322 research outputs found

    Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset

    Full text link
    Given a directed graph GG, a set of kk terminals and an integer pp, the \textsc{Directed Vertex Multiway Cut} problem asks if there is a set SS of at most pp (nonterminal) vertices whose removal disconnects each terminal from all other terminals. \textsc{Directed Edge Multiway Cut} is the analogous problem where SS is a set of at most pp edges. These two problems indeed are known to be equivalent. A natural generalization of the multiway cut is the \emph{multicut} problem, in which we want to disconnect only a set of kk given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006) showed that in undirected graphs multiway cut is fixed-parameter tractable (FPT) parameterized by pp. Marx and Razgon (STOC 2011) showed that undirected multicut is FPT and directed multicut is W[1]-hard parameterized by pp. We complete the picture here by our main result which is that both \textsc{Directed Vertex Multiway Cut} and \textsc{Directed Edge Multiway Cut} can be solved in time 22O(p)nO(1)2^{2^{O(p)}}n^{O(1)}, i.e., FPT parameterized by size pp of the cutset of the solution. This answers an open question raised by Marx (Theor. Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows from our result that \textsc{Directed Multicut} is FPT for the case of k=2k=2 terminal pairs, which answers another open problem raised in Marx and Razgon (STOC 2011)

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Linear-Time FPT Algorithms via Network Flow

    Full text link
    In the area of parameterized complexity, to cope with NP-Hard problems, we introduce a parameter k besides the input size n, and we aim to design algorithms (called FPT algorithms) that run in O(f(k)n^d) time for some function f(k) and constant d. Though FPT algorithms have been successfully designed for many problems, typically they are not sufficiently fast because of huge f(k) and d. In this paper, we give FPT algorithms with small f(k) and d for many important problems including Odd Cycle Transversal and Almost 2-SAT. More specifically, we can choose f(k) as a single exponential (4^k) and d as one, that is, linear in the input size. To the best of our knowledge, our algorithms achieve linear time complexity for the first time for these problems. To obtain our algorithms for these problems, we consider a large class of integer programs, called BIP2. Then we show that, in linear time, we can reduce BIP2 to Vertex Cover Above LP preserving the parameter k, and we can compute an optimal LP solution for Vertex Cover Above LP using network flow. Then, we perform an exhaustive search by fixing half-integral values in the optimal LP solution for Vertex Cover Above LP. A bottleneck here is that we need to recompute an LP optimal solution after branching. To address this issue, we exploit network flow to update the optimal LP solution in linear time.Comment: 20 page

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset

    Half-integrality, LP-branching and FPT Algorithms

    Full text link
    A recent trend in parameterized algorithms is the application of polytope tools (specifically, LP-branching) to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). However, although interesting results have been achieved, the methods require the underlying polytope to have very restrictive properties (half-integrality and persistence), which are known only for few problems (essentially Vertex Cover (Nemhauser and Trotter, 1975) and Node Multiway Cut (Garg et al., 1994)). Taking a slightly different approach, we view half-integrality as a \emph{discrete} relaxation of a problem, e.g., a relaxation of the search space from {0,1}V\{0,1\}^V to {0,1/2,1}V\{0,1/2,1\}^V such that the new problem admits a polynomial-time exact solution. Using tools from CSP (in particular Thapper and \v{Z}ivn\'y, 2012) to study the existence of such relaxations, we provide a much broader class of half-integral polytopes with the required properties, unifying and extending previously known cases. In addition to the insight into problems with half-integral relaxations, our results yield a range of new and improved FPT algorithms, including an O∗(∣Σ∣2k)O^*(|\Sigma|^{2k})-time algorithm for node-deletion Unique Label Cover with label set Σ\Sigma and an O∗(4k)O^*(4^k)-time algorithm for Group Feedback Vertex Set, including the setting where the group is only given by oracle access. All these significantly improve on previous results. The latter result also implies the first single-exponential time FPT algorithm for Subset Feedback Vertex Set, answering an open question of Cygan et al. (2012). Additionally, we propose a network flow-based approach to solve some cases of the relaxation problem. This gives the first linear-time FPT algorithm to edge-deletion Unique Label Cover.Comment: Added results on linear-time FPT algorithms (not present in SODA paper

    A randomized polynomial kernel for Subset Feedback Vertex Set

    Get PDF
    The Subset Feedback Vertex Set problem generalizes the classical Feedback Vertex Set problem and asks, for a given undirected graph G=(V,E)G=(V,E), a set S⊆VS \subseteq V, and an integer kk, whether there exists a set XX of at most kk vertices such that no cycle in G−XG-X contains a vertex of SS. It was independently shown by Cygan et al. (ICALP '11, SIDMA '13) and Kawarabayashi and Kobayashi (JCTB '12) that Subset Feedback Vertex Set is fixed-parameter tractable for parameter kk. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where SS is a set of edges. In a first step we show that Edge Subset Feedback Vertex Set has a randomized polynomial kernel parameterized by ∣S∣+k|S|+k with O(∣S∣2k)O(|S|^2k) vertices. For this we use the matroid-based tools of Kratsch and Wahlstr\"om (FOCS '12) that for example were used to obtain a polynomial kernel for ss-Multiway Cut. Next we present a preprocessing that reduces the given instance (G,S,k)(G,S,k) to an equivalent instance (G′,S′,k′)(G',S',k') where the size of S′S' is bounded by O(k4)O(k^4). These two results lead to a polynomial kernel for Subset Feedback Vertex Set with O(k9)O(k^9) vertices
    • …
    corecore