12 research outputs found

    Channel Optimized Distributed Multiple Description Coding

    Full text link
    In this paper, channel optimized distributed multiple description vector quantization (CDMD) schemes are presented for distributed source coding in symmetric and asymmetric settings. The CDMD encoder is designed using a deterministic annealing approach over noisy channels with packet loss. A minimum mean squared error asymmetric CDMD decoder is proposed for effective reconstruction of a source, utilizing the side information (SI) and its corresponding received descriptions. The proposed iterative symmetric CDMD decoder jointly reconstructs the symbols of multiple correlated sources. Two types of symmetric CDMD decoders, namely the estimated-SI and the soft-SI decoders, are presented which respectively exploit the reconstructed symbols and a posteriori probabilities of other sources as SI in iterations. In a multiple source CDMD setting, for reconstruction of a source, three methods are proposed to select another source as its SI during the decoding. The methods operate based on minimum physical distance (in a wireless sensor network setting), maximum mutual information and minimum end-to-end distortion. The performance of the proposed systems and algorithms are evaluated and compared in detail.Comment: Submitted to IEEE Transaction on Signal Processin

    Practical Source Coding with Side Information

    Get PDF

    Polar Codes are Optimal for Lossy Source Coding

    Get PDF
    We consider lossy source compression of a binary symmetric source using polar codes and the low-complexity successive encoding algorithm. It was recently shown by Arikan that polar codes achieve the capacity of arbitrary symmetric binary-input discrete memoryless channels under a successive decoding strategy. We show the equivalent result for lossy source compression, i.e., we show that this combination achieves the rate-distortion bound for a binary symmetric source. We further show the optimality of polar codes for various problems including the binary Wyner-Ziv and the binary Gelfand-Pinsker problemComment: 15 pages, submitted to Transactions on Information Theor

    The Distributed Karhunen-Loève Transform

    Get PDF
    The Karhunen–Loève transform (KLT) is a key ele- ment of many signal processing and communication tasks. Many recent applications involve distributed signal processing, where it is not generally possible to apply the KLT to the entire signal; rather, the KLT must be approximated in a distributed fashion. This paper investigates such distributed approaches to the KLT, where several distributed terminals observe disjoint subsets of a random vector. We introduce several versions of the distributed KLT. First, a local KLT is introduced, which is the optimal solution for a given terminal, assuming all else is fixed. This local KLT is different and in general improves upon the marginal KLT which simply ignores other terminals. Both optimal approximation and compression using this local KLT are derived. Two important special cases are studied in detail, namely, the partial observation KLT which has access to a subset of variables, but aims at reconstructing them all, and the conditional KLT which has access to side information at the decoder. We focus on the jointly Gaussian case, with known correlation structure, and on approximation and compression problems. Then, the distributed KLT is addressed by considering local KLTs in turn at the various terminals, leading to an iterative algorithm which is locally convergent, sometimes reaching a global optimum, depending on the overall correlation structure. For com- pression, it is shown that the classical distributed source coding techniques admit a natural transform coding interpretation, the transform being the distributed KLT. Examples throughout illustrate the performance of the proposed distributed KLT. This distributed transform has potential applications in sensor networks, distributed image databases, hyper-spectral imagery, and data fusion

    Distributed signal processing using nested lattice codes

    No full text
    Multi-Terminal Source Coding (MTSC) addresses the problem of compressing correlated sources without communication links among them. In this thesis, the constructive approach of this problem is considered in an algebraic framework and a system design is provided that can be applicable in a variety of settings. Wyner-Ziv problem is first investigated: coding of an independent and identically distributed (i.i.d.) Gaussian source with side information available only at the decoder in the form of a noisy version of the source to be encoded. Theoretical models are first established and derived for calculating distortion-rate functions. Then a few novel practical code implementations are proposed by using the strategy of multi-dimensional nested lattice/trellis coding. By investigating various lattices in the dimensions considered, analysis is given on how lattice properties affect performance. Also proposed are methods on choosing good sublattices in multiple dimensions. By introducing scaling factors, the relationship between distortion and scaling factor is examined for various rates. The best high-dimensional lattice using our scale-rotate method can achieve a performance less than 1 dB at low rates from the Wyner-Ziv limit; and random nested ensembles can achieve a 1.87 dB gap with the limit. Moreover, the code design is extended to incorporate with distributed compressive sensing (DCS). Theoretical framework is proposed and practical design using nested lattice/trellis is presented for various scenarios. By using nested trellis, the simulation shows a 3.42 dB gap from our derived bound for the DCS plus Wyner-Ziv framework

    Multiterminal Video Coding: From Theory to Application

    Get PDF
    Multiterminal (MT) video coding is a practical application of the MT source coding theory. For MT source coding theory, two problems associated with achievable rate regions are well investigated into in this thesis: a new sufficient condition for BT sum-rate tightness, and the sum-rate loss for quadratic Gaussian MT source coding. Practical code design for ideal Gaussian sources with quadratic distortion measure is also achieved for cases more than two sources with minor rate loss compared to theoretical limits. However, when the theory is applied to practical applications, the performance of MT video coding has been unsatisfactory due to the difficulty to explore the correlation between different camera views. In this dissertation, we present an MT video coding scheme under the H.264/AVC framework. In this scheme, depth camera information can be optionally sent to the decoder separately as another source sequence. With the help of depth information at the decoder end, inter-view correlation can be largely improved and thus so is the compression performance. With the depth information, joint estimation from decoded frames and side information at the decoder also becomes available to improve the quality of reconstructed video frames. Experimental result shows that compared to separate encoding, up to 9.53% of the bit rate can be saved by the proposed MT scheme using decoder depth information, while up to 5.65% can be saved by the scheme without depth camera information. Comparisons to joint video coding schemes are also provided
    corecore