
i=1

Np
σ(m−ri,pi)zi
i >

1

dd
· (l + 1)

d
2 · ‖h‖dK,M . (5.6)

Motivated by this observation, a polynomial h ∈ OK [x] is said to have small coefficients whenever

‖h‖K,M is small. With this notion of size, it follows that two algorithmic tasks arise from the approach

to decoding of NF-codes suggested by the general framework: the first, is to find a nonzero polynomial

h ∈
⋂n
i=1 I

zi
i of degree at most l such that ‖h‖K,M is small; the second, is to find those roots m ∈MC

of h (over K) with sufficiently large weighted agreement. For the second task, one of several efficient

algorithms for factoring polynomials over number fields may be applied (see [14, 150] and references

therein), For the first task, algorithms from the geometry of numbers may be employed.

The quadratic form T2 induces a natural lattice structure for OK (see for instance [15]) which can be

embedded in Rd via the so-called Minkowski map δR : K → Rd defined by mapping x ∈ K to the

vector(
σ1(x), . . . , σr1(x),

√
2Re (σr1+1(x)) , . . . ,

√
2Re (σr1+r2(x)) ,

√
2Im (σr1+1(x)) , . . . ,

√
2Im (σr1+r2(x))

)
.

It is readily verified that T2(x) = ‖δR(x)‖22 for all x ∈ K, where ‖.‖2 is the Euclidean norm on Rd. The

Minkowski map is extended to an injective homomorphism from the space of polynomials of degree at

most l in K[x] to Rd(l+1) by mapping
∑l

i=0 hix
i ∈ K[x] to (δR(h0), . . . , δR(hl)). Then the embedding

in Rd(l+1) of the space of polynomials in Izii with degree at most l forms a lattice. By appropriately

scaling this lattice, the problem of finding h ∈
⋂n
i=1 I

zi
i with ‖h‖K,M small is reduced to that of finding

a short vector in the resulting lattice.



5.3. Weighted List Decoding of NF-codes 119

Using the approach just described, the following algorithm is obtained:

Algorithm 5.3.2.

Input: A code C based on a number field K with parameters (n, p1, . . . , pn;M,0), where the pi

are given in the form pi = 〈αi, βi〉 with αi 6= 0, for 1 ≤ i ≤ n; a vector (r1 + p1, . . . , rn + pn) ∈
OK/p1 × · · · × OK/pn; an integral basis ω1, . . . , ωd for OK ; and positive integers z1, . . . , zn and l.

Output: All m ∈MC such that
∑n

i=1 σ(m− ri, pi)zi logNpi is sufficiently large.

0. For 1 ≤ i ≤ n, define the following families of polynomials in OK [x]:

ai,j,k(x) = αzi−ji ωk (x− ri)j , for 0 ≤ j ≤ min{zi, l}, 1 ≤ k ≤ d;

bi,j,k(x) = βzi−ji ωk (x− ri)j , for 0 ≤ j ≤ min{zi − 1, l}, 1 ≤ k ≤ d; and

ci,j,k(x) = ωk x
j (x− ri)zi , for 1 ≤ j ≤ l − zi, 1 ≤ k ≤ d.

1. For 1 ≤ i ≤ n, let Li ∈ Rd(l+1) be the lattice generated by the vectors δR(ai,j,k), δR(bi,j,k) and

δR(ci,j,k). Compute a basis (b1, . . . , bd(l+1)) for the intersection lattice L =
⋂n
i=1 Li.

2. Let Ω = diag(1, . . . , 1,M, . . . ,M, . . . ,M l, . . . ,M l), where each power of M occurs d times. Use

LLL reduction to find a short vector v in the lattice LΩ.

3. Recover the polynomial h = δ−1
R (vΩ−1) and factor it over K.

4. Return all roots m ∈ K of h such that m ∈MC and (5.6) holds.

Remark 5.3.3. For K = Q, the ideals p1, . . . , pn are principal: pi = 〈gcd(αi, βi)〉, for 1 ≤ i ≤ n. Therefore, it

may be assumed that βi = 0, for 1 ≤ i ≤ n. In this case, Algorithm 5.3.2 reduces to the weighted list decoding

algorithm for CRT codes described by Guruswami et al. [69].

5.3.1 Additional Notes on Implementing Algorithm 5.3.2

Algorithm 5.3.2 assumes knowledge of an integral basis for OK . If an integral basis is not known,

finding one currently requires finding the largest squarefree divisor of the discriminant of K (see

[139, 27] and references therein). If any of the pi is not given in the form pi = 〈αi, βi〉, then such

a representation can be found with one of the algorithms described by Cohen [37, Section 1.3] or

Belabas [15, Section 6].

The vectors δR(ai,j,k,m), δR(bi,j,k,m) and δR(ci,j,k) may contain non-integer values. In order to avoid

floating point arithmetic in Step 1, define a group homomorphism δZ : K → Qd by a1ω1 + . . .+adωd 7→
(a1, . . . , ad) and extend δZ naturally to a homomorphism from the space of polynomials of degree at

most l in K[x] to Qd(l+1). Then the induced homomorphism ϕ := δZ ◦ δ−1
R permits Step 1 to be

performed with operations on integral lattices: if (b1, . . . , bd(l+1)) is a basis of ϕ(L) ⊂ Zd(l+1), then

(ϕ−1(b1), . . . , ϕ−1(bd(l+1))) is a basis of L. To compute a basis for the lattice ϕ(L) =
⋂n
i=1 ϕ(Li), note



120 5. Smooth Elements in Number Fields

that each lattice ϕ(Li) is generated by the vectors δZ(ai,j,k), δZ(bi,j,k) and δZ(ci,j,k), for 1 ≤ i ≤ n.

Therefore, a basis for ϕ(Li) can be found through Hermite normal form computation [36, Section

2.4.2] or with the MLLL algorithm [140]. Once a basis for each of the lattices ϕ(Li) has been found,

a basis for their intersection ϕ(L) can be computed be repeatedly applying the method described by

Guruswami et al. [69, Appendix B].

Computing the vectors δZ(ai,j,k), δZ(bi,j,k) and δZ(ci,j,k) requires computing the coefficients of the

polynomials ai,j,k, bi,j,k and ci,j,k with respect to the integral basis ω1, . . . , ωd. In particular, computing

the coefficients requires performing polynomially (in d and zi) many multiplications in K. The reader

is referred to Belabas [15], Cohen [36], and Lenstra [107] for further details on arithmetic in number

fields. For x, y ∈ OK , computing the coefficients of the product xy with respect to ω1, . . . , ωd reduces

by linearity to computing the coefficients of each of the products ωiωj . Belabas [15, Proposition 5.1]

showed if (δR(ω1), . . . , δR(ωd)) is LLL-reduced, then the coefficients of the products ωiωj will have size

polynomial in d and log |DK |. More general, by modifying Belabas’ proof, it can be shown that the

coefficients will have size polynomial in d, log |DK | and
∑d

i=1 T2(ωi). Therefore, given the products

ωiωj , it is possible to compute the coefficients of the polynomials ai,j,k, bi,j,k and ci,j,k with respect to

ω1, . . . , ωd in time polynomial in d, zi, log ‖δZ(αi)‖2, log ‖δZ(βi)‖2,
∑d

i=1 log T2(ωi) and log |DK |.

If K is totally real and M ∈ Q, then the lattice reduction in Step 2 may be performed with an

integral reduction algorithm [36, 87] or a floating point variant such as the L2 algorithm [132, 131].

Otherwise, lattice reduction is required to be performed on real-valued bases for which far less is

known about the stability and complexity of the LLL algorithm. In Step 2, the requirement that

a reduced basis for LΩ is found may be replaced with the requirement that a short vector in LΩ is

found. Consequently, a method described by Belabas [15, Section 4.2], which uses integral reduction

to produce a basis that contains a short vector, may be used in Step 2 in place of reduction on real-

valued bases. In Section 5.3.3, an idea of Fieker and Friedrichs [59] is used to modify Algorithm 5.3.2

such that integral lattice reduction can be used for non-totally real fields (whenever M is rational).

However, the decoding performance of the resulting algorithm does not match that of Algorithm 5.3.2.

Depending on the method of reduction used, it may only be possible to find a floating point ap-

proximation to a short vector in LΩ. Assuming the approximation has been calculated with sufficient

precision, it is possible to recover the coefficients of the polynomial h with one of the methods described

by Belabas [15, Section 3.2].

5.3.2 Analysis of the Decoding Algorithm

In this section, the decoding performance of Algorithm 5.3.2 is analysed. To begin, the space of

polynomials corresponding to vectors in Li is shown to be exactly the polynomials of degree at most l

in the ideal Izii . It follows immediately that the space of polynomials corresponding to vectors in the

intersection lattice L =
⋂n
i=1 Li is exactly the polynomials of degree at most l in the ideal

⋂n
i=1 I

zi
i .



5.3. Weighted List Decoding of NF-codes 121

Lemma 5.3.4. For each value of i, 1 ≤ i ≤ n, the space of polynomials corresponding to vectors in

Li is exactly the polynomials of degree at most l in the ideal Izii .

Proof. Fix a value of i, 1 ≤ i ≤ n. By construction, Li is the space of all Z-linear combinations

of the vectors δR(ai,j,k), δR(bi,j,k) and δR(ci,j,k). Moreover, each of the polynomials ai,j,k, bi,j,k and

ci,j,k clearly belongs to the ideal Izii and has degree at most l. Therefore, the lemma will follow by

showing that those polynomials of degree at most l in the ideal Izii can each be expressed as a Z-linear

combination of the polynomials ai,j,k, bi,j,k and ci,j,k.

Given a polynomial h ∈ Izii such that deg h ≤ l, the definition of ideal Ii implies that h may be written

in the form

h(x) = λzi(x) · (x− ri)zi +

zi−1∑
j=0

λj(x) · pj(x− ri)j ,

where pj ∈ pzi−ji , for 1 ≤ j ≤ zi − 1; and λ0, . . . , λz0 ∈ OK [x]. Moreover, since (x− ri) · pj(x− ri)j =

pj · (x − ri)j+1 and pzi−ji ⊂ pzi−j−1
i , for 0 ≤ j ≤ zi − 1, it may be assumed that λ0, . . . , λzi−1 ∈ OK .

It follows that λj = 0, for all 0 ≤ j ≤ zi such that l < j.

For any integer t ≥ 0, pti = 〈αti, βti〉. Therefore, for all 0 ≤ j ≤ zi − 1 such that λj is nonzero,

λj · pj(x − ri)j may be expressed as a Z-linear combination of the polynomials ai,j,k and bi,j,k, for

0 ≤ j ≤ min{zi− 1, l}, 1 ≤ k ≤ d. Similarly, if λzi is nonzero, then λzi(x) · (x− ri)zi may be expressed

as a Z-linear combination of the polynomials ai,zi,k and ci,j,k, for 1 ≤ j ≤ l − zi, 1 ≤ k ≤ d.

The following lemma provides an upper bound on the determinant of the scaled lattice LΩ. Combining

the bound with Theorem 3.1.2 provides a bound on ‖h‖K,M , where h is the polynomial found in Step 3

of Algorithm 5.3.2, thus enabling the decoding performance of Algorithm 5.3.2 to be determined.

Lemma 5.3.5. The lattice LΩ is d(l + 1)-dimensional and

detLΩ ≤Md(l+1
2 ) · |DK |

l+1
2 ·

n∏
i=1

Np
(zi+1

2 )
i .

Proof. Let Λ and Λ0 be the space of polynomials of degree at most l in OK [x] and I =
⋂n
i=1 I

zi
i

respectively. Let A be the d×d matrix whose rows are the vectors δR(ω1), . . . , δR(ωd). Then | detA| =
|det(σi(ωj))| = |DK |1/2. Let B be the d(l+ 1)×d(l+ 1) block diagonal matrix with each block on the

diagonal equal to A. The row vectors of B are linearly independent since |detB| = |DK |(l+1)/2 6= 0

and their span is clearly equal to δR(Λ). Hence δR(Λ) is a d(l+ 1)-dimensional lattice and det δR(Λ) =

|DK |(l+1)/2.

Define π : Λ→ OK [x]/I by λ 7→ λ+ I. Then π is a homomorphism of abelian groups and kerπ = Λ0.

In addition, |OK [x]/I| ≤
∏n
i=1 Np

(zi+1
2 )

i (see [68, Corollary 7.5]). Therefore, |OK [x]/I| is finite and

|Λ/Λ0|must divide |OK [x]/I|. Since δR is an injective homomorphism, it follows that |Λ/Λ0| = [δR(Λ) :



122 5. Smooth Elements in Number Fields

δR(Λ0)]. Hence, δR(Λ0) is a full-rank sublattice of δR(Λ) and

det δR(Λ0) = det δR(Λ) · [δR(Λ) : δR(Λ0)] ≤ |DK |
l+1
2 · |OK [x]/I|.

It follows from Lemma 5.3.4 that L = δR(Λ0). Therefore, L is a d(l + 1)-dimensional lattice and

detL ≤ |DK |
l+1
2 ·

n∏
i=1

Np
(zi+1

2 )
i .

The proof is completed by noting that | det Ω| = Md(l+1
2 ) is nonzero, thus LΩ is a d(l+ 1)-dimensional

lattice and detLΩ = detL · | det Ω|.

The following theorem provides a sufficient condition for an element m ∈ MC to be returned by

Algorithm 5.3.2:

Theorem 5.3.6. Algorithm 5.3.2 returns all m ∈MC such that

n∏
i=1

Np
σ(m−ri,pi)zi
i > 2

d2(l+1)−d
4 d−d(l + 1)

d
2M

dl
2

√
|DK |

(
n∏
i=1

Np
(zi+1

2 )
i

) 1
l+1

. (5.7)

Proof. If v ∈ LΩ is the vector returned in Step 2 of Algorithm 5.3.2 and h = δ−1
R (vΩ−1) the corre-

sponding polynomial, then ‖h‖K,M = ‖v‖2. Moreover, it follows from Theorem 3.1.2 that v satisfies

‖v‖2 ≤ 2
d(l+1)−1

4 det(LΩ)
1

d(l+1) .

This inequality, Lemma 5.3.4 and Lemma 5.3.5 imply that h ∈
⋂n
i=1 I

zi
i and

‖h‖K,M ≤ 2
d(l+1)−1

4 M
l
2 |DK |

1
2d

(
n∏
i=1

Np
(zi+1

2 )
i

) 1
d(l+1)

.

Therefore, given m ∈ MC such that (5.7) holds, applying Lemma 5.3.1 with a =
∏n
i=1 p

σ(m−ri,pi)zi
i

implies that h(m) = 0 over K. Hence, all such m ∈MC are found in Step 4 of the algorithm.

Remark 5.3.7. Given a monic polynomial f ∈ OK [x], a nonzero ideal a ⊂ OK , a positive real number M , and

positive integers k, l such that l ≥ k deg f , the polynomial time algorithm described by Cohn and Heninger [38]

in the proof of their Theorem 1.3, when applied with parameters f , I = a, λ1 = . . . = λd = M , k and

t = l + 1− k deg f , returns all m ∈ OK such that size(m) ≤M and

N gcd ((f(m)), a)
k
>

(
2

d(l+1)−1
4

√
l + 1

d
|DK |

1
2dM

l
2

)d (
Na(k+1

2 )
) deg f

l+1

.

Given an NF-code C = CK with parameters (n, p1, . . . , pn;M,0), positive integer weights z1, . . . , zn, and a

received word (r1 + p1, . . . , rn + pn) ∈ OK/p1 × . . . × OK/pn, weighted list decoding is performed with their



5.3. Weighted List Decoding of NF-codes 123

algorithm by additionally setting a =
∏n

i=1 pi, k = max1≤i≤n zi and f = x − r, where r ∈ OK satisfies

r − ri ∈ pi, for 1 ≤ i ≤ n. When the weights z1, . . . , zn are equal, this approach performs almost identically to

Algorithm 5.3.2, with both methods providing a generalisation of the list decoding algorithm for CRT codes of

Boneh [25].

5.3.3 Decoding with Integral Lattices

Let ω1, . . . , ωd be an integral basis for OK . For x =
∑d

i=1 xiωi ∈ K, the Cauchy-Schwarz inequality

implies that

T2(x) ≤

(
d∑
i=1

x2
i

)(
d∑
i=1

T2(ωi)

)
= ‖δZ(x)‖22 ·

d∑
i=1

T2(ωi). (5.8)

It follows that T2(x) is small whenever both ‖δZ(x)‖2 and
∑d

i=1 T2(ωi) are small. Recall the homo-

morphism ϕ = δZ ◦ δ−1
R defined in Section 5.3.1. Given an integral basis ω1, . . . , ωd with the property

that
∑d

i=1 T2(ωi) is small, (5.8) implies that performing lattice reduction on ϕ(L)Ω instead of LΩ in

Algorithm 5.3.2 will still produce a polynomial h ∈
⋂n
i=1 I

zi
i such that ‖h‖K,M is small. Performing

lattice reduction on ϕ(L)Ω is beneficial as it permits the use of an integral lattice reduction algorithm

whenever M is rational, regardless of whether K is totally real. Furthermore, the use of exact arith-

metic saves the reconstruction of algebraic numbers from approximations to their embeddings. This

simplified approach is based on an idea due to Fieker and Friedrichs [59] which led to a considerable

speed-up for non-totally real fields in their application.

Theorem 5.3.8. There exists a positive constant C1 that depends only on the input basis ω1, . . . , ωd

such that Algorithm 5.3.2, with LLL performed on ϕ(L)Ω, outputs all m ∈MC such that

n∏
i=1

Np
σ(m−ri,pi)zi
i > 2

d2(l+1)−d
4 d−dC

d
2
1 (l + 1)

d
2M

dl
2

(
n∏
i=1

Np
(zi+1

2 )
i

) 1
l+1

. (5.9)

Proof. Let A be the d×d matrix whose rows are the vectors δR(ω1), . . . , δR(ωd). Then δR(x) = δZ(x)·A
for all x ∈ K. More generally, if B is the d(l+ 1)× d(l+ 1) block diagonal matrix with each block on

the diagonal equal to A, then δR(b) = δZ(b) ·B, for all b ∈ OK [x] with deg b ≤ l. Therefore, ϕ(L) is a

d(l + 1)-dimensional lattice and detϕ(L) = | detB|−1 · detL. Hence,

detϕ(L)Ω = |detB|−1 · | det Ω| · detL = |DK |−
l+1
2 · detLΩ.

Let C1 be the smallest real number such that T2(x) ≤ C1 ‖δZ(x)‖22 for all x ∈ K, which exists and

is positive by (5.8). Therefore, if v ∈ ϕ(L)Ω is the shortest basis vector returned by performing LLL

reduction on ϕ(L)Ω, then the corresponding polynomial h = δ−1
Z (vΩ−1) satisfies ‖h‖K,M ≤

√
C1 ‖v‖2.

Moreover, it follows from Theorem 3.1.2 that v satisfies

‖v‖2 ≤ 2
d(l+1)−1

4 det (ϕ(L)Ω)
1

d(l+1) .



124 5. Smooth Elements in Number Fields

This inequality, Lemma 5.3.4 and Lemma 5.3.5 imply that h ∈
⋂n
i=1 I

zi
i and

‖h‖K,M ≤ 2
d(l+1)−1

4 C
1
2
1 M

l
2

(
n∏
i=1

Np
(zi+1

2 )
i

) 1
d(l+1)

.

Therefore, given m ∈ MC such that (5.9) holds, applying Lemma 5.3.1 with a =
∏n
i=1 p

σ(m−ri,pi)zi
i

implies that h(m) = 0 over K.

As noted by Fieker and Friedrichs [59], a standard result from numerical analysis states that the

constant C1 is equal to the largest eigenvalue of AAt, where A is the matrix whose rows are the vectors

δR(ω1), . . . , δR(ωd) (see [158, Section 4.4]). Let λ1, . . . , λd be the eigenvalues (with multiplicity) of AAt,

which are real and positive since AAt is positive definite Hermitian. Since the determinant of a matrix

is equal to the product of its eigenvalues, an application of the AM-GM inequality shows that

C1 = max
1≤i≤d

λi ≥
1

d
(λ1 + . . .+ λd) ≥ (λ1 · · ·λd)

1
d =

(
detAAt

) 1
d = |DK |

1
d .

Hence, for all possible choices of integral basis ω1, . . . , ωd, the decoding condition (5.9) will never

surpass (5.7). If ω1, . . . , ωd has the property that (δR(ω1), . . . , δR(ωd)) is LLL-reduced, then for any

other basis ω′1, . . . , ω
′
d of OK , Theorem 3.1.2 implies that

T2(ωi) ≤ 2d−1 · max
1≤j≤d

T2(ω′j), for 1 ≤ i ≤ d.

Thus choosing another basis for OK may only reduce C1 by a factor of at most d2d−1. Therefore,

when using Algorithm 5.3.2 with lattice reduction performed on ϕ(L)Ω, it is beneficial to choose a

basis ω1, . . . , ωd such that (δR(ω1), . . . , δR(ωd)) is LLL-reduced.

5.3.4 Parameter Selection for Algorithm 5.3.2

To begin this section, Theorem 5.3.6 is modified to permit arbitrary (positive) real parameters

z1, . . . , zn. Then the performance of Algorithm 5.3.2 is evaluated against the theoretical bounds

obtained in Section 5.2. Finally, the performance of Algorithm 5.3.2 as a method for performing

weighted and traditional list decoding is considered. The results of this section are straightforward

generalisations of results obtained by Guruswami, Sahai and Sudan [69, Section 3.4] for decoding of

CRT codes (see also [68, Section 7.6.3]). Consequently, their proofs are either abridged or omitted

entirely.

Theorem 5.3.9. Let K be a degree d number field and C = CK be an NF-code with parameters

(n, p1, . . . , pn;M,0). For nonnegative reals z1, . . . , zn and any tolerance parameter ε > 0, given a



5.3. Weighted List Decoding of NF-codes 125

vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × · · · × OK/pn, Algorithm 5.3.2 can list all m ∈MC such that

n∑
i=1

σ(m− ri, pi)zi logNpi ≥

√√√√d log
(

2
d
2M
)( n∑

i=1

z2
i logNpi + εz2

max

)
, (5.10)

where zmax = max1≤i≤n zi.

Proof. It can be assumed that the zi’s are all nonzero. Moreover, since (5.10) is invariant under scaling

of the zi’s, it can be assumed without loss of generality that zmax = 1. Let A be an integer parameter

to be determined later and set z∗i = dAzie, for 1 ≤ i ≤ n. Consequently, Azi ≤ z∗i ≤ Azi + 1, for

1 ≤ i ≤ n. Therefore, Theorem 5.3.6 implies that on the input of parameters z∗1 , . . . , z
∗
n and a positive

integer l, Algorithm 5.3.2 can list all m ∈MC such that

n∑
i=1

σ(m− ri, pi)zi logNpi ≥
1

2A

(
dl log(2

d
2M) + d log(l + 1)

)
+
d

A
log
(

2
d−1
4 d−1|DK |

1
2d

)
+

A

2(l + 1)

n∑
i=1

(
z2
i +

3

A
zi +

2

A2

)
logNpi. (5.11)

Define Zi = z2
i + 3

Azi + 2
A2 , for 1 ≤ i ≤ n, and set

l =

⌈
A

√∑n
i=1 Zi logNpi

d log(2
d
2M)

⌉
− 1.

Then (5.11) is satisfied by all m ∈MC such that

n∑
i=1

σ(m− ri, pi)zi logNpi ≥
d

2A
log

(
A

√∑n
i=1 Zi logNpi

d log(2
d
2M)

+ 1

)

+
d

A
log
(

2
d−1
4 d−1|DK |

1
2d

)
+

√√√√d log(2
d
2M)

n∑
i=1

Zi logNpi.

There exists a positive constant A0 such that, for all A ≥ A0, the right hand side of the inequality is

less than or equal to the right hand side of (5.10). The proof is completed by setting A = A0.

A tedious calculation shows that the constant A0 in the proof of Theorem 5.3.9 has size which is at

most polynomial in d, log |DK |,
∑n

i=1 logNpi and 1/ε. As a result, for the parameters used in the

proof, Algorithm 5.3.2 performs lattice reduction on a lattice of dimension polynomial in d, log |DK |,∑n
i=1 logNpi and 1/ε. If lattice reduction is performed on ϕ(L)Ω, as proposed in Section 5.3.3, then

only superficial modifications are required to show that (5.10) can still be obtained with reduction per-

formed on a lattice of dimension polynomial in d, logC1,
∑n

i=1 logNpi and 1/ε. Comparing conditions

(5.10) to (5.5) suggests that Algorithm 5.3.2 does not perform optimally for d 6= 1.



126 5. Smooth Elements in Number Fields

Theorem 5.3.9 provides a condition under which Algorithm 5.3.2 can be used to find all m ∈ MC
that satisfy a certain “weighted” condition. However, weighted list decoding requires that, for given

positive real weights β1, . . . , βn and some t ≥ 0, all m ∈ MC such that
∑n

i=1 σ(m − ri, pi)βi ≥ t are

found. The following corollary to Theorem 5.3.9 determines how small t can be taken when using

Algorithm 5.3.2, thus describing the algorithms performance as a method for performing weighted list

decoding:

Corollary 5.3.10. Let K be a degree d number field and C = CK be an NF-code with parameters

(n, p1, . . . , pn;M,0). For nonnegative weights β1, . . . , βn and any tolerance parameter ε > 0, given a

vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × · · · × OK/pn, Algorithm 5.3.2 can list all m ∈MC such that

n∑
i=1

σ(m− ri, pi)βi ≥

√√√√d log
(

2
d
2M
)( n∑

i=1

β2
i + ε max

1≤i≤n

β2
i

log2 Npi

)
.

To end the section, two additional corollaries to Theorem 5.3.9, which describe the performance of

Algorithm 5.3.2 as a method for performing (traditional) list decoding, are now provided:

Corollary 5.3.11. Let K be a degree d number field and C = CK be an NF-code with parameters

(n, p1, . . . , pn;M,0). Given a vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × · · · × OK/pn and any tolerance

parameter ε > 0, Algorithm 5.3.2 can list all m ∈MC such that

n∑
i=1

σ(m− ri, pi) ≥

√√√√d log
(

2
d
2M
)( n∑

i=1

1

logNpi
+ ε

)
.

Corollary 5.3.12. Let K be a degree d number field and C = CK be an NF-code with parameters

(n, p1, . . . , pn;M,0). Suppose that
∏n
i=1 Npi ≥ 2d

2/2Md and let k be the least integer such that∏k
i=1 Npi ≥ 2d

2/2Md. Then given a vector (r1 + p1, . . . , rn + pn) ∈ OK/p1 × · · · × OK/pn and any

tolerance parameter ε > 0, Algorithm 5.3.2 can list all m ∈MC such that

n∑
i=1

σ(m− ri, pi) ≥
√
k(n+ 1 + ε).

If
∏k
i=1 Npi = 2d

2/2Md, the bound becomes
∑n

i=1 σ(m− ri, pi) ≥
√
k(n+ ε).

Proof. Let k be the least integer such that
∏k
i=1 Npi ≥ 2d

2/2Md. Define zi = 1/ logNpk, for 1 ≤ i ≤ k;

and zi = 1/ logNpi, for k < i ≤ n. Then

n∑
i=1

σ(x, pi)zi logNpi =
k∑
i=1

σ(x, pi)

(
logNpi
logNpk

− 1

)
+

n∑
i=1

σ(x, pi), for all x ∈ OK .



5.4. Smooth Algebraic Integers in Number Fields 127

Moreover, logNpi
logNpk

− 1 ≤ 0, for 1 ≤ i ≤ k. Consequently, for x ∈ OK ,

n∑
i=1

σ(x, pi)zi logNpi ≥
k∑
i=1

(
logNpi
logNpk

− 1

)
+

n∑
i=1

σ(x, pi) ≥
d log

(
2d/2M

)
logNpk

− k +
n∑
i=1

σ(x, pi).

Applying Theorem 5.3.9 with tolerance parameter ε′ = ε logNpk, it follows that Algorithm 5.3.2 can

list all m ∈MC such that

n∑
i=1

σ(m− ri, pi) ≥ k −
d log

(
2d/2M

)
logNpk

+

√√√√d log
(
2d/2M

)
logNpk

(
d log

(
2d/2M

)
logNpk

+

n∑
i=k

logNpk
logNpi

+ ε

)
.

If
∏k
i=1 Npi = 2d

2/2Md, then the lower index of the sum on the left hand side can be changed to k+1.

In either case, the remainder of the proof follows that of Guruswami et al. [69, Theorem 5].

5.4 Smooth Algebraic Integers in Number Fields

An integer x is called y-smooth if it is free of prime factors greater than y. Smooth numbers play an

important role in many algorithms from computational number theory and cryptography (see surveys

by Granville [66] and Pomerance [146]). Boneh [25] demonstrated how to use a list decoding algorithm

for CRT codes to search short intervals for integers containing a large smooth factor. Furthermore,

Boneh showed that the list size of the corresponding instances of the CRT decoding problem provide

an upper bound on the number of integers with large smooth factors. In this section, Boneh’s results

are generalised to number fields by replacing the CRT decoding algorithm with the algorithm for

NF-codes described in Section 5.3. To begin, the notion of a smooth integer is generalised to number

fields:

Definition 5.4.1. Let K be a number field and y > 0 be an integer. Then an element x ∈ OK is

called y-smooth if NK(x) is a y-smooth integer. Furthermore, an element x ∈ OK is said to have a

y-smooth factor whenever NK(x) has a y-smooth factor.

An element x ∈ OK is y-smooth if and only if for every prime ideal p ⊂ OK , p | 〈x〉 implies that p

lies over a rational prime p ≤ y. Therefore, the smoothness of an element x ∈ OK describes how the

principal ideal it generates factorises over small prime ideals. It is natural to consider the factorisation

into ideals since OK may fail to have unique factorisation. Algebraic integers in number fields that

are smooth, or have a smooth factor, appear in many number-theoretic algorithms. These algorithms

include, but are not limited to, algorithms for integer factorisation [102], discrete logarithms in finite

fields [64, 86], finding solutions to the Pell equation [109] and computing class groups [28].



128 5. Smooth Elements in Number Fields

5.4.1 Finding Smooth Algebraic Integers in Number Fields

Boneh’s algorithm searches for smooth integers in an interval [U, V ] with length determined by the

number of errors correctable by a CRT list decoding algorithm. For K 6= Q, an analogous problem is

to search for smooth algebraic integers in some ball defined by the size function size(x):

Definition 5.4.2. Let c ∈ OK and M be a nonnegative real number. Then the ball of radius M

centred at c is define to be Bc,M = {x ∈ OK | size(x− c) ≤M}.

For K = Q, the ball of radius M centred at c ∈ Z is simply the interval Bc,M = [c−M, c+M ]. The

method put forward by Boneh for utilising CRT decoding to find smooth integers in such an interval

is now briefly summarised. Let C be the code based on Q with parameters (n, 〈pw1
1 〉 , . . . , 〈pwnn 〉 ;M,0),

where p1, . . . , pn are the primes up to y; and w1, . . . , wn are positive integers. Applying Algorithm 5.3.2

to C and r = (−c+〈pw1
1 〉 , . . . ,−c+〈pwnn 〉) returns all integersm ∈ [−M,M ] such that σ(m+c, 〈pwii 〉) = 1

for many values of i, 1 ≤ i ≤ n. For each such m, the integer x = m + c satisfies x ∈ [c−M, c + M ]

and pwii | x for many values of i, 1 ≤ i ≤ n. This approach does not account for higher powers of

pi that possibly divide x ∈ Bc,M . Therefore, some integers that contain a y-smooth factor may be

missed. However, the following lemma implies that the approach does account for the contribution to

the factorisation of x ∈ Bc,M made by all prime powers pki such that 0 ≤ k ≤ wi:

Lemma 5.4.3. For an ideal a ⊆ OK , an element r ∈ OK , and a positive integer w, define

I = {µ(x) · (x− r) + ν(x) · a | µ, ν ∈ OK [x] and a ∈ aw}.

Suppose that c ∈ Iz, for some integer z ≥ 1. Then, given m ∈ OK , if σ is the largest integer such that

0 ≤ σ ≤ w and m− r ∈ aσ, it follows that c(m) ∈ aσz.

Proof. Let m ∈ OK , and define σ to be the largest integer such that 0 ≤ σ ≤ w and m− r ∈ aσ. For

all b ∈ I, it is clear that b(m) ∈ aσ. Therefore, given an integer z ≥ 1 and a polynomial c ∈ Iz, it

follows that c(m) ∈ aσz.

Throughout the remainder of the chapter, the following notation is used: given an ideal a ⊆ OK and

a positive integer w, define σ∗w(x, a), for x ∈ OK , to be the largest integer σ such that 0 ≤ σ ≤ w and

x ∈ aσ. Using this notation, the main algorithmic result of this section may be stated as follows:

Theorem 5.4.4. Let K be number field with [K : Q] = d that contains pairwise relatively prime ideals

p1, . . . , pn. Let w1, . . . , wn, z1, . . . , zn, l be positive integers and M be a positive real number. Then for

all c ∈ OK , Algorithm 5.3.2 can be used to find all x ∈ Bc,M such that

n∏
i=1

Np
σ∗wi (x,pi)zi
i > 2

d2(l+1)−d
4 d−d (l + 1)

d
2 M

dl
2

√
|DK |

(
n∏
i=1

Np
wi(zi+1

2 )
i

) 1
l+1

. (5.12)



5.4. Smooth Algebraic Integers in Number Fields 129

Proof. Let C be the NF-code based on K with parameters (n, pw1
1 , . . . , pwnn ;M,0). Then

Bc,M = {x ∈ OK | size(x− c) ≤M} = {m+ c | m ∈ OK and size(m) ≤M} = {m+ c | m ∈MC}.

By using Lemma 5.4.3 and adapting the proof of Theorem 5.3.6 accordingly, it follows that Algo-

rithm 5.3.2, when applied to C and vector (−c+ p1, . . . ,−c+ pn) ∈ OK/p1 × . . .×OK/pn, returns all

m ∈MC such that x = m+ c satisfies the conditions of the theorem.

Taking p1, . . . , pn to consist of all prime ideals in OK such that Npi ≤ y, and setting z1 = · · · = zn,

the algorithm described by Theorem 5.4.4 can be used to find x ∈ Bc,M such that NK(x) has a large

y-smooth factor. It should be noted that this method does not necessarily generate y-smooth elements.

Of course, an output x to the algorithm will be smooth whenever the smooth factor of NK(x) is equal

to NK(x) itself.

Remark 5.4.5. Boneh [25, Section 4] presented a generalisation of his CRT list decoding algorithm that takes

a low degree polynomial f ∈ Z[x] and returns integers x ∈ [U, V ] such that f(x) contains a large smooth factor.

It is possible to generalise Boneh’s approach to NF-codes in order to obtain an algorithm for finding x ∈ OK of

bounded size such that N 〈f(x)〉 contains a large smooth factor. Here the polynomial f now belongs to OK [x].

As discussed in Remark 5.3.7, such an algorithm has been obtained by Cohn and Heninger [38]. Additionally,

an analogous problem inside rings of the form Z[α], where α is an algebraic number, was previously considered

by Howgrave-Graham [79, Section 4.7].

In practice, it is often beneficial to choose the dimension of the lattice occurring in Algorithm 5.3.2

to suit the specific implementation of lattice reduction and available computational recourses. The

following corollary to Theorem 5.4.3 considers parameter selection when l is fixed:

Corollary 5.4.6. Let K be a number field with [K : Q] = d that contains pairwise relatively prime

ideals p1, . . . , pn. Let w1, . . . , wn, l be positive integers and M ≥ d be a real number. Then for any

c ∈ OK , Algorithm 5.3.2 can be used to find all x ∈ Bc,M such that

n∑
i=1

σ∗wi(x, pi) logNpi ≥

√√√√ dl

l + 1
(logM + log η(d, l))

n∑
i=1

wi logNpi +
1

l + 1

n∑
i=1

wi logNpi, (5.13)

where η(d, l) :=
(

2
d(l+1)−1

2 d−2(l + 1)|DK |
1
d

) 1
l
.

Proof. Let c ∈ OK and set zi = A, for 1 ≤ i ≤ n, where A ≥ 1 is an integer parameter to be

determined later. Then Theorem 5.4.4 implies that Algorithm 5.3.2 can be used to find all x ∈ Bc,M
such that

n∑
i=1

σ∗wi(x, pi) logNpi >
dl

2A
(logM + log η(d, l)) +

A+ 1

2(l + 1)

n∑
i=1

wi logNpi. (5.14)

Setting X = dl
2 (logM + log η(d, l)) and Y = 1

2(l+1)

∑n
i=1wi logNpi, the right hand side of the inequal-

ity becomes X/A+ (A+ 1)Y .



130 5. Smooth Elements in Number Fields

The discriminant DK is an integer. Thus

η(d, l) ≥
(

2d−
1
2d−2

) 1
l
>

1

d
, for all d ≥ 1 and l ≥ 1.

Therefore, X is positive and the right hand side of (5.14) is minimised for A =
√
X/Y . By setting

A =
⌈√

X/Y
⌉
, it follows that

X

A
+ (A+ 1)Y <

X√
X/Y

+ (
√
X/Y + 2)Y = 2

√
XY + 2Y.

Hence, with this choice of A, an element x ∈ Bc,M satisfies (5.14) whenever

n∑
i=1

σ∗wi(x, pi) logNpi ≥ 2
√
XY + 2Y.

Upon substitution of X and Y , this condition is found to be equivalent to (5.13).

Remark 5.4.7. Corollary 5.4.6 requires that the parameter M , which determines the volume of Bc,M , satisfy

the lower bound M ≥ d. If 0 ≤M < d, then Bc,M = {c}, for all c ∈ OK .

Corollary 5.4.6 admits bounds on the values of M for which Algorithm 5.3.2 can be used to find all

elements in Bc,M with norm containing a sufficiently large smooth factor. To end the section, two

examples of these bounds are presented. In each example, the ideals p1, . . . , pn are taken to consist

of all prime ideals in OK with norm less than 1000. Furthermore, the corresponding parameters

w1, . . . , wn are defined by

wi =

⌊
log 1000

logNpi

⌋
, for 1 ≤ i ≤ n. (5.15)

In each example, for l = 49, 99 and 999, an upper bound on M is provided such that, for any c ∈ OK ,

Algorithm 5.3.2 can be used to find all x ∈ Bc,M with
∏n
i=1 Np

σ∗wi (x,pi)

i ≥ 2500. To begin, the simplest

choice of number field K is considered, namely, K = Q.

Example 5.4.8. Let K = Q, then d = 1, DK = 1 and OK = Z. Moreover, n = 168 and
∏168
i=1 Npwii ≈

21437.9. Taking l = 49, for any c ∈ Z and M ≤ 2156.9, the algorithm performs reduction on a 50-

dimensional lattice and returns all integers x ∈ [c −M, c + M ] such that
∏168
i=1 Np

σ∗wi (x,pi)

i ≥ 2500.

The maximum size of the searchable interval is approximately 955 times larger than that previously

obtained by Boneh [25, Section 3]. However, the difference is due to improvements in the analysis and

parameter selection, rather than algorithmic improvements. For l = 99 and M ≤ 2165.0, all integers

x ∈ [c−M, c+M ] satisfying
∏168
i=1 Np

σ∗wi (x,pi)

i ≥ 2500 are found. Similarly, all such integers are found

for l = 999 and M ≤ 2172.5.

Example 5.4.9. Let K = Q(α), where α ∈ C is a root of the irreducible polynomial x3−x2 +1. Then

d = 3, DK = −23 and OK = Z[α]. Moreover, n = 171 and
∏171
i=1 Npwii ≈ 21470.2. Taking l = 49, for

any c ∈ OK and M ≤ 249.6, all x ∈ Bc,M satisfying
∏171
i=1 Np

σ∗wi (x,pi)

i ≥ 2500 are found. For l = 49, the



5.4. Smooth Algebraic Integers in Number Fields 131

algorithm performs reduction on a 150-dimensional lattice. For l = 99 and M ≤ 252.3, all x ∈ Bc,M
satisfying

∏171
i=1 Np

σ∗wi (x,pi)

i ≥ 2500 are found. Similarly, all such x ∈ Bc,M are found for l = 999 and

M ≤ 254.8. The upper bounds on M for l = 49, 99 and 999 are approximately the cube root of the

respective bounds in Example 5.4.8. This reduction is consistent with the increase in the product∏n
i=1 Npwii and the observation that |Bc,M | is approximately 2r1πr2√

|DK |
Md

d! ≈ 0.7M3, i.e, the cardinality

of Bc,M is approximately the cube of the number of integers in an interval of length 2M .

5.4.2 Bounds on Smooth Algebraic Integers in Number Fields

In this section, combinatorially and algorithmically derived bounds on the existence of smooth alge-

braic integers in a number field are obtained. Explicit examples of the bounds are then provided.

The results of this section are analogous to the combinatorial and algorithmic bounds on polynomial

generation derived in Section 4.3 and Section 4.4.2, respectively. To begin, combinatorial arguments

from Section 5.2 are extended to provide bounds on the number of algebraic integers in a number field

with norm containing a large smooth factor.

Theorem 5.4.10. Let K be a number field with [K : Q] = d that contains pairwise relatively prime

ideals p1, . . . , pn. Let w1, . . . , wn be positive integers and z1, . . . , zn be positive real numbers. Then for

all c ∈ OK and M ≥ d/2, there exist at most l elements x ∈ Bc,M such that

n∑
i=1

σ∗wi(x, pi)zi logNpi ≥

√√√√((1− 1

l

)
d log(2M/d) +

1

l

n∑
i=1

wi logNpi

)
n∑
i=1

z2
iwi logNpi. (5.16)

Proof. Set w = w1 + . . .+wn. Given c ∈ OK and M ≥ d/2, define C to be the set of all w-dimensional

vectors

((x− c) + p1, . . . , (x− c) + pw1
1 , . . . , (x− c) + pn, . . . , (x− c) + pwnn ) , for x ∈ Bc,M .

Similarly, define

(t1, . . . , tw) = (−c+ p1, . . . ,−c+ pw1
1 , . . . ,−c+ pn, . . . ,−c+ pwnn ).

Let α = (α1, . . . , αw) be viewed as having n blocks, with the ith block equal to the wi-dimensional

vector (logNpi, . . . , logNpi), for 1 ≤ i ≤ n. Similarly, let β = (β1, . . . , βw) be viewed as having n

blocks, with the ith block equal to the wi-dimensional vector (zi logNpi, . . . , zi logNpi), for 1 ≤ i ≤ n.

Then Lemma 4.3.1 implies there exist at most l vectors (x1, . . . , xw) ∈ C such that

∑
j:xj=tj

βj ≥

√√√√( n∑
i=1

wi logNpi −
(

1− 1

l

)
d(C)α

)
n∑
i=1

z2
iwi logNpi, (5.17)

where d(C)α is the minimum value, over all distinct pairs of vectors (x1, . . . , xw), (y1, . . . , yw) ∈ C, of



132 5. Smooth Elements in Number Fields

the sum
∑

j:xi 6=yj αj .

Suppose x, y ∈ Bc,M are distinct. Then (x−c)+pji = (y−c)+pji , for indices 1 ≤ i ≤ n and 1 ≤ j ≤ wi,
if and only if x− y ∈ pki , for 1 ≤ k ≤ j. Therefore, if (x1, . . . , xw) and (y1, . . . , yw) are the vectors in

C that correspond to x and y respectively, then

∑
j:xj 6=yj

αj =
n∑
i=1

wi logNpi −
n∑
i=1

σ∗wi(x− y, pi) logNpi ≥
n∑
i=1

wi logNpi − log |NK(x− y)|.

Furthermore,

|NK(x− y)| ≤ 1

dd
size(x− y)d ≤ 1

dd
(size(x− c) + size(y − c))d ≤

(
2M

d

)d
.

Since x and y were arbitrary distinct elements of Bc,M , it follows that d(C)α ≥
∑n

i=1wi logNpi −
d log(2M/d). Similar arguments can be used to show that an element x ∈ Bc,M , and its corresponding

vector (x1, . . . , xw) ∈ C, satisfy the relationship
∑

j:xj=tj
βj =

∑n
i=1 σ

∗
wi(x, pi) logNpi. Therefore, if

x ∈ Bc,M satisfies (5.16), then its corresponding vector (x1, . . . , xw) ∈ C satisfies (5.17). Hence, there

exist at most l elements x ∈ Bc,M such that (5.16) holds.

Each output of Algorithm 5.3.2 occurs as a root over K of the polynomial h ∈ OK [x] constructed in

Step 3. Consequently, the number of outputs of the algorithm is bounded by the degree of h, which is

at most l by construction. This observation is now used to obtain bounds on the number of elements in

a ball Bc,M with a large smooth factor, thus generalising those obtained by Boneh [25, Section 3.1] on

smooth integers in short intervals. Analogous arguments were used in Section 4.4.2 to provide bounds

on number field sieve polynomial generation. There the fact that every n-dimensional lattice Λ ⊂ Rn

contains a nonzero vector x satisfying ‖x‖2 ≤
√
γn det(Λ)1/n was used to provide tighter bounds. By

using similar arguments, the following bound is obtained:

Theorem 5.4.11. Let K be a number field with [K : Q] = d that contains pairwise relatively prime

ideals p1, . . . , pn. Let w1, . . . , wn, z1, . . . , zn, l be positive integers and M be a positive real number. For

c ∈ OK , there exist at most l elements x ∈ Bc,M such that

n∏
i=1

Np
σ∗wi (x,pi)zi
i > γ

d
2

d(l+1) d
−d(l + 1)

d
2 M

dl
2

√
|DK |

(
n∏
i=1

Np
wi(zi+1

2 )
i

) 1
l+1

.

The proof of Theorem 5.4.11 is omitted since it only requires trivial changes to the proofs of Theo-

rem 5.3.6 and Theorem 5.4.4. By careful selection of the weights z1, . . . , zn, the following corollary is

obtained:

Corollary 5.4.12. Let K be a number field with [K : Q] = d that contains pairwise relatively prime

ideals p1, . . . , pn. Let w1, . . . , wn be positive integers and M ≥ d be a real number. Then for any



5.4. Smooth Algebraic Integers in Number Fields 133

Table 5.1: Bounds for Example 5.4.13

M Corollary 5.4.12 Theorem 5.4.10

2100 10 19
2110 12 22
2120 14 25
2130 18 31
2140 23 40
2150 37 57
2160 59 100
2170 216 443

Table 5.2: Bounds for Example 5.4.14

M Corollary 5.4.12 Theorem 5.4.10

220 6 13
225 7 15
230 9 17
235 12 21
240 16 27
245 23 37
250 41 61
255 171 193

c ∈ OK and any integer l ≥ 1, there exist at most l elements x ∈ Bc,M such that

n∑
i=1

σ∗wi(x, pi) logNpi ≥

√√√√ dl

l + 1
(logM + log η(d, l))

n∑
i=1

wi logNpi +
1

l + 1

n∑
i=1

wi logNpi, (5.18)

where η(d, l) :=
(

(2d)−2 (d(l + 1) + 4) (l + 1) |DK |
1
d

) 1
l
.

The proof of the corollary is omitted as it is analogous to the proof of Corollary 5.4.6 of Theorem 5.4.4.

To end the section, examples of the bounds provided by Corollary 5.4.12 and Theorem 5.4.10 (with

z1 = . . . = zn) are compared. In each example, the ideals p1, . . . , pn are taken to consist of all prime

ideals in OK with Npi ≤ 1000; and w1, . . . , wn are chosen according to (5.15). Then bounds on the

number of elements x ∈ Bc,M with
∏n
i=1 Np

σ∗wi (x,pi)

i ≥ 2500, are provided for various values of M .

Example 5.4.13. Let K = Q. For various values of M , Table 5.1 contains bounds from Corol-

lary 5.4.12 and Theorem 5.4.10 on the number of x ∈ Bc,M such that
∏168
i=1 Np

σ∗wi (x,pi)

i ≥ 2500, for any

c ∈ Z. For M = 299, Corollary 5.4.12 implies that any interval I = [U, V ] of length V − U = 2100

contains at most 10 integers x ∈ I ∩ Z such that
∏168
i=1 Np

σ∗wi (x,pi)

i ≥ 2500. This improves upon the

previous bound of 15 obtained by Boneh [25, Section 3.1]. Once again, the improvement here is only

due to a more careful analysis. Note the large jump in the bounds for M = 2160 and M = 2170. For

M = 2171, 2172 and 2173, the bounds provided by Corollary 5.4.12 are 292, 450 and 976 respectively.

This rapid growth is consistent with Example 5.4.8 where diminishing returns were observed as the

lattice dimension increased.

Example 5.4.14. Let K = Q(α), where α ∈ C is a root of the irreducible polynomial x3 − x2 + 1.

For various values of M , Table 5.2 contains bounds from Corollary 5.4.12 and Theorem 5.4.10 on the

number of x ∈ Bc,M such that
∏171
i=1 Np

σ∗wi (x,pi)

i ≥ 2500, for any c ∈ OK .





Chapter 6

Conclusions and Future Research

The thesis was comprised of two parts: the first part, Chapters 2–4, concentrated on the polynomial

selection problem; the second, Chapter 5, investigated smooth elements in number fields. In this

concluding chapter, the original material presented in Chapters 3–5 of the thesis is summarised and

potential avenues for future research discussed.

Chapter 3: Nonlinear Polynomial Selection

Properties of the orthogonal lattice were studied and used to develop precise criteria for the selection

of geometric progressions in nonlinear algorithms. A family of geometric progressions containing those

already used in existing algorithms was characterised. The characterisation was then used to extend

existing nonlinear algorithms.

The partial characterisation of geometric progressions provided by Theorem 3.3.1 allowed extensions

to be made to the length d+1 construction of Koo–Jo–Kwon. The extensions led to the development of

a new polynomial generation algorithm (Algorithm 3.3.3) for which parameter selection was discussed.

Using the algorithm, it was shown that pairs of degree d ≥ 2 polynomials f1 and f2 may be found such

that ‖fi‖2,s = O(N (1/d)(d2−2d+2)/(d2−d+2)), for i = 1, 2, where s = Θ(N (2/d)/(d2−d+2)). The bound on

the coefficients matches that obtained by Montgomery’s algorithm, for d = 2 (which is optimal as a

consequence of Corollary 2.1.4); the Prest–Zimmermann algorithm, for d ≥ 2; and the Koo–Jo–Kwon

algorithm, for d ≥ 2. However, the increase in the parameter space of the new algorithm implies that

a greater number of geometric progressions may be constructed for any given N . As a result, it is

likely that polynomials with significantly smaller coefficients may be found with Algorithm 3.3.3 in

practice.

Analogous to the extensions made to the length d + 1 construction, the length d + 2 construction of

Koo, Jo and Kwon was also revisited and extended. This led to the development of a new polynomial

generation algorithm (Algorithm 3.4.2) for which it was shown that pairs of degree d ≥ 3 polynomials

135



136 6. Conclusions and Future Research

f1 and f2 may be found such that ‖fi‖2,s = O(N (1/d)(d2−4d+6)/(d2−3d+6)), for i = 1, 2, where s =

Θ(N (2/d)/(d2−3d+6)). For d = 3, the exponent of N is optimal as a consequence of Corollary 2.1.4.

However, as with the Koo–Jo–Kwon algorithms, the improvement in the exponent obtained over

the length d + 1 algorithm is offset, in part, by the additional complexity of determining suitable

parameters. The problem of determining parameters that meet the requirements of Section 3.4.1

requires further attention.

The area in which nonlinear algorithms have the greatest capacity for improvement is the construction

of small geometric progressions. However, the algorithms in Chapter 3 both exploited features particu-

lar to the geometric progressions they used in order to guarantee that two degree d polynomials could

be found. Therefore, the development of improved methods for generating geometric progressions

may, in turn, necessitate the development of alternate methods to address this problem. In fact, the

development of a mechanism that ensures two degree d polynomials can be found is of independent

interest, since addressing the problem severely limited the choice of skews in analyses of Section 3.3.1

and Section 3.4.1. Finally, such a mechanism may also aid in the development of nonlinear algorithms

that produce polynomial pairs with distinct degrees.

Chapter 4: An Approach to Polynomial Selection

A new approach to the problem of generating polynomials with a good combination of size and root

properties was developed. The approach, which shares more in common with the list decoding al-

gorithms for algebraic codes than previous polynomial generation algorithms, exploits much of the

underlying algebraic structure of the polynomial selection problem. An initial realisation of the ap-

proach (Algorithm 4.4.2) was provided and analysed. In addition, combinatorially and algorithmically

derived bounds on the existence of number field sieve polynomials with small coefficients and good

non-projective root properties were obtained. Finally, possible improvements and generalisations of

the new approach were discussed, demonstrating its flexibility.

The development of the approach to polynomial generation was underpinned by the study of the

divisibility properties of univariate resultants. By furthering this study, it may possible to exploit

more of the underlying algebraic structure of the problem. In particular, it may be possible to

modify the approach to account for projective root properties. In addition to potentially affording

improvements to the approach to polynomial generation, the study of the divisibility properties of

univariate resultants is of independent interest. It is likely that the results of Section 4.2 are open to

generalisation.

The combinatorial results of Section 4.3 provide the first examples of bounds on the existence of number

field sieve polynomials with constrained size and root properties. In Section 4.4.1, the bounds were

useful in assessing the performance of Algorithm 4.4.2. However, bounds on the existence of number

field polynomials are of independent interest. For example, such bounds may assist in determining at



137

which point to terminate the search for polynomials and progress to the sieve stage of the number field

sieve, thus helping to minimise wasted effort. Explicit examples of the bounds derived in Section 4.3

were provided in Example 4.3.5. There the bounds were only applicable with extremely restrictive

requirements on the size of the polynomials. It may be possible to extend these bound to greater

ranges of interest by applying finer combinatorial arguments (see Remark 4.3.3). Corollary 4.3.6

provided a condition under which the approach to polynomial generation described in Section 4.1 is

combinatorially feasible. The natural question on the optimality of the condition arises immediately.

The problem of answering this question is left for future investigation.

The realisation of the approach to polynomial generation yielded an algorithm (Algorithm 4.4.2)

that differs significantly from previous algorithms for polynomial generation. The most significant

difference, and a major feature of the approach, is the algorithm’s simultaneous, rather than sequential,

consideration of size and root properties. Additionally, for each choice of parameters, the algorithm

is guaranteed to find all polynomials with sufficiently good size and root properties. In Section 4.4.1,

parameter selection for Algorithm 4.4.2 in the presence of real weights was considered. Comparison

with the combinatorial bounds suggested that the algorithm does not perform optimally. Moreover,

examples of parameter selection, under a natural choice of weights, suggested that the algorithms

complexity is too large to justify its practical application. To address this problem, possible avenues for

generalising the approach of Section 4.1, and improving its realisation, were described in Section 4.5.

There it was shown that a small departure from the approach (for example, the introduction of a

special-q) can have a large effect on its complexity.

In practical circumstances, the average-case behaviour of a polynomial generation algorithm is rel-

evant. Thus, it may be worthwhile to investigate average-case behaviour of Algorithm 4.4.2, either

theoretically or by computational experiments. The worst-case behaviour of Algorithm 4.4.2 was es-

timated in Theorem 4.4.3, which may be rather pessimistic when compared with the average-case

behaviour. For example, the proof of Theorem 4.4.3 applies a bound on the first basis vector in an

LLL-reduced basis (Theorem 3.1.2), which holds for all lattices. However, Algorithm 4.4.2 applies

LLL-reduction to lattices which are not random and, in some sense, highly structured. Thus, the

general bound on the shortest vector may not reflect average-case behaviour. A second example is

provided by the bound on the resultant from Lemma 2.1.3, which is also applied in the proof of The-

orem 4.4.3. At is core, Lemma 2.1.3 is simply an application of Hadamard’s inequality. Although

Hadamard’s inequality is tight, in the sense that it is attainable for all dimensions, the inequality

does not reflect average-case behaviour [1, 2]: roughly speaking and for large n, the determinant of an

n × n real matrix is smaller than the Hadamard bound by roughly a factor of e−n/2 4
√

4e on average

[2, Lemma 3.2]. Thus, it may hold that the upper bound on the resultant in Lemma 2.1.3 is rather

pessimistic on average, for polynomials with large degree sum. Further investigation is required to

determine whether this is true, since the proof of Lemma 2.1.3 applies Hadamard’s inequality to bound

the determinant Sylvester matrices only.



138 6. Conclusions and Future Research

Very little is know about the existence of number field sieve polynomials with specified size and roots

properties. Consequently, for many of the algorithms discussed in Chapter 4, it is not clear under

which choices of parameters an algorithm will return a non-empty set of polynomials. This problem

may have negative consequences in practical circumstances (see Remark 4.4.5). As a result, it is of

theoretical and practical interest to provide existence results for number field sieve polynomials with

specified size and roots properties.

An algorithm based on the approach of Section 4.1 is, in principle, capable of generating more than

two number field sieve polynomials with a common root modulo N . Therefore, the approach may

naturally lend itself to addressing the polynomial selection problem for multiple polynomial versions

of the number field sieve [40, 55], for which little is known. The utility of the approach in this setting

requires further investigation.

The methods of Section 4.5.3 were noted to have potential applications outside the polynomial selection

problem. In particular, the possibility of applying the methods in new attacks on RSA, and to

solve factorisation problems, was raised. Apart from being of independent interest, furthering the

development of methods from Section 4.5.3 within either of these settings may be beneficial to the

future development of polynomial generation algorithms.

Chapter 5: Smooth Elements in Number Fields

The list decoding for CRT codes was generalised to number fields, providing the first algorithm (Al-

gorithm 5.3.2) for solving the weighted list decoding problem for NF-codes. The decoding algorithm

then played a central role in the development of an algorithm for finding algebraic integers in a number

field with norm containing a large smooth factor. Finally, bounds on the existence of such elements

were derived.

For number fields other than Q, the error-correction performance of the list decoding algorithm was

shown not to meet the bound for which decoding is combinatorially feasible. The difference between

the error-correction performance and the combinatorial bound results from the loss of structure that

occurs when the space of polynomials of bounded degree in
⋂n
i=1 I

zi
i is treated as a Z-module rather

than an OK-module. This observation explains why the difference depends on the degree of the

number field only. It may be possible to obtain an algorithm that meets the combinatorial bound by

considering this additional structure. Unfortunately, there is no known analogue of the LLL algorithm

for arbitrary OK-modules that admits bounds on the lengths of the basis vectors (however, some

results have been obtained in this direction [58, 127, 60]). Hence, exploiting the full structure of

OK-modules in this setting appears to be a nontrivial problem.

In Chapter 5, smooth elements in number fields were studied in a general setting, i.e., not within

the context of the number field sieve. A partial connection with the sieve stage of the number field

sieve is established by restricting attention to first degree prime ideals. However, the results of the



139

chapter are stated for elements of a ball Bc,M , rather than elements corresponding to the sieve region.

Therefore, the performance of the algorithm for finding smooth elements and sieving are not directly

comparable. As a result, further investigation is required to determine whether it is worthwhile to use

an approach based on the methods of Chapter 5 in place of sieving. In particular, it may be worthwhile

to investigate average-case behaviour of the approach, which is relevant in practical circumstances, and

to determine for which parameters the algorithms discussed in Section 5.4.1 have nonempty output.

A major theme throughout the thesis was the utility of applying decoding algorithms for algebraic

error-correcting codes to problems of finding elements in a ring with a smooth representation. In

addition to the cited examples of Cheng and Wan [35], and Boneh [25], the results of Chapter 5 and

Chapter 4 provided further evidence toward this claim.





References

[1] John Abbott, Manuel Bronstein, and Thom Mulders. Fast deterministic computation of deter-

minants of dense matrices. In Proceedings of the 1999 International Symposium on Symbolic and

Algebraic Computation (Vancouver, BC), pages 197–204 (electronic), New York, 1999. ACM.

[2] John Abbott and Thom Mulders. How tight is Hadamard’s bound? Experiment. Math.,

10(3):331–336, 2001.

[3] Leonard M. Adleman. Factoring numbers using singular integers. In STOC ’91: Proceedings of

the twenty-third annual ACM symposium on Theory of computing, pages 64–71, New York, NY,

USA, 1991. ACM.

[4] A.C. Aitken. Determinants and Matrices. Oliver and Boyd, Edinburgh, ninth edition, 1956.

[5] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector

problem. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,

pages 601–610 (electronic), New York, 2001. ACM.

[6] W.R. Alford and Carl Pomerance. Implementing the self initializing quadratic sieve on a dis-

tributed network. In Number Theoretic and Algebraic Methods in Computer Science, Proc.

of Int’l Moscow Conference, June-July, 1993, (A. J. van der Poorten, I. Shparlinski, H. G.

Zimmer, eds.), pages 163–174. World Scientific, 1996.

[7] Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K. Lenstra, and Dag Arne Osvik. A

kilobit special number field sieve factorization. In Advances in cryptology—ASIACRYPT 2007,

volume 4833 of Lecture Notes in Comput. Sci., pages 1–12. Springer, Berlin, 2007.

[8] François Apéry and Jean-Pierre Jouanolou. Élimination – Le cas d’une variable. Mathématiques

LMD–Master. Hermann, Paris, 2006.

[9] Tom M. Apostol. Introduction to analytic number theory. Springer-Verlag, New York, 1976.

Undergraduate Texts in Mathematics.

[10] Eric Bach and René Peralta. Asymptotic semismoothness probabilities. Math. Comp.,

65(216):1701–1715, 1996.

141



142 References

[11] Friedrich Bahr, M. Böhm, Jens Franke, and Thorsten Kleinjung. Factorization of RSA-200.

http://www.loria.fr/∼zimmerma/records/rsa200, May 2005.

[12] Shi Bai, Richard P. Brent, and Emmanuel Thomé. Root optimization of polynomials in the

number field sieve. ArXiv e-Print archive, arXiv:1212.1958 [math.NT], December 2012. http:

//arxiv.org/abs/1212.1958.

[13] Aurélie Bauer and Antoine Joux. Toward a rigorous variation of Coppersmith’s algorithm on

three variables. In Advances in cryptology—EUROCRYPT 2007, volume 4515 of Lecture Notes

in Comput. Sci., pages 361–378. Springer, Berlin, 2007.

[14] Karim Belabas. A relative van Hoeij algorithm over number fields. J. Symbolic Comput.,

37(5):641–668, 2004.

[15] Karim Belabas. Topics in computational algebraic number theory. J. Théor. Nombres Bordeaux,

16(1):19–63, 2004.

[16] Karim Belabas, Mark van Hoeij, Jürgen Klüners, and Allan Steel. Factoring polynomials over

global fields. J. Théor. Nombres Bordeaux, 21(1):15–39, 2009.

[17] Edward A. Bender and E. Rodney Canfield. An approximate probabilistic model for structured

Gaussian elimination. J. Algorithms, 31(2):271–290, 1999.

[18] Daniel J. Bernstein. Reducing lattice bases to find small-height values of univariate polynomials.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of

Math. Sci. Res. Inst. Publ., pages 421–446. Cambridge Univ. Press, Cambridge, 2008.

[19] Daniel J. Bernstein and Arjen K. Lenstra. A general number field sieve implementation. In The

development of the number field sieve, volume 1554 of Lecture Notes in Math., pages 103–126.

Springer, Berlin, 1993.

[20] Étienne Bézout. Recherches sur le degré des équations résultantes de l’évanouissement des

inconnues, et sur les moyens qu’il convient d’employer pour trouver ces équations. Mém. Acad.

Roy. Sci. Paris, pages 288–338, 1764.

[21] Johannes Blömer and Alexander May. Low secret exponent RSA revisited. In Cryptography

and lattices (Providence, RI, 2001), volume 2146 of Lecture Notes in Comput. Sci., pages 4–19.

Springer, Berlin, 2001.

[22] Henk Boender. The number of relations in the quadratic sieve algorithm. Technical report,

Department of Numerical Mathematics, Centrum voor Wiskunde en Informatica, Amsterdam,

1996.

[23] Henk Boender. Factoring large integers with the quadratic sieve. PhD thesis, University of

Leiden, 1997.



References 143

[24] Henk Boender and Herman J. J. te Riele. Factoring integers with large-prime variations of the

quadratic sieve. Experiment. Math., 5(4):257–273, 1996.

[25] Dan Boneh. Finding smooth integers in short intervals using CRT decoding. J. Comput. System

Sci., 64(4):768–784, 2002. Special issue on STOC 2000 (Portland, OR).

[26] John Brillhart, Michael Filaseta, and Andrew Odlyzko. On an irreducibility theorem of A. Cohn.

Canad. J. Math., 33(5):1055–1059, 1981.

[27] J. A. Buchmann and Hendrik W. Lenstra, Jr. Approximating rings of integers in number fields.

J. Théor. Nombres Bordeaux, 6(2):221–260, 1994.

[28] Johannes Buchmann. A subexponential algorithm for the determination of class groups and

regulators of algebraic number fields. In Séminaire de Théorie des Nombres, Paris 1988–1989,

volume 91 of Progr. Math., pages 27–41. Birkhäuser Boston, Boston, MA, 1990.

[29] J. P. Buhler, Hendrik W. Lenstra, Jr., and Carl Pomerance. Factoring integers with the number

field sieve. In The development of the number field sieve, volume 1554 of Lecture Notes in Math.,

pages 50–94. Springer, Berlin, 1993.

[30] E. R. Canfield, Paul Erdős, and Carl Pomerance. On a problem of Oppenheim concerning

“factorisatio numerorum”. J. Number Theory, 17(1):1–28, 1983.

[31] J. W. S. Cassels. An introduction to the geometry of numbers. Springer-Verlag, Berlin, 1971.

Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 99.

[32] Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Montgomery, Brian

Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gérard Guillerm, Paul Leyland, Joël

Marchand, François Morain, Alec Muffett, Chris Putnam, Craig Putnam, and Paul Zimmer-

mann. Factorization of a 512-bit rsa modulus. In Proceedings of the 19th international conference

on Theory and application of cryptographic techniques, EUROCRYPT’00, pages 1–18, 2000.

[33] Stefania Cavallar, Walter Lioen, Herman te Riele, Bruce Dodson, Arjen Lenstra, Paul Leyland,

Peter L. Montgomery, Brian Murphy, and Paul Zimmermann. Factorization of RSA-140 using

the number field sieve. In In Advances in Cryptology, Asiacrypt’99, pages 195–207. Springer-

Verlag, 1999.

[34] A. Cayley. Note sur la méthode d’élimination de bezout. J. Reine Angew. Math., 53:366–367,

1857.

[35] Qi Cheng and Daqing Wan. On the list and bounded distance decodability of Reed-Solomon

codes. SIAM J. Comput., 37(1):195–209 (electronic), 2007.

[36] Henri Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts

in Mathematics. Springer-Verlag, Berlin, 1993.



144 References

[37] Henri Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 2000.

[38] Henry Cohn and Nadia Heninger. Ideal forms of Coppersmith’s theorem and Guruswami-Sudan

list decoding. ArXiv e-Print archive, arXiv:1008.1284v1 [math.NT], August 2010. http://

arxiv.org/abs/1008.1284.

[39] Scott P. Contini. Factoring integers with the self-initializing quadratic sieve. Master’s thesis, U.

Georgia, 1997.

[40] Don Coppersmith. Modifications to the number field sieve. J. Cryptology, 6(3):169–180, 1993.

[41] Don Coppersmith. Solving linear equations over GF(2): block Lanczos algorithm. Linear Algebra

Appl., 192:33–60, 1993. Computational linear algebra in algebraic and related problems (Essen,

1992).

[42] Don Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiedemann

algorithm. Math. Comp., 62(205):333–350, 1994.

[43] Don Coppersmith. Finding a small root of a univariate modular equation. In Advances in

cryptology—EUROCRYPT ’96 (Saragossa, 1996), volume 1070 of Lecture Notes in Comput.

Sci., pages 155–165. Springer, Berlin, 1996.

[44] Jean-Marc Couveignes. Computing a square root for the number field sieve. In The development

of the number field sieve, volume 1554 of Lecture Notes in Math., pages 95–102. Springer, Berlin,

1993.

[45] James Cowie, Bruce Dodson, R. Marije Elkenbracht-Huizing, Arjen K. Lenstra, Peter L. Mont-

gomery, and Jörg Zayer. A World Wide number field sieve factoring record: on to 512 bits. In

Advances in cryptology—ASIACRYPT ’96 (Kyongju), volume 1163 of Lecture Notes in Comput.

Sci., pages 382–394. Springer, Berlin, 1996.

[46] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate

Texts in Mathematics. Springer, New York, third edition, 2007. An introduction to computa-

tional algebraic geometry and commutative algebra.

[47] Nicholas Coxon. On nonlinear polynomial selection for the number field sieve. ArXiv e-Print

archive, arXiv:1109.6398 [math.NT], September 2010. http://arxiv.org/abs/1109.6398.

[48] Nicholas Coxon. List decoding of number field codes. Designs, codes and cryptography, 2013.

doi:10.1007/s10623-013-9803-x.

[49] Richard Crandall and Carl Pomerance. Prime numbers: A computational perspective. Springer,

New York, second edition, 2005.



References 145

[50] Alicia Dickenstein and Ioannis Z. Emiris, editors. Solving polynomial equations, volume 14

of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2005. Foundations,

algorithms, and applications.

[51] K. Dickman. On the frequency of numbers containing prime factors of a certain relative magni-

tude. Ark. Mat., Astronomi och Fysik, 22A(10):1–4, 1930.

[52] John D. Dixon. Asymptotically fast factorization of integers. Math. Comp., 36(153):255–260,

1981.

[53] Peter Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of

Electronics, MIT, 1957.

[54] Marije Elkenbracht-Huizing. An implementation of the number field sieve. Experiment. Math.,

5(3):231–253, 1996.

[55] Marije Elkenbracht-Huizing. A multiple polynomial general number field sieve. In Algorithmic

number theory (Talence, 1996), volume 1122 of Lecture Notes in Comput. Sci., pages 99–114.

Springer, Berlin, 1996.

[56] R.-M. Elkenbracht-Huizing, Peter L. Montgomery, R. D. Silverman, R. K. Wackerbarth, and

S. S. Wagstaff, Jr. The number field sieve on many computers. In Number theory (Ottawa, ON,

1996), volume 19 of CRM Proc. Lecture Notes, pages 81–85. Amer. Math. Soc., Providence, RI,

1999.

[57] Leonhard Euler. Introductio in analysin infinitorum, Tom. 2. Lausanne, 1748.

[58] C. Fieker and M. E. Pohst. On lattices over number fields. In Algorithmic number theory

(Talence, 1996), volume 1122 of Lecture Notes in Comput. Sci., pages 133–139. Springer, Berlin,

1996.

[59] Claus Fieker and Carsten Friedrichs. On reconstruction of algebraic numbers. In Algorithmic

number theory (Leiden, 2000), volume 1838 of Lecture Notes in Comput. Sci., pages 285–296.

Springer, Berlin, 2000.

[60] Ying Hung Gan, Cong Ling, and Wai Ho Mow. Complex lattice reduction algorithm for low-

complexity full-diversity MIMO detection. IEEE Trans. Signal Process., 57(7):2701–2710, 2009.

[61] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and multidi-

mensional determinants. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston,

MA, 1994.

[62] Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with errors. IEEE Trans.

Inform. Theory, 46(4):1330–1338, 2000.



146 References

[63] Domingo Gomez, Jaime Gutierrez, Álvar Ibeas, and David Sevilla. Common factors of resultants

modulo p. Bull. Aust. Math. Soc., 79(2):299–302, 2009.

[64] Daniel M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete

Math., 6(1):124–138, 1993.

[65] Jason E. Gower. Rotations and translations of number field sieve polynomials. In Advances in

Cryptology - ASIACRYPT 2003, pages 302–310, 2003.

[66] Andrew Granville. Smooth numbers: computational number theory and beyond. In Algorithmic

number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res.

Inst. Publ., pages 267–323. Cambridge Univ. Press, Cambridge, 2008.

[67] Venkatesan Guruswami. Constructions of codes from number fields. IEEE Trans. Inform.

Theory, 49(3):594–603, 2003.

[68] Venkatesan Guruswami. List Decoding of Error-Correcting Codes: Winning Thesis of the 2002

ACM Doctoral Dissertation Competition, volume 3282 of Lecture Notes in Computer Science.

Springer, New York, 2004.

[69] Venkatesan Guruswami, Amit Sahai, and Madhu Sudan. “Soft-decision” decoding of Chinese

remainder codes. In 41st Annual Symposium on Foundations of Computer Science (Redondo

Beach, CA, 2000), pages 159–168. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

[70] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-

geometry codes. IEEE Trans. Inform. Theory, 45(6):1757–1767, 1999.

[71] Venkatesan Guruswami and Madhu Sudan. Extensions to the Johnson bound (manuscript).

2001.

[72] Jacques Hadamard. Résolution dune question relative aux déterminants. Bull. des Sci. Math.,

17:240–246, 1893.

[73] Helmut Hasse. Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit

vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math., 175:50–

54, 1936.

[74] George Havas, Bohdan S. Majewski, and Keith R. Matthews. Extended GCD and Hermite

normal form algorithms via lattice basis reduction. Experiment. Math., 7(2):125–136, 1998.

[75] Mathias Herrmann, Alexander May, and Maike Ritzenhofen. Polynomial selection using lat-

tices. Slides presented at the CITS Workshop on Factoring Large Integers, Ruhr-Universität

Bochum, Germany, 2009. 65 pages, available at http://www.cits.rub.de/imperia/md/content/

may/factoring2009/herrmann.pdf



References 147

[76] M. J. Hinek. New partial key exposure attacks on RSA revisited. Technical report, Centre for

Applied Cryptographic Research, University of Waterloo, March 2004.

[77] M. J. Hinek. Small private exponent partial key-exposure attacks on multiprime RSA. Technical

report, Centre for Applied Cryptographic Research, University of Waterloo, May 2005.

[78] Nicholas Howgrave-Graham. Finding small roots of univariate modular equations revisited.

In Cryptography and coding (Cirencester, 1997), volume 1355 of Lecture Notes in Computer

Science, pages 131–142. Springer, Berlin, 1997.

[79] Nicholas Howgrave-Graham. Computational Mathematics Inspired by RSA. PhD thesis, Uni-

versity of Bath (UK), 1998.

[80] C.G.J. Jacobi. De eliminatione variabilis e duabus aequationibus algebraicis. J. Reine Angew.

Math., 15:101–124, 1836.

[81] Přemysl Jedlička. Integral minimisation improvement for Murphy’s polynomial selection algo-

rithm. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 18(2):125–130, 2010.

[82] Ellen Jochemsz and Alexander May. A polynomial time attack on RSA with private CRT-

exponents smaller than N0.073. In Advances in cryptology—CRYPTO 2007, volume 4622 of

Lecture Notes in Comput. Sci., pages 395–411. Springer, Berlin, 2007.

[83] Selmer M. Johnson. A new upper bound for error-correcting codes. IRE Trans., IT-8:203–207,

1962.

[84] Selmer M. Johnson. Improved asymptotic bounds for error-correcting codes. IEEE Trans.

Information Theory, IT-9:198–205, 1963.

[85] Jean-Pierre Jouanolou. Le formalisme du résultant. Adv. Math., 90(2):117–263, 1991.

[86] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren. The number field sieve

in the medium prime case. In Advances in cryptology—CRYPTO 2006, volume 4117 of Lecture

Notes in Comput. Sci., pages 326–344. Springer, Berlin, 2006.

[87] Erich Kaltofen. On the complexity of finding short vectors in integer lattices. In Computer

algebra (London, 1983), volume 162 of Lecture Notes in Comput. Sci., pages 236–244. Springer,

Berlin, 1983.

[88] Ravi Kannan. Algorithmic geometry of numbers. In Annual review of computer science, Vol. 2,

pages 231–267. Annual Reviews, Palo Alto, CA, 1987.

[89] Deepak Kapur and Tushar Saxena. Comparison of various multivariate resultant formulations.

In Proceedings of the 1995 international symposium on symbolic and algebraic computation,

ISSAC ’95, pages 187–194, New York, NY, USA, 1995. ACM.



148 References

[90] Thorsten Kleinjung. Polynomial selection. Slides presented at the CADO workshop, Nancy,

France, 2008. 30 pages, available at http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf.

[91] Thorsten Kleinjung. On polynomial selection for the general number field sieve. Math. Comp.,

75(256):2037–2047 (electronic), 2006.

[92] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Lenstra, Emmanuel Thomé, Joppe

Bos, Pierrick Gaudry, Alexander Kruppa, Peter Montgomery, Dag Arne Osvik, Herman te Riele,

Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA modulus. In CRYPTO

2010 Advances in Cryptology - CRYPTO 2010 (Santa Barbara, USA, 2010), T. Rabin, Ed.,

volume 6223 of Lecture Notes in Comput. Sci., pages 333–350. Springer-Verlag, Berlin, 2010.

[93] Donald E. Knuth. The art of computer programming. Vol. 2: Seminumerical algorithms.

Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.

[94] Donald E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley Publishing Co.,

Reading, Mass., second edition, 1981. Seminumerical algorithms, Addison-Wesley Series in

Computer Science and Information Processing.

[95] Donald E. Knuth and Luis Trabb Pardo. Analysis of a simple factorization algorithm. Theoret.

Comput. Sci., 3(3):321–348, 1976/77.

[96] Sergei V. Konyagin and Igor E. Shparlinski. Character sums with exponential functions and

their applications, volume 136 of Cambridge Tracts in Mathematics. Cambridge University

Press, Cambridge, 1999.

[97] Namhun Koo, Gooc Hwa Jo, and Soonhak Kwon. On nonlinear polynomial selection and geo-

metric progression (mod N) for number field sieve. Cryptology ePrint Archive, Report 2011/292,

2011. http://eprint.iacr.org/2011/292.pdf.

[98] B. LaMacchia and A. Odlyzko. Solving large sparse linear systems over finite fields. In Al-

fred Menezes and Scott Vanstone, editors, Advances in Cryptology-CRYPT0 90, volume 537 of

Lecture Notes in Computer Science, pages 109–133. Springer Berlin / Heidelberg, 1991.

[99] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York,

third edition, 2002.

[100] D. H. Lehmer and R. E. Powers. On factoring large numbers. Bull. Amer. Math. Soc., 37(10):770–

776, 1931.

[101] Gottfried Wilhelm Leibniz. Draft letter to Tschirnhaus (1683). In Der Briefwechsel von Gottfried

Wilhelm Leibniz mit Mathematikern, Herausgegeben von C. I. Gerhardt, pages xxviii+761 pp.

(1 insert). Georg Olms Verlagsbuchhandlung, Hildesheim, 1962.



References 149

[102] Arjen K. Lenstra and Hendrik. W. Lenstra, Jr., editors. The development of the number field

sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.

[103] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with

rational coefficients. Math. Ann., 261(4):515–534, 1982.

[104] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field

sieve. In The development of the number field sieve, volume 1554 of Lecture Notes in Math.,

pages 11–42. Springer, Berlin, 1993.

[105] Arjen K. Lenstra and M. S. Manasse. Factoring with two large primes. Math. Comp.,

63(208):785–798, 1994.

[106] Hendrik W. Lenstra, Jr. Codes from algebraic number fields. In Mathematics and computer

science, II (Amsterdam, 1986), volume 4 of CWI Monogr., pages 95–104. North-Holland, Ams-

terdam, 1986.

[107] Hendrik W. Lenstra, Jr. Algorithms in algebraic number theory. Bull. Amer. Math. Soc. (N.S.),

26(2):211–244, 1992.

[108] Hendrik W. Lenstra, Jr. Lattices. In Algorithmic number theory: lattices, number fields, curves

and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 127–181. Cambridge Univ.

Press, Cambridge, 2008.

[109] Hendrik W. Lenstra, Jr. Solving the Pell equation. In Algorithmic number theory: lattices,

number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 1–23.

Cambridge Univ. Press, Cambridge, 2008.

[110] Hendrik W. Lenstra, Jr. and Carl Pomerance. A rigorous time bound for factoring integers. J.

Amer. Math. Soc., 5(3):483–516, 1992.

[111] Paul Leyland, Arjen Lenstra, Bruce Dodson, Alec Muffett, and Sam Wagstaff. MPQS with three

large primes. In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in

Comput. Sci., pages 446–460. Springer, Berlin, 2002.

[112] Francis S. Macaulay. The algebraic theory of modular systems, volume 19 of Cambridge tracts

in mathematics and mathematical physics. Cambridge University Press, Cambridge, 1916.

[113] David M. Mandelbaum. On a class of arithmetic codes and a decoding algorithm. IEEE Trans.

Information Theory, IT-22(1):85–88, 1976.

[114] Daniel A. Marcus. Number fields. Springer-Verlag, New York, 1977. Universitext.

[115] Jacques Martinet. Perfect lattices in Euclidean spaces, volume 327 of Grundlehren der Mathe-

matischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,

Berlin, 2003.



150 References

[116] Alexander May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, Uni-

versity of Paderborn, 2003.

[117] Alexander May. Using LLL-reduction for solving RSA and factorization problems. In Phong Q.

Nguyen and Brigitte Vallée, editors, The LLL Algorithm, Information Security and Cryptogra-

phy, pages 315–348. Springer Berlin Heidelberg, 2010.

[118] John Milnor and Dale Husemoller. Symmetric bilinear forms. Springer-Verlag, New York, 1973.

Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73.

[119] Peter L. Montgomery. Small geometric progressions modulo n. Unpublished note of 2 pages,

December 1993.

[120] Peter L. Montgomery. Square roots of products of algebraic numbers. In Mathematics of Com-

putation 1943–1993: a half-century of computational mathematics (Vancouver, BC, 1993), vol-

ume 48 of Proc. Sympos. Appl. Math., pages 567–571. Amer. Math. Soc., Providence, RI, 1994.

[121] Peter L. Montgomery. A block Lanczos algorithm for finding dependencies over GF(2). In

Advances in cryptology—EUROCRYPT ’95 (Saint-Malo, 1995), volume 921 of Lecture Notes in

Comput. Sci., pages 106–120. Springer, Berlin, 1995.

[122] Peter L. Montgomery. Searching for higher-degree polynomials for the general number field sieve.

Power-Point presentation, 34 pages, available at http://www.ipam.ucla.edu/publications/scws1/

scws1 6223.ppt, 2006.

[123] Michael A. Morrison and John Brillhart. A method of factoring and the factorization of F7.

Math. Comp., 29:183–205, 1975. Collection of articles dedicated to Derrick Henry Lehmer on

the occasion of his seventieth birthday.

[124] Brian Murphy and Richard P. Brent. On quadratic polynomials for the number field sieve.

In Computing theory ’98 (Perth), volume 20 of Aust. Comput. Sci. Commun., pages 199–213.

Springer, Singapore, 1998.

[125] Brian A. Murphy. Modelling the yield of number field sieve polynomials. In Algorithmic number

theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages 137–150.

Springer, Berlin, 1998.

[126] Brian A. Murphy. Polynomial selection for the number field sieve integer factorisation algorithm.

PhD thesis, Australian National University, July 1999.

[127] Huguette Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. J.

Théor. Nombres Bordeaux, 8(2):387–396, 1996.

[128] W ladys law Narkiewicz. Elementary and analytic theory of algebraic numbers. Springer Mono-

graphs in Mathematics. Springer-Verlag, Berlin, third edition, 2004.



References 151

[129] Phong Nguyen. A Montgomery-like square root for the number field sieve. In Algorithmic

number theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages

151–168. Springer, Berlin, 1998.

[130] Phong Nguyen and Jacques Stern. Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone

cryptosystem based on group factorizations. In Advances in cryptology—CRYPTO ’97 (Santa

Barbara, CA, 1997), volume 1294 of Lecture Notes in Comput. Sci., pages 198–212. Springer,

Berlin, 1997.

[131] Phong Q. Nguyen and Damien Stehlé. Floating-point LLL revisited. In Advances in cryptology—

EUROCRYPT 2005, volume 3494 of Lecture Notes in Comput. Sci., pages 215–233. Springer,

Berlin, 2005.

[132] Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity. SIAM J.

Comput., 39(3):874–903, 2009.

[133] Phong Q. Nguyen and Damien Stehlé. Low-dimensional lattice basis reduction revisited. ACM

Trans. Algorithms, 5(4):Art. 46, 48, 2009.

[134] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL algorithm: Survey and Applications.

Information Security and Cryptography. Springer-Verlag, Berlin, 2010.

[135] J. E. Nymann. The distribution of relatively r-prime integers in residue classes. Rocky Mountain

J. Math., 22(4):1473–1482, 1992.

[136] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In

Advances in cryptology (Paris, 1984), volume 209 of Lecture Notes in Comput. Sci., pages 224–

314. Springer, Berlin, 1985.

[137] René Peralta. A quadratic sieve on the n-dimensional cube. In Advances in cryptology—

CRYPTO ’92 (Santa Barbara, CA, 1992), volume 740 of Lecture Notes in Comput. Sci., pages

324–332. Springer, Berlin, 1993.

[138] Michael Peterson and Chris Monico. F2 Lanczos revisited. Linear Algebra Appl., 428(4):1135–

1150, 2008.

[139] M. Pohst and H. Zassenhaus. Algorithmic algebraic number theory, volume 30 of Encyclopedia

of Mathematics and its Applications. Cambridge University Press, Cambridge, 1989.

[140] Michael E. Pohst. A modification of the LLL reduction algorithm. J. Symbolic Comput.,

4(1):123–127, 1987.

[141] J. M. Pollard. Factoring with cubic integers. In The development of the number field sieve,

volume 1554 of Lecture Notes in Math., pages 4–10. Springer, Berlin, 1993.



152 References

[142] J. M. Pollard. The lattice sieve. In The development of the number field sieve, volume 1554 of

Lecture Notes in Math., pages 43–49. Springer, Berlin, 1993.

[143] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In Computational

methods in number theory, Part I, volume 154 of Math. Centre Tracts, pages 89–139. Math.

Centrum, Amsterdam, 1982.

[144] Carl Pomerance. The quadratic sieve factoring algorithm. In Advances in cryptology (Paris,

1984), volume 209 of Lecture Notes in Comput. Sci., pages 169–182. Springer, Berlin, 1985.

[145] Carl Pomerance. The number field sieve. In Mathematics of Computation 1943–1993: a half-

century of computational mathematics (Vancouver, BC, 1993), volume 48 of Proc. Sympos. Appl.

Math., pages 465–480. Amer. Math. Soc., Providence, RI, 1994.

[146] Carl Pomerance. The role of smooth numbers in number-theoretic algorithms. In Proceedings of

the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 411–422, Basel,

1995. Birkhäuser.

[147] Carl Pomerance and J. W. Smith. Reduction of huge, sparse matrices over finite fields via

created catastrophes. Experiment. Math., 1(2):89–94, 1992.

[148] Carl Pomerance, J. W. Smith, and Randy Tuler. A pipeline architecture for factoring large

integers with the quadratic sieve algorithm. SIAM J. Comput., 17(2):387–403, 1988. Special

issue on cryptography.

[149] Thomas Prest and Paul Zimmermann. Non-linear polynomial selection for the number field

sieve. J. Symb. Comput., 47(4):401–409, April 2012.

[150] Xavier-François Roblot. Polynomial factorization algorithms over number fields. J. Symbolic

Comput., 38(5):1429–1443, 2004.

[151] Oliver Schirokauer. The number field sieve for integers of low weight. Math. Comp., 79(269):583–

602, 2010.

[152] Katja Schmidt-Samoa. Das number field sieve: Entwicklung, varianten und erfolge. Diploma

thesis, Universität Kaiserslautern, March 2002.

[153] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in

Discrete Mathematics. John Wiley & Sons Ltd., Chichester, 1986. A Wiley-Interscience Publi-

cation.

[154] Igor E. Shparlinski and Ron Steinfeld. Chinese remaindering for algebraic numbers in a hidden

field. In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput.

Sci., pages 349–356. Springer, Berlin, 2002.



References 153

[155] V. Sidorenko, G. Schmidt, E. Gabidulin, M. Bossert, and V. Afanassiev. On polyalphabetic

block codes. In Proc. IEEE ISOC ITW2005 on Coding and Complexity, pages 207–210, 2005.

[156] Robert D. Silverman. The multiple polynomial quadratic sieve. Math. Comp., 48(177):329–339,

1987.

[157] Robert D. Silverman. Optimal parameterization of SNFS. J. Math. Cryptol., 1(2):105–124, 2007.

[158] J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12 of Texts in Applied

Mathematics. Springer-Verlag, New York, second edition, 1993. Translated from the German

by R. Bartels, W. Gautschi and C. Witzgall.

[159] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. J. Com-

plexity, 13(1):180–193, 1997.

[160] Madhu Sudan. Ideal error-correcting codes: unifying algebraic and number-theoretic algorithms.

In Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), volume

2227 of Lecture Notes in Comput. Sci., pages 36–45. Springer, Berlin, 2001.

[161] James Joseph Sylvester. A method of determining by mere inspection the derivatives from two

equations of any degree. Philos. Mag., 16:132–135, 1840.

[162] James Joseph Sylvester. On the resultant of two congruences. Johns Hopkins University Circu-

lars, 1:131, 1881.

[163] Emmanuel Thomé. Subquadratic computation of vector generating polynomials and improve-

ment of the block Wiedemann algorithm. J. Symbolic Comput., 33(5):757–775, 2002.

[164] Wilberd van der Kallen. Complexity of the Havas, Majewski, Matthews LLL Hermite normal

form algorithm. J. Symbolic Comput., 30(3):329–337, 2000.

[165] B. L. van der Waerden. Modern Algebra. Vol. II. Frederick Ungar Publishing Co., New York,

N. Y., 1950. Translated from the second revised German edition by Theodore J. Benac.

[166] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge University

Press, New York, 1999.

[167] Ronnie S. Williams, Jr. Cubic polynomials in the number field sieve. Master’s thesis, Texas

Tech University, May 2010.

[168] Harald K. Wimmer. On the history of the Bezoutian and the resultant matrix. Linear Algebra

Appl., 128:27–34, 1990.

[169] J. M. Wozencraft. List decoding. Quarterly Progress Report, Research Laboratory of Electronics,

MIT, 48:90–95, 1958.





Appendix A

Appendices for Chapter 5

A.1 Number Field Codes with Known Rate

Lenstra [106] and Guruswami [67] both use non-constructive shift parameters to obtain estimates on

the rate of their number field codes. In this appendix, a family of number field codes with easily

computable rate is presented. Like NF-codes, the new construction encodes elements of OK by their

residues modulo relatively prime ideals. However, a different “message set” is used:

Definition A.1.1. Let K be a number field that contains pairwise relatively prime ideals p1, . . . , pn ⊆
OK , ordered so that Np1 ≤ Np2 ≤ . . . ≤ Npn. Let R be a finite index additive subgroup of

OK and β1, . . . , βd be an integral basis for R. The code C = CK , based on K with parameters

(n, p1, . . . , pn;β1, . . . , βd), is defined to be the set

C =

{
(m+ p1, . . . ,m+ pn) ∈ OK

p1
× . . .× OK

pn
| m ∈ OK ∩

d∑
i=1

[0, 1)βi

}
.

The set MC = OK ∩
∑d

i=1[0, 1)βi is referred to as the message set of C.

There are many possible choices of R in the code construction. For example, taking R =
∏k
i=1 pi

for some k ≤ n leads to another generalisation of CRT codes to number fields. For this choice

of R, the cardinality of the message set is |MC | =
∏k
i=1 Npi. Another simple example is to take

R = s1ω1Z+ . . .+ sdωdZ, where ω1, . . . , ωd is an integral basis for OK and the s1, . . . , sd ∈ Z. For this

example, the cardinality of the message set is simply |MC | =
∏d
i=1 |si|.

Let δR : K → Rd be the injective group homomorphism defined in Section 5.3. Then, geometrically, the

number of elements in the message set of a code based on K, with parameters (n, p1, . . . , pn;β1, . . . , βd),

is equal to the number of elements in intersection of δR(OK) with the fundamental domain of the

sublattice generated by the basis (δR(β1), . . . , δR(βd)). Using this observation, the rate of the code is

easily computed:

155



156 A. Appendices for Chapter 5

Theorem A.1.2. Let C be a code based on K with parameters (n, p1, . . . , pn;β1, . . . , βd), where

β1, . . . , βd is an integral basis for R. Then the rate of C is

R(C) =
log[OK : R]∑n
i=1 logNpi

=
log (det δR(R))− log

√
|DK |∑n

i=1 logNpi
.

Proof. Since [OK : R] is finite, R is a full-rank sublattice of OK . Hence,

|MC | =

∣∣∣∣∣OK ∩
d∑
i=1

[0, 1)βi

∣∣∣∣∣ = [OK : R] =
det δR(R)

det δR(OK)
=

det δR(R)√
|DK |

.

Returning to the example where R =
∏k
i=1 pi, for some k ≤ n, the rate of the code is

R(C) =

∑k
i=1 logNpi∑n
i=1 logNpi

≥ k

n
· logNp1

logNpn
.

For the special case where Np1 = Np2 = . . . = Npn, the rate of the code is simply R(C) = k/n.

For a code that fits Definition A.1.1, the message set is dependent on the particular choice of the

integral basis β1, . . . , βd, whereas the rate of the code is not. However, the choice of the integral

basis does influence the distance properties of the code. In particular, to construct codes with large

distance, a basis for R that is short with respect to T2(x) (defined in Section 5.3) should be found:

Theorem A.1.3. Let C be a code based on K with parameters (n, p1, . . . , pn;β1, . . . , βd), and define

M =
∑d

i=1 T2(βi). If k ≤ n satisfies
∏k
i=1 Npi ≥ Md/2, then the distance d(C) of C is at least

(n− k + 1).

Proof. Suppose x, y ∈ MC are distinct. Then there exist x1, . . . , xd, y1, . . . , yd ∈ [0, 1) ∩ Q such that

x =
∑d

i=1 xiβi and y =
∑d

i=1 yiβi. Therefore, applying the AM-GM and Cauchy-Schwarz inequalities,

it follows that

|NK(x− y)|
2
d ≤ 1

d

d∑
j=1

∣∣∣∣∣
d∑
i=1

(xi − yi)σj(βi)

∣∣∣∣∣
2

≤ 1

d

d∑
j=1

(
d∑
i=1

|xi − yi||σj(βi)|

)2

≤ 1

d

(
d∑
i=1

|xi − yi|2
) d∑

j=1

d∑
i=1

|σj(βi)|2
 <

d∑
i=1

T2(βi).

Therefore, if
∏k
i=1 Npi ≥Md/2, for some k ≤ n, then

n∏
i=1

Np
σ(x−y,pi)
i ≤ |NK(x− y)| < M

d
2 ≤

k∏
i=1

Npi.

Hence,
∑n

i=1 σ(x − y, pi) < k. Since x and y were arbitrary distinct elements of MC , it follows that

d(C) ≥ n− k + 1.



A.2. Decoding with Nonzero Shift Parameters 157

A.2 Decoding with Nonzero Shift Parameters

The weighted list decoding algorithm for NF-codes developed in Section 5.3 required that the shift

parameter s = 0. However, the algorithm may still be utilised in the presence of nonzero shift

parameters. In particular, at a potential cost of a reduction in decoding performance, the following

algorithm can be used:

Algorithm A.2.1.

Input: A code C based on a number field K with parameters (n, p1, . . . , pn;M, s), where the pi

are given in the form pi = 〈αi, βi〉 with αi 6= 0, for 1 ≤ i ≤ n; a vector (r1 + p1, . . . , rn + pn) ∈
OK/p1 × · · · × OK/pn; an integral basis ω1, . . . , ωd for OK ; and positive integers z1, . . . , zn and l.

Output: All m ∈MC such that
∑n

i=1 σ(m− ri, pi)zi logNpi is sufficiently large.

1. Let s = (s1, . . . , sr1+r2) and define

s′ =
(
s1, . . . , sr1 ,

√
2Re(sr1+1), . . . ,

√
2Re(sr1+r2),

√
2Im(sr1+1), . . . ,

√
2Im(sr1+r2)

)
.

Using an algorithm for finding an approximate closest vector in a lattice (see [5, 88] and references

therein), find a vector y′ ∈ δR(OK) such that ‖s′ − y′‖2 is small.

2. Set ∆ =
√
d ‖s′ − y′‖2 and y = δ−1

R (y′). Apply Algorithm 5.3.2 to the NF-code C′, based on K

with parameters (n, p1, . . . , pn;M + ∆,0), and the vector ((r1 − y) + p1, . . . , (rn − y) + pn).

3. Return all m′ + y ∈MC such that m′ ∈M′C is an output of Algorithm 5.3.2 found in Step 2.

The following theorem provides a sufficient condition for an element m ∈ MC to be returned by

Algorithm A.2.1:

Theorem A.2.2. Algorithm A.2.1 returns all m ∈MC such that

n∏
i=1

Np
σ(m−ri,pi)zi
i > 2

d2(l+1)−d
4 d−d(l + 1)

d
2 (M + ∆)

dl
2

√
|DK |

(
n∏
i=1

Np
(zi+1

2 )
i

) 1
l+1

. (A.1)

Proof. Define y = (σ1(y), . . . , σr1+r2(y)) ∈ Rr1 × Cr2 . Then

sizey(x) ≤ sizes(x) + sizes(y) ≤ sizes(x) +
√
d
∥∥s′ − y′∥∥

2
, for all x ∈ K.

Moreover, sizey(x) = size(x− y), for all x ∈ K. It follows that

MC ⊆ {m ∈ OK | sizey(m) ≤M + ∆} =
{
m′ + y | m′ ∈MC′

}
.

Therefore, given an element m ∈ MC , there exists a corresponding element m′ ∈ MC′ such that

m = m′ + y and σ(m− ri, pi) = σ(m′ − (ri − y), pi), for 1 ≤ i ≤ n. Hence, if m ∈ MC satisfies (A.1),



158 A. Appendices for Chapter 5

then Theorem 5.3.6 implies that the corresponding element m′ ∈MC′ is found by Algorithm 5.3.2 in

Step 2, thus m = m′ + y is returned in Step 3.

Algorithm A.2.1 reduces to the case where s = 0 so that Algorithm 5.3.2 can be applied. However,

the reduction comes at the cost of Algorithm 5.3.2 being applied with a potentially larger size bound

(M + ∆ compared to M). Therefore, it is important that ∆ be as small as possible. Unfortunately,

if K is a number field with large discriminant, then the existence of a vector y′ ∈ δR(OK) such that

‖s′ − y′‖2 is small, is not guaranteed in general.


