9 research outputs found

    Strong Parallel Repetition for Unique Games on Small Set Expanders

    Full text link
    Strong Parallel Repetition for Unique Games on Small Set Expanders The strong parallel repetition problem for unique games is to efficiently reduce the 1-delta vs. 1-C*delta gap problem of Boolean unique games (where C>1 is a sufficiently large constant) to the 1-epsilon vs. epsilon gap problem of unique games over large alphabet. Due to its importance to the Unique Games Conjecture, this problem garnered a great deal of interest from the research community. There are positive results for certain easy unique games (e.g., unique games on expanders), and an impossibility result for hard unique games. In this paper we show how to bypass the impossibility result by enlarging the alphabet sufficiently before repetition. We consider the case of unique games on small set expanders for two setups: (i) Strong small set expanders that yield easy unique games. (ii) Weaker small set expanders underlying possibly hard unique games as long as the game is mildly fortified. We show how to fortify unique games in both cases, i.e., how to transform the game so sufficiently large induced sub-games have bounded value. We then prove strong parallel repetition for the fortified games. Prior to this work fortification was known for projection games but seemed hopeless for unique games

    Boolean degree 1 functions on some classical association schemes

    Get PDF
    We investigate Boolean degree 1 functions for several classical association schemes, including Johnson graphs, Grassmann graphs, graphs from polar spaces, and bilinear forms graphs, as well as some other domains such as multislices (Young subgroups of the symmetric group). In some settings, Boolean degree 1 functions are also known as \textit{completely regular strength 0 codes of covering radius 1}, \textit{Cameron--Liebler line classes}, and \textit{tight sets}. We classify all Boolean degree 11 functions on the multislice. On the Grassmann scheme Jq(n,k)J_q(n, k) we show that all Boolean degree 11 functions are trivial for n≄5n \geq 5, k,n−k≄2k, n-k \geq 2 and q∈{2,3,4,5}q \in \{ 2, 3, 4, 5 \}, and that for general qq, the problem can be reduced to classifying all Boolean degree 11 functions on Jq(n,2)J_q(n, 2). We also consider polar spaces and the bilinear forms graphs, giving evidence that all Boolean degree 11 functions are trivial for appropriate choices of the parameters.Comment: 22 pages; accepted by JCTA; corrected Conjecture 6.

    Algorithmic Issues in some Disjoint Clustering Problems in Combinatorial Circuits

    Get PDF
    As the modern integrated circuit continues to grow in complexity, the design of very large-scale integrated (VLSI) circuits involves massive teams employing state-of-the-art computer-aided design (CAD) tools. An old, yet significant CAD problem for VLSI circuits is physical design automation. In this problem, one needs to compute the best physical layout of millions to billions of circuit components on a tiny silicon surface. The process of mapping an electronic design to a chip involves several physical design stages, one of which is clustering. Even for combinatorial circuits, there exist several models for the clustering problem. In particular, we consider the problem of disjoint clustering in combinatorial circuits for delay minimization (CN). The problem of clustering with replication for delay minimization has been well-studied and known to be solvable in polynomial time. However, replication can become expensive when it is unbounded. Consequently, CN is a problem worth investigating. In this dissertation, we establish the computational complexities of several variants of CN. We also present approximation and exact exponential algorithms for some variants of CN. In some cases, we even obtain an approximation factor of strictly less than two. Furthermore, our exact exponential algorithms beat brute force
    corecore