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Abstract—The Karhunen–Loève transform (KLT) is a key ele-
ment of many signal processing and communication tasks. Many
recent applications involve distributed signal processing, where it is
not generally possible to apply the KLT to the entire signal; rather,
the KLT must be approximated in a distributed fashion. This paper
investigates such distributed approaches to the KLT, where several
distributed terminals observe disjoint subsets of a random vector.

We introduce several versions of the distributed KLT. First, a
local KLT is introduced, which is the optimal solution for a given
terminal, assuming all else is fixed. This local KLT is different and
in general improves upon the marginal KLT which simply ignores
other terminals. Both optimal approximation and compression
using this local KLT are derived. Two important special cases are
studied in detail, namely, the partial observation KLT which has
access to a subset of variables, but aims at reconstructing them
all, and the conditional KLT which has access to side information
at the decoder. We focus on the jointly Gaussian case, with known
correlation structure, and on approximation and compression
problems. Then, the distributed KLT is addressed by considering
local KLTs in turn at the various terminals, leading to an iterative
algorithm which is locally convergent, sometimes reaching a global
optimum, depending on the overall correlation structure. For com-
pression, it is shown that the classical distributed source coding
techniques admit a natural transform coding interpretation,
the transform being the distributed KLT. Examples throughout
illustrate the performance of the proposed distributed KLT.
This distributed transform has potential applications in sensor
networks, distributed image databases, hyper-spectral imagery,
and data fusion.

Index Terms—Distributed source coding, distributed trans-
forms, rate–distortion function, principal components analysis,
side information, transform coding.

I. INTRODUCTION

THE approximation or compression of an observed signal is
a central and widely studied problem in signal processing

and communication. The Karhunen–Loève transform (KLT),
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Fig. 1. The distributed KLT problem: Distributed compression of multiple cor-
related vector sources. Encoder ` provides a description T of its observation.
This paper investigates the case where T is a k -dimensional approximation of
the observation, and the case where T is a bit stream ofR bits per observation.

also referred to as principal component analysis (PCA), [3]–[5],
has always played a pivotal role in this context. Assume, for in-
stance, that the observed signal is a random vector with covari-
ance matrix and that the statistics of the source are known.
Then to solve the approximation problem, one can apply the
KLT to to obtain uncorrelated components and the optimal
linear least squares -order approximation of the source is given
by the components corresponding to the largest eigenvalues
of . In the case of compression, the uncorrelated components
can be compressed independently and more rate can be allocated
to the components related to the largest eigenvalues of , ac-
cording to a principle that is sometimes referred to as “reverse
water-filling,” see, e.g., [6, p. 349]. This compression process is
widely known as transform coding and, if the input source is a
jointly Gaussian source, it is possible to show that it is optimal
[7]. For an excellent review on transform coding and a discus-
sion of the optimality of the KLT in this context, we refer to the
exposition in [8].

In the present work, which builds on [1] and [2], we inves-
tigate a related scenario where there are multiple sensors, each
observing only a part of the vector , see Fig. 1. For the scope
of the present paper, is assumed to be a vector of jointly
Gaussian random variables, even though some of our results
are more general. The sensors transmit an approximation of the
observed subvector to a fusion center and cannot communicate
with each other. Thus, signal processing must be done in a dis-
tributed fashion and the full KLT cannot be applied to the data.
Therefore, the original approximation and compression prob-
lems change significantly under these circumstances, and we
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show how to extend the concept of the KLT (or PCA) to such a
distributed scenario.

In this paper, the usual, nondistributed scenario is termed joint
KLT. We pose the following questions: given a distributed sce-
nario, what is the best possible performance, and how can it be
attained? A trivial upper bound to the distortion of a distributed
scheme is given by the marginal KLT, where each terminal com-
putes a KLT based only on its local statistics, ignoring the de-
pendencies with other terminals. And an obvious lower bound
is the performance of the unconstrained, joint KLT. Depending
on the correlation structure and on the subsets that the various
terminals observe, the two bounds will be close or far apart. The
distributed KLT lives between these bounds, and aims at the best
performance (in approximation error or distortion rate) under
the constraint of a distributed scenario.

Of course, in the compression case, various distributed KLT
problems are classical distributed compression problems. The
“conditional” KLT, defined in Section IV-B, is the scenario
where all but one of the terminals provide all of their observa-
tions to the reconstruction point, and the task is to design the
source code for the remaining terminal. This is a Wyner–Ziv
problem (compression with side information at the decoder
[9]), and the distributed KLT is part of the general distributed
source coding problem, for which bounds are known [10]. Our
aim, in the compression part, is thus to give a transform coding
perspective to these distributed coding problems. In addition
to giving intuition and structure to the problem, this perspec-
tive has clear computational advantages, since lossy source
compression is almost always transform based for complexity
reasons.

Related work is twofold. First, as already pointed out ear-
lier, the distributed KLT compression falls into the general area
of distributed lossy source compression. This work goes back
to the classic lossless result of Slepian and Wolf [11], and the
lossy case with side information to Wyner and Ziv [9]. An early
set of general upper and lower bounds on the performance have
been found by Berger and Tung [10], [12], with many refine-
ments for special cases, including the scenario where all but
one of the sources are either not to be reconstructed, or en-
coded perfectly (see [13]–[15]). Moreover, certain conclusive
results are available for the case of high resolution [16], for
the CEO problem [17], [18], for the case with side informa-
tion [19], and for certain special distortion measures (not in-
cluding the mean-squared error) [15]. Finally, a recent result
solves the two-source jointly Gaussian distributed source coding
problem with respect to mean-squared error [20]. Second, a re-
cent flurry of papers has looked at various facets of practical
distributed source coding. This includes various schemes using
channel codes for distributed source compression [21]–[29], in-
cluding video compression [30]–[32]. Several authors looked at
distributed transform coding, for example in the high-rate case
and, in this regime, some optimality conditions for the trans-
forms can be proved [33]–[35]. In [36], [37], a related trans-
form is studied from the perspective of estimation theory, and
in [38], a particle filtering view of our problem is investigated.
In follow-up work, a study of the large block-size (as )
case was done in [39], using the asymptotic eigenvalue distri-
bution of Toeplitz matrices (see, e.g., [40]). Another study con-

siders the generalized problem where the observations are noisy
[41].

The paper is organized as follows: Section II reviews the
classic approximation and compression problems for a random
vector source with known second-order statistics, together with
the standard results for the joint KLT. Then, the problem leading
to the distributed KLT is formally stated.

Section III takes a terminal-by-terminal perspective, that is,
all terminals but one are fixed, and we search for the optimal
encoding procedure for the remaining terminal. This leads to
the optimal local KLT, under the following two scenarios: In
the first scenario, the remaining terminal needs to select a -di-
mensional approximation of its observation; this is sometimes
referred to as the linear approximation problem. In the second
perspective, the remaining terminal needs to provide a represen-
tation of its observation using bits per source sample; that is,
we study the information-theoretic compression or rate–distor-
tion problem.

In Section IV, two simple special cases are investigated in de-
tail: on the one hand, there is the case when all but one terminal
are cut off. This means that the remaining terminal must pro-
vide an approximation of its observation that permits the best
reconstruction of the entire vector. We call this the partial-ob-
servation KLT. On the other hand, there is the case when all
but one terminal provide their observations entirely and uncom-
pressed to the decoder. This means that the remaining terminal
can exploit this side information at the decoder in order to pro-
vide a more efficient description of its observation. While the
linear approximation perspective of this problem appears to be
new, the related rate–distortion (i.e., compression) problem is
well known and has been solved by Wyner and Ziv [9]. In this
sense, the present paper extends the result of Wyner and Ziv to
the case of correlated vectors and this leads to the introduction
of a new transform called the conditional KLT.

Section V addresses the distributed scenario by using the local
KLT of Section III in turn at each terminal. This leads to an iter-
ative algorithm for finding the distributed KLT. The approxima-
tion problem and the compression problem (under a sum–rate
constraint) are studied. In both cases, the convergence of the it-
erative procedure to a local optimum or a saddle point is shown.
The question of local versus global optima is explored through
a set of examples in Section VI. Possible applications of the dis-
tributed KLT and topics of further research conclude the paper
in Section IV.

II. THE DISTRIBUTED KLT PROBLEM

The problem leading to the distributed KLT is illustrated in
Fig. 1: There are terminals (the figure illustrates the case

), and each terminal samples a part of a vector of jointly
Gaussian real-valued random variables

...
(1)
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The Gaussian random vector has zero mean1 and covariance
matrix .

The standard (nondistributed) Karhunen–Loève transform
arises as the solution of the approximation (or compression)
problem illustrated in Fig. 1, but with all encoders merged into
one overall encoder that observes the entire vector . The task
of the encoder is to provide a description of the vector in
such a way as to permit the reconstruction point to produce an
estimate that minimizes the mean-squared error

(2)

where denotes the expectation.
The distributed version of the problem is interesting because

the description provided by the encoder is constrained, i.e., the
encoder cannot simply provide the reconstruction point with
the entire observation. In this paper, we consider two types of
approximations: linear approximation and compression (in a
rate-distortion sense).

A. Linear Approximation

For the standard (nondistributed) KLT, the goal of the en-
coder is to provide a -dimensional approximation of the vector

. For a fixed , the goal is to find the approximation space
that minimizes the resulting mean-squared error. The matrix
is real, symmetric, and positive semidefinite, with eigenvalues

. It allows thus a diagonalization
given by

(3)

where is a unitary matrix whose columns are
the eigenvectors of the matrix , ordered by decreasing
eigenvalues, and is diagonal, with entries

. The matrix is called the Karhunen–Loève
transform for .2 More specifically, in this paper, we will
refer to as the joint KLT of the vector , by contrast to
the distributed KLT developed in this paper. We denote the
transformed version of by

(4)

Since is unitary, it follows that

(5)

where . The key insight is that the components of
are uncorrelated. Therefore, in terms of the components

a simple answer can be given. First, if the
component is retained, then clearly its corresponding
estimate is . However, if is not retained, then
its corresponding estimate is none of the other

1The assumption that xxx has zero mean is not crucial, but it considerably sim-
plifies the notation. Therefore, it is kept throughout the paper.

2The matrix Q always exists, and it is unique if � 6= � , for m 6= n.
Conversely, if the matrix � has repeated eigenvalues, then combinations of
the respective eigenvectors are also eigenvectors, leading to nonunique approx-
imation and compression. This is a technicality we do not get into any further.

components of the vector contain anything relevant about
. The best -dimensional approximation space is therefore

easily found in terms of : Denote the set of the indices
corresponding to the retained components of by . Then, the
incurred distortion can be expressed as

(6)

where denotes the complement of in the set .
Hence, the best -dimensional approximation is given by the
eigenvectors corresponding to the largest eigenvalues.

In the distributed KLT scenario, there are separate encoding
terminals that cannot communicate with each other. The first ter-
minal observes the first components of the vector , denoted
by , the second terminal the next
components, denoted by ,
and so on. Clearly, in that case, it is not possible to apply the KLT
to the vector . Instead, each terminal individually provides a
certain approximation of its samples to a central decoder. The
goal of the central decoder is to produce an estimate in such a
way as to minimize the mean-squared error .

Terminal provides a -dimensional approximation of its
sampled vector, where are fixed integers,

for . One approach would be for
each encoder to apply a (standard) KLT to its observations, and
provide the components corresponding to the largest eigen-
values. In this paper, we will refer to this approach as the mar-
ginal KLTs. It is easy to verify that the marginal KLT will lead
to suboptimal performance in general. Hence, what are the best
approximation spaces for the terminals? This question can be
answered directly in the following sense: Terminal applies a

matrix to its local observation, and provides this
to the reconstruction point. Hence, the reconstruction point has
access to

...
...

. . .
...

(7)

However, since we have assumed that is Gaussian, it is well
known that the best estimate of based on is the linear
minimum mean-squared error estimator, given by the standard
formula (see, e.g., [42, Theorem 3.2.1])

(8)

and the corresponding mean-squared error distortion can be
written as (see, e.g., [42, Theorem 3.2.1]

(9)

From this perspective, our problem can be stated as the min-
imization of this distortion over all block-diagonal matrices

, where the th block is precisely . That
is, has the shape given in (7). A simple solution for the
best such matrix does not seem to exist in general. Instead,
this paper provides an iterative algorithm that finds (locally)
optimal solutions.
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B. Compression

In a second version of the problem, the encoder has to com-
press the observed vector in a rate-distortion sense. That is, the
encoder gets to observe a long sequence of source vec-
tors, where and is the (discrete) time index. This
sequence can be encoded jointly.

For the standard (nondistributed) problem, the encoder output
is a binary sequence that appears at rate bits per input
vector. The reconstruction point produces a sequence of es-
timates , and the goal is to minimize the average
mean-squared error over the entire block of source vectors,
defined as

(10)

Our interest concerns specifically the limit as . It is well
known that one architecture of an optimal encoder is to apply a
KLT to the vector to obtain as in (4). Then, each com-
ponent of can be encoded separately, using a rate-distortion
optimal code. The rate allocation between the components of

is determined by the eigenvalues , see [43]
or [6, p. 348].

In the distributed KLT scenario illustrated in Fig. 1, there
are multiple separate encoding terminals that cannot commu-
nicate with each other. Clearly, in that case, it is not possible to
apply the KLT to the vector . Instead, each terminal individu-
ally provides a binary sequence that appears at rate bits
per input vector, for . The reconstruction point
produces a sequence of estimates , and the
task is to minimize the resulting average mean-squared error as
in (10). As discussed generally in Section I, optimum tradeoffs
between the rates and the incurred distortion

, and hence, the optimum processing architecture, are mostly
unknown to date, except in the case (and )
[20]. Instead, in this paper, we evaluate the best known achiev-
able rate-distortion region [10], [44] in the considered transform
coding framework, and show that they can be attained by an ar-
chitecture where each terminal applies a suitable local transform

, followed by separate encoding of each coefficient stream,
for . It should also be pointed out that a brief
treatment of the case of two jointly stationary Gaussian sources
has been given in [12, Ch. 6, pp. 75–78].

III. TERMINAL-BY-TERMINAL PERSPECTIVE

This section investigates a local perspective of the problem
described in Section II. Suppose that all terminals except ter-
minal have fixed descriptions , and
the goal is to determine the optimal description . As outlined
above, we consider this problem in two different settings: in a
linear approximation framework, and in a rate–distortion (i.e.,
compression) framework.

A. Linear Approximation

From the perspective of a selected terminal , suppose that
all other terminals have decided on (arbitrary) suitable approx-
imations of their observations, and the question becomes to op-
timally choose the approximation to be provided by terminal ,

Fig. 2. For a fixed transform C (and a fixed noise covariance matrix � ), the
local KLT finds the best transform C .

where we arbitrarily (and without loss of generality) set .
Terminal 1 observes components of the overall data, denoted
by . The remaining components may be thought of as
being merged into one terminal whose observations we denote,
for short, by . In line with this, we can partition the covari-
ance matrix of the entire vector into four parts, according to

(11)

where , and .
The approximations provided by all other terminals can be ex-
pressed as

(12)

where is a fixed matrix, and is a vector of
jointly Gaussian random variables of mean zero and covari-

ance matrix independent of . This is illustrated in Fig. 2.
Note that is not generally assumed to be of full rank; specif-
ically, we are also interested in the case where . The goal
is for the remaining Terminal 1 to select a -dimensional ap-
proximation of the observed vector , denoted by ,
in such a way as to minimize the resulting overall distortion

(13)

In order to formulate our solution of this problem, consider
the matrix , defined as

(14)

and let consist of the first columns of , thus,
. Moreover, define the matrix as fol-

lows:

(15)

Note that this matrix has , and denote its eigen-
decomposition by

(16)
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where

are the (nonincreasingly ordered) eigenvalues of the matrix .
Note that since is a covariance matrix, its eigenvectors (col-
lected in the matrix ) are real-valued.

Definition 1 (Local KLT): The local KLT of with respect
to is the matrix given by

(17)

where denotes the matrix consisting of the first
columns of , which is defined in (16), denotes the

-dimensional identity matrix, and denotes the first
columns of as defined in (14).

Remark (Nonuniqueness of the Local KLT): It is clear that
the local KLT is not unique: it inherits the nonuniqueness of
the first columns of . More specifically, if the eigen-
values are all distinct, then the local KLT
is unique. If, on the contrary, some of these eigenvalues are
equal, then the local KLT is nonunique. However, any resulting
local KLT is equivalent for the mean-squared error criterion con-
sidered in this paper.

In order to provide some intuition for the local KLT, we now
establish the following two properties.

Lemma 1: The local KLT has the following properties:
i) but is not unitary;

ii) the components of are conditionally uncorrelated,
given , and have mean zero and condi-
tional variances given by for as
in (16), conditioned on .

The proof of this lemma is given in Appendix I.
The motivation for defining the local KLT as in Definition

1 is that it provides the optimum -dimensional approximation
for the problem illustrated in Fig. 2. We record the following
theorem.

Theorem 2 (Local KLT): The best -dimensional linear ap-
proximation of for a decoder that has access to
is given by the first components of the local KLT of with
respect to , that is,

(18)

where denotes the matrix consisting of the first rows of
as given in Definition 1, i.e.,

(19)

and the resulting MSE distortion is given by

(20)

where is given in (21) at the bottom of the page.
The proof of this theorem is given in Appendix I.

B. Compression

By analogy to Section III-A, consider again the perspective
of a selected terminal , and suppose that all other terminals
have decided on (arbitrary) suitable approximations of their
observations. In the compression scenario, as explained in
Section II-B, we consider sequences of source output
vectors, where is the (discrete) time index. We assume that

is a sequence of independent and identically dis-
tributed (i.i.d.) Gaussian random vectors with mean zero and
covariance matrix . Again, to keep notation simple, we
reorder the components of and denote the observation of the
considered terminal by .
The remaining components of will be denoted by

We study the problem where terminal is allowed to use
bits to encode a sequence of consecutive observed vectors,
denoted by . As explained earlier, the key feature of
the present local consideration is that it has already been de-
cided how is to be compressed, and we are looking
for the optimal compression of . It is not immediately
clear how this should be modeled. For the purpose of this paper,
we use the following approach, to be justified to some (though
limited) extent in the sequel. Specifically, the effect of compres-
sion of is captured by providing the decoder with a
noisy sequence

(22)

where is a sequence of i.i.d. Gaussian random
vectors of mean zero and covariance matrix . Again,

. This is illustrated in Fig. 3.
To justify the model considered in (22), one may think of the

case where the remaining terminals have compressed
using a rate-distortion optimal source code (but entirely ignoring

). The effect of such a code (for a Gaussian source under
mean-squared error) is equivalent to a linear transformation, fol-
lowed by additive white Gaussian noise, see, e.g., [6, p. 345].

The distortion to be minimized can be expressed as

(23)

subject to the constraints that, i), the codeword produced by ter-
minal 1 may only depend on , and ii), the coding rate

(21)
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Fig. 3. Terminal 1’s local perspective on the compression problem considered
in this paper.

used by terminal 1 may not exceed bits to encode the entire
(length- ) source sequence. The reconstruction sequence is
generated based on the codeword provided by terminal 1 and
the value of the side information sequence .

In this paper, we study the performance in the (information-
theoretic) limit, that is, as . With reference to (23), we
denote . The minimum rate required to
reconstruct the vector source at distortion level is
given by (details are given in Appendix II)

(24)

where the minimization is over all (“auxiliary”) random vectors
for which and for which

(25)

The solution to this minimization problem can be character-
ized by complete analogy to our derivation in Section III-A,
namely, in terms of the eigenvalues of the matrix as defined
in (15), as follows.

Theorem 3: The rate required to encode for a de-
coder that has access to is given by

for

(26)

where is given in (21), and

if
if (27)

where is chosen such that . Note that it
is not possible to attain a distortion .

The proof of this theorem is an extension of [45] and is given
in Appendix II.

This theorem establishes that the encoder in Fig. 3 can be
broken into two stages: a linear precoding stage, consisting of
applying the transform (matrix) (i.e., the local KLT) to
(with respect to ), followed by separate compression of the
components in the transform domain. This is illustrated in Fig. 4.

Moreover, in the proof of the theorem, it is also found that
the auxiliary random vector (with conditional distribution

Fig. 4. An optimal architecture for the encoder in Fig. 3 consists in applying a
local KLT to xxx and separately compressing each component in the transform
domain.

) that solves the minimization problem specified by
(24)–(25) is jointly Gaussian with the source vector . To
interpret this, consider Fig. 4: It is consistent to replace the
encoder boxes (the boxes labeled ENC 1, ENC ) by ad-
ditive Gaussian noises, in the sense that the resulting overall
distortion will be the same. Hence, we obtain an overall sym-
metric picture, in the sense that if terminals provide
noisy observations, where the (additive) noise has a Gaussian
distribution, then the optimum encoding for terminal 1 is found
to also be characterized by providing noisy observations, where
the noise has a Gaussian distribution. This perspective will
prove to be useful in the distributed setting in Section III-B.
Therefore, we record the following corollary.

Corollary 4: For a fixed rate to be used by the encoder, let
be the largest integer satisfying

for (28)

where is the geometric mean of
the largest eigenvalues of the matrix . Moreover, denote
the first rows of the local KLT of with respect to (see
Definition 1) by . Then, the auxiliary random vector (with
conditional distribution ) that solves the minimization
problem specified by (24)–(25) can be written as

(29)

where is a Gaussian random vector with mean zero and di-
agonal covariance matrix, with diagonal entries

(30)

for . The resulting overall distortion can be
expressed as

where is given in (21).

The proof of this corollary is given in Appendix II.
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IV. SPECIAL CASES

A. The Partial-Observation KLT

Consider the case when is the all-zero matrix, and hence,
all other terminals are cut off. This is illustrated in Fig. 5. In this
case, the matrix in (14) simplifies to . Moreover,

, and hence, we find . For this
case, the local KLT thus becomes particularly simple.

Definition 2 (Partial-Observation KLT): The partial-obser-
vation KLT of with respect to is the linear transform char-
acterized by the matrix

(31)

where is the unitary matrix for which

is diagonal. The transformed version of will be denoted by
.

Remark 2 (Nonuniqueness of the Partial-Observation KLT):
In line with Remark 1, it should be noted that the partial-obser-
vation KLT is not unique.

Hence, we get the following corollary to Theorem 2.

Corollary 5: The best -dimensional linear approximation
of for a decoder that needs to reconstruct the entire vector

with respect to mean-squared error is given by
the first components of the partial-observation KLT of with
respect to .

By analogy, a similar corollary can be given for the case of
Theorem 3.

It is intuitively clear that in the partial-observation (or sub-
sampling) scenario of Fig. 5, it is suboptimal to simply apply
the “marginal” KLT to the observations , acting as if did
not exist. To further illustrate this point, we consider simple ex-
amples.

Example 1 (Approximation): A toy example illustrating the
basic issue is the following: Suppose that a Gaussian random
vector has mean zero and the following covariance matrix:

(32)

Suppose that the first two components are observed by terminal
1, i.e., . The terminal is asked to provide a one-di-
mensional approximation. For , the marginal KLT
is the identity matrix since the first two components are un-
correlated. Then, selecting the eigenvector corresponding to the
largest eigenvalue of incurs a distortion of .
By contrast, the partial-observation KLT is found to be

(33)

Fig. 5. Special case: The partial-observation (or “subsampling”) KLT. The
components of xxx are not observed, but need to be reconstructed..

which is substantially different from the marginal KLT. Re-
taining the first component of , the resulting distortion is
found to be , substantially smaller than the dis-
tortion incurred by the marginal KLT.

Example 2 (Compression): Consider again the covariance
matrix given in Example 1, with . The first two com-
ponents are sampled and can be encoded using a total rate .
The systematic error (as defined in (21)) for this example is

. The rate–distortion tradeoff is shown in Fig. 6.
The solid line is the rate–distortion function (i.e., incor-
porating the partial-observation KLT). The dashed line is the
performance for a compression scheme that ignores the hidden
part when encoding. At decoding time, the hidden part is esti-
mated optimally from the available information. The figure wit-
nesses a clear advantage for the partial-observation KLT, illus-
trating the fact that the hidden part does alter the compression
problem significantly. In the limit of low rates, as , it is
clear that both schemes have the same performance, since no in-
formation is transmitted. In the limit of high rates, both schemes
end up encoding the observations perfectly, and again, the same
distortion results.

Remark 3 (Best Sensor Placement): For given statistics
and desired distortion , what is the best “placement” of sen-
sors? In other words, what choice of components of min-
imizes the rate required for the desired distortion ? The solu-
tion to this problem is given by Theorem 1: Compute
for all subsets of components of the vector . (For the asym-
metric scenario of Example 2, it is easily verified that the best
sensor placement is to sample the last two components. This is
intuitively clear from the covariance matrix in (32): the last two
components have by far the largest variances.)

B. The Conditional KLT and

In this subsection, we study the scenario of Fig. 7: All other
terminals provide the reconstruction point with their exact ob-
servations. In this case, the local KLT can be simplified. Specif-
ically, since , we find that . This implies that

(as in (15)) simplifies to

(34)

and the local KLT takes the following simple shape.
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Fig. 6. The rate–distortion behavior for the partially observed process of Example 2. The solid line represents the (optimal) partial observation KLT, while the
dashed line is the case of the marginal KLT. The rate is given in bits.

Fig. 7. Special case: The conditional KLT. The components xxx =
(x ; . . . ; x ) are not observed by the encoder, but they are available
at reconstruction time.

Definition (Conditional KLT): The conditional KLT of
with respect to is the linear transform characterized by the
matrix that satisfies

(35)

The transformed version of will be denoted by .

Remark 4 (Nonuniqueness of the Conditional KLT): In line
with Remark 1, it should be noted that the conditional KLT is
not unique.

Lemma 6: The conditional KLT has the following prop-
erties:

1) is an orthonormal transform;
2) the components of the vector are conditionally uncorre-

lated given .

It is immediately clear by construction that will be or-
thonormal. The second property was established in Lemma 1.

Hence, we get the following corollary to Theorem 2.

Corollary 7: The best -dimensional linear approximation of
for a decoder that has access to and needs to reconstruct

the entire vector with respect to mean-squared error is given
by the first components of the conditional KLT of with
respect to .

By analogy, a similar corollary can be given for the case of
Theorem 3.

Example 3 (Approximation): A toy example illustrating the
basic issue is the following: Suppose that a Gaussian random
vector has mean zero and the covariance matrix specified in
(32). Suppose that the first two components are sampled by the
terminal, i.e., . The terminal is asked to provide a one-di-
mensional approximation. For , applying the marginal
(usual) KLT to the first two components is simple in this ex-
ample: the first two components are uncorrelated, hence the KLT
is the identity. Selecting the eigenvector corresponding to the
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Fig. 8. Rate–distortion behavior for compression with side information in Example 4. The solid line is the performance of the conditional KLT, while the dashed
line shows the one of the marginal KLT. The rate is given in bits.

larger eigenvalue of incurs a distortion of .
Using the conditional KLT discussed in this section, and hence
making the optimal choice, results in a distortion of

, and the transform is

(36)

Example 4 (Compression): Consider again the covariance
matrix specified in (32), with , and suppose that the
first two components are sampled by the terminal, i.e., .
The task is to encode these first two components using a rate .
The resulting rate–distortion function is the solid line in Fig. 8.
For comparison, the dashed line shows the rate–distortion per-
formance for a scheme that ignores the side information both at
the encoder and at the decoder, in other words, a scheme that
simply compresses (and reconstructs) the sampled vector ,
using a rate . The performance of this scheme is hence de-
termined by the rate–distortion function for Gaussian vectors
under mean-squared error (see, e.g., [6, p. 348]). As expected,
there is a significant difference between the two curves.

V. THE DISTRIBUTED KLT ALGORITHMS

The local perspective derived in Section III and further ex-
plored in the previous section suggests an iterative approach to
the problem of finding the best distributed approximation to the
KLT: in turn, each terminal optimizes its local encoder, while

all other encoders are held fixed (and known). This is an off-line
calculation, where the covariance matrix is kept fixed. Such
a “round-robin” optimization, while natural, may or may not be
optimal, depending on the shape of the cost function. That is,
while each step is optimal (as in Theorems 2 and 3, respectively)
the sequence of steps might lead to a locally stable point that is
not a global optimum. This question is central to distributed op-
timization, and has in general no simple answer, and we will
thus explore it through several examples in the sequel.

A. Linear Approximation

Let us now return to the problem illustrated in Fig. 1: There
are terminals. Each terminal observes a part of the entire
vector , for , as defined in Section II-A: The
first terminal observes the first components of and has to
provide a -dimensional approximation. The second terminal
observes the next components of and has to provide a

-dimensional approximation, and so on. The goal is to find
the optimum approximation spaces for each terminal.

From Theorem 2, we know the best approximation space
for a selected terminal, when all other terminals have fixed
their approximation spaces. For further reference, we restate
Theorem 2 in more general notation in the shape of the following
corollary.

Corollary 8: For fixed , the best
-dimensional approximation that terminal can provide is de-
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Fig. 9. An iteration of the distributed KLT algorithm: The transform matrices
C and C are kept fixed while Encoder 1 is chosen optimally.

termined by the matrix containing the first rows of the
local KLT of with respect to

(37)

Proof: This corollary follows directly from Theorem 2.

As pointed out in Section II-A, there does not seem to be a
simple and direct solution to find the optimal approximation
spaces , but Corollary 8 suggests an iterative
procedure to find an approximate solution, as follows.

Algorithm 1 (Distributed KLT for Linear Approximation):
Set and initialize by selecting arbitrary matrices

, for . Then,
1) Set and for each :

a) Set to be the best -dimensional approximation
space, as described in Corollary 8.

Terminate when the difference in the resulting mean- squared
error distortion is smaller than a fixed tolerance value .

Remark 5: As we illustrate in Section VI, in general, different
initializations of the matrices may lead to dif-
ferent outcomes of the algorithm. However, since the computa-
tions are done off-line, one may run Algorithm 1 many times,
using techniques such as simulated annealing, and thus enhance
the chance of finding the global optimum.

This algorithm is illustrated in Fig. 9. The figure shows one
iteration of the algorithm: The transform matrices and are
kept fixed while Encoder 1 is chosen optimally. By Corollary
8, the optimal choice of Encoder 1 is indeed composed of a
transform matrix , followed by an appropriate choice of
components in the transform domain.

The key property of this algorithm is the following.

Theorem 9 (Convergence of the Distributed KLT Algorithm):
Denote the transform matrices provided by Algorithm 1 after
iteration by , for . Denote

the minimum mean-squared error estimate of based on the
observations by . Then

(38)

i.e., the distortion is a nonincreasing function of the iteration
number.

Proof: The theorem follows directly from Corollary 8:
Suppose that in iteration , the transform matrix is being
updated. That is, is selected according to Corollary 8. Note
that the corollary imposes no restrictions on ; in particular,
the current value of the matrix lies inside the optimization
space. Therefore, the distortion cannot increase.

This theorem implies that the distributed KLT algorithm will
converge to a stable point that is either a saddle point or a local
minimum, but it clearly cannot guarantee convergence to a glob-
ally optimal configuration of approximation spaces. Before we
study the convergence behavior in more detail, let us illustrate
our finding with a few simple examples.

Example 5: A toy example illustrating the basic issue is the
following: Suppose that a Gaussian random vector has mean
zero and the covariance matrix specified in (32). Suppose that
the first two components are sampled by terminal 1, i.e.,

, and the last two components by terminal 2, i.e.,
. Both terminals are asked to provide a one-dimensional

approximation. For , if each terminal applies the mar-
ginal KLT to its observation a distortion of is
incurred. Note that the KLTs are simple: terminal 1 applies the
identity transform, and terminal 2 applies

(39)

Using the distributed KLT algorithm discussed in this section,
and hence making the optimal choice, results in a distortion of

, and the transforms are

(40)

(41)

The convergence of the distributed KLT algorithm, when
is initially the identity matrix, is shown in Fig. 10. The figure
shows the error in the “middle” of the th iteration (i.e., after
the th update to , but before the th update to ), and at
the end of the iteration.

Finally, if the entire vector could be handled jointly and the
goal is to find the best two-dimensional approximation, a distor-
tion of is feasible.

Example 6: Suppose is a Toeplitz matrix with first row
contains the odd-indexed components of ,

and the even-indexed components. For
and , the marginal KLT, i.e., the stan-

dard KLT applied to each part separately, leads to a distortion
, while the distributed KLT gives
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Fig. 10. Convergence for Example 5.

. Hence, even in this seemingly symmetric scenario, the
distributed KLT is substantially different from the standard, i.e.,
joint KLT. For comparison, the full standard KLT, applied to the
entire vector , would give .

Example 7 (Computational Perspective): Applying the KLT
to a vector of length requires multiplications and ad-
ditions. Usually, we are only interested in the first elements,
and hence, the computational cost becomes multiplications
and additions. The distributed KLT provides a block-diag-
onal approximation of the KLT. Suppose the full vector of length

is decomposed into subvectors of lengths ,
and each subvector is approximated by a -dimensional vector,
for . Then, applying the distributed KLT to the
vector requires only multiplications, and an equal
number of additions. To gain insight, suppose that
and are both integer. Then, the distributed KLT re-
quires multiplications, and an equal number of additions.
For large , i.e., for a highly distributed KLT, this clearly is
considerably smaller than the multiplications and additions
required by the full standard KLT. Hence, the distributed KLT
permits a tradeoff between computational cost and approxima-
tion quality (measured in mean-squared error), though this need
not be the optimum such tradeoff. The following numerical ex-
ample illustrates this in more detail.

Let us consider the case and . More-
over, let be Toeplitz with first row , for

. Then, we can study the behavior of the resulting

mean-squared error as the are varied, and hence, the amount
of “distributedness” is increased. In particular, we consider the
case where all are equal. For example, we may select ,
and hence, and for . This re-
quires 180 multiplications. The resulting distortion is found to
be Fig. 11 graphically illustrates the outcome,
comparing the marginal KLT to the distributed KLT, and re-
vealing respective gains. Note that by selecting the covariance
matrix appropriately, these gains can be made large.

B. Compression

This subsection addresses the distributed compression
problem, illustrated in Fig. 1. Terminal observes source
output vectors of length and individually provides a binary
sequence that appears at rate bits per observed source
vector, for . The reconstruction point produces
a sequence such as to minimize the distor-
tion

(42)
Again, the goal is to analyze the problem as . In par-
ticular, we will consider the case of a fixed total (sum) rate

; the goal is to determine and achieve the
smallest possible distortion.

Unfortunately, this question cannot be answered in a conclu-
sive manner: the distributed compression problem illustrated in
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Fig. 11. The resulting distortion (y-axis) versus the number of multiplications (x-axis) for Example 7. The solid line is the distributed KLT, the dashed line is the
marginal KLT.

Fig. 1 is an open problem to date (except in the jointly Gaussian
two-source case [20]). The best currently known
achievable rate regions and outer bounds appear in [10], as dis-
cussed in somewhat more detail in Section II-B.

Instead, in this paper, we resort to a consideration of achiev-
able rate–distortion behavior. We will proceed along similar
lines as in Section III-B. There, we used the well-known infor-
mation-theoretic result given by (24)–(25) and developed it for
the vector case under consideration, establishing that an optimal
architecture is for the remaining terminal to apply the local KLT
and then separately compress each component in the transform
domain. Here, by analogy, we will consider a well-known infor-
mation-theoretic achievable rate region. However, by contrast,
there is no proof that this region is the optimal region. The re-
gion can be described as follows.

Theorem 10 ([44], [12], [15]): At fixed total rate , any
distortion

(43)

is achievable, where the auxiliary random vectors
satisfy

(44)

and

(45)

This theorem follows in a straightforward manner from the
work of Housewright and Omura (see [44]) and of Berger and

Tung (see [12, Ch. 6, Sec. 6.1]). Details can be found in [15,
Section IV].

The goal of our work is to determine the conditional dis-
tributions of the auxiliary random vectors , for

, and hence, the architecture of the coding
scheme, such as to minimize the distortion. In this paper, we
again take an iterative approach in which we fix all but one
of these conditional distributions, leading to a set of auxiliary
random vectors denoted by

(46)

and determine the optimal . More specifically, if we select
to be jointly Gaussian with then we know from Theorem 3
that the overall situation will be symmetric in the sense that the
remaining should also be selected jointly Gaussian with .
Therefore, we restate Theorem 3 in more general notation in the
shape of the following corollary.

Corollary 11: Assume the following:
a) For the conditional distributions

are Gaussian with mean zero. Hence, they can be
characterized by , where is a transform
matrix and is a random vector independent of , with
zero mean and covariance matrix . Define

(47)

and .
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b) A total rate budget of is imposed such that
.

Then, the optimal (distortion-minimizing) conditional distri-
bution for the remaining terminal, , is also Gaussian
(with mean zero), and is found by first determining the local
KLT of with respect to . Let be the largest integer
satisfying

for
(48)

where is the geometric mean
of the largest eigenvalues of the matrix . Then, the con-
ditional distribution of the auxiliary random vector

minimizing (43) subject to (44) and (45) is characterized by
, where contains the first rows of , and

the Gaussian vector has mean zero and covariance matrix

(49)

Remark 6: It is a simple matter to verify that the con-
structed along the lines of Corollary 11 satisfies

(50)

But then, the total rate of the source code (as in Theorem 10) is
simply given by

(51)

(52)

as desired. Here, the first equality follows by the chain rule of
mutual information [6, Theorem 2.5.2] and the fact that is
conditionally independent of , for , when conditioned
on .

To obtain an iterative procedure based on Corollary 11, as-
sume that initially, the auxiliary random vectors
and are jointly Gaussian random vectors. Hence, they can
be parameterized by transforms and additive
Gaussian “compression” noises, as illustrated in Fig. 3.

Algorithm 2 (Distributed KLT for Compression): The first
terminal observes the first components, the second terminal
observes the next components, and so on. A total rate of
bits per source vector is available, to be shared by the termi-
nals. Initialize as follows:

a) Let , where denotes a column vector of
length with all zero entries, for and

.
b) Select a suitable nonnegative, nondecreasing, discrete-in-

dexed function (a “rate schedule”) satisfying
, for all .

In the th iteration
1) For each :

Fix the transform matrices and the covariance
matrices , for , set

and find the best transform and the best covari-
ance matrix , as described in Corollary 11. Denote
the resulting overall distortion by .

2) Only retain the one updated matrix that enables the
largest decrease in distortion. More formally, set

and update as follows:

for and (53)

for and (54)

Remark 7: This algorithm attempts to simultaneously find
a rate allocation between the terminals and the corresponding
source code such as to minimize the overall distortion. It is
important to point out that this algorithm may yield entirely
different solutions, both in terms of the rate allocation and in
terms of the corresponding source code, depending on the “rate
schedule” function that is selected.

Remark 8: A greedy rate allocation strategy as used in Al-
gorithm 2 is inherently “short-sighted” and may not lead to a
globally optimal solution in general [46, Sec. 8.4, p.234].

By analogy to Algorithm 1, it is easy to show that this al-
gorithm must converge to a stable point that can either be a
saddle point or a local minimum. Clearly, one cannot generally
expect the algorithm to converge to a global minimum. Instead,
we again illustrate the behavior with a few examples.

Theorem 12 (Local Convergence): Denote the transform and
covariance matrices provided by Algorithm 2 after iteration by

and , respectively, for . Let

be a Gaussian random vector, independent of , with mean
zero and covariance matrix . Denote the minimum mean-

squared error estimate of based on the observations
by . Then

(55)

i.e., the distortion is a nonincreasing function of the iteration
number.

Proof: The theorem follows directly from Corollary 11:
Suppose that in iteration , the transform matrix , and the
corresponding covariance matrix provide the largest de-
crease in mean-squared error, and thus, are being updated. That
is, they are selected according to Corollary 11. Note that the
only restriction imposed by the corollary is (45). However, since

, it is clear that the current values of and
are inside the optimization space. Therefore, the distortion

cannot increase.

Example 8: To illustrate Algorithm 2, reconsider the scenario
of Example 6. Rather than providing a 10-dimensional linear ap-
proximation each, the two terminals now provide descriptions at
a total rate of bits. The outcomes of our numerical investiga-
tion are shown in Fig. 12. The solid line is the performance of the
scheme following from the distributed KLT algorithm. That is,
for each point on the solid line, the distributed KLT algorithm
was run, using a random rate schedule. More specifically, the
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Fig. 12. Rate–distortion functions for Example 8: The solid line is the rate–distortion function for the distributed KLT algorithm (Algorithm 2), the dashed line
the rate–distortion function for joint encoding of the entire vector, and the dotted line is the rate–distortion function for the case where each terminal individually
compresses its observations, ignoring the other terminal’s presence. The rate is given in bits.

function in Algorithm 2 was made up of 100 random incre-
ments from to . We also verified
that for the example at hand, multiple runs with different random
rate schedules led to the same rate–distortion points. For com-
parison, the dashed line is the rate–distortion function for joint
encoding of the entire vector , and the dotted line is the per-
formance of a scheme where no distributed coding is done, but
instead each terminal individually (and optimally) compresses
its observations, ignoring each other’s presence.

VI. ILLUSTRATION: CONVERGENCE OF THE

DISTRIBUTED KLT ALGORITHM

While the distributed KLT algorithm presented in Section V
is an intuitively pleasing approach and can be shown to con-
verge to a locally stable point which is either a local optimum
or a saddle point (Theorem 9), convergence to a global optimum
cannot be guaranteed in general. In this section, we illustrate this
fact by two simple examples. In the first example, there is only
one local minimum, which for that reason must also be a global
minimum. Therefore, the proposed algorithm will converge to
the globally optimum solution. In the second example, different
local minima exist, and hence, the outcome of the proposed al-
gorithm depends on the parameter settings and initializations.

Example 9 (Gauss–Markov Source): Consider the case
, and . Let

(56)

In this simple example, the transform applied by terminal 1
is simply a vector of length . Since the performance is in-
variant under scaling, the transform can be parameterized by a
single real number, characterizing the relationship between the
two components. By analogy, the same holds for the transform
applied by terminal 2. For example, we may parameterize the
transforms by two angles, and , by which we mean that ter-
minal 1 provides , and terminal 2 pro-
vides . For , Fig. 13 shows the
resulting error surface, as a function of and , revealing the
obvious -periodic structure and the fact that there is only one
local minimum in each period. Consequently, any locally con-
verging algorithm, and in particular, the suggested distributed
KLT algorithm (Algorithm 1) will converge to the globally op-
timal solution. For the considered example, the distortion in-
curred by the distributed KLT is , while ap-
plying marginal KLTs at each terminal results in a distortion of
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Fig. 13. The resulting distortion as a function of the distributed transforms (parameterized by � and �) for Example 9. All local minima are of the same depth,
and hence, global minima.

. The joint KLT, having access to the entire
vector simultaneously, incurs .

By contrast to the preceding example, the following example
shows that a local optimum need not be a global optimum in the
distributed KLT problem.

Example 10: Consider again the case
, and , but now, let

(57)

By analogy to Example 9, we again plot the error surface as a
function of and . The outcome is shown in Fig. 14, clearly re-
vealing the existence of two different local minima. Obviously,
no locally convergent algorithm can be guaranteed to find the
global minimum (i.e., the smaller of the two local minima).

To get further insight, suppose that Algorithm 1 is initialized
with , i.e., terminal 2 provides the component .
It is easy to see that Algorithm 1 will then select ,
i.e., terminal 1 provides the component . Thereafter, Algo-
rithm 1 does not change the matrices and any further.
The resulting distortion is . However, if Algorithm
1 is initialized with , then the (locally) optimal
choice is . Thereafter, Algorithm 1 does not change
the matrices and any further. The resulting distortion is

, illustrating that the algorithm converged to a local
minimum that is not a global minimum.

VII. CONCLUSION

This paper derives a distributed version of the KLT: when the
correlated data cannot be observed centrally, a scenario arising
for example in sensor networks, it is impossible to apply the
KLT to the entire data vector. Instead, we suppose that inde-
pendent agents each observe a separate part of the data, and have
to locally process their part, providing a compressed version up-
stream. We consider two kinds of compressed versions: on the
one hand, we consider linear approximation, where each agent
provides a small-dimensional approximation of its observation,
and on the other hand, we consider a rate–distortion framework
where each agent provides a bit stream. Somewhere upstream
sits a central data collector, wishing to reconstruct the entire un-
derlying data vector at the smallest mean-squared error possible.
The problem studied in this paper is to determine the optimum
local operations to be executed by the independent agents.

Special cases are addressed for which explicit solutions can
be given, including the partial and the conditional KLT. For
the general case, the paper derives a locally convergent algo-
rithm. For the Gauss–Markov example (Example 9), the algo-
rithm converges to a global optimum. Generally, however, we
show that the distributed KLT problem typically results in a non-
convex optimization problem, and hence, further investigations
are necessary to determine the precise (global) convergence be-
havior.

As far as applications are concerned, many scenarios of cur-
rent interest involve distributed compression. For example, data
gathering in sensor networks involves distributed coding of cor-
related data, where the distributed KLT can play a role. Another
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Fig. 14. The resulting distortion as a function of the distributed transforms (parameterized by � and �) for Example 10. As the figure reveals, there exist local
minima that are not global minima. More precisely, there are two kinds of (periodically repeated) local minima. In the graph, the global minima can be seen most
easily along the �-axis, and the local minima that are not global along the �-axis.

example is found in interactive communication schemes, e.g.,
two databases exchanging images with known cross correlation,
which leads directly to a conditional KLT problem.

APPENDIX I

To establish Lemma 1 and Theorem 2, we start by noting that
since is assumed to be a vector of jointly Gaussian random
variables,3 and since where is also Gaussian
and independent of there exist matrices and such that

(58)

where the Gaussian random vector is independent of and of
. It is straightforward to verify that the matrix

is the one given in (14). Simultaneously, there exists a matrix
such that we can write

(59)

where the random vector is independent of . The matrix
given in (15) is the covariance matrix of the random vector .
We will now use these relationships to simplify the distortion
expression to be minimized.

Proof of Lemma 1: For Lemma 1, the fact that
follows from the fact that the columns of are orthog-

onal and that the matrix has full (column) rank, trivially.

3The theorem can be proved more generally if one imposes the restriction of
linear reconstruction, but this is beyond the scope of the present paper.

Clearly, however, is not generally unitary. The second fact
can be established by considering the random matrix

(60)

and since is independent of we find

(61)

with probability one. Moreover, the matrix on the left-hand side
(LHS) of (61) is diagonal by construction of , with di-
agonal entries , for , as in (16). Hence,
the components of have conditional variances , for

, conditioned on .

Proof of Theorem 2: To establish Theorem 2, we assume
that the encoder provides a linear approximation, i.e., the en-
coder provides4

(62)

4Note that the same analysis applies to the case where the encoder is to pro-
vide a noisy linear approximation of the form yyy = C xxx + zzz ; where zzz is
additional noise, independent of all components of the original vector xxx.
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Hence, the decoder has access to (or, along the same
lines, a noisy version ) and to and
needs to provide an estimate such as to minimize

(63)

In the Gaussian case considered in this paper, it is well known
that linear reconstruction is optimal (a straightforward conse-
quence of, e.g., [47, Theorem 34.8]), that is, is an (arbitrary)
linear5 function of and of . The ma-
trix is fixed, and the goal is to determine the optimal matrix

. To this end, let us first trivially rewrite

(64)

where we use to denote the first components of and
to denote its remaining components. Furthermore

(65)

where we have used (58). Recall that is independent of and
(by construction of , see (58)). Therefore,

(66)

and thus,

(67)

Finally, merging the two contributions that involve we ob-
tain

(68)

To proceed from here, we will rewrite the distortion as an iter-
ated expectation, as follows:

(69)

Now, consider the random variable .
For a specific instance we can consider

(70)

Next, since the columns of the matrix are orthonormal,
we can multiply both expressions inside the expectation in (70)
by without changing the outcome. But then, using our
definition of , we can rewrite

(71)

5Recall, however, that beyond the case of Gaussian statistics, nonlinear esti-
mation may perform better. We do not address this issue in the present paper.

which we can now rewrite in terms of the components of the
vector as

(72)

Lemma 1 ensures that the components are condi-
tionally uncorrelated given . Therefore, in terms of the
components it is a simple matter to determine
the optimum -dimensional approximation space. First, if the
component is retained, then clearly its corresponding esti-
mate is . However, if is not retained, then its cor-
responding estimate is ; none of the other components
of the vector contain anything relevant about conditioned
on . The best -dimensional approximation space is there-
fore easily found in terms of : Denote the set of the indices
corresponding to the retained components of by . Then, the
incurred distortion can be expressed as

(73)

where for , denote the conditional vari-
ances of the components of , conditioned on

, as given in (16), and denotes the complement of in the
set . Therefore, the best -dimensional approx-
imation is given by the components corresponding to the
largest eigenvalues . It is important to note that the ma-
trix , and hence the resulting approximation space, does not
depend on the particular realization of . Therefore, we can
trivially evaluate the iterated expectation in (69) to obtain

(74)

(75)

Finally, to evaluate , we need the covariance matrix
of the random vector in (58). From standard covariance

considerations, we find that must satisfy

(76)

and by definition, .

APPENDIX II

Proof of Lemma 3: We establish the theorem in two parts,
first showing that no lower rate can be hoped for, and then
showing that there exists a coding technique that achieves this
rate.

Proofs of similar statements can be found in the literature,
see, e.g., [48]–[50].
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Converse: To establish the converse, suppose that the value
of the side information is known both at the encoder and at
the decoder. In this idealized scenario, denote the minimum rate
required to achieve a distortion no larger than by .
Clearly

(77)

since any code that works for the scenario of Theorem 3 also
works in the idealized scenario.

The goal of the first part of the proof is to provide a lower
bound to , and hence, to . The idealized
scenario where both the encoder and the decoder know the
side information is sometimes referred to as the conditional
rate–distortion function, and has been considered in [51]. Our
scenario is slightly different from [51] in that the distortion cri-
terion involves the side information. Let us define the following
object:

(78)

where the minimum is over all satisfying

(79)

It follows straightforwardly from [6, Lemma 13.4.1] that
is a convex and nonincreasing function of .

Consider any (block) code of length for the observed source
vector sequences . If the rate per source (vector)
sample is , there are at most different
codewords. Along the lines of [6, eqs. (13.58)–(13.70)], it is
easy to show that .

The next step is to evaluate for the case at hand. First,
we rewrite

(80)

which implies . Similarly, for the
distortion, we can write

(81)

Next, consider , where is the unitary matrix sat-
isfying

(82)

In terms of , we can rewrite the minimization problem
(78)–(79) as

(83)

where and are independent Gaussian random vectors, and
the minimization is over all that satisfy

(84)

Since and are independent, the minimizing will depend
only on . In other words, the problem can be expressed as

(85)

where the minimization is over all that satisfy

(86)

But since the components of are independent Gaussian
random variables with mean zero and variances

(87)

this is merely the problem of compressing independent
Gaussian sources of different variances, whose solution is well
known to be [6, p. 348]

(88)

where are the eigenvalues of the matrix , and where
the minimum is over all satisfying

.
Finally, evaluating the minimization over the ,

the following expression is obtained:

(89)

where

if
if (90)

where is chosen such that .
Hence, we have shown that

(91)

with as in (89)–(90).
Achievability: The remaining part of the proof is to show

that there exists a coding scheme for the scenario of Theorem
3 whose performance arbitrarily closely approaches . To
do so, let the encoding device first apply the local KLT to

(with respect to ), as in Definition 1. Note that since
the source is memoryless, the transform does not depend
on . This yields a (transformed) sequence of vectors

. For each , the components of the vector are con-
ditionally independent given . It now suffices to apply the
result of Wyner and Ziv [9], [52] separately to each compo-
nent of . More precisely, for the “component sequence”

, with side information at the de-
coder , it was found in [9], [52] that

(92)
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Finally, we minimize the sum rate subject to the
constraint that . The solution is
easily found to be (88).

Proof of Corollary 4: Consider the proof of achievability
for Theorem 3. After applying the local KLT to , yielding

, the components of are treated
separately, incurring distortions of respec-
tively. That is, consider the single-source Wyner–Ziv problem
(as in [9], [52]), the source being , and the side information
being the vector . The minimum rate can be characterized as

(93)

where the minimization is over all distributions
for which there exists a function

such that

(94)

Evaluating this reveals (92), but it also reveals that the mini-
mizing makes and jointly Gaussian random
variables. Since is only determined up to a scaling factor,
this simply implies that we can express as

(95)

where is Gaussian and independent of . It is easily verified
that has mean zero and variance satisfying

(96)

Finally, just like in the proof of achievability for Theorem
3, must be chosen to minimize the resulting sum rate

, subject to the constraint

This minimization is carried out by analogy to (89)–(90), and
(90) implies the rule for selecting in Corollary 4.
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