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ABSTRACT

Multiterminal Video Coding

From Theory to Application. (August 2012)

Yifu Zhang, M.S., Tsinghua University;

B.S., Tsinghua University

Chair of Advisory Committee: Zixiang Xiong

Multiterminal (MT) video coding is a practical application of the MT source

coding theory. For MT source coding theory, two problems associated with achievable

rate regions are well investigated into in this thesis: a new sufficient condition for BT

sum-rate tightness, and the sum-rate loss for quadratic Gaussian MT source coding.

Practical code design for ideal Gaussian sources with quadratic distortion measure

is also achieved for cases more than two sources with minor rate loss compared to

theoretical limits. However, when the theory is applied to practical applications, the

performance of MT video coding has been unsatisfactory due to the difficulty to ex-

plore the correlation between different camera views. In this dissertation, we present

an MT video coding scheme under the H.264/AVC framework. In this scheme, depth

camera information can be optionally sent to the decoder separately as another source

sequence. With the help of depth information at the decoder end, inter-view correla-

tion can be largely improved and thus so is the compression performance. With the

depth information, joint estimation from decoded frames and side information at the

decoder also becomes available to improve the quality of reconstructed video frames.

Experimental result shows that compared to separate encoding, up to 9.53% of the

bit rate can be saved by the proposed MT scheme using decoder depth information,

while up to 5.65% can be saved by the scheme without depth camera information.

Comparisons to joint video coding schemes are also provided.
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1

CHAPTER I

INTRODUCTION

Multiterminal (MT) video coding refers to the problem of separate encoding and joint

decoding of multiple correlated video sequences. These sequences are usually captured

by closely positioned, synchronized cameras. In this procedure, different encoders (or

camera views) are not allowed to communicate with each other, while bit streams for

different camera views are decoded jointly. MT video coding is underpinned by the

MT source coding problem [1], which deals with separate encoding and joint decoding

of multiple correlated sources under distortion constraints. MT source coding is the

lossy version of the distributed source coding problem first studied by Slepian and

Wolf [2], who showed separate lossless encoding of two correlated sources (with joint

decoding) suffers no rate loss when compared to joint encoding (and decoding). Later,

Wyner and Ziv [3] extended a special case of Slepian-Wolf (SW) coding to lossy source

coding with side information at the decoder, and showed that there is in general a

rate loss with Wyner-Ziv (WZ) coding when compared to source coding with side

information at both the encoder and decoder. One special case of WZ coding (with

no rate loss) is when the source and side information are jointly Gaussian and the

distortion measure is the mean square error (MSE).

Generally, two classes of MT source coding problems, namely direct MT source

coding [1, 4, 5] and indirect MT source coding [6, 7], have been studied. The latter

is often referred to as the CEO problem, where different terminals observe and sep-

arately encode noisy versions of a single remote source, which is to be reconstructed

at the decoder. Recently, the CEO problem has been generalized to the setup with

The journal model is IEEE Transactions on Automatic Control.
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multiple remote sources under a sum-distortion constraint [8, 9, 10].

By connecting the quadratic Gaussian MT source coding problem to the quadratic

Gaussian CEO problem [11], Wagner et al. [12] showed sum-rate tightness of the

Berger-Tung (BT) rate region for the two-terminal and positive-symmetric cases.

Wang et al. [13] then provided an alternative proof based on an estimation-theoretic

result, which also leads to a sufficient condition for BT sum-rate tightness. Yang and

Xiong [14] started with a generalized quadratic Gaussian CEO problem and proved

sum-rate tightness in the bi-eigen equal-variance with equal distortion (BEEV-ED)

case. Although the BEEV-ED case satisfies the sufficient condition given in [13], the

proof technique for the converse theorem is different and examples more explicit.

This thesis work starts from theoretical problems of MT source coding. First,

a new and more inclusive sufficient condition than Wang et al.’s [13] for BT sum-

rate tightness is provided. The main novelty is to consider a larger set of remote

sources, such that the observation noises between the MT and remote sources have a

block-diagonal covariance matrix, instead of a diagonal matrix as assumed in [13]. By

restricting the noise covariance matrix to have K 2× 2 diagonal blocks and (L− 2K)

1× 1 diagonal blocks, we build a connection between the L-terminal problem and K

two-terminal problems with matrix-distortion constraint.

Another problem in MT source coding theory is the sum-rate loss of quadratic

Gaussian multiterminal source coding, i.e., the difference between the minimum sum-

rates of distributed encoding and joint encoding (both with joint decoding) of corre-

lated Gaussian sources subject to MSE distortion constraints on individual sources.

With the minimum sum-rate given for the above-mentioned special cases of quadratic

Gaussian MT source coding, it is interesting to investigate the sum-rate loss of dis-

tributed encoding as compared to joint encoding (and decoding) of Gaussian sources.

However, since the minimum sum-rate for MT coding is not known in general, it is
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impossible to compute the sum-rate loss for all quadratic Gaussian L-terminal source

coding problems. In addition, due to the individual distortion constraints, character-

izing the minimum sum-rate of joint encoding becomes more difficult as the number

of sources L increases.

Fortunately, with the Berger-Tung (BT) inner rate region available, we have an

upper bound on the minimum sum-rate of distributed encoding. On the other hand,

by relaxing the individual distortion constraints in the joint encoding problem to a

sum-distortion constraint (that equals the sum of the individual target distortions),

the joint encoding minimum sum-rate can be easily lower-bounded by the solution

to a reverse water-filling problem [15]. By taking the difference between the upper

bound for distributed encoding (with larger minimum sum-rate) and the lower bound

for joint encoding (with smaller minimum sum-rate), we obtain an upper bound on

the sum-rate loss for the general distributed encoding problem.

An important step in this work is devoted to proving that under the non-degraded

assumption, that is, all target distortions are simultaneously achievable by a Gaussian

BT scheme, this upper bound approaches its supremum in the BEEV-ED case, where

the supremum sum-rate loss is proved to increase almost linearly with L, with an

asymptotic slope of 0.1083 b/s per source as L goes to infinity. The non-degraded

assumption is made such that the upper bound on the distributed encoding sum-rate

can be expressed simply in terms of the eigenvalues of the source covariance matrix

after proper normalization. Then because both the upper bound on the minimum

sum-rate of distributed encoding and the lower bound on the minimum sum-rate of

joint encoding are achieved with equality in the BEEV-ED case, we conclude that

under the same assumption, the supremum sum-rate loss of quadratic Gaussian L-

terminal source coding also increases almost linearly with L. It is worth noting that

this result is obtained even though we currently do not have the full knowledge of the
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minimum sum-rate of the quadratic Gaussian MT source coding problem.

Following the theoretical work on MT source coding, practical code design are

examined for quadratic Gaussian source coding with more than two terminals in both

the indirect and direct setups. The focus is on cases when the BT sum-rate bounds are

known to be tight. Previous research on MT source code design has mostly focused on

the two-terminal case. Pradhan and Ramchandran provided a code design based on

generalized coset codes for the two-terminal quadratic Gaussian CEO problem [16].

Yang et al. [17] proposed an SW coded quantization (SWCQ) framework for both

direct and indirect quadratic Gaussian two-terminal source coding; SWCQ utilizes

trellis-coded quantization (TCQ) [18] followed by low-density parity-check (LDPC)

codes for SW compression. Since TCQ and LDPC codes are limit-approaching tech-

niques for quantization and SW compression, respectively, results in [17] show only a

0.139-0.194 bit per sample (b/s) loss from the sum-rate bound of quadratic Gaussian

two-terminal source coding.

Our practical designs follow the same principle of SWCQ based on TCQ and

LDPC codes as in [17]. In addition to TCQ, we also employ trellis-coded vector

quantization (TCVQ) [19, 20] to improve the coding efficiency in the low-rate regime

(e.g., when the rate is less than one b/s for some terminals). Assuming ideal TCQ

and limit-approaching LDPC coding, we show that by varying the encoding and cor-

responding decoding order of different terminals/observations, SWCQ can approach

all corner points of the rate region of generalized Gaussian CEO coding as well as

the sum-rate bound of quadratic Gaussian MT source coding. Simulations using

8192-state TCQ/TCVQ and length-106 LDPC codes show a sum-rate loss of only

0.106-0.162 b/s with three and four terminals.

In going from code design for two terminals to that for more than two terminals,

the main issue we have to deal with in this paper is increased complexity. For the two-
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terminal case, LDPC profiles in the SWCQ scheme of [17] are individually designed for

every SW coded bit plane of every WZ coded terminals. However, when the number

of terminals/sources increases, the brute-force design method of [17] for LDPC codes

becomes impractical. Therefore, the analysis of the bit-plane-wise correlation channel

between the quantized source and its decoder side information becomes important.

Based on the analysis, we provide approximate distributions of these channels that

match well with the true distributions obtained from the real data. Our simulations

show that LDPC codes designed for the approximate channel distributions suffer

no loss when compared to LDPC codes designed for the true channel distributions.

It provides a bridge between the theory of MT source coding and the practice of

multiview/MT video coding.

On the application part, MT video coding for camera arrays and distributed

video sensor networks has become a very active area of research in recent years.

For example, [21] uses turbo codes to outperform the JPEG2000 standard separate

encoding scheme (or simulcast scheme). In [22] and [23], nested lattice codes for DCT

and wavelet transform coefficients are studied. [24] employs a six-parameter affine

transform model for inter-view prediction to outperform the simulcast scheme using

H.263 standard. The geometry constraints for multiple view images are analyzed

in [25] and [26], and bit savings are achieved compared to JPEG2000. However, the

latest H.264/AVC video coding standard [27] proves to be much more efficient in rate-

distortion (R-D) performance for simulcast schemes and is difficult to outperform by

MT video coding schemes. In our earlier work on two-terminal video coding [28], a

bit rate saving of about 1% is achieved compared to H.264/AVC simulcast scheme by

coding one sequence by H.264/AVC and the other by Wyner-Ziv video coding. We

also treated three-terminal video coding [29].

The most important step in MT video coding is side information generation at



6

the decoder, including generation of a side information frame for a WZ coded frame,

and subsequently the side information for all the WZ coded components of the WZ

coded frame. The quality of side information frame determines the transmission rate

of WZ coded camera view sequences. To acquire high-quality side information frames

from decoded frames in other camera view sequences, the configuration of camera

setup and depth information (the distance value map between objects in the scene

and the camera) are needed to find pixel-to-pixel correspondence between different

view frames.

In all current MT video coding schemes, the depth information are acquired at

the decoder by processing the decoded texture sequences. This restricts the depth

accuracy and consequently, the R-D performance. Therefore, in this work, we are

looking into an alternative, i.e., collecting depth information at the encoder and

sending it to the decoder separately. This still conforms with the MT setup. With

depth information included in the scheme, side information for MT video coding can

also be made much more accurate and better R-D performance can be expected.

Joint estimation [17] is an important step in WZ coding, which reconstructs the

final signal using decoded information and side information jointly. If we also consider

joint estimation in MT video coding, depth information becomes more favorable since

that by providing accurate geometrical information at the decoder, side information

for pixel values can be acquired from previously decoded simultaneous frames from

other camera views, and thus joint estimation from side information and decoded

frames of the current decoded sequence is available, which can also improve the quality

of the reconstructed frames. Moreover, joint estimation can also be used for multiview

video coding (MVC) scheme if depth information is provided. This reemphasizes the

importance of depth information in 3-D video applications.

Additionally, using depth information at the decoder also reduces decoder com-
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plexity, since a MT scheme without depth information at the decoder usually needs to

employ complicated stereo matching algorithms to find pixel mapping between differ-

ent views for better R-D performance [28], while MT scheme with depth information

at the decoder can get such pixel mapping from depth information by simple affine

transform.

On the other hand, for hardware implementation, different types of depth cam-

eras have been provided for research and even commercial use. For example, the

SwissRanger series range camera [30] can directly capture the depth map of a scene

in real time; the successful launch of Microsoft Kinect makes deployment of cheap

commodity depth cameras a step closer to reality. Although constrained by its rela-

tively lower resolution and high geometrical distortion compared to traditional video

cameras (or texture cameras), depth cameras can provide more accurate depth in-

formation for the background as well as objects that cannot be easily discerned by

existing stereo matching algorithms, especially when the number of stereo views is

limited (e.g., no more than three). Thus, using depth information in MT video cod-

ing can be expected to be more popular in practice as such devices become more

advanced.

Therefore, in the application part of this thesis, we provide schemes and experi-

ment results on MT video coding with/without separate depth information sent to the

decoder and used as side information, aiming at enhancing the R-D performance of

the the current MT coding schemes, compared to the simulcast video coding scheme.

We implemented our proposed scheme to both standard MVC test sequences and a

sequence with actual synchronized low-resolution depth sequence. For MVC test se-

quences, since a priori depth information is not available for such sequences, we first

generate low-resolution (thus low transmission rate) depth information by processing

simultaneous original frames from different views. Such depth information is encoded
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and transmitted to the decoder separately to satisfy the MT coding constraint, and

then used at the joint decoder to help construct better side information for MT cod-

ing. The proposed MT video coding scheme is implemented and experimented under

the H.264/AVC standard framework. Therefore, by comparing with the simulcast

video coding scheme using H.264/AVC joint model (JM) reference software [31], we

found that by transmitting additional depth information to the joint decoder, up to

9.53% of the bit rate can be saved compared to the simulcast video coding scheme,

while 5.65% can be saved in the case no depth information transmitted to the decoder.

We also compared our result to the MVC scheme using H.264/AVC joint multiview

video model (JMVM) reference software [32, 33], and it shows that the MT scheme

with depth information at the decoder still suffers an average sum rate loss up to

8.54% compared to the MVC scheme.

The remainder of the thesis is organized as follows: Chapter II provides a new

sufficient condition for sum-rate tightness in MT source coding after a brief summary

of the background of Gaussian quadratic MT source coding theory; Chapter III gives

some new results on sum-rate loss of Gaussian quadratic MT source coding; Chapter

IV deals with practical code design problems for MT source coding with know tight

sum-rate bounds; Chapter V focuses on the application of MT source coding, MT

video coding; and finally Chapter VI concludes the dissertation.
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CHAPTER II

A NEW SUFFICIENT CONDITION FOR SUM-RATE TIGHTNESS IN

QUADRATIC GAUSSIAN MT SOURCE CODING

In this chapter, we first provide a brief review of the setup of quadratic Gaussian

MT source coding problem in Section A and existing results in this setup in Section

2. Section B studies the two-terminal source coding problem with matrix-distortion

constraint, and provides an improved lower bound on the sum-rate. Section C states

our main results on a new sufficient condition for sum-rate tightness, and presents a

degraded example belonging to the block-degraded case that satisfies our new con-

dition. Section D gives a simplified sufficient condition for the sum-rate tightness in

the non-degraded cases, followed by two additional examples satisfying the simplified

condition.

A. The quadratic Gaussian MT source coding problem

1. Quadratic Gaussian direct MT coding

For any integer L, denote L = {1, 2, ..., L}. Let YL = (Y1, Y2, ..., YL)
T be a length-

L vector Gaussian source with mean 0 and covariance matrix ΣYL
. Also denote

YSk
as the length-|Sk| subvector of YL indexed by Sk. For an integer n, let Y L =

(YL,1, YL,2, ..., YL,n) be an L × n matrix with YL,i, i = 1, 2, ..., n being n independent

drawings of YL. Also denote Y Sk
as the |Sk|×n submatrix of Y L with column indices

Sk. For any L×n random matrix Y L and any random object ω, define the conditional

covariance matrix of Y L given ω as

cov(Y L|ω) ∆
=

1

n
E
[

(Y L − E(Y L|ω)) (Y L − E(Y L|ω))T
]

. (2.1)
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Consider the task of separately compressing a length-n block of sources Y L

at L encoders and jointly reconstructing Y L as Ŷ L at a central decoder subject

to individual distortion constraints DL = {D1, D2, ..., DL}. For compact notation,

subscript L will be dropped in the rest of the thesis if no ambiguity is incurred. This

problem is known as the quadratic Gaussian MT source coding problem, whose block

diagram is depicted in Fig 1.

Y n

L

Y n
2

Y n
1

Ŷ n

L

Ŷ n
2

Ŷ n
1

RL

R2

R1

φL

φ2

φ1 ϕ

Joint Decoder

Separate
Encoder L

Separate
Encoder 2

Separate
Encoder 1

Fig. 1. The quadratic Gaussian MT source coding problem.

Let

φ
(n)
j : Rn 7→

{

1, 2, ..., 2R
(n)
j − 1

}

, j ∈ L (2.2)

be the j-th encoder function and

ψ
(n)
j :

{

1, . . . , 2R
(n)
1 − 1

}

×
{

1, . . . , 2R
(n)
2 − 1

}

× · · · ×
{

1, . . . , 2R
(n)
L − 1

}

7→ Rn (2.3)

be the reconstruction function for Y j. Denote Wj as the transmitted symbol at the

j-th encoder, and RMT
ΣY

(

φ
(n)
L , ψ

(n)
L

)

=
∑

j∈LR
(n)
j as the sum-rate of the MT coding

scheme
(

φ
(n)
L , ψ

(n)
L

)

. We say a rate tuple (R1, ..., RL)
T is (ΣY ,D)-achievable if there
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exists a sequence of schemes
{(

φ
(n)
L , ψ

(n)
L

)

: n ∈ N+
}

such that

lim sup
n→∞

R
(n)
j ≤ Rj , for any j ∈ L, (2.4)

lim sup
n→∞

1

n
E
[

(Yj,i − Ŷj,i)
2
]

≤ Dj , for any j ∈ L. (2.5)

Define the (R1, ..., RL)
T is (ΣY ,D)-achievable rate region RMT

ΣY
(D) as the convex

closure of all (R1, ..., RL)
T-achievable rate tuples, i.e.,

RMT
ΣY

(D) = cl
{
(R1, R2, . . . , RL)

T : (R1, R2, . . . , RL)
T is (ΣY ,D) achievable.

}
(2.6)

The minimum sum-rate with respect to (ΣY ,D) is then defined as

RMT
ΣY

(D) = inf

{
L∑

i=1

Ri : (R1, R2, . . . , RL)
T ∈ RMT

ΣY
(D)

}

. (2.7)

In order to study the sum-rate loss, we also consider the problem of joint en-

coding (and joint decoding) of the same length-L Gaussian vector source Y . Let
(

φ
(n)
Joint, ϕ

(n)
Joint

)

be a pair of joint encoding/decoding functions defined as

φ
(n)
Joint : Rn × . . .× Rn

︸ ︷︷ ︸

L

→
{

1, 2, ...,M
(n)
Joint

}

,

ϕ
(n)
Joint :

{

1, 2, ...,M
(n)
Joint

}

→ Rn × . . .× Rn

︸ ︷︷ ︸

L

.

A non-negative rate R is (ΣY ,D)-jointly-achievable if there exists a sequence of

schemes
{(

φ
(n)
Joint, ϕ

(n)
Joint

)

: n ∈ N+
}

such that

lim sup
n→∞

1

n
log2M

(n)
Joint ≤ R,

lim sup
n→∞

1

n

n∑

j=1

E
[

(Yi,j − Ŷi,j)
2
]

≤ Di, ∀i ∈ L.

are satisfied. The joint encoding minimum sum-rate with respect to (ΣY ,D) is sim-
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ilarly defined as

RJoint
ΣY

(D) = min{R : R is (ΣY ,D)−jointly−achievable} .

Then the sum-rate loss of distributed over joint encoding is defined as

R∆
ΣY

(D) = RMT
ΣY

(D)− RJoint
ΣY

(D).

Berger and Tung [1, 4] provide an inner rate region inside which all rate tuples

are (ΣY ,D)-achievable. In this paper, we restrict ourselves to a subset of the Berger-

Tung inner rate region inside which all points can be achieved by parallel Gaussian

test channels. This subset is referred to as the Berger-Tung (BT) inner rate region in

the sequel. Let UL = (U1, U2, . . . , UL)
T be a length-L auxiliary random vector such

that

• Ui = Yi+Qi, i = 1, 2, . . . , L, where Qi ∼ N (0, σ2
Qi
), and all Qi’s are independent

of each other and of all Yi’s,

• UL satisfies E {(Yi − E(Yi|UL))2} ≤ Di for all i = 1, 2, . . . , L,

and define U(ΣY ,D) as the set of all auxiliary random vectors U that satisfy the

above conditions. Then the following lemma gives the BT inner rate region, the proof

can be found in [1, 4].

Lemma 1. Define

RBT
ΣY

(D) =
⋃

UL∈U(ΣYL
,DL)

{

(R1, R2, . . . , RL)
T :
∑

i∈A
Ri ≥ I(YA;UA|UL−A)

}

, (2.8)

then

RBT
ΣY

(D) ⊆ RMT
ΣY

(D). (2.9)
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In particular, the BT minimum sum-rate

RBT
ΣY

(D) = inf

{
L∑

i=1

Ri : (R1, R2, . . . , RL)
T ∈ RBT

ΣY
(D)

}

= inf
ΣQ∈�L:

[

(ΣY
−1+ΣQ

−1)
−1

]

j,j
≤Dj , ∀j∈L

1

2
log2

[ |ΣY |
|(ΣY

−1 +ΣQ
−1)−1|

]

(2.10)

satisfies

RMT
ΣY

(D) ≤ RBT
ΣY

(D), (2.11)

where �L denotes the set of all L× L positive definite (p.d.) diagonal matrices.

For example, the BT rate region for the quadratic Gaussian two-terminal source

coding problem with ΣY =






σ2
Y1

ρσY1σY2

ρσY1σY2 σ2
Y2




 is given by

RBT
ΣY

(D) = R̂BT
1 (D1, D2) ∩ R̂BT

2 (D1, D2) ∩ R̂BT
12 (D1, D2), (2.12)

where

R̂BT
i (D1, D2) =

{

(R1, R2) : Ri ≥
1

2
log+

[

(1− ρ2 + ρ22−2Rj )
σ2
Yi

Di

]}

, i, j = 1, 2, i 6= j,

(2.13)

R̂BT
12 (D1, D2) =

{

(R1, R2) : R1 +R2 ≥
1

2
log+

[

(1− ρ2)
βmaxσ

2
Y1
σ2
Y2

2D1D2

]}

, (2.14)

with βmax = 1 +
√

1 + 4ρ2D1D2

(1−ρ2)2σ2
Y1

σ2
Y2

, and log+ x = max {log x, 0}. The BT rate

region with σ2
Y1

= σ2
Y2

= 1, ρ = 0.9, and DL = (0.1, 0.1)T is shown in Fig. 2,

where ∂R̂BT
i (D1, D2) and ∂R̂BT

12 (D1, D2) are the boundaries of R̂BT
i (D1, D2) and

R̂BT
12 (D1, D2), respectively.
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Fig. 2. An example of the BT rate region for the quadratic Gaussian two-terminal

source coding problem.

2. Existing results on sum-rate tightness

Wagner et al. [12] proved that for the two-terminal case (with L = 2), the BT

minimum sum-rate is equal to the MT minimum sum-rate, as stated in the following

lemma,

Lemma 2 ([12]). For any positive-definite symmetric ΣY ∈ R2×2 and any positive

real vector D = (D1, D2)
T, it holds that

RMT
ΣY

(D) = RBT
ΣY

(D),

where RMT
ΣY

(D) and RBT
ΣY

(D) are the MT and BT sum-rate for ΣY with distortion

constraint D respectively.

They also showed tightness of the BT sum-rate bound for the positive symmetric
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case, i.e., (2.16) holds for any L× L positive-symmetric matrices of the form

ΣYL
= SL(a, b)

∆
=












a b b ... b

b a b ... b

... ... ... ... ...

b b b ... a












, (2.15)

for some a > b > 0 and any D = (D,D, ..., D)T for some D > 0. Fig. 3 depicts

the QB rate region of quadratic Gaussian three-terminal source coding with ρ = 0.8

and D = 0.05, which is a 3-D extension of the rate region for quadratic Gaussian

two-terminal source coding [34, 35]. The sum-rate bound is the hexagonal portion

of the hyperplane defined by R1 + R2 + R3 = RY (3, 0.8, 0.05) = 4.865 b/s. The six

corner points of the hexagon corresponds to different encoding orders for the three

sources.

0

1

2

3

4 0

1

2

3

4

0

0.5

1

1.5

2

2.5

3

3.5

4

R2
R1

R
3

Fig. 3. The BT rate region of quadratic Gaussian three-terminal source coding in the

positive symmetric case with ρ = 0.8 and D = 0.05.

It is recently proved in [14] that tightness of the BT minimum sum-rate also holds

for a more general class called BEEV-ED, where the source covariance matrix ΣY is

bi-eigen equal-variance (BEEV), i.e., ΣY has equal diagonal element and two distinct

eigenvalues, and the target distortions are equal for all sources. We summarize these
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results in the following three lemmas.

Lemma 3 ([14]). For any positive-definite symmetric ΣY with equal diagonal element

a > 0 and two distinct eigenvalues, and any positive real number D ∈ (0, a], it holds

that

RMT
ΣY

(D1) = RBT
ΣY

(D1).

Moreover, the optimal sequence of schemes that approaches the minimum sum-rate

RMT
ΣY

(D1) must also approach the target distortion vector D1.

The most general cases of quadratic Gaussian MT source coding problem with

tight sum-rate are provided by Wang et al. [13]. Their proof contains four major

steps.

• First, the L MT sources Y are connected to L remote sources X such that

Y =X +N (2.16)

with N being a zero-mean Gaussian vector independent of X with a diagonal

covariance matrix

ΣN =












σ2
N1

0 ... 0

0 σ2
N2

... 0

... ... ... ...

0 0 ... σ2
NL












. (2.17)

Then they use the Markov chainX → Y →W to obtain an estimation-theoretic

result that cov(Y |X,W ) must also be diagonal.

• Exploit the semidefinite partial order of the distortion matrices, which is due to

the fact that a linear minimum mean squared error (MMSE) estimator cannot
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outperform its optimal MMSE counterpart, to show that

cov(Y |X,W ) �
(
(cov(Y |W ))−1 +Σ−1

N −Σ−1
Y

)−1
.

• A lower bound on the MT minimum sum-rate RMT
ΣY

(D) is derived by exploiting

the diagonal structure of cov(Y |X,W ).

• Form a convex optimization problem that minimizes the above lower bound

over D
∆
= cov(Y |W ) and γ

∆
= diag(cov(Y |X,W )), and establish a sufficient

condition for the D and γ that correspond to the optimal BT scheme to satisfy

the the KKT condition of the optimization problem.

Specifically, let P
�
L be the set of L×L p.s.d. matrices and d be the set of diagonal

matrices. Define D(D,ΣY ) as the set of all BT-achievable distortion matrices that

satisfy the distortion constraints, and N (ΣY ) as the set of all possible diagonal

covariance matrices ΣN , i.e.,

D(D,ΣY )
∆
=
{

D ∈ RL×L : [D]j,j = Dj , ∀j ∈ L, and D−1 −Σ−1
Y ∈ P

� ∩ d} ,
(2.18)

N (ΣY )
∆
=
{
Σ ∈ P

� ∩ d : Σ � ΣY

}
. (2.19)

Wang et al.’s result [13] is summarized in the following theorem.

Theorem 1 ([13]). If for some D ∈ D(D,ΣY ) and ΣN ∈ N (ΣY ), there exists a

diagonal matrix Π = diag(π1, ..., πL) such that

D
(

Π−D−1 +D−1
(
D−1 +Σ−1

N −Σ−1
Y

)−1
D−1

)

D (2.20)

is a p.s.d. matrix with the same diagonal elements as those of
(
D−1 +Σ−1

N −Σ−1
Y

)−1
,
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then the BT sum-rate bound is tight, i.e.,

RBT
ΣY

(D) = RMT
ΣY

(D). (2.21)

Using a different technique, sum-rate tightness for a special bi-eigen equal-variance

with equal distortion class of MT problems was proved by Yang and Xiong [14]. That

is, (2.16) holds for any ΣY ∈ B and D = (D,D, ..., D)T for some D > 0, where B

denotes the set of all L × L p.s.d. matrices with two distinct eigenvalues and equal

diagonal elements.

3. Quadratic Gaussian indirect MT coding

a. The Gaussian CEO problems

Let X be a Gaussian remote source with zero mean and variance σ2
X and Y L =

(X,X, · · · , X)T+NL be the observations, where L = {1, 2, . . . , L}, Y L = (Y1, Y2, . . . , YL)
T

and NL = (N1, N2, . . . , NL)
T is a length-L Gaussian vector noise independent of X

with zero mean and covariance matrix ΣNL
= diag

(
σ2
N1
, σ2

N2
, . . . , σ2

NL

)
.

Each of the L encoders observes exactly one component of Y L, and separately

encodes a length-n block of its own observation Y n
ℓ = (Yℓ,1, Yℓ,2, . . . , Yℓ,n) into Wℓ ∈

{
1, 2, . . . , 2Rℓ

}
, using function

φℓ : Rn 7→
{
1, 2, . . . , 2Rℓ

}
, ℓ ∈ L. (2.22)

The joint decoder receivesWℓ for all ℓ ∈ L before reconstructingXn = (X1, X2, . . . , Xn)

as X̂n = (X̂1, X̂2, . . . , X̂n) using function

ψ :
{
1, 2, . . . , 2R1

}
× · · · ×

{
1, 2, . . . , 2RL

}
7→ Rn. (2.23)

The block diagram for the Gaussian CEO problem is depicted in Fig. 4.
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Fig. 4. The Gaussian CEO problem.

We say a rate vector (R1, R2, . . . , RL)
T is (σ2

X ,ΣNL
, D)-achievable for distortion

measure D if there exist L encoder functions φl, l = 1, 2, . . . , L and a decoder function

ψ such that the distortion constraint

lim sup
n→∞

1

n

n∑

i=1

E

[(

Xi − X̂i

)2
]

≤ D, (2.24)

is satisfied. The achievable rate region RX(σ
2
X ,ΣNL

, D) is defined as the convex hull

of the set of all achievable rate vectors, i.e.,

RX

(
σ2
X ,ΣNL

, D
)
= cl

{

(R1, . . . , RL)
T : (R1, . . . , RL)

T is (σ2
X ,ΣNL

, D)-achievable
}

.

(2.25)

Similar to that of direct MT coding, the BT inner rate region in the indirect case
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can be defined as

R
BT
X

(
σ2
X ,ΣNL

, D
)
= cl







⋃

UL∈U(σ2
X
,ΣNL

,D)

{

(R1, . . . , RL)
T

∣
∣
∣
∣
∣

∑

i∈A
Ri ≥ I (YA;UA|UL−A)

}

,







(2.26)

where A ⊆ L, and U (σ2
X ,ΣNL

, D) is the set of all length-L auxiliary random vectors

UL = (U1, . . . , UL)
T such that Ui = Yi+Qi, for i = 1, . . . , L, and E

{
(X − E (X|UL))

2} ≤

D, where Qi ∼ N
(
0, σ2

Qi

)
and Qi’s are independent of each other as well as of all

Yi’s.

Oohama [11] proved that the BT rate region is tight for the Gaussian CEO

problem with any L, i.e.,

RX

(
σ2
X ,ΣNL

, D
)
= R

BT
X

(
σ2
X ,ΣNL

, D
)
, (2.27)

which implies that the BT sum-rate bound is also tight. Specifically, if we assume

σ2
N1

= · · · = σ2
NL

= σ2
N , the BT sum-rate is [11, 36]

RX

(
σ2
X , σ

2
N · I, D

)
= RBT

X

(
σ2
X , σ

2
N · I, D

)
=
L

2
log+

LD1−1/L (σ2
X)

1+1/L

LDσ2
X − σ2

N (σ2
X −D)

+ . (2.28)

b. The generalized Gaussian CEO problem

Let K and L be two positive integers. Denote K = {1, 2, . . . , K}. Let XK =

(X1, X2, . . . , XK)
T be a length-K Gaussian source vector with zero mean and co-

variance matrix ΣX , and H be an L ×K matrix with full column rank. Define the

observations Y L as Y L =HXK +NL.

Encoding and decoding of Y L are similar to those in the original Gaussian CEO

problem in Section a. The only difference is that the joint decoder aims to reconstruct
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XK = (X1,X2, . . . ,XK)
T as X̂K = (X̂1, X̂2, . . . , X̂K)

T, using function

ψ :
{
1, 2, . . . , 2R1

}
× · · · ×

{
1, 2, . . . , 2RL

}
7→ RK×n. (2.29)

Obviously, the Gaussian CEO problem corresponds to the special case with K = 1

and H = 1.

Denote T = (ΣX ,H ,ΣNL
), we say a rate vector (R1, R2, . . . , RL)

T is (T, D)-

achievable if there exist L encoder functions φl, l = 1, 2, . . . , L and a decoder function

ψ such that the sum-distortion constraint

lim sup
n→∞

1

n

K∑

k=1

n∑

i=1

E

[(

Xk,i − X̂k,i

)2
]

≤ D, (2.30)

is satisfied. The achievable rate region is

RXK
(T, D) = cl

{

(R1, . . . , RL)
T : (R1, . . . , RL)

T is (T, D)-achievable
}

. (2.31)

Similarly, the BT rate region for this case is defined as

R
BT
XK

(T, D) = cl







⋃

UL∈U(T,D)

{

(R1, . . . , RL)
T

∣
∣
∣
∣
∣

∑

i∈A
Ri ≥ I (YA;UA|UL−A)

}





, (2.32)

where A ⊆ L, and U (T, D) is the set of all length-L auxiliary random vectors UL =

(U1, . . . , UL)
T such that Ui = Yi+Qi, for i = 1, 2, . . . , L, and

∑K
i=1 E

{
(Xi − E (Xi|UL))

2} ≤

D, where Qi ∼ N
(
0, σ2

Qi

)
and Qi’s are independent to each other as well as to all

Yi’s.

Oohama [9, 10] and Yang et al. [8] provided sufficient conditions for rate region
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tightness. For example, assume two independent remote sources1

(X1, X2) ∼ N




0,






1 0

0 2









 , (2.33)

with target distortion D = 0.88, transform matrix

H =









−
√
3
3

0

−
√
3
3

−
√
2
2

−
√
3
3

√
2
2









, (2.34)

and observation noise covariance matrix

ΣN{1,2,3}
= diag(0.5, 0.6, 0.7). (2.35)

According to [8, 9, 10], the BT rate region shown in Fig. 5 for this case is tight.

Consequently, the BT minimum sum-rate is tight as well and can be calculated by

(2.10) as

RXK
(T, D) = RBT

XK
(T, D) = 8.948 b/s. (2.36)

B. The two-terminal source coding problem with a matrix-distortion constraint

In order to go beyond Wang et al.’s sufficient condition [13], which assumes inde-

pendent observation noises as seen in (2.17) and is derived using classical Gaussian

rate-distortion function, in this paper we allow 2× 2 block-correlation among the ob-

servation noises. Consequently, the derivation of the new lower bound requires us to

consider a variant of the two-terminal source coding problem where the two individual

1Correlation between remote sources can always be absorbed into the transforma-
tion matrix H .
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Fig. 5. The BT rate region of generalized quadratic Gaussian CEO problem with

K = 2 remote sources and L = 3 observations, as defined by (2.33), (2.34)

and (2.35).

distortion constraints are replaced by a 2× 2 matrix-distortion constraint. Although

the original quadratic Gaussian two-terminal source coding problem is completely

solved [12, 34], due to the different distortion constraints, the exact achievable rate

region for the matrix-distortion constrained two-terminal problem is still unknown.

In this section, we derive a lower bound on the sum-rate of the matrix-distortion

constrained two-terminal problem, which serves as the key to our main results given

in the next section.

Assume that length-n blocks of Gaussian sources Y 1 and Y 2 are separated com-

pressed at the two encoders, while the decoder tries to reconstruct Y L such that

lim sup
n→∞

1

n

n∑

i=1

E
[

(YL,i − ŶL,i)(YL,i − ŶL,i)
T
]

�D2 =






D1 θ
√
D1D2

θ
√
D1D2 D2




 ,

(2.37)

where A � B means B − A is a p.s.d. matrix, and denote the minimum sum-

rate of such a problem as RMT
ΣY

(D2). Compared to the original quadratic Gaussian
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two-terminal source coding problem with individual distortion constraints, we have

RMT
ΣY

(

(D1, D2)
T
)

= inf
θ∈[−1,1]

RMT
ΣY











D1 θ
√
D1D2

θ
√
D1D2 D2









 . (2.38)

Although Wagner et al.’s paper [12] focused on the original quadratic Gaussian

two-terminal source coding problem, their converse proof has already explored the

relationship in (2.38) to some extent, and provided a composite lower bound on the

sum-rate of the two-terminal source coding problem with matrix-distortion constraint,

namely,

RMT
ΣY

(D2) ≥ max
{
Rcoop

ΣY
(D2), R

µ
ΣY

(D2)
}
, (2.39)

where

Rcoop
ΣY

(D2) =
1

2
log

|ΣY |
|D2|

, Rµ
ΣY

(D2) = RΣY ,µ(µ̃
TD2µ̃),

and µ̃ =
(√

D2,
√
D1

)T
, and RΣY ,µ(d) denotes the minimum sum-rate of the µ-sum

problem with target distortion d.

We now give the exact form of a new lower bound that is inspired by Wang et

al.’s work [13] and partially tighter than Wagner et al.’s bound in (2.39). Note that

there is no loss in assuming that the correlation coefficient ρ between Y1 and Y2 is

non-negative.

Lemma 4. For any pair of 2× 2 matrices

ΣY =






σ2
Y1

ρσY1σY2

ρσY1σY2 σ2
Y2




 , (2.40)

D2 =






D1 θ
√
D1D2

θ
√
D1D2 D2




 (2.41)
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such that

ρ ≥ 0, and D2 � ΣY , (2.42)

it holds that

RMT
ΣY

(D2) ≥ R
ΣY

(D2)

∆
= max {Rlb(ΣY ,D2), Rµ(ΣY ,D2)}

=







Rµ(ΣY ,D2) θ ≤ θ̃

Rlb(ΣY ,D2) θ > θ̃
, (2.43)

where

Rµ(ΣY ,D2) =
1

2
log

v1v2(v1v2(1− ρ2) + 2ρ(1 + θ))

(1 + θ)2

Rlb(ΣY ,D2) =
1

2
log

v31v
3
2(1− ρ2)2

(1− θ)2(v1v2(1− ρ2) + 2ρ(1 + θ))
, (2.44)

with v1 =
σY1√
D1

, v2 =
σY2√
D2

, and

θ̃
∆
=

√

v21v
2
2(1− ρ2)2 + 4ρ2 − v1v2(1− ρ2)

2ρ
. (2.45)

Particularly, if θ ≤ θ̃, the lower bound is tight, i.e., RMT
ΣY

(D2) = R
ΣY

(D2).

Proof. Before proving Lemma 4, we define an equivalent two-terminal problem, with

ΣY =






v21 ρv1v2

ρv1v2 v22




 , and D2 =






1 θ

θ 1




 . (2.46)

Then we need to prove RMT
ΣY

(D2) ≥ Rµ(ΣY ,D2) and R
MT
ΣY

(D2) ≥ Rlb(ΣY ,D2).

To prove Lemma 4, let

X = Y1 + Y2 + Z, (2.47)
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where Z ∼ N (0, σ2
Z) with σ

2
Z = v1v2(1−ρ2)

ρ
. Then the variance of X can be computed

as σ2
X = (v1+v2ρ)(v2+v1ρ)

ρ
, and it can be easily verified that

YL = [α1, α2]
T ·X +

[

Ñ1, Ñ2

]T

, (2.48)

with α1 = v1ρ
v2+v1ρ

, α2 = v2ρ
v1+v2ρ

,
[

Ñ1, Ñ2

]T

∼ N (0, diag(σ2
Ñ1
, σ2

Ñ2
)), and σ2

Ñ1
=

v21v2(1−ρ2)

v2+v1ρ
, σ2

Ñ2
=

v22v1(1−ρ2)

v1+v2ρ
. Moreover, any scheme that achieves a distortion ma-

trix D2 on YL must be able to achieve a distortion of [1 1] · D2 · [1 1]T + σ2
Z on

X .

Hence

H(WL) = I(Y L,X;WL)

= I(X;WL) +
2∑

i=1

I(Y i;Wi|X) (2.49)

= h(X)− h(X|WL) +
2∑

i=1

h(Y i|X)− h(Y i;Wi|X)

≥ n

2
log

σ2
X

[1 1] ·D2 · [1 1]T + σ2
Z

+
n

2
log

σ2
Ñ1
σ2
Ñ2

γ1γ2
(2.50)

≥ n

2
log

σ2
X

2 + 2θ + v1v2(1−ρ2)
ρ

+
n

2
log

v31v
3
2(1− ρ2)2

(v2 + v1ρ)(v1 + v2ρ)γ1γ2
,

where (2.49) uses the fact that Wi → Y n
i → X → (Y n

j ,Wj) form a Markov chain for

any i, j ∈ {1, 2} and i 6= j, in (2.50) we define γi
∆
= 1

n

∑n
j=1 var(Yi,j|Wi,X) and use

the fact that Gaussian random variables maximize entropy over those with a fixed

variance.

On the other hand, due to [13, Lemma 1], we known that 1
n

∑n
i=1 cov(YL,i|Xi,WL) =

diag(γ1, γ2). Then [13, Lemma 3] implies that

1

n

n∑

i=1

cov(YL,i|Xi,WL) �
(

D−1
2 +Σ−1

ÑL
−Σ−1

Y

)−1

, (2.51)
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with ΣÑL
= diag

(

σ2
Ñ1
, σ2

Ñ2

)

, i.e.,

diag(γ1, γ2) �











1 θ

θ 1






−1

+
ρ

v1v2(1− ρ2)






1 1

1 1











−1

, (2.52)

which can be combined with (2.50) to form a semi-definite optimization problem that

minimizes

F(γ1, γ2)
∆
=

1

2
log

1

γ1γ2
(2.53)

over γ1 and γ2 subject to

G(γ1, γ2) ∆
=






1 θ

θ 1






−1

+
ρ

v1v2(1− ρ2)






1 1

1 1




− diag(γ−1

1 , γ−1
2 ) � 0.(2.54)

The Lagrangian is L(γ1, γ2) = F(γ1, γ2) + tr(ΛG(γ1, γ2)), (2.55)

where Λ is a p.s.d. matrix. Then the KKT condition is given by

∇γiL(γ1, γ2) = 0, i = 1, 2, (2.56)

G(γ1, γ2) � 0, (2.57)

ΛG(γ1, γ2) = 0. (2.58)

Solving the (2.56) and (2.58), we get two sets of solutions, namely,

γ1 = 1− θ, γ2 = 1− θ, Λ =
1− θ

2
·






1 −1

−1 1




 , (2.59)



28

and

γ1 =
v1v2(1− ρ2)(1 + θ)

v1v2(1− ρ2) + 2ρ(1 + θ)
, γ2 =

v1v2(1− ρ2)(1 + θ)

v1v2(1− ρ2) + 2ρ(1 + θ)
,

Λ =
v1v2(1− ρ2)(1 + θ)

v1v2(1− ρ2) + 2ρ(1 + θ)
·






1 1

1 1




 . (2.60)

Then it is easy to verify that the first set of solution satisfies (2.57) if θ ≥ θ̃, while

the second set of solution satisfies (2.57) if θ ≤ θ̃. Hence the optimal solutions of γ1

and γ2 are

γ1 = γ2 =







v1v2(1−ρ2)(1+θ)
v1v2(1−ρ2)+2ρ(1+θ)

θ ≤ θ̃

1− θ θ > θ̃
, (2.61)

which directly lead to (2.43).

To prove tightness of the lower bound R
ΣY

(D2) when θ ≤ θ̃, we construct a BT

scheme with distortion matrix

D̃2 = (ΣY
−1 + diag(q1, q2)

−1)−1 =






(1+θ)(v1v2(1−ρ2)+ρ(1+θ))
(v1v2(1−ρ2)+2ρ(1+θ))

ρ(1+θ)2

(v1v2(1−ρ2)+2ρ(1+θ))

ρ(1+θ)2

(v1v2(1−ρ2)+2ρ(1+θ))
(1+θ)(v1v2(1−ρ2)+ρ(1+θ))

(v1v2(1−ρ2)+2ρ(1+θ))




 ,

and sum-rate

1

2
log

|ΣY |
|D̃2|

=
1

2
log

v21v
2
2(1− ρ2)

v1v2(1+θ)2(1−ρ2)
(v1v2(1−ρ2)+2ρ(1+θ))

= R
ΣY

(D2), (2.62)

where

q1 =
v21v2(1− ρ2)(1 + θ)

v21v2(1− ρ2)− (v2 − ρv1)(1 + θ)
, q2 =

v1v
2
2(1− ρ2)(1 + θ)

v1v
2
2(1− ρ2)− (v1 − ρv2)(1 + θ)

.
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Then tightness is proved by verifying

D2 − D̃2 =
ρ (1− θ2)− v1v2θ (1− ρ2)

(v1v2 (1− ρ2) + 2ρ (1 + θ))
·






1 −1

−1 1




 � 0, (2.63)

where the last matrix inequality is due to the facts that f1(θ)
∆
= (v1v2(1 − ρ2) +

2ρ(1 + θ)) > 0, f2(θ)
∆
= ρ(1− θ2)− v1v2θ(1− ρ2) is monotone decreasing in the range

θ ∈ [−1, θ̃), f2(θ̃) = 0, and the assumption that θ ≤ θ̃.

Note that unlike the original two-terminal problem, the new lower boundRsum
ΣY

(D2)

does not always meet the BT upper bound, which is given by

RBT
ΣY

(D2) = max
{
Rlb(ΣY ,D2), R

µ
ΣY

(D2)
}
=







Rµ
ΣY

(D2) θ ≤ θ̃

Rub(ΣY ,D2) θ > θ̃
(2.64)

with

Rub(ΣY ,D2) =
1

2
log

v1v2(v1v2(1− ρ2)− 2ρ(1− θ))

(1− θ)2
. (2.65)

Obviously, if θ > θ̃, the two bounds do not coincide, and we can easily compute the

gap between them as

R∆
ΣY

(D2)
∆
= R

ΣY
(D2)− RBT

ΣY
(D2)

= Rub(ΣY ,D2)− Rlb(ΣY ,D2)

=
1

2
log

(v1v2(1− ρ2)− 2ρ(1− θ))(v1v2(1− ρ2) + 2ρ(1 + θ))

v21v
2
2(1− ρ2)2

. (2.66)

To evaluate the maximum value of R∆
ΣY

(D2), we compute the feasible range of θ,

which is constrained by the assumption D2 � ΣY , and given by θ ∈ (θ, θ) with

θ = max

{

−1,−
√

(v21 − 1)(v22 − 1)− ρv1v2

}

, θ = min

{

1,
√

(v21 − 1)(v22 − 1) + ρv1v2

}

.

(2.67)
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Now due to the assumption that ρ ≥ 0, R∆
ΣY

(D2) is monotone increasing in θ in the

range (θ̃, θ). Hence

sup
θ∈(θ̃,θ)

R∆
ΣY

(D2) = lim
θ→θ

R∆
ΣY

(D2) ≤ lim
θ→1

R∆
ΣY

(D2) =
1

2
log

(

1 +
4ρ

v1v2(1− ρ2)

)

.

(2.68)

We thus conclude that although the lower bound R
ΣY

(D2) is not always tight, the

gap to the upper bound RBT
ΣY

(D2) cannot exceed a certain threshold that depends

only on v1, v2, and ρ.

On the other hand, if we calculate the improvement from Wagner et al.’s lower

bound (2.39) to our new one R
ΣY

(D2) with θ ∈ (θ̃, θ), we obtain

R
ΣY

(D2)−max
{
Rcoop

ΣY
(D2), R

µ
ΣY

(D2)
}
=

1

2
log

(v1v2(1 + θ)(1− ρ2)

(1− θ)(v1v2(1− ρ2) + 2ρ(1 + θ))
,

(2.69)

which obviously goes to infinity as θ → 1, this means that the improvement can be

infinitely large for any value of v1, v2, and ρ such that θ defined in (2.67) equals to

one.

A comparison among Wagner’s lower bound [12], our partially improved lower

bound, and the BT upper bound with σ2
Y1

= σ2
Y2

= 1, ρ = 0.9, D1 = 0.1, D2 = 0.05 is

shown in Fig. 6. We can clearly observe that the gap from our new lower bound to

the BT upper bound is much smaller than that to the lower bound in [12].

C. Main results

1. Definitions and preliminaries

Before stating our main results, we need to give some definitions and review the

subgradient-based KKT condition.
Let π = {π1, ..., πL} be a permutation of L, and � be the corresponding L × L
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Fig. 6. Comparison among Wagner’s lower bound [12], our partially improved lower

bound, and the BT upper bound.

permutation matrix such that �L = π. We say an L × L matrix Σ is π(K) block-
diagonal if it is symmetric and can be written as

Σ = � ·





































a1,1 a1,2 0 0 ... ... 0 0 0 ... 0 0

a1,2 a2,2 0 0 ... ... 0 0 0 ... 0 0

0 0 a3,3 a3,4 ... ... 0 0 0 ... 0 0

0 0 a3,4 a4,4 ... ... 0 0 0 ... 0 0

... ... ... ... ... ... ... ... ... ...

0 0 0 0 ... ... a2K−1,2K−1 a2K−1,2K 0 ... 0 0

0 0 0 0 ... ... a2K−1,2K a2K,2K 0 ... 0 0

0 0 0 0 ... ... 0 0 a2K+1 ... 0 0

0 0 0 0 ... ... 0 0 0 ... aL−1 0

0 0 0 0 ... ... 0 0 0 ... 0 aL





































�T, (2.70)

and denote ΥK(π) as the set of all π(K) block-diagonal matrices. Equivalently,
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Σ ∈ ΥK(π) if and only if Σ = ΣT and

Σπi,πj
= 0 if







i, j ∈ {1, 2, ..., 2K} s.t.
⌈
i
2

⌉
6=
⌈
j
2

⌉
,

i, j ∈ {2K + 1, 2K + 2, ..., L} s.t. i 6= j,

i ∈ {2K + 1, 2K + 2, ..., L} and j ∈ {1, 2, ..., 2K} ,

i ∈ {1, 2, ..., 2K} and j ∈ {2K + 1, 2K + 2, ..., L} .

(2.71)

Comparing (2.70) and (2.17), it is clear that all diagonal matrices are also π(K)

block-diagonal, but the converse is not true for K ≥ 1, i.e.,d ( ΥK(π) for 1 ≤ K ≤
⌊
L

2

⌋

and any permutation π. (2.72)

Consequently, if we define

Nπ(K)(ΣY )
∆
=
{
Σ ∈ P

� ∩ΥK(π) : Σ � ΣY

}
, (2.73)

and compare with N (ΣY ) defined in (2.19), it holds that

N (ΣY ) = NI(0)(ΣY ) ⊆ Nπ(K)(ΣY ) (2.74)

for any 0 ≤ K ≤
⌊
L
2

⌋
and permutation π, where I denotes the identity permutation

that maps L to itself.

For a set of L Gaussian sources Y and a ΣN ∈ ΥK(π) such that ΣN � ΣY , let

M = rank(ΣY −ΣN ) and the singular value decomposition of ΣY −ΣN be

ΣY −ΣN = T Tdiag(σ2
X1
, σ2

X2
, ..., σ2

XM
, 0, ..., 0)T . (2.75)

Then define ΣXM
= diag(σ2

X1
, σ2

X2
, ..., σ2

XM
), H = TM,L, and let

XM
∆
= AY +ZL, (2.76)
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with ZL ∼ N (0,B) independent of Y , where

A = ΣXM
HΣY

−1, B = ΣXM
−ΣXM

HΣY
−1HTΣXM

. (2.77)

It is trivial to verify that the M Gaussian remote sources XM ∼ N (0,ΣXM
) satisfy

Y =HTXM +N , (2.78)

with the L observation noises NL ∼ N (0,ΣN ) independent of XM.

Next, we briefly review the subgradient-based KKT conditions for non-differentiable

convex optimization problems. The original KKT condition is a necessary condi-

tion for global optimality in a convex optimization problem with differentiable objec-

tive function and equality/inequality constraints. However, when dealing with non-

differentiable convex optimization problems, subgradient-based KKT condition has

to be used instead. We call g a subgradient [37] of a non-differentiable scalar-valued

vector function f at point x, if

f(y) ≥ f(x) + gT(y − x) for all y. (2.79)

In particular, if f = max {f1, f2} with f1 and f2 being convex and differentiable such

that f1(x0) = f2(x0), then the subgradients of f at x0 form a line segment between

∇f1(x0) and ∇f2(x0). The set of all subgradients of a function f at some point x

is called the subdifferential of f at x, and denoted as ∂f(x). The subdifferential of

R
ΣY

(Γ) is given in the following lemma.

Lemma 5. Assume that ΣY and D2 take forms of (2.40) and (2.41), respectively,

such that D2 � ΣY . Then the subdifferential of R
ΣY

(D2) (as a function of D2) at

D2 = D̃2
∆
=






D1 θ̃
√
D1D2

θ̃
√
D1D2 D2




 (2.80)



34

is a line segment

∂R
ΣY

(D2) |D2=D̃2
=

{

−1

2
D̃

−1

2 Ψ D̃2
−1

: Ψ ∈ �ΣY
(D)

}

,

where

�ΣY
(D)

∆
=












D1 (α + (1− α)(2|θ̃| − 1))s
√
D1D2

(α + (1− α)(2|θ̃| − 1))s
√
D1D2 D2




 : α ∈ [0, 1]







,

with θ̃ defined in (2.45) and s
∆
= sign(θ̃).

Proof. First, due to the assumption that D̃
−1

2 −Σ−1
Y is a p.s.d. diagonal matrix, we

must have

θ =







√
1−2ρ2+ρ4+4ρ2d21d

2
2−(1−ρ2)

2ρd1d2
ρ ≥ 0

−
√

1−2ρ2+ρ4+4ρ2d21d
2
2−(1−ρ2)

2ρd1d2
ρ < 0

, (2.81)

with d1 =
√
D1 and d2 =

√
D2. Now since

R
ΣY

(D2) = max
{
Rlb(ΣY ,D2), R

µ
ΣY

(D2)
}
,

we compute

∇D2Rlb(ΣY ,D2) |D2=D̃2
= κ ·






1
D1

s(1−2|θ|)√
D1D2

s(1−2|θ|)√
D1D2

1
D2




 ,

∇D2R
µ
ΣY

(D2) |D2=D̃2
= χ ·






1
D1

s√
D1D2

s√
D1D2

1
D2




 , (2.82)
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where

κ =
ρ4 − 2d1d2ρ

3 − 2ρ2 + 4ρ2d21d
2
2 + 2d1d2ρ+ 1

2(1− ρ2)2
− ρ2 + 2d1d2ρ− 1

2(1− ρ2)2

√

1− 2ρ2 + ρ4 + 4ρ2d21d
2
2,

χ = −ρ
4 + 2d2ρ

3d1 + 4ρ2d22d
2
1 − 2ρ2 − 2d2ρd1 + 1

2(1− ρ2)2
+

2d1d2ρ− 1 + ρ2

2(1− ρ2)2

√

1− 2ρ2 + ρ4 + 4ρ2d21d
2
2.

(2.83)

Finally, it is easy to verify that

−D̃2 · ∇D2Rlb(ΣY ,D2) |D2=D̃2
·D̃2 =






D1 s(1− 2|θ|)√D1D2

s(1− 2|θ|)√D1D2 D2




 ,

−D̃2 · ∇D2R
µ
ΣY

(D2) |D2=D̃2
·D̃2 =






D1 s
√
D1D2

s
√
D1D2 D2




 ,

and Lemma 5 readily follows.

For a convex optimization problem with objective function f , inequality con-

straints gi ≤ 0 for j = 1, ..., m and equality constraints hj = 0 for j = 1, ..., l, the

global optimal point x = x∗ must satisfy

0 ∈ ∂f(x∗) +
m∑

i=1

µi∂gi(x
∗) +

l∑

j=1

λj∂hi(x
∗),

gi(x
∗) ≤ 0, i = 1, 2, ..., m,

hj(x
∗) = 0, j = 1, 2, ..., l,

µi ≥ 0, i = 1, 2, ..., m,

µigi(x
∗) = 0, i = 1, 2, ..., m,

for some µi’s and λj ’s.
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2. A new sufficient condition for sum-rate tightness

Now we are ready to state our main result on a new sufficient condition for the

tightness of BT minimum sum-rate. Consider an MT source coding problem defined

by ΣY and D. Denote the BT minimum sum-rate as RBT
ΣY

(D), and assume that the

optimal BT scheme achieves a distortion matrix D̃2. The main result of this paper

is given in the following theorem.

Theorem 2. RBT
ΣY

(D) = RMT
ΣY

(D) if there exists a permutation π, a π(K) block di-

agonal p.d. matrix ΣN such that ΣN � ΣY , an L × L p.s.d. matrix Ω, an L × L

p.s.d. diagonal matrix Π, and a set of K 2 × 2 p.s.d. matrices Θj, j ∈ K such that

the following conditions are satisfied:

D̃2

(

Π− D̃−1

2 + D̃
−1

2

(

D̃
−1

2 +Σ−1
N −Σ−1

Y

)−1

D̃
−1

2

)

D̃2 = Λ−Ω, (2.84)

〈Λ〉πj +Θj − �
(

〈ΣN〉πj , diag(〈Γ̃〉πj )
)

∋ 0, ∀j ∈ K, (2.85)

for k = 2K + 1, ..., L, [Λ]πk,πk
=
[

Γ̃
]

πk,πk

, (2.86)

Ω
(

Σ−1
Y − D̃−1

2

)

= 0, (2.87)

Θj

(

〈ΣN〉πj − 〈Γ̃〉πj
)

= 0, ∀j ∈ K, (2.88)

[Π]j,j (
[

D̃2

]

j,j
−Dj) = 0, ∀j ∈ K, (2.89)

where 〈C〉πj denotes the 2× 2 submatrix constructed from the (π2j−1, π2j)-th row and

(π2j−1, π2j)-th column of C, and

Γ̃
∆
=
(

D̃
−1

2 +Σ−1
N −Σ−1

Y

)−1

. (2.90)

Proof. To prove Theorem 2, we need the following two lemmas.
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Lemma 6. For any random objects Y L and XM, if

[cov(Y L|XM)]i,j = 0 (2.91)

for some i, j ∈ L, then

[cov(Y L|XM,WL)]i,j = 0 (2.92)

for any L functions WL
∆
=
{

ψ
(n)
1 (Y 1), ψ

(n)
2 (Y 2), ..., ψ

(n)
L (Y L)

}

.

Proof. To prove Lemma 6, we need to use [13, Lemma 1], which is stated in the

following proposition for the sake of completion.

Proposition 1. For integers n, m and random variables X and ω, let X be a row

vector of n independent drawings of X, and Y (ω) be any 1×m vector of measurable

functions of ω. Then it holds that

E
[
(X − E(X|ω))TY (ω)

]
= 0n×m. (2.93)

Now (2.91) and the definition of WL imply that the Markov chains Wi → Y i →

XM → (Y j ,Wj) and Wj → Y j → XM → (Y i,Wi) hold. Hence (2.92) must hold

since

[cov(Y L|XM,WL)]i,j = E
[
(Y i − E(Y i|XM,WL))(Y j − E(Y j|XM,WL))

T
]

= E
[
(Y i − E(Y i|XM,Wi))(Y j − E(Y j |XM,Wj))

T
]

(2.94)

= E
[
(Y i − E(Y i|XM,Y j ,Wi,Wj))(Y j − E(Y j|XM,Wj))

T
]

(2.95)

= 0, (2.96)

where (2.94) and (2.95) are due to the above two Markov chains, and (2.96) used

Proposition 1 and the fact that (Y j−E(Y j|XM,Wj)) is a function of ω
∆
= (XM,Y j ,Wi,Wj).
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Lemma 7. For any pair (XM, YL) satisfying (2.78) and any D, there exists a D2 ∈

RL×L and a

Γ = �Tdiag(Γ1, . . . ,ΓK , γK+1, . . . , γL)�∈ ΥK(π) (2.97)

such that

diag(D2) ≤D, Γ �
(
D−1

2 +Σ−1
N −Σ−1

Y

)−1
, (2.98)

and the sum-rate of the quadratic Gaussian L-terminal problem satisfies

RMT
ΣY

(D) ≥ 1

2
log

|ΣXM
|

|AD2A
T +B| +

K∑

k=1

R
ΣY {π2k−1,π2k}|XM

(Γk) +
1

2

L∑

i=K+1

log
σ2
Nπi

γi
,

(2.99)

where ΣY {π2k−1,π2k}|XM denotes the conditional covariance matrix of (Yπ2k−1
, Yπ2k

)T

given XM, and A and B are defined in (2.77).

Proof. First, given ΣN ∈ ΥK(π) and ΣN � ΣY , we can always apply (2.75) to find

an M × L matrix H and (2.76) to construct M remote sources XM such that (2.78)

holds. This implies that ΣN = cov(Y L|XM) ∈ ΥK(π). Then we can apply Lemma

6, and obtain that cov(Y L|XM,WL) ∈ ΥK(π). Hence we can denote

Γ
∆
= cov(Y L|XM,WL) ∈ ΥK(π), (2.100)

which takes form of (2.90).

On the other hand, due to (2.78), we know that any scheme that achieves a

distortion matrix ofD2 on YL must be able to achieve a distortion matrix ofAD2A
T+

B on XM.
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Similar to (2.49), we write

H(WL)

=I(Y L,X;WL)

=I(X;WL) +
K∑

i=1

I(Y {π2k−1,π2k};W{π2k−1,π2k}|XM) +

L∑

i=K+1

I(Y πi
;Wπi

|XM)

(2.101)

=h(X)− h(X|WL) +
K∑

i=1

I(Y {π2k−1,π2k};W{π2k−1,π2k}|XM)

+
L∑

i=K+1

(h(Y πi
|XM)− h(Y πi

;Wπi
|XM)) (2.102)

≥1

2
log

|ΣXM
|

|AD2A
T +B| +

K∑

i=1

I(Y {π2k−1,π2k};W{π2k−1,π2k}|XM) +
1

2

L∑

i=K+1

log
σ2
Nπi

γi
,

(2.103)

where (2.103) comes from the assumption that the achieved distortion is no larger

thanD2 in the p.d. sense, and the definitions cov(Y {π2k−1,π2k}|W{π2k−1,π2k},XM) = Γk

and γi =
1
n

∑n
j=1 var(Yi,j|Wi,X). Now comparing (2.99) with (2.103), we only need

to show that

I(Y {π2k−1,π2k};W{π2k−1,π2k}|XM) ≥ nRΣY {π2k−1,π2k}|XM
(Γk) (2.104)

holds for any k ∈ K.

Assume that (2.104) does not hold for some k ∈ K, i.e., there exist encoders

ψ
(n)
π2k−1 and ψ

(n)
π2k such that

cov(Y {π2k−1,π2k}|W{π2k−1,π2k},XM) = Γk,

I(Y {π2k−1,π2k};W{π2k−1,π2k}|XM) < nRΣY {π2k−1,π2k}|XM
(Γk). (2.105)
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Then consider the matrix-distortion constrained two-terminal problem with sources

Ỹ{π2k−1,π2k} ∼ N (0,ΣY {π2k−1,π2k}|XM
) (2.106)

and target distortion matrix Γk. Now let XM be a length-n block of samples inde-

pendently draw from XM = AY L + ZL according to (2.76). Also assume that XM

is independent of the sources Ỹ {π2k−1,π2k} and available at both the encoders and the

decoder. Let

Ȳ {π2k−1,π2k} = Ỹ {π2k−1,π2k} +H
T
M,{π2k−1,π2k}XM, (2.107)

where H is the M × L matrix satisfying (2.78). It is obvious that Ȳ {π2k−1,π2k} has

a covariance matrix of ΣY {π2k−1,π2k}
, hence we can blindly apply the same encoders

ψ
(n)
π2k−1 and ψ

(n)
π2k on Ȳ {π2k−1,π2k} to generate W{π2k−1,π2k} before using Slepian-Wolf

coding with decoder side information XM, to achieve a final rate of

H(W{π2k−1,π2k}|XM) = I(Y {π2k−1,π2k};W{π2k−1,π2k}|XM) < nRΣY {π2k−1,π2k}|XM
(Γk),

(2.108)

and a distortion matrix of Γk = cov(Y {π2k−1,π2k}|W{π2k−1,π2k},XM), which contradicts

with the definition of RΣY {π2k−1,π2k}|XM
(Γk). Then Lemma 7 follows from (2.101),

(2.104), and Lemma 4.

Remarks:

• Lemma 6 ensures that cov(Y L|XM,WL) in (2.92) shares the same structure

with ΣN = cov(Y L|XM) in (2.91), which is assumed to be block-diagonal in

this paper. Note that this property holds even for non-block-diagonal ΣN ’s.

• This structural similarity between ΣN = cov(Y L|XM) and cov(Y L|XM,WL)

is a key to the proof of Lemma 5, since it restricts cov(Y L|XM,WL), which



41

equals to Γ in (2.97), to be block-diagonal, and hence makes the lower bound

(2.99) much simpler.

Now we proceed to the proof of Theorem 2.

Due to Lemma 7, to find the best lower bound on RMT
ΣY

(D), we need to solve the

following optimization problem for given (XM, YL) and D satisfying (2.78),

Min.
1

2
log

|ΣXM
|

|AD2A
T +B| +

K∑

k=1

R
ΣY {π2k−1,π2k}|XM

(Γk) +
1

2

L∑

i=K+1

log
σ2
Nπi

γi

over D2,Γ1, ...,ΓK , γ2K+1, ..., γL

s.t. Γ � (Σ−1
N +D−1

2 −Σ−1
Y )−1,

0 ≺ D2 � ΣY ,

[D2]j,j ≤ Dj , for any j ∈ L,

0 ≺ Γk � ΣN{π2k−1,π2k}
∀k ∈ K,

0 < γk ≤ σ2
Nπk

, k = 2K + 1, ..., L,

which is clearly convex. The Lagrangian isL = −1

2
log |AD2A

T +B|+
K∑

k=1

R
ΣY {π2k−1,π2k}|XM

(Γk)−
1

2

L∑

i=K+1

log γi

+ tr(Λ((Σ−1
N +D−1

2 −Σ−1
Y )− Γ−1)) + tr(Ω(Σ−1

Y −D−1
2 ))

+

K∑

i=1

tr(Θi(Σ
−1
N{π2i−1,π2i}

− Γ−1
i )) +

L∑

j=1

tr(ΠjEjD2Ej),

where Λ, Ω, Θi, i ∈ K, Πj , j ∈ L are p.s.d. matrices, and Ei is the L×L single-entry

matrix whose (i, i)-th element is one.

Assume that the optimal BT scheme achieves a distortion matrix D̃2, and Γ̃ as

defined in (2.90), then by applying Lemma 5, we obtain the subgradient based KKT
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conditions at (D̃2, Γ̃), which are

D̃2

(

Π− D̃−1

2 + D̃
−1

2

(

D̃
−1

2 +Σ−1
N −Σ−1

Y

)−1

D̃
−1

2

)

D̃2 = Λ−Ω,

〈Λ〉πj +Θj − �
(

〈ΣN 〉πj , diag(〈Γ̃〉πj )
)

∋ 0, ∀j ∈ K,

for k = 2K + 1, ..., L, [Λ]πk,πk
=
[

Γ̃
]

πk,πk

,

Ω
(

Σ−1
Y − D̃−1

2

)

= 0,

Θj(〈ΣN 〉πj − 〈Γ̃〉πj ) = 0, ∀j ∈ K,

[Π]j,j (
[

D̃2

]

j,j
−Dj) = 0, ∀j ∈ K,

where Π, Λ, Ω, and Θj ’s are the p.s.d. Lagrangian multipliers. Then Theorem 2

readily follows.

• Example 1: the block-degraded case

All known cases of quadratic Gaussian MT source coding problems with tight

sum-rate bound belong to the non-degraded subclass, where all target distortions are

met with equalities (i.e., all distortion constraints are active [38]) in the optimal BT

scheme. In this subsection, we first study a block-degraded case, and independently

show sum-rate tightness in this case (under certain condition). Then we give a nu-

merical example to confirm that the set of block-degraded case with tight sum-rate

intersects with the one defined by the sufficient condition in Theorem 2.

Consider a special case of quadratic Gaussian MT source coding, where the vector

source YL and the target distortion vector D can be partitioned into K groups,

namely, (YS1, DS1), (YS2, DS2), . . . , (YSK
, DSK

), and for any k ∈ K, there exists an

integer i(k) ∈ Sk, such that

Yj = Yi(k) + Zj, and Dj ≥ Di(k) + σ2
Zj
, ∀j ∈ Sk, (2.109)
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where Zj ∼ N (0, σ2
Zj
) with σ2

Zj
> 0 for j ∈ Sk −{i(k)} and σ2

Zi(k) = 0 is independent

of Yi(k) and Zj’s are mutually independent. Each Yi(k), k ∈ K is called the group leader

in YSk
, and denote Ȳ K = (Yi(1), Yi(2), . . . , Yi(k))T, D̄K = (Di(1), Di(2), . . . , Di(k))T. We

say a pair (ΣY ,D) is block-degraded (BD) if they satisfy the above condition. The K

components of Ȳ K are referred to as core sources while the other L−K as redundant

sources.

Equivalently, (ΣY ,D) is BD if there exists a partition P = {Sk : k ∈ K} of L

and another pair (ΣȲ K
, D̄K) such that

ΣY = GPΣȲ K
GT

P + ΣZL
, (2.110)

Di(k) = D̄k, ∀k ∈ K, (2.111)

Dj ≥ D̄k + [ΣZL
]j,j , ∀ j ∈ Sk − {i(k)} and k ∈ K, (2.112)

where GP is an L×K matrix whose (j, i(k))-th element is one for all j ∈ Sk, k ∈ K

with the rest being zero, and ΣZL
is a diagonal matrix whose diagonal elements

are positive with exceptions that [ΣZL
]i(k),i(k) = 0. Then an L-terminal quadratic

Gaussian MT source coding problem with a BD pair (ΣY ,D) automatically induces

a K-terminal source coding problem defined by the pair (ΣȲ K
, D̄K).

Consider a BD pair (ΣY ,D) with partition P = {Sk : k ∈ K} and (ΣȲ K
, D̄K,ΣZL

)

satisfying (2.110)-(2.112). We say a matrix Λ is P-block-diagonal if [Λ]i,j = 0 for any

i ∈ Sk, j ∈ Sl with k, l ∈ K, k 6= l, and denote dP as the set of all P-block-diagonal

matrices. For two L× L matrices A and B, we write A
P≡ B if [A]i,j = [B]i,j for any

i, j ∈ Sk with some k ∈ K.

We claim that for a BD pair (ΣY ,D), tightness of the BT sum-rate bound in the

induced K-terminal quadratic Gaussian MT source coding problem implies tightness

of the same bound in the original L-terminal problem, which is stated in the following.
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Lemma 8. For any BD pair (ΣY ,D), if the BT minimum sum-rate is tight for the

induced K-terminal source coding problem, i.e.,

RMT
ΣȲ K

(D̄K) = RBT
ΣȲ K

(D̄K) (2.113)

then it must also be tight for the original MT source coding problem defined by

(ΣY ,D), i.e.,

RMT
ΣY

(DL) = RBT
ΣY

(DL) = RMT
ΣY

(D̄K).

Proof. First, it is obvious that RBT
ΣYL

(DL) = RBT
ΣȲ K

(D̄K). Then assume that there is

a sequence of schemes
{

(φ
(n)
L , ψ

(n)
L ) : n ∈ N+

}

such that

lim sup
n→∞

∑

j∈L
R

(n)
j < RBT

ΣȲ K
,(D̄K), (2.114)

lim sup
n→∞

1

n
E

[(

Yj,i − Ŷj,i

)2
]

≤ Dj, for any j ∈ L. (2.115)

Now consider another sequence of schemes
{

(φ̄
(n)
L , ψ̄

(n)
L ) : n ∈ N+

}

such that for any

k ∈ K,

φ̄
(n)i(k)(Y i(k)) = ⊠j∈Sk

W̄j, (2.116)

φ̄
(n)
j (Y j) ≡ 0 for any j ∈ Sk − {i(k)} , (2.117)

where

W̄i(k) ∆
= Wi(k) = φ

(n)i(k)(Y i(k)), (2.118)

W̄j
∆
= φ

(n)
j (Y i(k) +Zj), (2.119)

with Z̄j ∼ N (0, σ2
Zj
) being independent of YL, “⊠” denotes Cartesian product, and

ψ̄
(n)i(k)(WL) = ψ

(n)i(k)(W̄L). (2.120)
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Then we must have

RMT
ΣȲ K

(

φ
(n)
L , ψ

(n)
L

)

= RMT
ΣȲ K

(

φ̄
(n)
L , ψ̄

(n)
L

)

, (2.121)

⇒ lim sup
n→∞

RMT
ΣȲ K

(

φ̄
(n)
L , ψ̄

(n)
L

)

= lim sup
n→∞

RMT
ΣȲ K

(

φ
(n)
L , ψ

(n)
L

)

< RBT
ΣȲ K

(
D̄K
)
, (2.122)

and

lim sup
n→∞

1

n
E
[(
Yj,i − E(Yj,i|W̄L)

)2
]

≤







Dj, j = i(k) for some k ∈ K

Di(k) + σ2
Zj

≤ Dj , j ∈ Sk − {i(k)} for some k ∈ K
.

Hence the sequence of schemes
{

(φ̄
(n)
L , ψ̄

(n)
L ) : n ∈ N+

}

achieves the distortion vector

D and a sum-rate smaller thanRBT
ΣȲ K

(D̄K). On the other hand,
{

(φ̄
(n)
L , ψ̄

(n)
L ) : n ∈ N+

}

is also an achievable sequence of schemes for the induced K-terminal problem, for

which the BT sum-rate bound RBT
ΣY

(D) = RBT
ΣȲ K

(D̄K) is known to be tight, leading

to a contradiction.

Remarks:

• Although Wang et al.’s sufficient condition [13] for sum-rate tightness does

not include any degraded case, one can easily use Lemma 8 to generate a BD

example with tight sum-rate bound. In fact, with slight modifications (with

details omitted), Wang et al.’s proof [13] can also be generalized to directly

show sum-rate tightness for such BD cases without explicitly using Lemma 8.

• We note that Lemma 8 only guarantees the sum-rate tightness of a subset of the

BD subclass of quadratic Gaussian MT source coding problems. Moreover, this

subset intersects with the one defined by the sufficient condtion in Theorem 2,

as shown in the following numerical example.

A specific numerical example that satisfies the requirements in both Theorem 2
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and Lemma 8 is as follows. Let L = 4,

ΣY =












1.0000 0.9000 0.8000 0.8000

0.9000 1.0000 0.7000 0.7000

0.8000 0.7000 1.0000 1.0000

0.8000 0.7000 1.0000 1.1000












, (2.123)

and

D = (0.3760, 0.35, 0.3, 0.5)T, (2.124)

The optimal BT distortion matrix is

D̃2 =












0.3760 0.2740 0.1818 0.1818

0.2740 0.3500 0.1231 0.1231

0.1818 0.1231 0.3000 0.3000

0.1818 0.1231 0.3000 0.4000












, (2.125)

hence this example is degraded since D4 = 0.5 is not achieved with equality in the

optimal BT distortion matrix D̃2.

We first verify that this example satisfies the sufficient condition in Theorem 2.

Let π = {1, 2, 3, 4} and

ΣN =












0.2942 0.2852 0 0

0.2852 0.4535 0 0

0 0 0.0923 0

0 0 0 0.1923












(2.126)
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be a π(K) p.d. block diagonal matrix with K = 1. Then M = 4,

ΣXM
=












3.1162 0 0 0

0 0.0923 0 0

0 0 0.0377 0

0 0 0 0.0061












, H =












−0.4712 −0.4130 −0.5511 −0.5511

0 0 0.7071 −0.7071

0.5417 0.5619 −0.4421 −0.4421

−0.6961 0.7167 0.0290 0.0290












.

(2.127)

Now the following p.s.d. matrices

Λ =












0.2248 0.2489 0.0967 0.0967

0.2489 0.2791 0.1075 0.1075

0.0967 0.1075 0.0783 0

0.0967 0.1075 0 0.1923












, Ω =












0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.1000












, Θ1 =






0 0

0 0




 ,

Π =












1.0377 0 0 0

0 1.8957 0 0

0 0 2.6331 0

0 0 0 0












, Γ̃ =












0.2248 0.1753 0 0

0.1753 0.2791 0 0

0 0 0.0783 0

0 0 0 0.1923












(2.128)

satisfy all the KKT conditions. Note that Γ̃ in (2.128) has the same structure as ΣN

in (2.126), which is consistent with Lemma 6. In addition, �(ΣY ,D) is a line segment

�(ΣY ,D) =







α ·






0.2248 0.2505

0.2505 0.2791




+ (1− α) ·






0.2248 0.1001

0.1001 0.2791




 : α ∈ [0, 1]







.

(2.129)
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On the other hand, it is easy to verify that (ΣY ,D) is a BD pair with

P = {{1} , {2} , {3, 4}} , ΣȲ K
=









1.0000 0.9000 0.8000

0.9000 1.0000 0.7000

0.8000 0.7000 1.0000









,

ΣZL
= diag(0, 0, 0, 0.1), D̄K = (0.3760, 0.35, 0.3)T,

and the induced three-terminal quadratic Gaussian MT source coding problem defined

by (ΣȲ K
, D̄L) has a tight sum-rate bound due to Theorem 2. Hence we conclude that

the above four-terminal numerical example of quadratic Gaussian MT source coding

problem also satisfies the simple sufficient condition in Lemma 8.

D. A simplified sufficient condition

Although the sufficient condition given in Theorem 2 is more inclusive than that in

[13], it is rather complicated and hard to verify. However, in the non-degraded case

where the optimal BT scheme quantizes every source, and achieves all L target distor-

tions with equalities, the sufficient condition in Theorem 2 can be further simplified.

Note that the non-degraded case is of special interest since all the previously known

quadratic Gaussian MT source coding problems with tight sum-rate bound belong to

this case.

Corollary 1. For an MT source coding problem defined by ΣY and D, if the optimal

BT distortion matrix D̃2 satisfies diag(D̃2) = D and D̃2
−1−ΣY

−1 is a p.d. matrix,

then RBT
ΣY

(D) = RMT
ΣY

(D) if there exists a permutation π and a π(K) block diagonal

p.d. matrix ΣN such that ΣN � ΣY ,

Λ
∆
= D̃2

(

Π− D̃−1

2 + D̃
−1

2

(

D̃
−1

2 +Σ−1
N −Σ−1

Y

)−1

D̃2
−1
)

D̃2 (2.130)
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is a p.s.d. matrix, and

sign

([

Γ̃
]

π2k−1,π2k−1

)

· [Λ]π2k−1,π2k
≥ 2| [Γ]π2k−1,π2k

| −
√

[Γ]π2k−1,π2k−1
[Γ]π2k,π2k

(2.131)

is satisfied for all k ∈ K, where Γ̃ is defined in (2.90) and

Π
∆
= diag

(

(D̃2 ⊙ D̃2)
−1D

)

, (2.132)

with ⊙ denoting Hadamard product (entrywise product).

Proof. First, due to the assumption that D̃
−1

2 −Σ−1
Y ≻ 0, (2.87) implies that Ω = 0,

which, combined with (2.84), directly leads to (2.130). On the other hand, D̃
−1

2 −

Σ−1
Y ≻ 0 also ensures that

Γ̃ = (D̃
−1

2 +Σ−1
N −Σ−1

Y )−1 ≺ ΣN , (2.133)

hence (2.88) is true if and only if Θj = 0 for all j ∈ K.

Now (2.85) becomes

〈Λ〉πj − �
(

〈ΣN 〉πj , diag(〈Γ̃〉πj )
)

∋ 0, ∀j ∈ K, (2.134)

then due to the fact that all 2 × 2 matrices in �
(

〈ΣN〉πj , diag(〈Γ̃〉πj )
)

have the same

diagonal elements as those of 〈Γ̃〉πj , we know that

[Λ]πk,πk
=

[

Γ̃
]

πk,πk

, ∀ k = 1, 2, ..., 2K. (2.135)
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Hence by combining (2.86) and (2.135), we obtain

diag(Λ) = diag
(

Γ̃
)

⇔ diag
(

D̃2(Π− D̃−1

2 + D̃
−1

2 (D̃
−1

2 +Σ−1
N −Σ−1

Y )−1D̃
−1

2 )D̃2

)

= diag
(

(D̃
−1

2 +Σ−1
N −Σ−1

Y )−1
)

⇔ diag(D̃2ΠD̃2) = diag(D̃2)

⇔
L∑

j=1

[

D̃2

]2

i,j
· [Π]j,j =

[

D̃2

]

i,i
, ∀ i ∈ L

⇔ (D̃2 ⊙ D̃2)diag(Π) = diag(D̃2) = D

⇔ diag(Π) = (D̃2 ⊙ D̃2)
−1D, (2.136)

and (2.132) is proved.

Finally, (2.135) holds if there exists an α ∈ [0, 1] such that

[Λ]π2k−1,π2k
=






α + (1− α)(2|

[

Γ̃
]

π2k−1,π2k
√[

Γ̃
]

π2k−1,π2k−1

[

Γ̃
]

π2k,π2k

| − 1)







· sign
([

Γ̃
]

π2k−1,π2k−1

)√[

Γ̃
]

π2k−1,π2k−1

[

Γ̃
]

π2k,π2k

. (2.137)

Now (2.137) is equivalent to

sign

([

Γ̃
]

π2k−1,π2k−1

)

· [Λ]π2k−1,π2k
≤
√[

Γ̃
]

π2k−1,π2k−1

[

Γ̃
]

π2k,π2k

(2.138)

and

sign

([

Γ̃
]

π2k−1,π2k−1

)

· [Λ]π2k−1,π2k
≥ 2

∣
∣
∣
∣

[

Γ̃
]

π2k−1,π2k

∣
∣
∣
∣
−
√[

Γ̃
]

π2k−1,π2k−1

[

Γ̃
]

π2k,π2k

,

(2.139)

where (2.138) is automatically satisfied since

[Λ]π2k−1,π2k−1
=
[

Γ̃
]

π2k−1,π2k−1

, [Λ]π2k,π2k
=
[

Γ̃
]

π2k,π2k

, and 〈Λ〉πj � 0. (2.140)
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Hence (2.131) must hold.

• Example 2: the block-circulant case

We study a special class of quadratic Gaussian MT source coding problem named

the block-circulant case.

Let L = 2m be an even number, and assume that the source covariance matrix

ΣY is block-circulant, i.e., it is of the form

ΣY =












B1 B2 B3 ... Bm

Bm B1 B2 ... Bm−1

... ... ... ... ...

B2 B3 B4 ... B1












,

where Bi = Bm+2−i for i = 2, 3, ..., m are p.d. symmetric 2× 2 blocks of the form

Bi =






bi,1 bi,2

bi,2 bi,1




 . (2.141)

Denote CL as the set of all L×L block-circulant matrices. We state several important

properties of block-circulant matrices.

• Any Σ ∈ CL can be diagonalized by

GL
∆
= Fm ⊗ F 2, (2.142)

with ⊗ denoting Kronecker product, and Fm being the m × m real Fourier
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matrix [14] (which is orthogonal with FmF
T
m = Im). For example, when L = 6,

G6 = F 3 ⊗ F 2 =



















0.4082 0.4082 0 0 0.5774 0.5774

0.4082 −0.4082 0 0 0.5774 −0.5774

0.4082 0.4082 0.5000 0.5000 −0.2887 −0.2887

0.4082 −0.4082 0.5000 −0.5000 −0.2887 0.2887

0.4082 0.4082 −0.5000 −0.5000 −0.2887 −0.2887

0.4082 −0.4082 −0.5000 0.5000 −0.2887 0.2887



















.

(2.143)

• CL is a ring under matrix addition and multiplication. In particular, CL is

closed under the following operation

A ⋆B
∆
= A−A(A+B)−1A = B −B(A+B)−1B ∈ CL, ∀ A,B ∈ CL.

(2.144)

• For any A ∈ CL, there are 2 ·
⌈
L+1
2

⌉
degrees of freedom in the L eigenvalues of

A, with ⌈x⌉ denoting the smallest integer larger than x.

We say a quadratic Gaussian MT source coding problem belongs to the block-

circulant case if the source covariance matrix is block-circulant and all the target

distortions are equal, i.e., ΣY ∈ CL and D = D · 1. An important fact for this

special case, which follows directly from the properties of block-circulant matrices, is

that the optimal BT distortion matrix can be expressed analytically with

D̃2 = ΣY ⋆ qIL, (2.145)

where q satisfies

L∑

i=1

1
1
λi

+ 1
q

= LD, (2.146)
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with λi, i ∈ L being the L eigenvalues of ΣY .

Now we are ready to investigate the tightness condition provided by Wang et al.

[13] for this block-circulant case, which is given in the following lemma.

Lemma 9. For any block-circulant quadratic Gaussian MT source coding problem,

Wang et al.’s tightness condition [13, Lemma 4] for the sum-rate bound to be tight is

equivalent to

diag((D̃2 ⊙ D̃2)
−1D1) � D̃2

−1 − D̃2
−1
(D̃2

−1
+ λ−1

minIL −ΣY
−1)−1D̃2

−1
, (2.147)

with D̃2 defined in (2.145) and λmin being the smallest eigenvalue of ΣY .

Proof. We only need to show that if

diag((D̃2 ⊙ D̃2)
−1D1) � D̃2

−1 − D̃2
−1
(D̃2

−1
+Θ−1 −ΣY

−1)−1D̃2
−1

(2.148)

holds for some p.s.d. diagonal matrix Θ = diag(µ1, µ2, ..., µL) such that

ΣY � Θ, (2.149)

then (2.147) must also hold.

In fact, due to the symmetric properties of block-circulant matrices, it is easy

to show that if both (2.148) and (2.149) hold for Θ = diag(µ1, µ2, ..., µL), then they

must also hold for

Θ†
k = diag(µς(k,1), µς(k,2), µς(k+1,1), µς(k+1,2), ..., µς(k+m−1,1), µς(k+m−1,2)), (2.150)

for any k ∈ {0, 1, ..., m− 1}, as well as

Θ‡
k = diag(µς(k,2), µς(k,1), µς(k+1,2), µς(k+1,1), ..., µς(k+m−1,2), µς(k+m−1,1)), (2.151)
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where ς(j, i)
∆
= 2 · (j mod m) + i. Hence (2.147) must be true since

diag((D̃2 ⊙ D̃2)
−1D1)

� 1

L

m∑

k=1

[

D̃
−1

2 − D̃−1

2 (D̃
−1

2 + (Θ†
k)

−1 −Σ−1
Y )−1D̃

−1

2

]

+
1

L

m∑

k=1

[

D̃
−1

2 − D̃−1

2 (D̃
−1

2 + (Θ‡
k)

−1 −Σ−1
Y )−1D̃

−1

2

]

� D̃−1

2 −



D̃2



D̃
−1

2 +

(

1

L

m∑

k=1

Θ†
k +

1

L

m∑

k=1

Θ‡
k

)−1

−Σ−1
Y



 D̃2





−1

(2.152)

� D̃−1

2 − D̃−1

2

(

D̃
−1

2 + λ−1
minIL −Σ−1

Y

)−1

D̃
−1

2 , (2.153)

where (2.152) is due to the concavity of D̃
−1

2 −D̃−1

2

(

D̃
−1

2 +Θ−1 −Σ−1
Y

)−1

D̃
−1

2 with

respect to Θ, and (2.153) uses the fact that

ΣY � Θ†
k, ΣY � Θ‡

k ⇒ ΣY � 1

L

m∑

k=1

Θ†
k +

1

L

m∑

k=1

Θ‡
k =

1

L

L∑

i=1

µiIL ⇒ 1

L

L∑

i=1

µi ≤ λmin.

(2.154)

With Lemma 9, one can easily test whether Wang et al.’s tightness condition is

satisfied by a block-circulant case of quadratic Gaussian MT source coding problem.

For example, let L = 4 and

ΣY =












1.0000 0.5000 0.9750 0.4800

0.5000 1.0000 0.4800 0.9750

0.9750 0.4800 1.0000 0.5000

0.4800 0.9750 0.5000 1.0000












∈ C4, (2.155)
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and D = 0.1362 · 1. Then the optimal BT distortion matrix is

D̃2 =












0.1362 0.0189 0.1142 0.0018

0.0189 0.1362 0.0018 0.1142

0.1142 0.0018 0.1362 0.0189

0.0018 0.1142 0.0189 0.1362












. (2.156)

We first use Lemma 9 to test Wang et al.’s tightness condition, which is not

satisfied since

diag
(

(D̃2 ⊙ D̃2)
−1D1

)

= 4.1631I4

�












7.5599 5.4290 −3.6183 −5.7492

5.4290 7.5599 −5.7492 −3.6183

−3.6183 −5.7492 7.5599 5.4290

−5.7492 −3.6183 5.4290 7.5599












= D̃
−1

2 − D̃−1

2

(

D̃
−1

2 + λ−1
minIL −Σ−1

Y

)−1

D̃
−1

2 . (2.157)

However, it is easy to verify that this example does satisfy the condition given

in Corollary 1, since when π = {1, 2, 3, 4} and

ΣN =












0.0250 0.0200 0 0

0.0200 0.0250 0 0

0 0 0.0250 0.0200

0 0 0.0200 0.0250












∈ Υ2(π), (2.158)
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Γ̃ and Λ defined in (2.90) and (2.130) satisfy for k = 1, 2:

sign

([

Γ̃
]

2k−1,2k

)

· [Λ]2k−1,2k = 0.0219

≥ 0.0171 = 2
[

Γ̃
]

2k−1,2k
−
√[

Γ̃
]

2k−1,2k−1

[

Γ̃
]

2k,2k
.

(2.159)

Remarks:

• Unlike the known cases with tight sum-rate bound including the two-terminal

case [12], the positive-symmetric case [12], and the BEEV-ED case [14], some

of the block-circulant cases might not have a tight sum-rate bound if they do

not satisfy the requirements in Corollary 1.

• We pick the block-circulant case as an example mainly because of the nice

properties in this case that enable us to analytically evaluate the sufficient

condition in Theorem 1 without a full search over ΣN ∈ N (ΣY ).

• Example 3: another numerical example

Now we give a general numerical example that satisfies the requirement of Corol-

lary 1.

Let L = 3,

ΣY =









1.0000 0.9500 0.7000

0.9500 1.0000 0.6000

0.7000 0.6000 1.0000









, (2.160)

and

D = (0.4, 0.45, 0.3)T. (2.161)
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Let π = {1, 2, 3} and

ΣN =









0.4827 0.5074 0

0.5074 0.6205 0

0 0 0.0512









(2.162)

be a π(K) p.d. block diagonal matrix with K = 1.

Then the BT minimum sum-rate bound for the MT source coding problem de-

fined by ΣY and D is tight, since Γ̃ and Λ defined in (2.90) and (2.130) satisfy

sign(
[

Γ̃
]

1,2
) · [Λ]1,2 = 0.3596 ≥ 0.2815 = 2

[

Γ̃
]

1,2
−
√[

Γ̃
]

1,1

[

Γ̃
]

2,2
.

We have shown that the sum-rate tightness in the above numerical example is

ensured by Corollary 1. In addition, it can be verified numerically that it does not

satisfy the tightness condition provided by Wang et al. [13].
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CHAPTER III

RESULTS ON THE SUM-RATE LOSS OF QUADRATIC GAUSSIAN MT

SOURCE CODING

In this chapter, Section A reviews related existing results. Section B states our

main result on the supremum sum-rate loss over the non-degraded case of quadratic

Gaussian MT source coding, followed by its achievability proof and an outline of its

converse proof, which is detailed in Section C. Section D gives some discussions and

comparisons.

Notation-wise, we denote 0m×n and 1m×n as the all-zero and all-one matrix of

size m× n, respectively, with the subscript dropped if it is clear from the context.

A. Existing knowledge on the sum-rate loss of Gaussian quadratic MT source coding

We say an L×L matrix Σ is symmetric if Σ = SL(a, b) for some a > 0 and − a
L−1

<

b < a, with SL(a, b) denoting the L × L matrix whose diagonal elements equal to

a with all off-diagonal elements being b. Note that among the L eigenvalues of Σ,

there are only two distinct numbers a + (L− 1)b and a− b, with the latter repeated

L− 1 times. In addition, a symmetric matrix Σ is called positive symmetric if b ≥ 0

and negative symmetric if b < 0. A quadratic Gaussian MT problem is positive- or

negative-symmetric if ΣY is so and D = D1 for some D > 0.

Without knowing the exact minimum sum-rate bound RMT
ΣY

(D) for quadratic

Gaussian MT source coding in general, little has been done to compute the sum-rate

loss R∆
ΣY

(D). The best known upper bound on the sum-rate loss is one b/s for the

two-terminal source coding problem, which is proved by Zamir [39] for continuous
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source distributions and MSE distortion measure1. Since jointly Gaussian sources are

continuous, we thus have the following lemma, which is also proved in [40].

Lemma 10 ([39, 40]). For any positive-definite ΣY ∈ R2×2 and any positive real

distortion vector D = (D1, D2)
T, it holds that

R∆
ΣY

(D) ≤ 1b/s.

It is shown in [41] that for two jointly Gaussian sources, as the target distortions

D1 and D2 go to zero, the sum-rate loss R∆
ΣY

(D) also goes to zero. This result

is consistent with the Slepian-Wolf theorem [2]. One can thus loosely think of MT

source coding as the lossy version of Slepian-Wolf coding. For MT source coding with

more than two sources, there is still no prior knowledge about the sum-rate loss.

B. Main result on the supremum sum-rate loss

Now we state our main result on the supremum sum-rate loss of quadratic Gaussian

MT source coding.

Theorem 3. For any L ≥ 2 it holds that

sup
(ΣY ,D)∈S BT

L

R∆
ΣY

(D) = L ·max

[

τ

(⌊Lx⋆⌋
L

)

, τ

(⌈Lx⋆⌉
L

)]

, (3.1)

where ⌊·⌋ and ⌈·⌉ is respectively the floor and ceiling function,

S
BT
L =

{
(ΣY ,D) : ∃ D ∈ RL×Ls.t. diag(D) = D and

D = ΣY −ΣY (ΣY +Λ)−1ΣY for some p.s.d. diagonal Λ
}
, (3.2)

1In the same paper [39], Zamir also conjectured that the supremum rate loss for
the Wyner-Ziv problem with MSE distortion measure is 0.1083 b/s.
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τ : [0, 1] 7→ R is defined as

τ(x)
∆
=







x
2
log2

[
1+x
2

+ 1
2

√

(1−x)(5−x)
]

+ 1−x
2
log2

[
(1+3x)

√
1−x

(1+x)
√
1−x+x

√
5−x

]

, x < 1,

0, x = 1,

and

x⋆
∆
= arg max

x∈[0,1]
τ(x) ≈ 0.8151108221.

Theorem 3 gives the supremum sum-rate loss in the quadratic Gaussian MT

problem under the non-degraded assumption (ΣY ,D) ∈ S BT
L , meaning that all target

distortions are simultaneously achievable by BT schemes. Fig. 7 plots this supremum

sum-rate loss as a function of L. We observe that the supremum increases almost

linearly in L. This observation is confirmed by the following corollary, which shows

that the asymptotic slope of the supremum sum-rate loss equals to

l⋆
∆
= max

x∈[0,1]
τ(x) = τ(x⋆) = 0.1083256073.

The asymptotic function 0.1083L is also plotted in Fig. 7 for comparison.

Corollary 2. It holds that

lim
L→∞

[

1

L
sup

(ΣY ,D)∈S BT
L

R∆
ΣY

(D)

]

= l⋆.

Proof. We have

lim
L→∞

[

max

(

τ(
⌊Lx⋆⌋
L

), τ(
⌈Lx⋆⌉
L

)

)]

= lim
L→∞

τ

(
1

L
· arg max

N∈{⌊Lx⋆⌋,⌈Lx⋆⌉}
τ

(
N

L

))

= τ

(

lim
L→∞

[
1

L
· arg max

N∈{⌊Lx⋆⌋,⌈Lx⋆⌉}
τ

(
N

L

)])

(3.3)

= τ (x⋆) = l⋆, (3.4)
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Fig. 7. The supremum sum-rate loss in the non-degraded case and its linear asymptotic

function.

where (3.3) is due to the fact that continuous functions transform limits into limits,

and (3.4) holds because

1

L
· arg max

N∈{⌊Lx⋆⌋,⌈Lx⋆⌉}
τ

(
N

L

)

∈
[

x⋆ − 1

L
, x⋆ +

1

L

)

.

To prove Theorem 3, we need to show that the right-hand-side (r.h.s) of (3.1) is

both an lower bound and upper bound on the supremum sum-rate loss sup(ΣY ,D)∈S BT
L
R∆

ΣY
(D),

which will be referred to as the achievability proof and the converse proof, respec-

tively. In the next two subsections, we provide the achievability proof and an outline

of the converse proof, whose detail is given in Section C.
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1. The achievability proof

We need to show that

sup
(ΣY ,D)∈S BT

L

R∆
ΣY

(D) ≥ L ·max

[

τ

(⌊Lx⋆⌋
L

)

, τ

(⌈Lx⋆⌉
L

)]

. (3.5)

To do this, we provide a sequence of quadratic Gaussian MT problems that belongs

to the BEEV-ED subclass for which the limit of sum-rate loss R∆
ΣY

(D) equals to the

r.h.s. of (3.5).

For a fixed L, denote

N⋆ ∆
= arg max

N∈{⌊Lx⋆⌋,⌈Lx⋆⌉}
τ

(
N

L

)

, (3.6)

and define a sequence of covariance matrices ΣY (k;L), k ∈ N as

ΣY (k;L) = F L · diag
((

ν

(
N⋆

L

)

, k

)

A,L−A

)

· F T
L, (3.7)

with F L being the L × L real Fourier matrix [14], (λ,Λ)A,L−A as a length-L vector

whose N⋆ elements indexed by A are λ with all the rest being Λ, ν : [0, 1] 7→ R is a

continuous function defined as

ν(x)
∆
=

−x2 + 4x− 1 + (1− x)
√

(1− x)(5− x)

2
,
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where

A =







{1} ∪
⋃

i∈B
{i, L+ 2− i} , L is odd and N⋆ is odd

⋃

i∈B
{i, L+ 2− i} , L is odd and N⋆ is even

{1} ∪
⋃

i∈B
{i, L+ 2− i} or

{
L

2
+ 1

}

∪
⋃

i∈B
{i, L+ 2− i} , L is even and N⋆ is odd

{

1,
L

2
+ 1

}

∪
⋃

i∈C
{i, L+ 2− i} or

⋃

i∈B
{i, L+ 2− i} , L is even and N⋆ is even

(3.8)

where B, C ⊂
{
2, 3, . . . ,

⌊
L
2

⌋}
with |B| =

⌊
N⋆

2

⌋
and |C| =

⌊
N⋆

2

⌋
− 1.

Then we have the following lemma which ensures that the sequence of pairs

(ΣY (k;L), 1) can approach the r.h.s. of (3.5).

Lemma 11. As k → ∞, it holds that

lim
k→∞

R∆
ΣY (k;L)(1) = L ·max

[

τ

(⌊Lx⋆⌋
L

)

, τ

(⌈Lx⋆⌉
L

)]

.

Proof. To prove Lemma 11, we first compute a general formula for the sum-rate loss

between distributed encoding and joint encoding of Gaussian sources with BEEV

covariance matrix Σ = BL,N(λ,Λ,A,T ) and equal target distortion D = D1, where

BL,N(λ,Λ,A,T ) ∆
= Tdiag((λ,Λ)A,L−A)T

T,

for some set A ⊂ L with |A| = N , Λ > λ > 0, and orthogonal matrix T satisfying

[14]

∑

j∈A
T 2

i,j =
N

L
for any i ∈ L. (3.9)

Note that in the trivial case with D ≥ Nλ+(L−N)Λ
L

, both RMT
ΣY

(D1) and RJoint
ΣY

(D1)
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are zero, hence we can assume that

D <
Nλ + (L−N)Λ

L
.

It is proved in [14] that the distributed encoding minimum sum-rate in this BEEV-ED

case is given by

RMT
ΣY

(D1) +RBT
ΣY

(D1) =
L−N

2
log2 (1 + Λp) +

N

2
log2 (1 + λp) , (3.10)

where p is the solution to

L−N
1
Λ
+ p

+
N

1
λ
+ p

= LD. (3.11)

On the other hand, the joint encoding minimum sum-rate in the BEEV-ED case

is given by the reverse water-filling formula as

RJoint
ΣY

(D) =
L−N

2
log2

(
Λ

min {Λ, w}

)

+
N

2
log2

(
λ

min {λ, w}

)

, (3.12)

where w is the unique solution to

(L−N)min {Λ, w}+N min {λ, w} = LD. (3.13)

Combining (3.10) with (3.12), we know that the sum-rate loss in the BEEV-ED

case is given by

R∆
ΣY

(D1) = RMT
ΣY

(D1)−RJoint
ΣY

(D1)

=
L−N

2
log2

[(
1

Λ
+ p

)

min {Λ, w}
]

+
N

2
log2

[(
1

λ
+ p

)

min {λ, w}
]

,

(3.14)

where p and w are the solutions to (3.11) and (3.13), respectively.

Now we prove Lemma 11. First, it is easy to verify thatΣY (k;L) = BL,N⋆

(
ν
(
N⋆

L

)
, k,A,F L

)
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with A and F L satisfying the requirement (3.9). Hence we can use (3.14) to compute

the sum-rate loss for each pair (ΣY (k;L), 1). Solving for w and p, we obtain

w =
L−N⋆λ

L−N⋆
,

p =

√

1

4
+

1

2λ
+

1

4λ2
− N⋆

Lλ
− 1

2k
− 1

2kλ
+
N⋆

kL
+

1

4k2
+
Lλ− L− λ

2Lλ
,

where λ = ν(N
⋆

L
). Hence

R∆
ΣY (k;L)(1) =

L−N⋆

2
log2

[(
1

k
+ p

)

min {k, w}
]

+
N⋆

2
log2

[(

ν−1

(
N⋆

L

)

+ p

)

min

{

ν

(
N⋆

L

)

, w

}]

=
L−N⋆

2
log2

[

w

(
1

k
+ p

)]

+
N⋆

2
log2 (1 + λp) .

Let k → ∞, then

p =

√

1

4
+

1

2λ
+

1

4λ2
− N⋆

Lλ
+
Lλ− L− λ

2Lλ
= 1− 2N⋆

L+N⋆ +
√

(L−N⋆)(5L−N⋆)
,

and it is easy to verify that

R∆
ΣY (k;L)(1)

k→∞
= τ

(
N⋆

L

)

.

Hence Lemma 11 is proved.

Lemma 11 directly leads to (3.5) after verifying (ΣY (k;L), 1) ∈ S BT
L . Though

its detailed proof is postponed to Appendix A, we give several examples of the above

defined ΣY (k;L) matrices.

For L = 5, the supremum sum-rate loss of 0.54103 b/s can be approached from

below by the sequence of pairs (ΣY (k; 5), 1) defined in (3.7) with N⋆ = 4 and A =
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{2, 3, 4, 5}, i.e.,

ΣY (k; 5) = F 5 · diag
(

k, ν

(
4

5

)

, ν

(
4

5

)

, ν

(
4

5

)

, ν

(
4

5

))

· F T
5

=
1

5
S5

(

k + 4ν

(
4

5

)

, k − ν

(
4

5

))

with SL(a, b) denoting the L × L matrix whose diagonal elements equal to a with

all off-diagonal elements being b, i.e., the supremum sum-rate loss for L = 5 can be

approached in the positive symmetric case. Clearly, as k → ∞,

lim
k→∞

5

k
ΣY (k; 5) = 15×5.

Remark 1: One can easily verify that for any L ≤ 7, it is always true thatN⋆ = L−1,

i.e., the supremum sum-rate loss in the non-degraded case can be achieved when ΣY

is BEEV with L − 1 small eigenvalues and one large eigenvalue, which is indeed the

positive symmetric case defined in Section A. Conversely, N⋆ < L − 1 holds for any

L > 7. Hence the supremum sum-rate loss in the non-degraded case can be achieved

in the positive symmetric case if and only if L ≤ 7.

For L = 8, the supremum sum-rate loss of 0.85120 b/s can be approached from

below by the sequence of pairs (ΣY (k; 8), 1) defined in (3.7) with N⋆ = 6 and A =

{2, 3, 4, 6, 7, 8}, i.e.,

ΣY (k; 8) = F 8 · diag
(

k, ν

(
3

4

)

, ν

(
3

4

)

, ν

(
3

4

)

, k, ν

(
3

4

)

, ν

(
3

4

)

, ν

(
3

4

))

· F T
8 ,

which, after reordering (without affecting the sum-rate loss), is equivalent to a block-

positive-symmetric matrix which satisfies

lim
k→∞

4

k
Σ̃Y (k; 8) =






14×4 04×4

04×4 14×4




 .
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Remark 2: L = 8 is not the only case when the supremum sum-rate loss can be

approached in the block-positive-symmetric case. In fact, if

N⋆ < L− 1 & L = L′ · (L−N⋆) with L′ ∈ {4, 5, 6} , (3.15)

then the supremum sum-rate loss in the L-terminal case equals to (L − N⋆) times

that in the L′-terminal case, hence can be approached in the block-positive-symmetric

case with block size L′×L′. Conversely, using the strict concavity of τ(x) function, it

is not hard to show that (3.15) is also a necessary condition for the supremum to be

approachable in the block-positive-symmetric case. Furthermore, it is easy to check

that (3.15) holds if and only if

L ∈ {8, 10, 12, 15, 18, 20, 24, 25, 30} . (3.16)

In general, the supremum in (3.1) cannot be approached in (block-)positive-

symmetric cases. For example, when L = 11, the supremum sum-rate loss of 1.19152

b/s is approached from below by the sequence of pairs (ΣY (k; 11), 1) defined in (3.7)

with N⋆ = 9 and A = {1, 2, 3, 5, 6, 7, 8, 10, 11}, i.e.,

ΣY (k; 11) = F 11 · diag
(

ν

(
9

11

)

, ν

(
9

11

)

, ν

(
9

11

)

, k, ν

(
9

11

)

,

ν

(
9

11

)

, ν

(
9

11

)

, ν

(
9

11

)

, k, ν

(
9

11

)

, ν

(
9

11

))

· F T
11,
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which is a circulant symmetric matrix that satisfies

lim
k→∞

11

2k
ΣY (k; 11) =



































1 a1 a2 a3 a4 a5 a5 a4 a3 a2 a1

a1 1 a1 a2 a3 a4 a5 a5 a4 a3 a2

a2 a1 1 a1 a2 a3 a4 a5 a5 a4 a3

a3 a2 a1 1 a1 a2 a3 a4 a5 a5 a4

a4 a3 a2 a1 1 a1 a2 a3 a4 a5 a5

a5 a4 a3 a2 a1 1 a1 a2 a3 a4 a5

a5 a5 a4 a3 a2 a1 1 a1 a2 a3 a4

a4 a5 a5 a4 a3 a2 a1 1 a1 a2 a3

a3 a4 a5 a5 a4 a3 a2 a1 1 a1 a2

a2 a3 a4 a5 a5 a4 a3 a2 a1 1 a1

a1 a2 a3 a4 a5 a5 a4 a3 a2 a1 1



































(3.17)

with

a1 = −0.142, a2 = −0.960, a3 = 0.415, a4 = 0.841, a5 = −0.655.

2. Outline of the converse proof

We need to show that

sup
(ΣY ,D)∈S BT

L

R∆
ΣY

(D) ≤ L ·max

[

τ

(⌊Lx⋆⌋
L

)

, τ

(⌈Lx⋆⌉
L

)]

. (3.18)

The direct proof is started by noting the fact that

sup
(ΣY ,D)∈S BT

L

R∆
ΣY

(D) ≤ sup
(ΣY ,D)∈S BT

L

RBT
ΣY

(D)− RJoint
ΣY

(D), (3.19)

which is due to Lemma 1 and the definition of R∆
ΣY

(D).
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The rest of converse proof contains three steps.

• First, we show that to compute the r.h.s of (3.19), we only need to search over

a subclass of the non-degraded cases S BT
L called regular cases, for which the

difference RBT
ΣY

(D)−RJoint
ΣY

(D) can be further upper-bounded by a function that

only depends on the eigenvalues ofΣY . We then formulate the core optimization

problem PL
0 over the eigenvalues of ΣY by allowing the eigenvalues to take the

value of infinity, so that supremum can be achievable and thus be replaced by

maximum. However, the resulting optimization problem belongs to the class

called nonconvex mixed-integer nonlinear programming (MINLP) problems [42,

Section 1.1], which is NP-complete in general [42].

• To solve the above MINLP problem, we prove that its optimal solution must

be achieved in the case when the eigenvalues of ΣY take at most four distinct

values. Hence PL
0 is simplified to an equivalent optimization problem PL

1 . Then

we formulate a set of auxiliary optimization problem P2(x) with x ∈ [0, 1) by

relaxing the integer design variables in PL
1 to take continuous value, and show

that for a given L, the largest number among the L maximum function values of

the auxiliary problems
{
P2(x) : x ∈

{
0, 1

L
, ..., L−1

L

}}
is an upper bound on that

of the core optimization problem PL
0 . This upper bound is tight if it is achieved

when the eigenvalues of ΣY only takes two distinct values, one of which is a

finite function of L with the other being infinity.

• Finally, we separately treat the cases when L 6∈ {2, 3, 4, 8} and L ∈ {2, 3, 4, 8}.

In the former case, it is proved using rigorous numerical methods (interval arith-

metic to be specific) that the above upper bound is indeed achieved in the bi-

eigen case. In the latter case, we directly solve PL
1 by exhausting all possible

combinations of the integer design variables. Fortunately, the maximum func-
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tion value is also achieved in the above bi-eigen case. The last step is to verify

that the maximum function value in PL
0 equals to the r.h.s. of (3.18) for all L.

C. The converse proof of Theorem 3

In this section, we give the complete converse proof of Theorem 3. The three major

steps are summarized as: formulation of the core optimization problem, reduction

to the quad-eigen case and relaxation, and solution via rigorous numerical methods,

with details provided in the following three subsections, respectively.

1. The core optimization problem

Define

D
BT(ΣY ) =

{
D : D = ΣY −ΣY (ΣY +Λ)−1ΣY for some p.s.d. and diagonal Λ

}
,

(3.20)

and

D
BT(ΣY ,D)=

{
D ∈ D

BT(ΣY ) : diag(D) ≤ D
}
,

D
BT
= (ΣY ,D)=

{
D ∈ D

BT(ΣY ) : diag(D) = D
}
.

Also define

D
Joint(ΣY )=

{
D : DT = D and 0 � D � ΣY

}
,

and

D
Joint(ΣY ,D) =

{
D ∈ D

Joint(ΣY ) : diag(D) ≤ D
}
,

D
Joint
= (ΣY ,D) =

{

D ∈ D
Joint(ΣY ) : tr(D)=

∑

i∈L
Di

}

.



71

In words, DBT(ΣY ) and DJoint(ΣY ) denote the set of distortion matrices that are

BT-achievable and joint-achievable for a given source covariance matrix ΣY , respec-

tively. DBT(ΣY ,D) and DJoint
= (ΣY ,D) contain all BT- and joint-achievable distor-

tion matrices that meet the distortion constraints defined by D, respectively. And

DBT
= (ΣY ,D) further restricts to the BT-achievable matrices that meet all the dis-

tortion constraints with equalities, while DJoint
= (ΣY ,D) the joint-achievable matrices

that achieve a sum-distortion of
∑

i∈LDi. Then the following relationships are obvi-

ous,

D
BT
= (ΣY ,D) ⊂ D

BT(ΣY ,D) ⊂ D
BT(ΣY ),

D
Joint
= (ΣY ,D) ⊂ D

Joint(ΣY ,D) ⊂ D
Joint(ΣY ). (3.21)

In particular, it is proved in [13, Theorem 4] that if (ΣY ,D) ∈ S BT
L , DBT

= (ΣY ,D)

must be a singleton set, hence we can denote the single element in DBT
= (ΣY ,D) as

D
BT
= (ΣY ,D).

We say a pair (ΣY ,D) is regular if (ΣY ,D) ∈ S BT
L ,

D
BT
= (ΣY ,D) = ΣY −ΣY (ΣY +

1

p
· I)−1ΣY (3.22)

for some real number p > 0, and
∑

i∈LDi = L. Denote RL as the set of all regu-

lar (ΣY ,D) pairs. Then we have the following lemma, which shows that any pair

(ΣY ,D) ∈ S BT
L can be regularized without affecting the distributed encoding and

joint encoding minimum sum-rates, hence the sum-rate loss between them.

Lemma 12. For any pair (ΣY ,D) ∈ S BT
L , there exists a regular pair (ΣY ′ ,D′) ∈ RL

such that RMT
ΣY

(D) = RMT
ΣY ′

(D′) and RJoint
ΣY

(D) = RJoint
ΣY ′

(D′), hence

R∆
ΣY

(D) = R∆
ΣY ′

(D′). (3.23)
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In addition, for any ΣY , if tr(ΣY ) ≥ L there exists a unique D such that (ΣY ,D) ∈

RL, otherwise no such D exists.

Proof. Due to the definition of DBT
= (ΣY ,D), we assume that DBT

= (ΣY ,D) satisfies

D
BT
= (ΣY ,D) = ΣY −ΣY

(

ΣY + diag

(
1

p1
,
1

p2
, ...,

1

pL

))−1

ΣY

for some pi > 0 for i ∈ L. Denote Λ = diag
(

1
p1
, 1
p2
, ..., 1

pL

)

, and define

p =
1

L

L∑

i=1

piDi, E = diag

(
p1
p
,
p2
p
, . . . ,

pL
p

)

, ΣY ′ = E
1
2ΣY E

1
2 , D′ = ED.

Then (ΣY ′ ,D′) ∈ RL, since

∑

i∈L
D′

i =
∑

i∈L

piDi

p
= L.

We also have

ΣY ′ −ΣY ′

(

ΣY ′ +
1

p
I

)−1

ΣY ′ = E
1
2ΣY E

1
2 − E

1
2ΣY E

1
2

(

E
1
2ΣY E

1
2 + E

1
2ΛE

1
2

)−1

E
1
2ΣY E

1
2

= E
1
2D

BT
= (ΣY ,D)E

1
2 ,

and

diag
(
ED

BT
= (ΣY ,D)E

)
= (E ⊙ E)D = D′,

which implies that

D
BT
= (ΣY ′ ,D′) = E

1
2D

BT
= (ΣY ,D)E

1
2 ,

due to the definition of DBT
= (ΣY ′ ,D′) and its singleton nature.

Now consider a scheme (φ(n),ϕ(n)) for the distributed encoding problem of Y

with covariance matrix ΣY and target distortion vector D. Then for the distributed

encoding problem of Y ′ with covariance matrix ΣY ′ and target distortion vector D′,
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consider the scheme (φ̃
(n)
, ϕ̃(n)) that

1. scales the i-th source block Y ′
i
n by a factor of

√
p
pi
, then the scaled sources

Un
i =

√
p
pi
Y ′
i
n, i ∈ L must be i.i.d with covariance matrix E

− 1
2ΣY ′E

− 1
2 = ΣY ,

2. applies φ
(n)
i on the i-th scaled source block Un

i ,

3. reconstructs Un
i using ϕ(n) as Ûn

i ,

4. reconstructs Y ′
i
n as Ŷ ′

i

n
=
√

pi
p
Ûn
i .

Obviously, the new scheme (φ̃
(n)
, ϕ̃(n)) must have the same sum-rate as (φ(n),ϕ(n)),

and achieve a distortion

1

n

n∑

j=1

E
[

d(Zi,j, Ẑi,j)
]

=
pi
p
·
[

1

n

n∑

j=1

E
[

d(Ui,j, Ûi,j)
]
]

≤ pi
p
Di = D′

i

for Y ′
i
n. Hence any (ΣY ,D)-achievable sum-rate must also be (ΣY ′,D′)-achievable.

The converse that (ΣY ′ ,D′)-achievable implies (ΣY ,D)-achievable can be proved in

the same way. Hence we must have RMT
ΣY

(D) = RMT
ΣY ′

(D′).

Using the same technique, RJoint
ΣY

(D) = RJoint
ΣY ′

(D′) comes from the equivalence

between (ΣY ′ ,D′)-joint-achievable and (ΣY ,D)-joint-achievable.

A natural corollary of Lemma 12 is stated as follows.

Corollary 3. It holds that

sup
(ΣY ,D)∈S BT

L

R∆
ΣY

(D) = sup
(ΣY ,D)∈RL

R∆
ΣY

(D).

Remark 3: We introduce the concept of regularity due to two reasons: first, Corollary

3 ensures that to compute the supremum sum-rate loss over all pairs (ΣY ,D) ∈ S BT
L ,

it is sufficient to consider the regular pairs; more importantly, as will be shown below,

once a pair (ΣY ,D) is regularized, there exist simple upper/lower bounds on the
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BT/joint encoding minimum sum-rates that are expressed only as a function of the

eigenvalues of ΣY (note that D is uniquely determined by ΣY ).

The main idea of finding an equivalent (in the sense of (3.23)) regular pair

(ΣY ′ ,D′) ∈ RL is based on the fact that simultaneously scaling the i-th source

Yi by a factor of ti 6= 0 and the corresponding target distortion Di by a factor of t2i

does not change the distributed encoding or joint encoding minimum sum-rate. One

can also define RL as, e.g., the set of (ΣY ,D) pairs such that (ΣY ,D) ∈ S BT
L and

(3.22) holds with p = 1. In fact, as long as (3.22) holds and there is only one degree

of freedom in the two values p and
∑

i∈LDi, Lemma 12 is always true. We choose the

definition such that
∑

i∈LDi = L and leave the one degree of freedom to p because

this leads to simplifications in the sequel.

Denote the L eigenvalues of ΣY as λi, i ∈ L and without loss of generality

assume that they are in a non-decreasing order, i.e., λi ≤ λj for 1 ≤ i < j ≤ L.

Let λ = (λ1, λ2, ..., λL)
T. Assuming (ΣY ,D) ∈ RL, it must be true that

∑

i∈L λi =

tr(ΣY ) ≥ L, since otherwise the target distortion vector D cannot be achieved by a

BT scheme. Then we have an upper bound on the minimum BT sum-rate as well as

a lower bound on the minimum joint-encoding rate, which are given in the following

lemma.

Lemma 13. For any L ≥ 2, the following equations hold

RBT
ΣY

(D) ≤
∑

i∈L

1

2
log2 (1 + λip)

∆
= R

BT
(λ), (3.24)

RJoint
ΣY

(D) ≥







∑L
i=W+1

1
2
log2

λi

w
, W < L,

0, W = L

∆
= RJoint(λ), (3.25)
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where p is the solution to

∑

i∈L

λi
1 + λip

=
∑

i∈L
Di = L, (3.26)

the water level w equals to one when
∑

i∈L λi = L, and otherwise equals to the unique

solution to the reverse water-filling problem [15]

∑

i∈L
min(λi, w) = L (3.27)

and

W = | {i ∈ L : λi < w} | (3.28)

with |A| denoting the cardinality of the set A.

Proof. We first upper-bound the minimum BT sum-rate as

RBT
ΣY

(D) = min
U ∈U(ΣY ,D)

I(Y ;U) (3.29)

= min
D ∈DBT(ΣY ,D)

1

2
log2

det+(ΣY )

det+(D)
(3.30)

≤ 1

2
log2

det+(ΣY )

det+(DBT
= (ΣY ,D))

(3.31)

=
1

2
log2

∏

i∈L:λi>0 λi
∏

i∈L:λi>0
λi

1+λip

(3.32)

=
∑

i∈L

1

2
log2 [1 + λip] = R

BT
(λ),

where (3.29) and (3.30) come from the definitions of RBT
ΣY

(D) and DBT(ΣY ,D),

respectively, with det+(A) denoting the product of positive eigenvalues of matrix A,

(3.31) is due to the fact that D
BT
= (ΣY ,D) ∈ DBT(ΣY ,D), and (3.32) is true since

in the regular case, DBT
= (ΣY ,D) must equal to ΣY −ΣY (ΣY + 1

p
· I)−1ΣY (whose
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eigenvalues are λi

1+λip
for i ∈ L) with p being the solution to

∑

i∈L

λi
1 + λip

= tr(DBT
= (ΣY ,D)) =

∑

i∈L
Di = L.

Similarly, we obtain a lower bound on the joint encoding minimum sum-rate,

RJoint
ΣY

(D) = min
V : diag{E[(Y −E(Y |V ))(Y −E(Y |V ))T]} ≤D

I(Y ;V ) (3.33)

= min
D∈DJoint(ΣY ,D)

1

2
log2

det+(ΣY )

det+(D)
(3.34)

≥ min
D∈DJoint

= (ΣY ,D)

1

2
log2

det+(ΣY )

det+(D)
(3.35)

=
∑

i∈L

1

2
log2

[

max(1,
λi
w
)

]

(3.36)

=







∑L
i=W+1

1
2
log2

λi

w
W < L

0 W = L
= RJoint(λ),

where (3.33) is the single-letter rate-distortion function of Y with vector distortion

constraint D, (3.34) is true because Gaussian distribution maximizes differential en-

tropy for a given covariance matrix, (3.35) is due to the relation (3.21), and in (3.36)

we used the fact that reverse water-filling on the eigenvalues of a multivariate Gaussian

random vector can achieve its rate-sum-distortion function (see, e.g., [15, p.315]).

Due to (2.9), (3.24) and (3.25), the sum-rate loss R∆
ΣY

(D) for (ΣY ,D) ∈ S BT
L



77

is upper-bounded as

R∆
ΣY

(D) ≤ RBT
ΣY

(D)− RJoint
ΣY

(D)

≤ R
BT

(λ)−RJoint(λ)

=
1

2

∑

i∈L
log2(1 + λip) +

1

2

L∑

i=W+1

log2
w

λi

=







1
2

∑

i∈L log2(1 + λip) W = L

1
2

∑

i∈L log2(
1
λi
+ p) W = 0

1
2

∑W
i=1 log2(1 + λip)

+1
2

∑L
i=W+1 log2(w(

1
λi
+ p))

0<W <L

(3.37)

where p and w are the solutions to (3.26) and (3.27), respectively, and W is defined

in (3.28), note that we used the fact that w = 1 when W = 0.

To compute the supremum value of (3.37) over all λ’s satisfying
∑

i∈L λi =

tr(ΣY ) ≥ L (due to Lemma 12), we need to allow λi’s to take the value of infinity,

or equivalently, we denote vi =
1
λi

for i > W such that vi ∈ [0, 1
w
]. We formulate the
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core optimization problem PL
0 as follows

PL
0 : Max. f0(ξ, w, p,W )

∆
=

1

2

W∑

i=1

log2(1 + λip)+
1

2

L∑

i=W+1

log2(w(vi + p))

over λ1, ..., λW , vW+1, ..., vL ∈ R, w, p ∈ R+, and W ∈ {0, 1, ..., L} ,

s.t. h01(ξ, w, p,W )
∆
=

W∑

i=1

λi
1 + λip

+
L∑

i=W+1

1

vi + p
− L = 0, (3.38)

h02(ξ, w, p,W )
∆
=

W∑

i=1

λi + (L−W )w − L = 0, (3.39)

g0i(ξ, w, p,W )
∆
= λi − w ≤ 0, i = 1, 2, ...,W, (3.40)

g0i(ξ, w, p,W )
∆
= vi −

1

w
≤ 0, i = W + 1,W + 2, ..., L, (3.41)

j0i(ξ, w, p,W )
∆
= − λi ≤ 0, i = 1, 2, ...,W, (3.42)

j0i(ξ, w, p,W )
∆
= − vi ≤ 0, i =W + 1,W + 2, ..., L, (3.43)

k0(ξ, w, p,W )
∆
= W − L ≤ 0. (3.44)

PL
1 : Max. f1(λ, w, η, p, N,M,K) over λ, w, η, p ∈ R and N,M,K ∈ {0} ∪ L

s.t. h10(λ, w, η, p, N,M,K)
∆
=

Nλ

1 + λp
+

Mw

1 + wp
+

(L−N−M−K)η

1 + ηp
+
K

p
− L = 0,

(3.45)

h11(λ, w, η, p, N,M,K)
∆
= w =

L−Nλ

L−N
= 0, (3.46)

0 ≤N ≤L− 1, 1 ≤N +M ≤L− 1, K ≤L−N −M, (3.47)

and 0 ≤ λ < w < η <∞.

where ξ = (λ1, ..., λW , vW+1, ..., vL)
T, f0(ξ, w, p,W ) is the sum-rate loss R∆

ΣY
(D) de-

fined in (3.37), (3.38) and (3.39) are equality constraints, and (3.40) - (3.44) are

inequality constraints. Unfortunately, it is very hard to directly solve PL
0 , since it is

a nonconvex MINLP problem [42] with integer design variable W .
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2. Reduction to the quad-eigen case and relaxation

Instead of directly solving PL
0 , we state the following lemma, which shows that the

optimal solution to PL
0 must be achieved when λi’s take at most four different values.

Lemma 14. The optimal solution to PL
0 must be achieved when the eigenvalues λi’s

satisfy

1. λi = λ, for all i = 1, 2, ..., N , with 0 ≤ λ < 1 and 0 ≤ N ≤ L−K.

2. λi = w, for i = N +1, N +2, ..., N +M , where M is some non-negative integer

such that 1 ≤ N +M =W ≤ L−K.

3. λi = η ∈ (w,∞), for i = N +M + 1, N +M + 2, ..., L −K, where K is such

that N +M +K ≤ L.

4. λi = ∞ for i = L−K + 1, ..., L due to assumption.

In other words, the optimal covariance matrix ΣY that achieves the supremum sum-

rate loss in the regular case can only have at most four distinct eigenvalues, taking

values from the set {λ, w, η,∞} with 0 ≤ λ < w < η <∞.

Proof. We first show that the Karush-Kuhn-Tucker (KKT) condition is a necessary

condition for optimality by proving that for fixed W ∈ {0, 1, ..., L}, the equality

constraints h01, h02 and any possible combinations of active inequality constraints

chosen from {g0i : i ∈ L}∪{j0i : i ∈ L}must satisfy the linear independence constraint

qualification [43, p. 247], i.e., their gradients are linearly independent at any (ξ, w, p).

In fact, if we compute the gradients of the above 2L + 2 functions with respect to
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(ξ, w, p),

∇(ξ,w,p)h01 = (
1

(1 + λ1p)2
, . . . ,

1

(1 + λWp)2
,

−1

(vW+1 + p)2
, . . . ,

−1

(vL + p)2
, 0,

−
W∑

i=1

λ2i
(1 + λip)2

−
L∑

i=W+1

1

(vi + p)2
)T,

∇(ξ,w,p) = (1, ..., 1
︸ ︷︷ ︸

W

, 0, ..., 0
︸ ︷︷ ︸

L−W

, L−W, 0)T,

∇(ξ,w,p)g0i =







(0, ..., 0
︸ ︷︷ ︸

i−1

, 1, 0, ..., 0
︸ ︷︷ ︸

L−i

,−1, 0)T i ≤W

(0, ..., 0
︸ ︷︷ ︸

i−1

, 1, 0, ..., 0
︸ ︷︷ ︸

L−i

, 1
w2 , 0)

T W<i≤L
,

∇(ξ,w,p)j0i = (0, ..., 0
︸ ︷︷ ︸

i−1

,−1, 0, ..., 0
︸ ︷︷ ︸

L−i

, 0, 0)T, i ∈ L.

Note that g0i and j0i cannot be both active. We observe that among all partial

derivatives with respect to p, ∂h01

∂p
is the only non-zero one. Hence we only need to

show that the following matrix is non-singular,

























1 1 ... 1 0 ... 0 L−W

1 0 ... 0 0 ... 0 b1

0 1 ... 0 0 ... 0 b2

... ... ... ... ... ... ... ...

0 0 ... 1 0 ... 0 bW

0 0 ... 0 1 ... 0 bW+1

... ... ... ... ... ... ... ...

0 0 ... 0 0 ... 1 bL

























,

where bi ∈ {0,−1} for i ≤ W and bi ∈
{
0, 1

w2

}
otherwise, which is obvious since its

determinant equals to (−1)L · (L−W −∑W
i=1 bi) 6= 0.

Now we know that the optimal solution to PL
0 must satisfy the KKT condition
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for some W ∈ {0, 1, ..., L}. Hence we use the Lagrangian of PL
0

L(PL
0 ) = −f0(ξ, w, p,W ) + α · h01(ξ, w, p,W ) + β · h02(ξ, w, p,W ) +

L∑

i=1

γi · g0i(ξ, w, p,W )

+

W∑

i=1

ζi · j0i(ξ, w, p,W ),

to compute the KKT condition (for a fixed W ) as

∂L(P0)

∂λi
=− 1

2 ln 2

p

1 + λip
+

α

(1 + λip)2
+ β + γi − ζi = 0,

i = 1, 2, ...,W, (3.48)

∂L(P0)

∂vi
=− 1

2 ln 2

1

vi + p
− α

(vi + p)2
+ γi − ζi = 0,

i =W + 1, ..., L, (3.49)

∂L(P0)

∂p
=− 1

2 ln 2

[
W∑

i=1

λi
1 + λip

+
L∑

i=W+1

1

vi + p

]

−α
(

W∑

i=1

λ2i
(1 + λip)2

+

L∑

i=W+1

1

(vi + p)2

)

= 0, (3.50)

∂L(P0)

∂w
=−L−W

2 ln 2
· 1
w

+ (L−W )β −
W∑

i=1

γi +

L∑

i=W+1

γi
w2

= 0, (3.51)

and

h01(ξ, w, p,W ) = 0,

h02(ξ, w, p,W ) = 0,

γi · g0i(ξ, p, w,W ) = 0, i = 1, 2, ..., L, (3.52)

ζi · j0i(ξ, p, w,W ) = 0, i = 1, 2, ...,W,

γi ≥ 0, (3.53)

ζi ≥ 0.
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Note that we may assume without missing the optimal solution that the equalities

in g0i are not achieved for any i ∈ {W + 1, ..., L}, since otherwise the solution must

satisfy the KKT condition for some W ′ > i ≥W . On the other hand, if the equality

in g0i holds for some i ≤ W , i.e., λi = 0, then the optimization problem reduces to

PL−1
0 after replacing L by L − 1 in h01 and h02. Hence in the rest of the proof, we

assume γi = 0 for all i ∈ {W + 1, ..., L} and ζi = 0 for all i ≤W .

From (3.50) and the fact that
∑W

i=1
λi

1+λip
+
∑L

i=W+1
1

vi+p
= L, we get

α=− L

2 ln 2
[
∑W

i=1
λ2
i

(1+λip)2
+
∑L

i=W+1
1

(vi+p)2

] < 0. (3.54)

On the other hand, (3.51) and (3.53) imply that

β =
1

2 ln 2 · w +

∑W
i=1 γi

L−W
> 0. (3.55)

Now let G ⊆ {1, 2, ...,W} be the index set such that







γi = 0 for all i ∈ G

γi > 0 for all i ∈ {1, 2, ...,W} − G
. (3.56)

Then for any i ∈ G, (3.48) and (3.56) tell us that

− 1

2 ln 2

p

1 + λip
+

α

(1 + λip)2
+ β = 0. (3.57)

Since for i ∈ {1, 2, ...,W}, λi ≤ w < ∞, we can combine (3.54), (3.55), and (3.57)

and write

β(1 + λip)
2 − p

2 ln 2
(1 + λip) + α = 0.

Assume there are i, j ∈ G such that λi 6= λj. Then λi and λj are two distinct positive
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roots of

β(1 + λp)2 − p

2 ln 2
(1 + λp) + α = 0. (3.58)

However, it is obvious that (3.58) has only one positive root (since β > 0 and αβ < 0),

namely

λ =
1

p

[

p+
√

p2 − 16αβ ln2 2

4β ln 2
− 1

]

,

and we have a contradiction. Hence for any i, j ∈ G, we must have λi = λj = λ ≤ w.

Let N be the cardinality of G. It is easy to prove that λ ≤ 1 since otherwise

L∑

i=1

min {λi, w} =
∑

i∈G∩{1,2,...,W}
λi +

∑

i∈{1,2,...,W}−G
λi +Kw ≥ Lλ > L.

Similarly, for any i ∈ {W + 1,W + 2, ..., L}, due to (3.49) and (3.54), it must

hold that

1

(vi + p) · 2 ln 2 +
α

(vi + p)2
+ ζi = 0,

which implies that for any i, j ∈ {W + 1,W + 2, ..., L} such that vi, vj > 0, we must

have vi = vj = −(2 ln 2 · α + p), i.e., λi = λj = η
∆
= − 1

2 ln 2·α+p
. On the other

hand, if vi = 0, then we must have λi = ∞. We denote K as the number of infinite

eigenvalues.

Moreover, due to (3.52) and (3.56), we know that λi = w for any i ∈ {1, 2, ...,W}−

G. Hence the optimal ξ must correspond to a covariance matrix with at most four

distinct eigenvalues {λ, w, η,∞} such that 0 ≤ λ ≤ w < η ≤ ∞. In addition, we can

also assume without losing generality that 0 ≤ λ < w < η < ∞. Denote M as the

cardinalities of the set {1, 2, ...,W} − G. Then we must have N +M = W .

Now we show that N +M ≥ 1. Otherwise assume that the optimal solution
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satisfies W = 0, i.e., λi > w for all i ∈ L, and w = 1 due to (3.39). Then it must hold

that λi = η > 1 for all i ≤ L−K. Then the cost function f0(ξ, w, p,W ) becomes

f3(η, p,K) =
L−K

2
log2(

1

η
+ p) +

K

2
log2(p),

and the constraints are

L−K
1
η
+ p

+
K

p
− L = 0, and 1− η < 0.

First consider the case when K = 0, then the cost function is f3(η, p,K) = L
2
log2(

1
η
+

p) = L log2(1) = 0, which means K = 0 corresponds to a zero sum-rate loss.

Similarly, when K = L, the sum-rate loss must also be zero. Then consider the

case when K ∈ {1, 2, ..., L− 1}, we have η = Lp−K
Lp(1−p)

, and the cost function is

f4(p,K) = K
2
log2(

p(L−K)
Lp−K

)+ K
2
log2(p). Clearly, for any K ∈ {1, 2, ..., L− 1}, f4(p,K)

is a monotone decreasing function of p in the range (K
L
, 1), since

∂f4(p,K)

∂p
= − (1− p)LK

p(Lp−K) · 2 ln 2 < 0,

where the last inequality is due to the fact that η = Lp−K
Lp(1−p)

> 0. Now since η is

a monotone increasing function of p, we know that for any K ∈ {1, 2, ..., L− 1},

f4(p,K) is maximized as η = Lp−K
Lp(1−p)

→ 1, i.e., p →
√

K
L
. This means another

solution with N∗ = 0, M∗ = L −K, K∗ = K, w∗ = 1, and p∗ =
√

K
L

must achieve

a larger cost function value, which contradicts with the assumption. Hence it must

hold that N +M ≥ 1.

Finally, we show that N +M = W ≤ L − 1. Otherwise we must have W = L,

which means λi ≤ w for all i ∈ L, and ∑L
i=1 λi = L (due to (3.39)). Then (3.38)

is true if and only if p = 0, which implies that the cost function f0(ξ, w, p,W ) =

1
2

∑L
i=1 log2(1+λi · 0) = 0. Therefore, the optimal solution to PL

0 cannot be such that

W = L, since the supremum sum-rate loss is obviously larger than zero.
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Due to Lemma 14, we can define

f1(λ, w, η, p, N,M,K)
∆
=
N

2
log2(1 + λp) +

M

2
log2(1 + wp)

+
L−N −M −K

2
log2

(

w

(
1

η
+ p

))

+
K

2
log2(wp),

and restate PL
0 as PL

1 defined at the bottom of the page.

Although PL
1 is still a nonconvex MINLP optimization problem due to the dis-

creteness of (N,M,K), one can always exhaust all (N,M,K) triples satisfying (3.47)

and find the maximum function value f1(λ, w, η, p, N,M,K) for each triple under

the constraints (3.45) and (3.46). The sub-problem of PL
1 corresponding to a fixed

(N,M,K)-triple is denoted as PL
1 (N,M,K). However, as L goes to infinity, the com-

plexity of the above method becomes intractable.

Our approach of solving PL
1 is to define a set of auxiliary continuous optimiza-

tion problems P2(x) parameterized by x ∈ [0, 1), such that for each fixed N ∈

{0, 1, ..., L− 1}, the maximum over the solutions to all PL
1 (N,M,K) problems (with

M and K vary) must be upper-bounded by that to P2(
N
L
), with equality holds when

the later is achieved in the bi-eigen case (corresponding to M = 0 and K = L−N in

PL
1 ).

First, we eliminate K by upper-bounding f1(λ, w, η, p, N,M,K). Let t be the

solution to

η

1 + ηp
= t · w

1 + wp
+ (1− t) · 1

p
, (3.59)
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then we must have t ∈ [0, 1). Since the function − log2(·) is convex, we have

log2

(

w

(
1

η
+ p

))

= − log2

(
1

w
· η

1 + ηp

)

= − log2

[
1

w
·
(

t · w

1 + wp
+ (1− t) · 1

p

)]

= − log2

[

t · 1

1 + wp
+ (1− t) · 1

wp

]

2(1 + wp) + (1− t) log log2(wp).

Thus if we define

M ′ =M + (L−M −N −K)t, (3.60)

which is a real number between 0 and L−N , the constraint (3.45) becomes

Nλ

1 + λp
+

M ′w

1 + wp
+

(L−N −M ′)

p
= L, (3.61)

(3.62)

and the objective function f1(λ, w, η, p, N,M,K) can be upper-bounded by

f1(λ, w, η, p, N,M,K) ≤ N

2
log2(1 + λp) +

M ′

2
log2(1 + wp) +

L−N −M ′

2
log2(wp)

(3.63)

∆
= f 1(λ, w, p,N,M

′). (3.64)

Clearly, (3.63) holds with equality if M = L−N −K = 0, or equivalently, M ′ = 0.

Next, we relax N to be a real number in [0, L) (since Lemma 14 proves that the

optimal solution to P0 cannot be achieved when N = L), and denote x = N
L
, and
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y = M ′

L
. For a fixed x ∈ [0, 1), we eliminate w and y in f 1(λ, w, p,N,M

′) using

w =
L−Nλ

L−N
=

1− xλ

1− x
(3.65)

y =
(L−N − Lp+ Lpλ− Lp2λ)(L−N + Lp− Lpnλ)

L(1 + pλ)(L−N)

=
(1− x− p+ pλ− p2λ)(1− x+ p− pxλ)

(1 + pλ)(1− x)
, (3.66)

and obtain the relaxed optimization problem P2(x) for a fixed x ∈ [0, 1) (note that

p ≤ 1 due to (3.38) and (3.41)) as follows,

P2(x) : Max. f2(λ, p ; x) over 0 ≤ λ < 1, 0 < p ≤ 1,

s.t. g2(λ, p ; x)
∆
= 1−x−p+pλ−p2λ ≥ 0, (3.67)

where

f2(λ, p ; x)
∆
= f 1(λ, w, p, Lx, Ly)

=
x

2
log2(1 + λp) +

y

2
log2(1 + wp) +

1− x− y

2
log2(wp) (3.68)

=
x

2
log2 (1 + λp) +

1− x

2
log2

(
1− xλ

1− x
p

)

+
(1− x− p+ pλ− p2λ)(1− x+ p− pxλ)

2(1 + pλ)(1− x)
· log2

(

1 +
1− x

p(1− xλ)

)

,

and the constraint (3.67) is equivalent to y ≥ 0 with y given in (3.66). From (3.61) -

(3.66), it is clear that

f1(λ, w, η, p, N,M,K) ≤ f1(λ, w, p,N,M
′) = L · f2(λ, p ; x) (3.69)

for any (w, η,M,K) satisfying (3.45) - (3.47), where x = N
L
, t is the solution to (3.59),
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and M ′ is defined in (3.60). Moreover, (3.69) holds with equality if

M = L−N −K = 0 ⇔ M ′ = 0 ⇔ y = 0

⇔ g2(λ, p ; x) = 1− x− p+ pλ− p2λ = 0. (3.70)

Denote the solutions to PL
0 , P

L
1 , and P2(x) as

sol(PL
0 ) = {fmax; ξmax, wmax, pmax,Wmax} ,

sol(PL
1 ) = {fmax1 ;λmax1 , ηmax1, pmax1 , wmax1, Nmax1 ,Mmax1 , Kmax1} ,

sol(P2(x)) = {fmax2(x);λmax2(x), pmax2(x)} ,

respectively. Then the relationship among sol(PL
0 ), sol(P

L
1 ), and sol(P2(x)) is given in

the following lemma.

Lemma 15. It holds for any L ≥ 2 that

fmax = fmax1 ≤ L · max
N∈{0,1,...,L−1}

fmax2

(
N

L

)

, (3.71)

with equality holds if the largest fmax2
(
N
L

)
over all N ∈ {0, 1, ..., L− 1} is achieved

on the boundary of (3.67), i.e.,

g2

(

λmax2

(
Nmax2

L

)

, pmax2

(
Nmax2

L

)

,
Nmax2

L

)

= 0, (3.72)

where Nmax2 = argmaxN∈{0,1,...,L−1} f
max2

(
N
L

)
. Moreover, if (3.72) holds, we must
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have

Wmax = Nmax1 = Nmax2 , Mmax1 = 0, (3.73)

Kmax1 = L−Nmax2 , (3.74)

λmax
i =λmax1 =λmax2

(
Nmax2

L

)

=ν

(
Nmax2

L

)

, i≤Nmax2 , (3.75)

vmax
i = 0, i > Nmax2 , (3.76)

pmax = pmax1 = pmax2

(
Nmax2

L

)

, (3.77)

wmax = wmax1 =
L−Nmax2λmax2(N

max2

L
)

L−Nmax2
, (3.78)

i.e., the optimal solution for PL
0 corresponds to a covariance matrix with two distinct

values: λmax2(N
max2

L
) and ∞.

Proof. First, due to Lemma 14, sol(P1) is equivalent to sol(P0) in the sense that

fmax = fmax1 , (3.79)

and

λmax
i = λmax1 , i = 1, 2, ..., Nmax1

λmax
i = wmax1, i = Nmax1 + 1, ..., Nmax1 +Mmax1 ,

λmax
i = ηmax1, i = Nmax1 +Mmax1 , . . . , Nmax1 +Mmax1 +Kmax1 ,

λmax
i = ∞, i = Nmax1 +Mmax1 +Kmax1 + 1, ..., L,

pmax = pmax1 ,

wmax = wmax1,

Wmax = Nmax1 +Mmax1 .

Then (3.71) follows directly from (3.79), (3.69) - (3.70), and the equivalence between

the constraints (3.45) and (3.61).
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In addition, if (3.72) holds, due to (3.70), we know that

f1(λ, w, η, p, N,M,K) = L · f2
(

λ, p ;
N

L

)

,

where λ = λmax2
(
Nmax2

L

)
, w =

L−Nmax2λmax2(Nmax2
L )

L−Nmax2
, p = pmax2

(
Nmax2

L

)
, N = Nmax2 ,

M = 0, K = L − Nmax2 , and η be any real number larger than w. This means that

the maxN∈{0,1,...,L−1} f
max2

(
N
L

)
, which is an upper bound on fmax1 , is also achievable

in P1. Hence (3.71) holds with equality if (3.72) is true, and (3.73) - (3.78) are trivial

consequences.

Moreover, if the solution to P2(x) is achieved on the boundary g2(λ, p ; x) = 0,

then it must be the solution to

P2b(x) : Max. f2b(λ, p ; x) over 0 ≤ λ < 1, 0 < p ≤ 1,

s.t. g2(λ, p ; x) = 0,

where

f2b(λ, p; x)
∆
=
x

2
log2 (1 + λp) +

1− x

2
log2

(
1− xλ

1− x
p

)

.

The following lemma gives the exact form of the solution to P2b(x) for any x ∈ [0, 1).

Lemma 16. The maximum function value for P2b(x) is

fmax2b = τ(x), (3.80)

which is achieved when

λmax2b = ν(x), (3.81)

pmax2b = µ(x)
∆
= 1− 2x

(1 + x) +
√

(1− x)(5− x)
. (3.82)

Proof. First, when x = 0, f2b(λ, p ; x) ≡ 0, and (3.80) - (3.82) hold since τ(0) = 0,
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ν(0) = 0, and µ(0) = 1.

Then consider the case when x ∈ (0, 1).

1. If λ = 0, then p = 1 − x due to (3.82), and the objective function becomes

f2b(0, 1− x; x) = 0, thus the maximum cannot be achieved when λ = 0.

2. If p = 1, then x = 0 must hold due to (3.82), contradicts with the assumption

that x ∈ (0, 1).

3. Hence the optimal function value must be achieved when λ, p ∈ (0, 1), which

implies that (3.82) is the only active constraint, whose gradient is (p(1−p), λ−

2λp − 1)T 6= 0. Therefore, the linear independence constraint qualification

[43, p. 247] must be satisfied at the optimal point, and the KKT condition is

necessary for global optimality.

The Lagrangian is

L(P2b(x)) = −f2b(λ, p ; x) + α · g2(λ, p ; x),

and the KKT condition is

∂L(P2b(x))

∂λ
=

1

2 ln 2

x(1− x− p+ λp)

(1 + λp)(1− λx)
+ αp(1− p) = 0,

∂L(P2b(x))

∂p
=− 1

2 ln 2

1− x+ λp

p(1 + λp)
− α(1− λ+ 2λp) = 0,

g2(λ, p ; x) = 1− x− p+ pλ− p2λ = 0,

which leads to two and only two sets of solutions, namely (the corresponding α+ and
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α− are omitted),

pmax2b = µ(x), λmax2b = ν(x)

p− = 1− 2x

(1 + x)−
√

(1− x)(5− x)
,

λ− =
−x2 + 4x− 1− (1− x)

√

(1− x)(5− x)

2
.

One can verify that the first set of solution satisfies the KKT condition, while the

second set λ = λ− and p = p− is not feasible since

p−λ− = −3(1− x) +
√

(1− x)(5− x)

1 + x+
√

(1− x)(5 − x)
< 0.

Hence the maximum function value f2b(λ, p; x) is achieved at (λmax2b , pmax2b), with a

maximum function value of

f2b(λ
max2b , pmax2b ; x) = τ(x).

Lemma 16 is proved.

Remark 4: The original problem PL
0 involves optimization over L eigenvalues {λ1, λ2, ..., λL}

(which are allowed to be infinity). In Lemma 14, it is shown that the optimal so-

lution can only take four different eigenvalues (λ, w, η,∞), leading to an equiva-

lent optimization problem PL
1 . Now Lemma 15 further proves that for any integer

L ≥ 2, if the maximum function value fmax2(x) of all auxiliary optimization prob-

lems P2(x) with x ∈
{
0, 1

L
, ..., L−1

L

}
is achieved on the boundary of (3.67), then

Mmax1 = L − Nmax1 −Mmax1 − Kmax1 = 0, i.e., the maximum function value fmax

in the original problem, which is an upper bound on the L-terminal supremum sum-

rate loss (normalized by L) over (ΣY ,D) ∈ RL, must be achieved when the source

covariance matrix ΣY is bi-eigen, with eigenvalues λmax1 and ∞ repeated Nmax1 and

L − Nmax1 times, respectively. Moreover, if (3.72) holds, Lemma 16 gives the exact
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form of fmax as

fmax = L · max
N∈{0,1,...,L−1}

τ

(
N

L

)

.

3. Solution via rigorous numerical methods

Due to Lemmas 15 and 16, PL
0 would be solved if (3.72) holds for all integer L ≥

2. Unfortunately, it can be easily verified numerically that (3.72) is not true for

L ∈ {2, 3, 4, 8}. To see this, we plot in Fig. 8 the numerically computed maximum

function value of f2(λ, p ; x) over all p ∈ (0, 1] for fixed x and λ subject to the constraint

g2(λ, p; x) ≥ 0, i.e.,

f ∗(x, λ)
∆
= max

p∈(0,1]:g2(λ,p;x)≥0
f2(λ, p; x).

For comparison, we also plot the maximum of f2(λ, p; x) when the constraint is forced

to be satisfied with equality, i.e.,

f b(x, λ)
∆
= max

p∈(0,1]:g2(λ,p;x)=0
f2(λ, p; x).

An obvious fact is that f ∗(x, λ) ≥ f b(x, λ) for any (x, λ) pair. Then the maximum

function value in sol(P2(
Nmax2

L
)), i.e.,

fmax2

(
Nmax2

L

)

= max
N∈{0,1,...,L}

[

max
λ∈[0,1)

f ∗
(
N

L
, λ

)]

is numerically computed as (Nmax2 ’s are numerically found)

fmax2

(
1

2

)

= 0.1015, fmax2

(
2

3

)

= 0.1043, fmax2

(
3

4

)

= 0.1066, fmax2

(
6

8

)

= 0.1066
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for L = 2, 3, 4, 8, respectively. On the other hand, the maximum value on the bound-

ary defined as

fmaxb

(
Nmaxb

L

)

= max
N∈{0,1,...,L}

[

max
λ∈[0,1)

f b

(
N

L
, λ

)]

withNmaxb =argmaxN∈{0,1,...,L}
[
maxλ∈[0,1) f b(N

L
, λ)
]
can be computed for L = 2, 3, 4, 8

respectively as

fmaxb

(
1

2

)

= 0.0805, fmaxb

(
2

3

)

= 0.1001, fmaxb

(
3

4

)

= 0.1064, fmaxb

(
6

8

)

= 0.1064.

We observe that fmaxb(N
maxb

L
) < fmax2(N

max2

L
) for L = 2, 3, 4, 8, which means

sol(P2(
1
2
)), sol(P2(

2
3
)), sol(P2(

3
4
)), and sol(P2(

6
8
)) for L = 2, 3, 4, 8 are not achieved on

the boundary g2(λ, p ; x) = 0. These numerical results are plotted in Fig. 8, with the

optimal λ’s given by

λmax2

(
Nmax2

L

)

∆
= arg max

λ∈[0,1)
f ∗
(
Nmax2

L
, λ

)

= 0.8328, 0.8453, 0.8548,

λmaxb

(
Nmax2

L

)

∆
= arg max

λ∈[0,1)
f ∗
(
Nmaxb

L
, λ

)

= 0.7500, 0.8114, 0.8475,

for L = 2, 3, 4, respectively (the results for L = 8 are not plotted in Fig. 8 since

sol(P2(
6
8
)) is exactly the same as sol(P2(

3
4
))).

Therefore, we separately treat the cases when L = 5, 6, 7 and L ≥ 9, for which

(3.72) can be proved; and the cases when L = 2, 3, 4, 8, for which PL
1 is directly solved.

Correspondingly, we have the following two lemmas.
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Fig. 8. Numerical comparisons between f ∗(x, λ) & f b(x, λ) and fmax2(N
max2

L
) &

fmaxb(N
maxb

L
) for L = 2, 3, 4. The shaded region in the (x, λ) plane corre-

sponds to all points satisfying f ∗(x, λ) = f b(x, λ). If fmax2(N
max2

L
) is achieved

in this region, so will be fmaxb(N
maxb

L
).

Lemma 17. If L 6∈ {2, 3, 4, 8}, then (3.72) holds, and the solution to PL
0 is given by

sol(PL
0 ) =







fmax = L · τ(N⋆

L
),

ξmax =






ν

(
N⋆

L

)

, . . . , ν

(
N⋆

L

)

︸ ︷︷ ︸

N⋆

, 0, ..., 0
︸ ︷︷ ︸

L−N⋆







T

wmax =
L−N⋆ν(N

⋆

L
)

L−N
,

pmax = µ(N
⋆

L
),

Wmax = N⋆.

, (3.83)
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with N⋆ defined in (3.6).

Proof. See Appendix A.

Lemma 18. If L ∈ {2, 3, 4, 8}, then the solution to PL
1 is achieved in the bi-eigen

case, i.e.,

Mmax1 = 0, Kmax1 = L−Nmax1 . (3.84)

and the solution to PL
0 is also given by (3.83).

Proof. We compute the lower bound (A.25) of fmax1(N) (which is also the maxi-

mum function value on the boundary g2(λ
max2(x), pmax2(x) ; x) = 0) for each N ∈

{0, 1, 2, ..., L− 1}, and an upper bound of fmax1(N) under the non-boundary assump-

tion that g2(λ
max2(x), pmax2(x) ; x) > 0

fmax1(N) ≤ fmax2

(
N

L

)

≤ f
g>0
(
N

L

)

(3.85)

where the first and second inequalities are true due to Lemma 15 and (A.22), respec-

tively. We observe in Table I that for pairs (N,L) = (2, 3), (3, 4), (6, 8), the lower

bound (A.25) of fmax1(N) is larger than the lower and upper bounds of fmax1(N) for

all other N values. Hence we must have Nmax1 = 2, 3, 6 for L = 3, 4, 8, respectively.

Now we solve PL
1 separately for L = 2, 3, 4, 8. First consider L = 2, for which

(3.84) must hold since there are exactly two eigenvalues and the trivial case with two

equal eigenvalues leads to independent sources, and thus zero sum-rate loss.

When L = 3, we already know that Nmax1 = 2. Then the three optimal eigenval-

ues can be either (λ, λ, η) or (λ, λ,∞) (since Nmax1 +Mmax1 ≤ L− 1), both of which

correspond to the bi-eigen case, hence (3.84) must hold for L = 3.

Similarly, when L = 4, since Nmax1 = 3, the four optimal eigenvalues can be

either (λ, λ, λ, η) or (λ, λ, λ,∞), both of which correspond to the bi-eigen case, hence
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Table I. Lower bounds of fmax1(N) on the boundary of (3.72) and upper

bounds of fmax1(N) over non-boundary points for L ∈ {2, 3, 4, 8} and

N ∈ {0, 1, ..., L− 1}.

L N lower bound (A.24) upper bound (3.85) λ∗(L,N)

2 0 0.0000000000 0.0981455396 0.9999975000

1 0.0804820237 0.1015973757 0.8329675000

3 0 0.0000000000 0.0981455396 0.9999975000

1 0.0560016357 0.0999813399 0.8250425000

2 0.1000689444 0.1043755056 0.8454025000

4 0 0.0000000000 0.0981455396 0.9999975000

1 0.0426767359 0.0993992764 0.8220575000

2 0.0804820237 0.1015973757 0.8329675000

3 0.1064002237 0.1067163310 0.8549075000

8 0 0.0000000000 0.0981455396 0.9999975000

1 0.0217593854 0.0987030783 0.8184625000

2 0.0426767359 0.0993992764 0.8220575000

3 0.0624294813 0.1003194211 0.8267475000

4 0.0804820237 0.1015973757 0.8329675000

5 0.0958492158 0.1035061119 0.8416575000

6 0.1064002237 0.1067163310 0.8549075000

7 0.1058563749 0.0377093873 0.3678625000

(3.84) must hold for L = 4.

When L = 8, since Nmax1 = 6, the optimal eigenvalues can be of the forms

(λ, λ, λ, λ, λ, λ,∞,∞), (λ, λ, λ, λ, λ, λ, η, η), (λ, λ, λ, λ, λ, λ, w,∞),

(λ, λ, λ, λ, λ, λ, η,∞), (λ, λ, λ, λ, λ, λ, w, η), (3.86)

while the other possible form (λ, λ, λ, λ, λ, λ, w, w) cannot achieve the maximum func-

tion value since Nmax1 +Mmax1 ≤ L− 1. To prove (3.84), we only need to show that

the maximum function value fmax1 must not be achieved by the eigenvalues taking

the last three forms in (3.86).
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• The first case (λ, λ, λ, λ, λ, λ,∞,∞) can be absorbed into the second case (λ, λ, λ, λ, λ, λ, η, η)

by relaxing η to take the value of infinity. Denote θ = 1
η
, thus θ ≥ 0, with θ = 0

corresponding to the first case. Then fmax1 must be the solution to the optimiza-

tion problem of maximizing f1(λ, 4−3λ, 1
θ
, p, 6, 0, 0) = 3 log2(1+λp)+log2((4−

3λ)(θ + p)) over λ, θ, p ∈ R while subjecting to h10(λ, 4 − 3λ, 1
θ
, p, 6, 0, 0) =

6λ
1+λp

+ 2
θ+p

− 8 = 0, 0 ≤ λ < 1, 0 < p ≤ 1, and θ ≥ 0. It is easy to show that

the maximum function value of fmax1 = 0.8512017896 is achieved when







λmax1 = 23+
√
17

32
= 0.8475970508,

pmax1 = 3
√
17−5
16

= 0.4605823048,

θ = 0

, (3.87)

which corresponds to the first case (λ, λ, λ, λ, λ, λ,∞,∞).

• Similarly, in the third case (λ, λ, λ, λ, λ, λ, η,∞), we relax η to take the value of

infinity, and denote θ = 1
η
. By solving the optimization problem of maximizing

f1(λ, 4−3λ, 1
θ
, p, 6, 0, 1) = 3 log2(1+λp)+

1
2
log2((4−3λ)(θ+p))+ 1

2
log2((4−3λ)p)

over λ, θ, p ∈ R while subjecting to h10(λ, 4 − 3λ, 1
θ
, p, 6, 0, 1) = 6λ

1+λp
+ 1

θ+p
+

1
p
− 8 = 0, 0 ≤ λ < 1, 0 < p ≤ 1, and θ ≥ 0, we obtain the same solution given

by (3.87). This means that the supremum function value over the third case

is strictly smaller than that in the first case where θ = 0. Hence the optimal

eigenvalues cannot be of the form (λ, λ, λ, λ, λ, λ, η,∞) .

• In the fourth and fifth cases (λ, λ, λ, λ, λ, λ, w,∞) and (λ, λ, λ, λ, λ, λ, w, η), de-

note θ = 1
η
, then the third case corresponds to θ = 0. fmax1 must be the solution

to the optimization problem of maximizing f1(λ, 4− 3λ, 1
θ
, p, 6, 1, 1 = 3 log2(1+

λp)+ 1
2
log2(1+(4−3λ)p)+ 1

2
log2((4−3λ)(θ+p)), over λ, θ, p ∈ R while subjecting

to h10(λ, 4−3λ, 1
θ
, p, 6, 1, 1) = 6λ

1+λp
+ 4−3λ

1+(4−3λ)p
+ 1

θ+p
−8 = 0, 0 ≤ λ < 1, 0 < p ≤

1, and θ ≥ 0. Note that w = 4− 3λ due to (3.46). The solution is easily found
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to be λ = 0.8845122817, p = 0.3355552814, and θ = 0, then the correspond-

ing supremum function value of f = 0.8207035176 < 0.8512017896 over both

cases is achieved in the fourth case (λ, λ, λ, λ, λ, λ, w,∞). Hence the optimal

eigenvalues cannot be of the form (λ, λ, λ, λ, λ, λ, w,∞) or (λ, λ, λ, λ, λ, λ, w, η).

Therefore, we conclude that for L = 8, the maximum function value of fmax1 =

0.8512017896 is achieved by eigenvalues (λmax1 , λmax1, λmax1 , λmax1 , λmax1 , λmax1,∞,∞)

with λmax1 = 0.8475970508, hence (3.84) must hold for L = 8.

We thus have proved that (3.84) holds for L ∈ {2, 3, 4, 8}. Now it is easy to see

that the sub-problem PL
1 (N, 0, L−N) (whose maximum function value is denoted as

fmax1(N, 0, L−N)) is indeed equivalent to P2b(
N
L
) (with its objective function scaled

by L), hence

fmax = fmax1 + max
N∈{0,1,...,L}

fmax1(N, 0, L−N) = max
N∈{0,1,...,L}

L · τ
(
N

L

)

= L · τ
(
N⋆

L

)

.

and all other equations in (3.83) follows from (3.73) - (3.78), (3.81) and (3.82).

The converse of Theorem 3 is proved since (3.18) follows directly from Lemmas

17 and 18.

D. Discussions

In this section, we first give an explanation why the l⋆ = 0.1083 bit per sample per

source supremum sum-rate loss coincides with the conjectured supremum Wyner-

Ziv rate loss [39], then discuss an example in the two-terminal case, for which the

non-degraded requirement in Theorem 3 is not needed because both the distributed

encoding and joint encoding minimum sum-rates can be written in explicit forms.

We also compute the supremum sum-rate loss in the positive symmetric case and

compare it to that in the more general non-degraded case.
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1. A coincidence with the rate loss in Wyner-Ziv coding

The asymptotic supremum sum-rate loss of l⋆ = 0.1083 bit per sample per source

echoes Zamir’s conjecture on the supremum Wyner-Ziv rate loss [39]. In fact, the

two numbers coincide because they are obtained through two equivalent optimization

problems, as will be shown in this subsection.

In the Wyner-Ziv case, the 0.1083 b/s rate loss is achieved in the mixture Gaus-

sian case with two mixture components [39]. In order to compare with our results,

we consider a more general setting. Let L ≥ 2, and {σ2
i : i ∈ L} be an ordered set

of positive numbers such that σ2
i ≤ σ2

j for any 1 ≤ i < j ≤ L. Consider a mix-

ture Gaussian source defined by X = XI , with Xi ∼ N (0, σ2
i ), and I as a discrete

random variable taking value from the index set L and is independent of Xi’s. Let

Pr(I = i) = qi for i ∈ L. The source X is available at the encoder, while the random

variable I serves as the decoder side information. Denote DWZ as the target Wyner-

Ziv distortion. Then using the same arguments as in [39], it can be shown that the

Wyner-Ziv rate-distortion function in this case is given by

RWZ(DWZ) =
∑

i∈L

qi
2
log2

(

1 +
σ2
i

σ2
n

)

,

where σ2
n is the solution to

∑

i∈L
qi ·
(

1

σ2
i

+
1

σ2
n

)−1

= DWZ,

and the conditional rate-distortion function is given by the reverse water-filling for-

mula

RX|I(DWZ) =
∑

i∈L : σ2
i >wWZ

qi
2
log2

w

σ2
i

,
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with wWZ being the solution to

∑

i∈L
qi ·min

(
σ2
i , wWZ

)
= DWZ.

Then we observe that L · RWZ(DWZ) and L · RX|I(DWZ) are exactly the same as

R
BT

ΣY
(D) and RJoint

ΣY
(D) defined in (3.24) and (3.25), respectively, after setting DWZ =

1, qi =
1
L
for i ∈ L, and interchanging the following pairs,

σ2
i ↔ λi, p↔ 1

σ2
n

, w ↔ wWZ.

Hence the optimization problem of maximizing the Wyner-Ziv rate loss RWZ(DWZ)−

RX|I(DWZ) under the constraint that qi =
1
L
for i ∈ L is indeed equivalent to the

core optimization problem PL
0 . Then as L → ∞, the constraint qi = 1

L
vanishes

because σ2
i ’s can take repeating values, and rational numbers are dense on the real line.

Therefore, the supremum Wyner-Ziv rate loss in the above-defined mixture Gaussian

case equals to the limit of (per-source) supremum sum-rate loss in the quadratic

Gaussian case (under the non-degraded assumption) as L goes to infinity. Moreover,

both supremums are achieved in the bimodal/bi-eigen case that are illustrated in Fig.

9.

2. The special two-terminal case

Our main result in Theorem 3 is derived only for the non-degraded case. However,

if we consider the simplest case L = 2, the statement will still hold without making

the non-degraded assumption. In this subsection, we will compute the exact MT

sum-rate and joint-encoding sum-rate for the two-terminal case and show that the

sum-rate loss between them is equal to the supremum value in the non-degraded case.

Without loss of generality, we will assume that ΣY =






1 ρ

ρ 1




 for some 0 < ρ < 1
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Λ → ∞

Fig. 9. A comparison between the supremum rate loss in quadratic Gaussian Wyn-

er-Ziv coding and the supremum sum-rate loss in quadratic Gaussian MT cod-

ing.

throughout this subsection (note that the cases when ρ = 0 and ρ = 1 are trivial and

result in zero sum-rate loss).

We first find the degraded case for L = 2. In fact, it is easy to find the two

solutions of Λ to diag(ΣY −ΣY (ΣY +Λ)−1ΣY ) = (D1, D2)
T as required by (3.2),

diag

(

(1− ρ2)(2D1 + ρ2 − 1±
√

1 + ρ4 − 2ρ2 + 4D1D2ρ2)

2((1−D1)− ρ2(1−D2))
,

(1− ρ2)(2D2 + ρ2 − 1±
√

1 + ρ4 − 2ρ2 + 4D1D2ρ2)

2((1−D2)− ρ2(1−D1))

)

.

Hence a pair (ΣY ,D) is non-degraded (which is equivalent to Λ � 0) if and only if

max {D1, D2} ≤ 1− ρ2(1−min {D1, D2}) ⇔ ρ ≤
√

1−max {D1, D2}
1−min {D1, D2}

. (3.88)
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The MT minimum sum-rate is given in [12] as

RMT
ΣY

((D1, D2)
T) =







1
2
log2

1
min{D1,D2} ρ ≥

√
1−max{D1,D2}
1−min{D1,D2}

1
2
log2

(1−ρ2)βmax

2D1D2
ρ <

√
1−max{D1,D2}
1−min{D1,D2}

, (3.89)

where βmax = 1+
√

1 + 4ρ2D1D2

(1−ρ2)2
, while the joint encoding minimum sum-rate is given

in the following lemma.

Lemma 19. The joint encoding minimum sum-rate for ΣY =






1 ρ

ρ 1




 and D =

(D1, D2)
T is given by

RJoint
ΣY

(
(D1, D2)

T
)
=







1
2
log2

1
min{D1,D2} , ρ ≥ ρ†

1
2
log2

(1−ρ2)
(1−θ2max)D1D2

ρ‡ ≤ ρ < ρ†

1
2
log2

(1−ρ2)
D1D2

, ρ < ρ‡

, (3.90)

where ρ† =
√

1−max{D1,D2}
1−min{D1,D2} , ρ

‡ =
√

(1−D1)(1−D2), and θmax =
ρ−
√

(1−D1)(1−D2)√
D1D2

.

Proof. Computing the joint encoding minimum sum-rate is equivalent to solving the

following convex semidefinite programming problem,

Min. − log det(D)

s.t. 0 � D � ΣY

E1DE1 � D1E1

E2DE2 � D2E2,

where Ei is the 2× 2 matrix whose (i, i)-th element is one with all others being zero.

It is easy to verify that the Slater’s condition [43] holds, hence KKT condition is

necessary and sufficient for global optimality. Note that the optimal D cannot be

singular, hence the constraint 0 � D must not be active.
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The lagrangian is − log det(D)+tr(Ω(D−ΣY ))+
∑2

i=1 tr(Πi(EiDEi−DiEi))

where Ω and Πi’s are p.s.d. Lagrangian multipliers, and the KKT condition is

−D
−1 +Ω+E1Π1E1 +E2Π2E2 = 0,

Ω(D −ΣY ) = 0,

Πi(EiDEi −DiEi) = 0, i = 1, 2,

D −ΣY � 0,

E1DE1 −D1E1 � 0,

E2DE2 −D2E2 � 0.

First, if the case is degraded, we assume that D2 > 1− ρ2(1−D1) without loss

of generality. It is easy to show that

D
† =






D1 ρD1

ρD1 1− ρ2(1−D1)




 , Ω

† =
1

1− ρ2
·






ρ2 −ρ

−ρ 1




 , Π

†
1 =






1
D1

0

0 0




 , Π

†
2 = 0

satisfy the KKT condition. Hence the minimum joint encoding sum-rate is 1
2
log2

det(ΣY )

det(D†)
=

1
2
log2

1
D1

.

Then consider the case when ρ‡ ≤ ρ < ρ†. One can verify that

D
† =






D1 ρ− ρ‡

ρ− ρ‡ D2




 , Ω

† =
1

det(D†)
·






(1−D2)(
ρ
ρ‡

− 1) ρ‡ − ρ

ρ‡ − ρ (1−D1)(
ρ
ρ‡

− 1)




 ,

Π†
1 =

1

det(D†)
·






1− ρ
√

1−D2

1−D1
0

0 0




 , Π

†
2 =

1

det(D†)
·






0 0

0 1− ρ
√

1−D1

1−D2




 ,

satisfy the KKT condition, resulting in a minimum joint encoding sum-rate of

1

2
log2

det(ΣY )

det(D†)
=

1

2
log2

(1− ρ2)

(1− θ2max)D1D2
.
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Finally, when ρ <
√

(1−D1)(1−D2), the KKT condition holds for

D
† =






D1 0

0 D2




 , Ω

† = 0, Π†
1 =






1
D1

0

0 0




 , Π

†
2 =






0 0

0 1
D2




 ,

and (3.90) readily follows.

Comparing (3.89) with (3.90), we observe that in the degraded case defined by

(3.88), the two minimum sum-rates are the same, which means the sum-rate loss is

always zero. This fact and Theorem 3 lead to

sup
(ΣY ,D)

R∆
ΣY

(D) = max

{

sup
(ΣY ,D)∈S BT

L

R∆
ΣY

(D), sup
(ΣY ,D) 6∈S BT

L

R∆
ΣY

(D)

}

=max

{

2 ·max

[

τ(
⌊2x⋆⌋
2

), τ(
⌈2x⋆⌉
2

)

]

, 0

}

=
1

2
log2

5

4
≈ 0.161 b/s.

Remark 5: The 0.161 b/s supremum sum-rate loss for L = 2 is much smaller than

the one b/s upper bound provided by Zamir in [39], although the latter is a universal

upper bound (for MSE distortion measure) that does not required the sources to be

jointly Gaussian.

3. Comparison with the supremum sum-rate loss in the symmetric case

In the examples given in Section 1, we already know that the supremum sum-rate loss

under the non-degraded assumption equals to that in the positive symmetric case if

and only if L ≤ 7, it is thus interesting to also compute the supremum in the later

case for L > 7.

For the positive symmetric case [12], there is no loss of generality to assume that

ΣY = SL(1, ρ) and D = D1 with D < 1. Then the optimal joint encoding scheme is
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through reverse water-filling [15], with the minimum rate given by

RJoint
ΣY

(D1) =







1
2
log2

δL(ρ)

DLδL(1− 1−ρ
D

)
if D > 1− ρ

1
2
log2

δL(ρ)
DL if D ≤ 1− ρ

,

where δL(x)
∆
= (1− x)L−1(1 + (L− 1)x) for any − 1

L−1
≤ x ≤ 1.

On the other hand, for any L ≥ 2, ρ ∈ (0, 1) and D ∈ (0, 1), the minimum

sum-rate of quadratic Gaussian MT source coding is given in exact form as

RMT
ΣY

(D1) = R⋆
ΣY

(D1) =
1

2
log2

δL(ρ)

DLδL(θMT)
,

where

θMT = tMT +
√

(tMT)2 + 1/(L− 1), (3.91)

with tMT = L−2
2(L−1)

− (1−ρ)(1+(L−1)ρ)
2(L−1)Dρ

. The proof can be found in [12, 13, 44].

Now we can compute the exact sum-rate loss in this positive symmetric case.

R∆
ΣY

(D1) = RMT
ΣY

(D1)−RJoint
ΣY

(D1) =







1
2
log2

δL(θ
Joint)

δL(θMT)
D > 1− ρ

1
2
log2

1
δL(θMT)

D ≤ 1− ρ
,

where θJoint = 1− 1−ρ
D

and θMT is given in (3.91).

An example of the sum-rate loss R∆
ΣY

(D1) is plotted in Fig. 10 as a function

of ρ and D for L = 2. When ρ = 0, all sources are independent, hence RMT
ΣY

(D1) =

RJoint
ΣY

(D1) = L
2
log2

1
D

and R∆
ΣY

(D1) = 0; when ρ = 1, all sources are statistically

identical, thus coding one of them suffices, hence RMT
ΣY

(D1) = RJoint
ΣY

(D1) = 1
2
log2

1
D

and R∆
ΣY

(D1) = 0; when D = 0, we have a Slepian-Wolf coding problem of L sources,

hence R∆
ΣY

(D1) = 0 due to the no rate loss conclusion of the Slepian-Wolf theorem

[2] and its extensions[15, 45]; finally, when D = 1, RMT
ΣY

(D1) = RJoint
ΣY

(D1) = 0 and

the rate loss is also zero.
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Fig. 10. The sum-rate loss R∆
ΣY

(D1) for quadratic Gaussian MT source coding in the

positive symmetric case for L = 2.

For any fixed ρ ∈ (0, 1), there is a maximum sum-rate loss over all D’s, and this

maximum sum-rate loss (as a function of ρ) monotonically increases to a supremum

value as ρ→ 1. Moreover, it is seen from Fig. 10 that the distortion that maximizes

the sum-rate loss goes to zero as ρ → 1. This implies that the supremum sum-rate

loss is approached from below as both minimum sum-rates RJoint
ΣY

(D1) and RMT
ΣY

(D1)

go to infinity, while the difference between them remains finite. And the sum-rate

loss R∆
ΣY

(D1) has a singularity point at (ρ,D) = (1, 0).

The exact form of the supremum sum-rate loss in the positive symmetric case is

given in the following lemma.

Lemma 20. For a given L ≥ 2, the supremum sum-rate loss over all possible ρ’s and
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Fig. 11. The supremum sum-rate loss of quadratic Gaussian MT source coding in

the positive symmetric case. The supremums are the same in the positive

symmetric case and the non-degraded case when L ≤ 7.

D’s is

sup
ρ∈(0,1),D∈(0,1)

R∆
ΣY

(D1) =
L− 1

2
log2

1− 2L+1−
√
1+4L

2L2

1− −1+
√
1+4L

2L

+
1

2
log2

1 + (L− 1)2L+1−
√
1+4L

2L2

1 + (L− 1)−1+
√
1+4L

2L

(3.92)

L→∞
 

√
L− 1

2
log2 e +

1

2
− 1

4
log2 L = 0.7213

√
L+ o(

√
L),

(3.93)

where A
L→∞
 B means limL→∞(A−B) = 0.

Proof. First, for fixed L and ρ, θMT is a monotone increasing function of D ∈ (0, 1)

because

∂θMT

∂D
=
∂θMT

∂tMT
· ∂t

MT

∂D
=



1 +
tMT

√

(tMT)2 + 1
L−1



 ·
(
(1− ρ)(1 + (L− 1)ρ)

2(L− 1)D2ρ

)

> 0.

Then δL(θ
MT) is a monotone decreasing function of D ∈ (0, 1). Consequently, when

D ≤ 1 − ρ, R∆
ΣY

(D1) = −1
2
log2 δL(θ

MT) is a monotone increasing function of D ∈

(0, 1).
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Hence we have

sup
ρ∈(0,1),D∈(0,1)

R∆
ΣY

(D1) =max

{

sup
ρ∈(0,1),D∈(1−ρ,1)

R∆
ΣY

(D1), sup
ρ∈(0,1),D∈(0,1−ρ]

R∆
ΣY

(D1)

}

=max

{

sup
ρ∈(0,1),D∈(1−ρ,1)

R∆
ΣY

(D1), sup
ρ∈(0,1)

R∆
ΣY

((1− ρ)1)

}

= sup
ρ∈(0,1),D∈[1−ρ,1)

R∆
ΣY

(D1)

= sup
ρ∈(0,1),D∈[1−ρ,1)

1

2
log2

δL(θ
Joint)

δL(θMT)
.

Now denote FL(ρ,D) = δL(θ
Joint)

δL(θMT)
, we have

∂FL(ρ,D)

∂D
=
∂
[
δL(θ

Joint)
δL(θMT)

]

∂D
=

−L(L − 1)(1− θJoint)L−2(1− θMT)L−2

δ2L(θ
MT)

(3.94)

·
[

θJoint(1− θMT)(1 + (L− 1)θMT)
∂θJoint

∂D

−θMT(1− θJoint)(1 + (L− 1)θJoint)
∂θMT

∂D

]

.

Setting ∂FL(ρ,D)
∂D

to zero, we have a unique solution in [1− ρ, 1), namely,

D⋆
ρ =







(1+ρ)2(1−ρ)
1+2ρ

L = 2

1−ρ
2ρ(L−2)(2+(L−2)ρ)

· [−
√

1 + 4ρ+ 4ρ2(L− 1)

+(2(L− 1)(L− 2)ρ2 + 2(2L− 3)ρ+ 1)]
L > 2.

Then we compute

θMT |D=D⋆
ρ
=

−1 +
√

1 + 4ρ+ 4ρ2(L− 1)

2(1 + (L− 1)ρ)
∆
= θMT

max(ρ),

θJoint |D=D⋆
ρ

2ρ(1 + (L− 1)ρ) + 1−
√

1 + 4ρ+ 4ρ2(L− 1)

ρ(L− 1)(2 + (L− 1)ρ) + 1
∆
= θJointmax (ρ).
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Hence

∂FL(ρ,D
⋆
ρ)

∂ρ
=







−2
δ22(θ

MT
max(ρ))

[

−ρ(1+2ρ)2

(1+ρ)7

]

, L = 2

[A + B
√

1 + 4ρ+ 4ρ2(L− 1)]·
−L(L−1)(1−θJointmax (ρ))L−2(1−θMT

max(ρ))
L−2

δ2
L
(θMT

max(ρ))
,

L > 2,

where A and B are rational functions of L and ρ. We observe that for L = 2,

∂FL(ρ,D
⋆
ρ)

∂ρ
> 0 for any ρ ∈ (0, 1). Moreover, it is not hard to verify that A and B

satisfy B < 0 and the following condition,

A
2 − B

2 × (1 + 4ρ+ 4ρ2(L− 1)) = −ρ(L− 2)2(2 + (L− 2)ρ)2

(1 + (L− 1)ρ)7
< 0,

which implies that
∂FL(ρ,D

⋆
ρ)

∂ρ
> 0 for any L ∈ N ∩ (2,∞) and ρ ∈ (0, 1), hence

sup
ρ∈(0,1),D∈(0,1)

R∆
ΣY

(D1) = sup
ρ∈(0,1),D∈[1−ρ,1)

1

2
log2

δL(θ
Joint)

δL(θMT)
(3.95)

= lim
ρ→1

1

2
log2 FL(ρ,D

⋆
ρ) (3.96)

= lim
ρ→1

1

2
log2

δL(θ
Joint
max (ρ))

δL(θMT
max(ρ))

(3.97)

=
1

2
log2

δL(limρ→1 θ
Joint
max (ρ))

δL(limρ→1 θMT
max(ρ))

(3.98)

=
1

2
log2

δL(
2L+1−

√
1+4L

2L2 )

δL(
−1+

√
1+4L

2L
)

=
L− 1

2
log2

1− 2L+1−
√
1+4L

2L2

1− −1+
√
1+4L

2L

+
1

2
log2

1 + (L− 1)2L+1−
√
1+4L

2L2

1 + (L− 1)−1+
√
1+4L

2L

L→∞
 

1

2
log2(1−

1

L
)L−1 − L− 1

2
√
L

log2(1−
1√
L
)
√
L − 1

2
log2

1√
4L

L→∞
 

log2 e

2
(
√
L− 1) +

1

2
− 1

4
log2 L = 0.7213

√
L+ o(

√
L).

From (3.93), we see that as L increases, the supremum sum-rate loss in the posi-

tive symmetric case increases in the order of
√
L, since limL→∞

1/2−1/4 log2 L√
L

= 0. Fig.
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11 plots the supremum sum-rate loss supρ∈(0,1),D∈(0,1)R
∆
ΣY

(D1) and its asymptotic

function in (3.93), as well as the supremum sum-rate loss in the non-degraded case

for comparison.
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CHAPTER IV

PRACTICAL CODE DESIGN FOR MT SOURCE CODING

In this chapter, the practical coding scheme for more than two terminals is proposed in

Section A. Section B presents our approximation analysis on the correlation channel

for LDPC code design. Section C provides simulation results to show the small sum-

rate loss of our practical design.

A. Proposed scheme for multiterminal source coding

In this section, we present our proposed code design for both quadratic Gaussian

direct and indirect MT coding with more than two terminals based on SWCQ, where

TCQ (TCVQ in low rate regime) is used for source quantization, and LDPC-based

SW compression is employed to exploit the source correlation after quantization.

Moreover, the correlation model between quantized sources is analyzed for SWCQ

code design. Our aim is to approach all corner points of the sum-rate bound – other

points on the sum-rate bound can be achieved by time sharing.

1. TCQ (TCVQ) quantizer design

The two components of SWCQ are quantization and SW coding. According to [35],

both have to be optimal in order to approach the sum-rate bound: the quantizer

needs to achieve the maximum 1.53 dB granular gain for Gaussian sources and SW

coders must compress the quantized sources to their joint entropy.

TCQ [18] provides an efficient means of quantization. Given a rate R b/s and a

memory size M , TCQ constructs an expanded signal set (ESS) D of size 2R+1, i.e.,

D =

{(

−2R +
1

2

)

∆,

(

−2R +
3

2

)

∆, . . . ,

(

2R − 1

2

)

∆

}

,
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where ∆ is the quantization step, and a rate-1/2 trellis of memory M , whose poly-

nomials can be chosen according to [20]. Then for a source sequence, TCQ employs

the Viterbi algorithm to find the sequence of codewords that is closest to the source

sequence in the MSE sense.

To keep the quantization noises independent of difference sources, a dithering

sequence can be generated (and then added to each source) by a simple i.i.d. uniformly

distributed source, which reduces the complexity of TCQ when compared to dithered

lattice quantization (this requires the dither sequence to be uniformly distributed over

the basic Voronoi region) [20].

For practical TCQ design, we use the polynomial searching algorithm in [20] to

find a good trellis for 8192-state (memory-13) TCQ with a granular gain of gTCQ =

1.428 dB. The loss compared to the maximum possible granular gain gmax = 1.53 dB

is about 0.1 dB.

Since the trellis bit in TCQ has memory (whereas the codeword bits are sample-

wise independent given the trellis bit), if we directly transmit the trellis bit using 1

b/s, the rate will be too high when the total rate budget for some terminal is less

than 1 b/s. This scenario often arises in the low-rate regime. Hence we resort to

k-D TCVQ [19] so that the rate for transmitting the trellis bit is 1/k b/s. TCVQ

in conjunction with SW encoding forms an SWC-TCVQ [20] scheme for WZ coding,

in which the trellis bit is transmitted without compression. It is difficult to analyze

the asymptotical performance of SWC-TCVQ in the low-rate regime due to the com-

plexity when computing the conditional distribution of the source given TCQ/TCVQ

quantized side information.

In practical design, we use 2-D 8192-state TCVQ with a maximal granular gain

of gTCVQ = 1.345 dB, which is smaller than gTCQ with the same memory size due to

the relatively smaller increase of minimum Euclidean distance of subdivision of cosets
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[46].

2. SW code design based on LDPC codes

SW coding is implemented via syndrome-based binning. Each bit plane of a quantized

source is partitioned into bins indexed by syndromes of a channel code. The encoder

computes the syndrome s = xHT and sends it to the decoder at rate RSW = (n −

k)/n b/s, where x is a length-n binary input sequence and H is the (n − k) ×

n parity-check matrix of the LDPC code. Based on the side information y and

received syndrome s, the decoder finds the recovered sequence x̂ in the coset Xs =
{
x ∈ {0, 1}n : xHT = s

}
, i.e.,

x̂ = argmax
x∈Cs

p(x|y). (4.1)

In practical SW code design, we choose LDPC codes because of their capacity-

approaching performance and flexibility in code design using density evolution. First,

for each SW encoder, a certain number of training blocks (e.g., ten length-106 blocks)

of source samples and side information samples are generated to estimate the actual

correlation model between each WZ coded bit plane of the quantized sources and the

side information. The LDPC code degree profiles are first designed with differential

evolution [47] using the estimated correlation model, parity check matrices are then

randomly generated according to the corresponding node-perspective degree profiles.

Finally a full-search algorithm is employed to find length-four cycles in the corre-

sponding Tanner graph for removal. This becomes harder as the rate of the LDPC

code decreases. However, at large block lengths (e.g., 106 bits), these short cycles will

not affect the decoding performance (in terms of bit error rate) very much.
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3. Proposed scheme for direct MT coding

With the SWCQ components given above, we can set up the MT coding scheme. For

the direct MT coding setup that the BT sum-rate bound is tight, since the sum-rate

bound, denoted as ∂RY (ΣY ,D), is an (L− 1)-dimensional contra-polymatroid [48],

a corner point R =
(
R(1), R(2), . . . , R(L)

)T
corresponds to a coding scheme with

R(1) = H
(
Y n
(1),Q

)
and R(i) = H

(
Y n
(i),Q|Y n

(1),Q, . . . , Y
n
(i−1),Q

)
, (4.2)

for i = 2, 3, . . . , L, where
{
R(1), . . . , R(L)

}
and

{

Y n
(1),Q, . . . , Y

n
(L),Q

}

are the same ar-

bitrary permutation of {R1, . . . , RL} and quantized indices
{
Y n
1,Q, . . . , Y

n
L,Q

}
, respec-

tively. The sum rate can be written as

L∑

i=1

R(i) =
1

n
H
(
Y n
(1), . . . , Y

n
(L)

)
(4.3)

according to the chain rule.

Since Y n
1 , Y

n
2 , . . . , Y

n
L are symmetric, (4.2) can be rewritten as

R(i) = Hi, i = 1, 2, . . . , L, (4.4)

where {H1, H2, . . . , HL} are L possible rates for corner points. Therefore, the number

of corner points for the L-terminal symmetric case is L!. Without loss of generality,

we pick the corner point R1 = (R1, R2, . . . , RL)
T as an example, which corresponds to

the coding scheme shown in Fig. 12. In this scheme, Y n
1 is first quantized and entropy

encoded by EENT assuming that it cannot receive any side information at the decoder

end from the other L− 1 sources. Then, the second source Y n
2 is similarly quantized

but encoded with an SW encoder ESW
1 and decoded using the decoded version Ỹ n

1 of

Y n
1 as side information. Similarly, the other L − 2 sources Y n

3 , Y
n
4 , . . . , Y

n
L are also

quantized and encoded with SW encoders ESW
1 , ESW

2 , . . . , ESW
L−1, respectively, assuming
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each source Y n
i can use the decoded version Ỹ n

1 , Ỹ
n
2 , . . . , Ỹ

n
i−1 of Y n

1 , Y
n
2 , . . . , Y

n
i−1 as

side information at the decoder end, the corresponding side information can be written

as

Zi−1 = Zn
i−1 =







Ỹ n
i−1, i = 2;

Ci−2

[

Ỹ n
1 , Ỹ

n
2 , . . . , Ỹ

n
i−1

]

, i = 3, . . . , L,
(4.5)

where Ci−2 is a linear function, which means Zi−1 is a linear combination of the

previous dequantized sources. If we assume ideal quantization of the input jointly

Gaussian sources in the sense that the quantization errors are also Gaussian and

independent of the sources, then Zi−1 provides a sufficient statistic for decoding Y n
i .

Finally, the recovered sources Ŷ n
1 , Ŷ

n
2 , . . . , Ŷ

n
L are generated by a linear estimator Ce

based on the decoded signals Ỹ n
1 , Ỹ

n
2 , . . . , Ỹ

n
3 .

Y n
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Fig. 12. Block diagram of the proposed SWCQ scheme for direct MT source coding.

Using the above method, we can achieve all L! corner points in ∂RY (ΣY ,D).

By changing the encoding order of the sources, we can approach all corner points of

sum-rate bound as shown in Fig. 3 for the three-terminal positive symmetric case.
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Moreover, since ∂RY (ΣY ,D) is a convex set in a (L − 1)-dimensional hyperplane,

all the other points in ∂RY (ΣY ,D) can be approached by time sharing.

Another method to achieve an arbitrary point R in ∂RY (ΣY ,D) is source split-

ting, the two-terminal case of which has been exploited in [17, 49, 50]. In the three-

terminal case, we can fix Y n
1 while splitting Y n

2 and Y n
3 into Y n

21, Y
n
22, Y

n
31, and Y

n
32, re-

spectively. The encoding and decoding order are set as Y n
21 → Y n

31 → Y n
1 → Y n

32 → Y n
22.

It is easy to show that every point on the sum-rate bound can be approached by

source splitting. However, source splitting becomes more involved when the number

of terminals increases. Thus we do not pursue source splitting in this work.

4. Coding scheme for indirect MT coding

We describe the scheme for the generalized CEO problem, which subsumes the original

Gaussian CEO problem. Similar to the original CEO coding scheme in [17], we

employ the same encoder and decoder as described in Section 3, except that the

linear estimator uses dequantized observations Ỹ n
1 , Ỹ

n
2 , . . . , Ỹ

n
L to reconstruct the

K remote sources directly, instead of reconstructing the L observations. The coding

scheme for this case is shown in Fig. 13.

5. High rate analysis of the proposed scheme

In our proposed scheme, since quantization is followed by binning-based SW cod-

ing, the total loss can be divided into quantization loss due to source coding and

binning loss due to channel coding. Similar to the high-rate performance analysis

for the two-encoder case in [17], if we assume ideal binning by capacity-achieving

(e.g., LDPC) channel coding and restrict ourselves to the high-rate scenario, i.e.,

max {D∗
1, D

∗
2, . . . , D

∗
L} → 0, where D∗

i is the target distortion for the i-th source,

i = 1, . . . , L, the asymptotical performance of our TCQ-based SWCQ schemes for
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MT source coding can be characterized by the following theorem.

Theorem 4. If the BT sum-rate bound is tight for a quadratic Gaussian MT source

coding problem, let (R∗
1, R

∗
2, . . . , R

∗
L) be a corner point on the BT sum-rate bound, then

under ideal SW coding, the achievable sum-rate of our TCQ-based SWCQ scheme

satisfies

R =
L∑

i=1

Ri =
L∑

i=1

(

R∗
i +

1

2
log (2πeGQi

)

)

+ o(1), (4.6)

where GQ1 , GQ2, . . . , GQL
are the equivalent normalized second moments of the Voronoi

regions for the L trellis coded quantizersQ1,Q2, . . . ,QL. And o(1) → 0 asmax {D∗
1, D

∗
2, . . . , D

∗
L} →

0 and block length n→ ∞.

Proof. Without loss of generality, assuming that the source vector Y is encoded in

the order Y1, Y2, . . . , YL, then Y1 is first encoded with dithered TCQ quantizer Q1

which uses an ESS of size 2R+1, with R̃ = 1 and step size ∆1. Thus, the ESS

D =

{

−2R +
1

2
∆1,−2R +

3

2
∆1, . . . , 2

R − 1

2
∆1

}

(4.7)

is partitioned into 2R̃+1 = 4 cosets D0, D1, D2 and D3, each with 2R−1 points. Then

by Proposition 1 in [17], we have

P
{

Ŷ1,i ∈ Dc

∣
∣
∣Y1,i = y1,i

}

= P
{

Ŷ1,i ∈ D(c+j)mod 4

∣
∣
∣Y1,i = y1,i + j∆1

}

, (4.8)

for i = 0, 1, . . . , n − 1, c, j = 0, 1, 2, 3, and
(
−2R + 1.5

)
∆1 ≤ y1,i, y1,i + j∆1 ≤

(
2R − 0.5

)
∆1. Denote the trellis bit vector of Q1 as m1 = (m1,0, m1,1, . . . , m1,n−1)

T,

and the codeword vector w1 = (w1,0, w1,1, . . . , w1,n−1)
T. If we directly transmit the

trellis bit vector m1 using 1 b/s (since R̃ = 1) without SW coding, the practical rate
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will be

R1 = 1 +
1

n

n−1∑

i=0

∫ ∆1
2

−∆1
2

1

∆1
H (W1,i |C1,i, V1,i ) dv1,i, (4.9)

where V 1 = (V1,0, V1,1, . . . , V1,n−1)
T is a length-n vector of i.i.d. random dithers and

C1 = (C1,0, C1,1, . . . , C1,n−1)
T is the coset index vector.

Since the conditional distribution of Y1,i given C1,i and V1,i completely determines

the conditional entropyH (W1,i |C1,i, V1,i = v1,i ) in (4.9), we have for i = 0, 1, . . . , n−1,

p (Y1,i = y1,i |C1,i = c1,i, V1,i = v1,i ) =
p (Y1,i = y1,i + v1,i) · P (C1,i = c1,i |Y1,i = y1,i )

P (C1,i = c1,i)
.

(4.10)

Next we consider the WZ coding components that quantizes Y n
2 , . . . , Y

n
L and

compresses the output Y n
k,Q = Qk (Y

n
k ) (k = 2, 3, . . . , L) to Rk b/s. Let the ESS step

size of the employed TCQ be ∆k, and the dequantized version

(

Ỹ 1, Ỹ 2, . . . , Ỹ L

)

=
(

Ỹ n
1 , Ỹ

n
2 , . . . , Ỹ

n
L

)

= (Y 1 +Q1,Y 2 +Q2, . . . ,Y L +QL) ,

(4.11)

where

Qk = Qn
k = (Y k + V k)−Q−1

k [Qk (Y k + V k)] , (4.12)

for k = 1, 2, . . . , L are zero-mean independent Gaussian random variables that are

also independent of Y1, Y2, . . . , YL. According to (4.5), similar to (4.9) and (4.10), for
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k = 2, 3, . . . , L, we have

Rk = 1 +
1

n
H (W k |M k,V k,Zk−1 )

≤ 1 +
1

n

n−1∑

i=0

H (Wk,i |Mk,i, Vk,i, Zk−1,i )

= 1 +
1

n

n−1∑

i=0

∫ ∆k
2

−∆k
2

1

∆k
H (Wk,i |Mk,i, Vk,i, Zk−1,i ) dvk,i, (4.13)

and

p (Yk,i = yk,i |Ck,i = ck,i, Vk,i = vk,i, Zk−1,i = zk−1,i )

= p (Yk,i = yk,i + vk,i |Ck,i = ck,i, V1,i = 0, Zk−1,i = zk−1,i )

=
p (Yk,i = yk,i + vk,i |Zk−1,i = zk−1,i )

P (Ck,i = ck,i |Zk−1,i = zk−1,i )
· P (Ck,i = ck,i |Yk,i = yk,i ) (4.14)

where V n
k = {Vk,1, Vk,2, . . . , Vk,n−1} is a length-n vector of i.i.d. random dithers, and

the last equation in (4.14) comes from Markov chain Zk−1,i → Yk,i → Ck,i.

In the case of high-rate transmission, we can assume that

∆k → 0, k = 1, 2, . . . , L. (4.15)

Thus, we have

p (W1,i = j |C1,i = c1,i, V1,i = v1,i ) = p (Y1,i + v1,i ∈ Wj |C1,i = c1,i, V1,i = v1,i )

≈ p (Y1,i + v1,i ∈ Wj) , (4.16)

where

Wj =
[(

4j + c1,i − 2R
Q
1

)

∆1,
(

4j + c1,i − 2R
Q
1 + 1

)

∆1

]

. (4.17)
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Then we have

lim
∆1→0

H (W1,i |C1,i = c1,i, V1,i = v1,i )

= − lim
∆1→0

2R−1∑

j=0

(p (W1,i |C1,i = c1,i, V1,i = v1,i ) · log p (W1,i |C1,i = c1,i, V1,i = v1,i ))

= lim
∆1→0

(h (Y1,i + v1,i)− log (4∆1)) = h (Y1,i)− log (4∆1) . (4.18)

Similarly, for k = 2, 3, . . . , L− 1,

p (Wk,i = j |Ck,i = ck,i, Vk,i = vk,i, Zk−1,i = zk−1,i )

= p (Yk,i + vk,i ∈ Wj |Ck,i = ck,i, Vk,i = vk,i, Zk−1,i = zk−1,i )

=

∫

Wj

p (Yk,i + vk,i = τ |Zk−1,i = zk−1,i ) · P (Ck,i = ck,i |Yk,i = τ )

P (Ck,i = ck,i |Zk−1,i = zk−1,i )
dτ

≈ p (Yk,i + vk,i ∈ Wj |Zk−1,i = zk−1,i ) , (4.19)

where τ ∗ is some value of τ in Wj , and then

lim
∆k→0

H (Wk,i |Ck,i, Zk−1,i, Vk,i = vk,i )

= − lim
∆k→0

∫

R

[ 2R−1∑

j=0

p (Yk,i + vk,i ∈ Wj |Zk−1,i = zk−1,i )

· log p (Yk,i + vk,i ∈ Wj |Zk−1,i = zk−1,i )
]

dzk−1,i

= lim
∆k→0

h (Yk,i + vk,i |Zk−1,i )− log (4∆k)

= h (Yk,i |Zk−1,i )− log (4∆k) . (4.20)

If we assume ideal SW coding, the distortion can be written as

dk =
1

n
E
[
‖Qn

k‖22
]
=

1

n
E

[∥
∥
∥Ỹ n

k − Y n
k

∥
∥
∥

2

2

]

= V
2
n

k GQk
= (2∆k)

2GQk
, k = 1, 2, . . . , L,

(4.21)
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where Vk is the volume of the Voronoi region of the current quantizer Qk. Therefore,

we can proceed by

R1 = lim
∆1→0

(

1 +
1

n

n−1∑

i=0

∫ ∆1
2

−∆1
2

1

∆1
H (W1,i |C1,i, V1,i = v1,i ) dv1,i

)

= lim
∆1→0

1 +
1

n

(
n−1∑

i=0

h (Y1,i)− log (4∆1)

)

= 1 +
1

2
log
(
2πeσ2

Y

)
− log

(

2

√

d1
GQ1

)

= R∗
1 +

1

2
log (2πeGQ1) , (4.22)

where σ2
Y 1

is the variance of Y 1, and for k = 2, 3, . . . , L,

Rk = lim
∆k→0

(

1 +
1

n

n−1∑

i=0

∫ ∆k
2

−∆k
2

1

∆k
H (Wk,i |Ck,i, Zk−1,i, Vk,i = vk,i ) dvk,i

)

=
1

2
log

(
σ2
Y k|Zk−1

dk

)

+
1

2
log (2πeGQk

)

= R∗
k +

1

2
log (2πeGQk

) , (4.23)

where σ2
Y k|Zk−1

is the variance of Y k given Zk−1.

Finally, the theorem is proved by adding together (4.22) and (4.23).

B. Correlation channel modeling

Due to the use of TCQ/TCVQ, the bit-plane-wise correlation channel between the

quantized source Yi,Q and the decoder side information ZSW
i−1 is not Gaussian. In ad-

dition, the correlation channel between any pair of quantized sources is not Gaussian

either. We mathematically model the bit-plane-wise correlation channel between Yi,Q

and ZSW
i−1 to facilitate the design of LDPC profiles for SW compression. Assume we

know ZSW
i−1 and the distribution p

(
Yi
∣
∣ZSW

i−1

)
, and the trellis bit b0 and the first j − 1
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Fig. 13. Block diagram of the proposed coding scheme for the generalized Gaussian

CEO problem. The Gaussian CEO problem corresponds to the case with

K = 1.

bit planes b1, . . . , bj−1 of Yi,Q have been decoded. For simplicity and without loss of

generality, we also assume that the quantization step ∆ = 1 (otherwise the sources

can always be scaled up or down). Since we are using a rate-1/2 TCQ, b0 is decoded

into a coset c0 ∈ {0, 1, 2, 3}, the centers of quantization cells for the j-th bit bj = 1

are
{
mj + 2j+2u

∣
∣u = 0, 1, . . . , 2R+1−j − 1

}
, and those for bj = 0 are shifted by 2j+1,

where mj is the shift of b0, . . . , bj−1 and c0 and can be written as

mj = −2R +
1

2
+ c0 +

j−1
∑

k=1

2k+1bk. (4.24)

We approximate the conditional probability distribution function (p.d.f.) p(y|c0, b1, . . . , bR)

as pG(y −mR), with

pG(y)
∆
=







e−
πey2

4

∫ 2
−2 e

−πex2
4 dx

, y ∈ [−2, 2]

0, otherwise.

, (4.25)

which is obtained by bounding the ideal Gaussian quantization noise of variance 2
πe



124

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 
Memory-2 TCQ
Memory-13 TCQ
pG(y)

Fig. 14. Quantization error distributions of memory-2 TCQ and memory-13 TCQ as

compared to the approximated distribution pG(y).

within the range of (−2, 2). This approximation becomes more accurate as the TCQ

memory size increases, as shown in Fig. 14. It can also be seen from Fig. 15, where the

relative entropy between the TCQ quantization error distributions and the approxi-

mated distribution decreases as the TCQ memory increases. Then, assuming the TCQ

rate is high enough such that var
(
Yi
∣
∣ZSW

i−1

)
≫ ∆ = 1, the conditional p.d.f. superpo-

sition of shifted copies of pG(y), each centered at
{
−2R +mj + 2j+1 + 2j+2u

∣
∣u = 0, 1, . . . , 2R+1−j − 1

}
,

i.e.,

p(y|c0, b1, . . . , bj−1, bj = 1) =

∑2R+1−j−1
u=0 pG (y −mj − 2j+2u)

∫∞
−∞
∑2R+1−j−1

u=0 pG (x−mj − 2j+2u) dx
. (4.26)

Similarly, we have

p(y|c0, b1, . . . , bj−1, bj = 0) =

∑2R+1−j−1
u=0 pG (y −mj − 2j+1 − 2j+2u)

∫∞
−∞
∑2R+1−j−1

u=0 pG (x−mj − 2j+1 − 2j+2u) dx
. (4.27)
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Fig. 15. The relative entropy between the TCQ quantization error distribution (of

different memory sizes) and the approximated distribution pG(y).

On the other hand,

P
{
bj = 1

∣
∣ZSW

i−1 , c0, b1, . . . , bj−1

}

P
{
bj = 0

∣
∣ZSW

i−1 , c0, b1, . . . , bj−1

} =

∫∞
−∞ p

(
y
∣
∣ZSW

i−1 , c0, b1, . . . , bj−1, bj = 1
)
dy

∫∞
−∞ p

(
y
∣
∣ZSW

i−1 , c0, b1, . . . , bj−1, bj = 0
)
dy

=

∫∞
−∞ p

(
y
∣
∣ZSW

i−1

)
p (y |c0, b1, . . . , bj−1, bj = 1) dy

∫∞
−∞ p

(
y
∣
∣ZSW

i−1

)
p (y |c0, b1, . . . , bj−1, bj = 0) dy

,

(4.28)

with (4.28) being true when p
(
y
∣
∣ZSW

i−1

)
and p (y |c0, b1, . . . , bj ) are independent, and

p
(
ZSW

i−1

)
and P (c0, b1, . . . , bj) are independent as well, which holds when the rate of

TCQ is high. This means that under the high-rate assumption, p
(
y
∣
∣ZSW

i−1 , c0, b1, . . . , bj
)

can be considered as p(y|c0, b1, . . . , bj) enveloped by p
(
y
∣
∣ZSW

i−1

)
, whose variance is de-

termined by ΣY , D, and the source encoding order. An example is plotted in Fig.

16, from which it can be seen that the statistical distribution and its approximation

are almost identical, both enveloped by the conditional distribution p
(
y
∣
∣ZSW

i−1

)
.

Therefore, using (4.26), (4.27), and (4.28), the log-likelihood ratio (LLR) of the
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Fig. 16. The conditional distribution p
(
y
∣
∣ZSW

i−1 , c0, b1, . . . , bj−1, bj = 1
)
and its approx-

imation of the first WZ coder (second bit plane of the symmetric case with

ρ = 0.8 and D = 0.05).

j-th bit plane when ZSW
i−1 = a can be calculated by

LLR(a, c0, . . . , bj−1, 1) = log
P
{
bj = 1

∣
∣ZSW

i−1 = a, c0, b1, . . . , bj−1

}

P
{
bj = 0

∣
∣ZSW

i−1 = a, c0, b1, . . . , bj−1

} , (4.29)

and

LLR(a, c0, . . . , bj−1, 0) = log
P
{
bj = 0

∣
∣ZSW

i−1 = a, c0, b1, . . . , bj−1

}

P
{
bj = 1

∣
∣ZSW

i−1 = a, c0, b1, . . . , bj−1

} . (4.30)

Then, by going over the range of ZSW
i−1 , c0, and b1, . . . , bj−1 to calculate different LLR

values, we can get pLLR,ZSW
i−1,c0,b1,...,bj

(·), which is the approximate p.d.f. of the joint

distribution of LLR, ZSW
i−1 , c0, and b1, . . . , bj . Then the approximate LLR distribution

f(l) can be calculated by

f(l) =
∑

c0,b1,...,bj−1

∫ ∞

−∞
pLLR,ZSW

i−1,c0,b1,...,bj

(
LLR = l, ZSW

i−1 = a, c0, b1, . . . , bj−1

)
da.

(4.31)

Note that this distribution is an average given bj = 1 and bj = 0, where the j-th

bit can be 1 or 0 with equal probability. Since the bit-plane-wise correlation channel
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is symmetric, the conditional LLR distributions given bj = 1 or bj = 0, denoted as

f(l|1) and f(l|0), respectively, satisfy f(l|1) = elf(l|0) [51], thus f(l|1) and f(l|0) can

be written as

f(l|1) = el

1 + el
f(l), f(l|0) = 1

1 + el
f(l). (4.32)

An example of f(l|1) v.s. f(l|0) is shown in Fig. 17, from which we can see that the

theoretical/approximate LLR distribution is almost identical to the practical one.

LDPC code designs can be carried out by using the approximate LLR distribution

instead of the practical one acquired from training data. Compared to practical

training based design, our design based on the approximate distribution suffers no

additional rate loss in our simulations.

−20 −15 −10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Log-Likelihood Ratio l (LLR)

P
ro

b
a
b
il
it
y

 

 
f(l|0)
f(l|1)

−20 −15 −10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Log-Likelihood Ratio l (LLR)

P
ro

b
a
b
il
it
y

 

 
f(l|0)
f(l|1)

Fig. 17. The theoretical (left) and practical (right) LLR distribution of the first WZ

coder (second bit plane of the symmetric case with ρ = 0.8 and D = 0.05).

Since the conditional Gaussian distribution p
(
Yi
∣
∣ZSW

i−1

)
can be estimated by ΣY

and D, the LLR distribution of each WZ coded bit plane at each source terminal can

be pre-calculated if ΣY and D are given. It can be seen that the LLR distribution,

and hence the LDPC code rate are only determined by the variance of the distribution

p
(
Yi
∣
∣ZSW

i−1

)
and the bit plane position. Therefore, a library of LDPC profiles can be

built up off-line and the code rate can vary from 0 to 1. Then for any quadratic

Gaussian MT problem, the LDPC profile for each bit plane of the WZ coded sources

can be determined by looking up the library. Fig. 18 depicts the average right profile
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degree and rate loss to theoretical capacity for different LDPC rates in our LDPC

code library.
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Fig. 18. The average right profile degree and rate loss to capacity of the offline designed

LDPC code library.

Instead of the above approximation method, the correlation model between quan-

tized sources can acquired by data training, i.e., encoding several training blocks of

data to get an approximate correlation distribution before encoding and decoding the

actual sources [20]. This approach provides no additional coding gain compared to

our proposed approximation method, while in the meantime obviously causing delays

to the entire coding process.

C. Experimental results

We present our experimental results in accordance with the theoretical reviews of tight

BT bounds in Section 2, Chapter II. Three- and four-terminal cases are considered

in our simulations. In the positive symmetric setup with different ρ and D values,

coding results in both high-rate and low-rate regimes are given. The block length is

fixed at 106 bits, and the bit error rate in SW decoding ranges from 10−7 to 4×10−6.

Cases with more than four terminals can be achieved using similar coding schemes

and performance similar to the three- and four-terminal cases is expected. Detailed

results are given in the following subsections.
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1. Quadratic Gaussian direct MT coding

a. The positive symmetric case

In this setup, the sources are zero mean, jointly Gaussian with identical variance 1

and correlation coefficient ρ = 0.80. We consider three- and four-terminal cases.

High-rate scenario (with identical target distortion D = 0.05): In this case,

the experimental result of our practical code design is given in Table II. It is seen

that after meeting the target distortion D, our practical SWCQ design only suffers a

small rate loss of about 0.05 b/s at each terminal.

Table II. Ideal and practical corner point coding rates (in b/s) using TCQ quantizer

in high-rate scenarios.

Three terminal Four terminal

#1 #2 #3 #1 #2 #3 #4

Ideal rate 2.077 1.468 1.320 2.061 1.454 1.307 1.239

Practical rate 2.102 1.527 1.398 2.086 1.510 1.385 1.331

We employ 8192-state TCQ source encoder and irregular LDPC code to approach

the MT sum-rate bound. Table III lists bit-plane level conditional entropies and the

practical LDPC code profiles for the three-terminal coding that approaches a corner

point − the ideal corner points can be calculated according to the method in Section

3. It is seen that the sum-rate loss due to practical coding is 0.162 b/s. The practical

sum-rate region as compared to the MT sum-rate bound is depicted in Fig. 19.

Low rate scenario (with identical target distortion D = 0.10): For relatively

lower transmission rate, e.g., 1 b/s or lower, we use SWC-TCVQ with 8192-state

trellis to reduce trellis bit rate. The rest of the low-rate scheme stays the same as in

the high-rate scenario. The quantizer choices and the ideal/practical rates are given
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Table III. Entropies versus practical rates for MT source coding approaching a corner

point using TCQ and SW coding, together with the LDPC code profiles

used for SW compression. The correlation coefficient is ρ = 0.80 and target

distortion is D = 0.05. Bit planes not transmitted are omitted in the table.

Component Bit Conditional Practical Irregular LDPC Code

Plane # Entropy (b/s) Rate (b/s) Profile (Edge Perspective)

Y1 All 2.077 2.102 –

Y2 1 1.000* 1.000 –

2 0.499 0.507

λ(x) = 0.1413x + 0.2229x2 + 0.0129x5 + 0.0879x6 + 0.0560x9+

0.0220x10 + 0.0300x11 + 0.0023x12 + 0.0648x13 + 0.0174x14+

0.0168x17 + 0.0212x18 + 0.0018x34 + 0.0413x35 + 0.0134x46+

0.0059x47 + 0.0448x48 + 0.0676x49 + 0.0567x98 + 0.0732x99 ;

ρ(x) = 0.2000x9 + 0.8000x10 .

3 0.014 0.020

λ(x) = 0.0070x + 0.3537x2 + 0.0285x5 + 0.0622x6 + 0.0140x9+

0.2723x10 + 0.0077x26 + 0.0183x27 + 0.1404x45 + 0.0280x46+

0.0177x62 + 0.0183x63 + 0.0319x99 ;

ρ(x) = x299.

All 1.513 1.527 –

Y3 1 1.000* 1.000 –

2 0.380 0.388

λ(x) = 0.1019x + 0.2589x2 + 0.0056x5 + 0.0321x6 + 0010x7+

0.0008x8 + 0.1053x9 + 0.0870x10 + 0.1319x21 + 0.0190x22+

0.0146x37 + 0.0176x38 + 0.0066x44 + 0.0317x45 + 0.0117x96+

0.1741x97 ;

ρ(x) = x14.

3 0.005 0.010

λ(x) = 0.0974x + 0.2474x2 + 0.0093x5 + 0.2864x7 + 0.0339x19+

0.0156x20 + 0.0090x21 + 0.1339x22 + 0.1356x34 + 0.0216x40+

0.0099x42 ;

ρ(x) = x549.

All 1.385 1.398 –

Total – 4.975 5.027 –

* We directly compute the conditional entropy of the trellis bit plane assuming it is memoryless given the side information.
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Fig. 19. The BT rate region v.s. practical sum-rate bound for the three-terminal

symmetric case with ρ = 0.80 and D = 0.05. The practical sum-rate bound

is enclosed by the dashed line with crosses.

in Table IV.

From Table IV we see that compared with the results in high-rate scenario in

Table III, the relative rate loss for each terminal is higher than those in the high-

rate scenario. This is partially due to the higher granular loss of TCVQ. However,

SWC-TCVQ is much more efficient in the low-rate scenario than SWC-TCQ, since

the rate loss is no higher than 0.077 b/s even for a transmission rate as low as 0.797

b/s, compared to the rate loss of 0.078 b/s for a transmission rate of 1.320 b/s when

employing the SWC-TCQ scheme as shown in Table III.

Table IV. Ideal and practical corner point coding rates (in b/s) and quantizer choice

in low-rate scenarios.

Three terminal Four terminal

#1 #2 #3 #1 #2 #3 #4

Ideal rate 1.506 1.019 0.884 1.471 0.993 0.860 0.797

Practical rate 1.546 1.073 0.950 1.512 1.049 0.929 0.874

Quantizer TCQ TCVQ TCVQ TCQ TCVQ TCVQ TCVQ
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b. The BEEV-ED case

For the BEEV-ED setup, we designed a coding scheme in the high-rate scenario for

a four-terminal scenario with source covariance matrix

ΣY =












1.0 0.3 0.4 0.0

0.3 1.0 0.0 −0.4

0.4 0.0 1.0 0.3

0.0 −0.4 0.3 1.0












, (4.33)

and uniform target distortion D = 0.05. It can be verified that the two distinct

eigenvalues of ΣY are Λ = 1.5 and λ = 0.5 (each repeated twice) and the BT sum-

rate bound is tight. A corner point on the theoretical BT bound is calculated with

(4.2) as

(R1 R2 R3 R4) = (2.150 2.088 2.027 1.965) b/s, (4.34)

with a sum-rate of RY (ΣY , D) = 8.230 b/s. The practical encoding rates in our

SWC-TCQ design are

(R∗
1 R∗

2 R∗
3 R∗

4) = (2.173 2.130 2.071 2.010) b/s (4.35)

when the target distortions are met.
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c. A general nonsymmetric setup

According to the sufficient condition [13], we designed a coding scheme in high-rate

scenario for a three-terminal scenario the following setup.

ΣY =









1.0 0.7 0.8

0.7 1.0 0.9

0.8 0.9 1.0









, (4.36)

and target distortion

(D1 D2 D3) = (0.030 0.025 0.020) . (4.37)

It is easy to verify that ΣY and D satisfy the sufficient condition for tight BT sum-

rate bound. A corner point on the theoretical BT sum-rate bound is calculated with

(2.10) and (4.2) as

(R1 R2 R3) = (2.492 2.143 1.450) b/s, (4.38)

with a sum-rate of RY (ΣY , D) = 6.085 b/s. The practical encoding rates in our

SWC-TCQ design are

(R∗
1 R∗

2 R∗
3) = (2.513 2.188 1.513) b/s, (4.39)

when the target distortions are met.

2. Quadratic Gaussian indirect MT coding

a. The Gaussian CEO case

We present results for two Gaussian CEO cases with L = 3 and L = 4, respectively.

The remote source is set to be X ∼ N (0, 0.80) with i.i.d. observation noise variance
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σ2
N = 0.20 for both cases, with target distortion D = 0.07808 when L = 3 and

D = 0.06032 when L = 4.

For L = 3, a corner point on the tight theoretical BT sum-rate bound is calculated

with (2.10) and (4.2) as

(R1 R2 R3) = (2.076 1.468 1.320) b/s, (4.40)

with a sum-rate of RX(ΣNL
, D) = 4.864 b/s. The practical encoding rates in our

SWC-TCQ design are

(R∗
1 R∗

2 R∗
3) = (2.102 1.527 1.398) b/s, (4.41)

when the target distortion is met.

For L = 4, a corner point on the tight theoretical BT sum-rate bound is calculated

with (2.10) and (4.2) as

(R1 R2 R3 R4) = (2.061 1.454 1.307 1.239) b/s, (4.42)

with a sum-rate of RX (σ2
X ,ΣNL

, D) = 6.061 b/s. The practical encoding rates in

our SWC-TCQ design are

(R∗
1 R∗

2 R∗
3 R∗

4) = (2.086 1.510 1.385 1.331) b/s, (4.43)

when the target distortion is met.
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b. The generalized Gaussian CEO case

For L = 3, we use the example defined by (2.33), (2.34) and (2.35). In this case, the

observation covariance matrix is

ΣY =









0.8333 0.3333 0.3333

0.3333 1.9333 −0.6667

0.3333 −0.6667 2.0333









. (4.44)

A corner point on the theoretical BT bound is calculated with (2.10) and (4.2) as

(R1 R2 R3) = (2.279 3.444 3.225) b/s, (4.45)

and the sum-rate is RXK
(T, D) = 8.948 b/s. The practical encoding rates in our

SWC-TCQ design are

(R∗
1 R∗

2 R∗
3) = (2.302 3.496 3.271) b/s, (4.46)

when the target sum-distortion is met. The practical sum-rate bound as compared

to the theoretical one is shown in Fig. 20.
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Fig. 20. The theoretical rate region v.s. practical sum-rate bound for the generalized

CEO case defined by (2.33), (2.34) and (2.35). The practical sum-rate bound

is enclosed by the dashed line with crosses.
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For L = 4, we use K = L − 1 = 3 Gaussian i.i.d. remote sources X1, X2, X3 ∼

N (0, 1.0000) with i.i.d. observation noises N1, . . . , N4 ∼ N (0, 0.2500) and target

sum-distortion D = 0.6193. The transform matrix is

H =












0.0000 0.5000 0.7071

0.7071 −0.5000 0.0000

0.0000 0.5000 −0.7071

−0.7071 −0.5000 0.0000












, (4.47)

yielding an observation covariance matrix

ΣY =












1.0000 −0.2500 −0.2500 −0.2500

−0.2500 1.0000 −0.2500 −0.2500

−0.2500 −0.2500 1.0000 −0.2500

−0.2500 −0.2500 −0.2500 1.0000












. (4.48)

A corner point on the theoretical BT sum-rate bound is calculated from (2.10) and

(4.2) as

(R1 R2 R3 R4) = (3.318 3.272 3.190 2.991) b/s, (4.49)

and the tight sum-rate is RXK
(T, D) = 12.771 b/s. The practical encoding rates in

our SWC-TCQ design are

(R∗
1 R∗

2 R∗
3 R∗

4) = (3.339 3.318 3.234 3.034) b/s, (4.50)

when the target sum-distortion is met.
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CHAPTER V

MT VIDEO CODING

Following the theoretical analysis and code design for ideal sources, the practical ap-

plication on video compression is investigated in this chapter. Section A illustrates

the detailed MT video coding scheme without depth information transmitted to de-

coder, including side information generation, SW code design and decoder side joint

estimation, Section B describes the usage of separately transmitted depth information

in MT video coding, Section C gives the experiment results on depth camera assisted

MT video coding.

A. MT video coding without depth camera assistance

In this section, we provide detailed description of our MT video coding scheme with-

out depth information at the decoder. The whole scheme is implemented under

the H.264/AVC framework. Generally, we follow the MT source coding scheme for

quadratic Gaussian sources in Chapter IV, which proves to approach the theoretical

achievable sum rate asymptotically, and the block diagram of the scheme is shown in

Fig. 21.

Given equal distortion measure Di = D, i = 1, . . . , L each texture camera se-

quence Hi, i = 1 . . . , L, is encoded separately and transmitted to the decoder end.

The first texture sequence H1 is encoded using the original H.264/AVC scheme (this

can be considered as an entropy coding scheme), and other sequences Hi, i = 2, . . . , L

are WZ encoded under the H.264/AVC framework, assuming that side information

SI1, . . . , SI(i−1) are generated from previous i− 1 sequences.

Therefore, if we assume that WZ coding approaches conditional entropy, the
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Fig. 21. The block diagram of the proposed MT video coding scheme.

total transmission rate RMT
T (D) of the MT coding scheme can be written as

RMT
T (D) =

L∑

i=1

RMT
Ti

(Hi, D) (5.1)

= H
(

Ĥ1(D)
)

+
L∑

i=2

H
(

Ĥi(D)
∣
∣
∣Ĥ1(D), . . . , Ĥi−1(D)

)

, (5.2)

where RMT
Ti

(Hi, D) is the rate of texture sequence Hi given distortion measure D,

and Ĥi(D) is the i-th reconstructed sequence given distortion D. It can be seen that

compared to joint video coding scheme, whose rate Rjoint
T (D) can be written as

Rjoint
T (D) =

L∑

i=1

H
(

Ĥi(D)
∣
∣
∣Ĥ1(D), . . . , Ĥi−1(D), Ĥi+1(D), . . . , ĤL(D)

)

, (5.3)

and the simulcast video coding scheme, whose rate Rsimul
T (D) can be written as

Rsimul
T (D) =

L∑

i=1

H
(

Ĥi(D)
)

, (5.4)

we have

Rjoint
T (D) ≤ RMT

T (D) ≤ Rsimul
T (D), (5.5)

since condition reduces entropy.
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Correspondingly at the joint decoder, the coded texture sequences HENT
1 and

HWZ
i , i = 2 . . . , L are decoded sequentially, with each HWZ

i , i = 2 . . . , L using pre-

viously decoded i − 1 sequences Ĥj , j = 1, . . . , i − 1, as well as the decoded depth

information D̂ as side information. It should be noticed that for a sequence Hi,

i = 2 . . . , L, since its side information SIi at the decoder is generated independently

of Hi, joint estimation, i.e., using the side information SIi and decoded sequence H̃i,

can be used in the decoder to improve the quality of reconstructed sequence, as shown

in Fig. 21.

1. Side information frame generation

In detail, to perform WZ coding (SW coding of coded components), side information

is necessary at the decoder. Side information generation is a major step in MT

video coding, since the quality of the side information determines the rate of WZ

coding. Though different video sequences are highly correlated, the correlation model

is complicated if no depth information is provided, since we have no knowledge of the

pixel-to-pixel correlation between simultaneous frames from different camera views.

On the other hand, let Hi,t(x, y) be a pixel at position (x, y) of frame Hi,t for the

i-th view at time slot t, if we have acquired depth information Dt, we can always

locate a corresponding pixel position (x′, y′) in another frame Hi′,t from the i′-th

view, meaning that Hi,t(x, y) and Hi,t(x
′, y′) represent the same object position in

the scene at time slot j. Thus, the correlation between Hi,t and Hi′,t becomes pixel-

wise, and therefore much easier to be utilized in side information generation for WZ

coded components of Hi,t.

If depth information can be provided at the decoder, side information generation

can become easier and its quality can be better for anchor frames. This is also the

major difference between MT video coding with and without depth camera. There-
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fore, here we describe the side information generation for anchor frames when depth

information is not transmitted to the decoder, and the case of non-anchor frames will

be further discussed in detail in Section B since it is done similarly as the case with

depth camera information.

In our implementation, since temporal prediction can provide information about

current depth from previous frames, we treat anchor frames (they are only allowed

to be predicted by simultaneous frames from other camera views) and non-anchor

frames (they are allowed to be predicted both temporally from the same view and

spatially from other camera views) differently.

In this scheme, if an anchor frame H2,t in the second view is directly entropy

coded under H.264/AVC framework with given quantization parameter (QP) q, for

the next anchor frame H2,t in the second view, we can not apply accurate frame

warping since there is no depth information at the decoder. Therefore, we need to

follow the algorithm in [28], in which H2,t is coded in two layers, a coarse layer and a

refinement layer, and the two layers are transmitted sequentially. The decoded coarse

layer H̃C
2,t is a low-quality reconstruction resulted by quantization using a larger QP

q′ = q + 12, such that the two quantizers C(q) and C(q′) are embedded, which means

that for quantized DCT coefficients, the zero-th quantization cells of C(q′) contains

five quantization cells of C(q) and other quantization cells of C(q′) contains four.

Therefore, the decoded refinement layer H̃R
2,t contains only indices QI2,t for smaller

quantization cells of C(q) in the larger quantization cells of C(q′).

Thus, since H̃C
2,t are first obtained by the decoder as a coarse version of H̃2,t,

it can be used jointly with H̃1,t at the decoder for depth estimation, and thus the

side information for the refinement layer H̃R
2,t can be obtained by warping H̃1,t to

the using the estimated depth information. Moreover, since the depth information

can be further estimated using H̃1,t and H̃2,t and warped to the following views, this
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two-layer transmission scheme is not necessary for WZ compression of anchor frames

of the i-th view when i ≥ 3. The details of depth estimation frame warping are

discussed in Section B.

2. SW coding of frames

Since the proposed MT scheme is implemented under the H.264/AVC framework, the

side information frames SI
(1)
i,t , . . . , SI

(i−1)
i,t , i = 2, . . . , L, t = 1 . . . , n, can not be used

directly for WZ coding. Our approach is to encode both the sequence frame Hi,t

and side information frames SI
(1)
i,t , . . . , SI

(i−1)
i,t by H.264/AVC encoder, and perform

SW coding for each bit plane of different components of the H.264/AVC bitstream of

Hi,t, using the corresponding components of SI
(j)
i,t (or the coded bitstream of SI

(j)
i,t ),

j = 1, . . . , i − 1, as side information. We also need to treat anchor frames and non-

anchor frames differently in this step.

a. Anchor frame coding

In MT video coding scheme, anchor frame coding is similar to that of an intra-

predicted frame (I-frame) in H.264/AVC, except that for i = 2, . . . , L, major coding

components of Hi, such as intra-prediction modes and quantized DCT coefficients,

are not entropy coded, but rather SW coded with decoder side information. The

detailed coding process is shown in Fig. 22.

Consider one anchor frame Hi,t and its side information frame SI
(j)
i,t , j < i, we can

divide the information into three components: intra-prediction mode MIi,t, quantized

DCT coefficients DIi,t, and other information OIi,t. MIi,t and DIi,t are SW coded

at different rates. OIi,t is entropy coded in the same way as in H.264/AVC. The

decoded component ÔIi,t is later combined with SW decoded M̂Ii,t and D̂Ii,t to form

the decoded frame H̃i,t.
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Fig. 22. The coding process of an anchor frame components.

Intra prediction modes: Since the intra-prediction mode for each block decides

the residual block and thus the DCT coefficients, MIi,t should be first encoded and

decoded so that M̂Ii,t can be used to help compress DIi,t. Suppose we are using

warped frame SI
(j)
i,t , we first encode it using H.264/AVC and calculate the decoder

side information MISIi,t for SW coding of MIi,t.

Intra frame DCT coefficients: In the second step, the warped frame SI
(j)
i,t is re-

encoded using H.264/AVC with M̂Ii,t (instead of MISIi,t) being the intra-prediction

mode decisions. The resulting DCT coefficients (before quantization) DISIi,t serve as

the decoder side information for SW coding of DIi,t. Finally, the above decoded

components M̂Ii,t and D̂Ii,t are combined with other decoded components ÔIi,t to

construct the decoded anchor frame H̃i,t. An example of the correlation model of

quantized non-zero I-frame coefficients and their decoder side information is shown

in Fig. 23.

Remark:

For anchor frames of the second view, since only the refinement layers are transmitted

to the decoder, the only component that can be SW compressed is quantization cell

indices QI2,t, which is part of the DCT coefficients.



143

80

60

40

20

0

10

5

0

0

200

400

600

800

1000

DIQi,t

DISI
i,t

P
{

D
IS

I
i,

t
,D

IQ i,
t

}

Fig. 23. An example of the correlation model of quantized non-zero I-frame coefficients

and their decoder side information.

b. Non-anchor frame coding

Non-anchor frame coding in MT video coding scheme is similar to that of a predicted

frame (P-frame or B-frame) in H.264/AVC. The difference is that for Hi, i = 2, . . . , L,

the major coding components, such as inter-prediction mode, motion vector difference

(MVD), as well as the DCT coefficients, are not entropy coded but SW coded, as

shown in Fig. 24.

Inter prediction modes: As shown in the figure, consider one non-anchor Hi,t and

its j-th side information frame SI
(j)
i,t , the inter-prediction mode MPi,t is first SW coded

with side information MP
SI,(j)
i,t generated by H.264/AVC coding of SI

(j)
i,t . In detail, inter

prediction modes in H.264/AVC includes prediction block sizes, prediction directions,

and reference frame indices. In SW coding of these components, the corresponding

components acquired after H.264/AVC coding of SI
(j)
i,t are used as side information

bit plane wise.
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Fig. 24. The code process of a non-anchor frame components.

Motion vector differences: After inter prediction modes have been correctly

decoded, we then SW code MVD using side information MVD
SI,(j)
i,t generated by

H.264/AVC coding of SI
(j)
i,t with M̂Pi,t as the inter-prediction mode. MVD has horizon-

tal and vertical components, both using the corresponding components of MVD
SI,(j)
i,t

as side information bit plane wise.

DCT coefficients: After all the motion information are successfully decoded, SI
(j)
i,t

is coded again by H.264/AVC with inter-prediction mode and MVD set to M̂P and

the decoded MVD’s M̂VDi,t respectively, and the resulting DCT coefficients DP
SI,(j)
i,t

(before quantization) serve as the decoder side information for SW coding of DPi,t.

Finally, the above decoded components M̂Pi,t, M̂VDi,t, and D̂Pi,t are combined with

other decoded components ÔPi,t to reconstruct the non-anchor frame Ĥi,t.
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c. Slepian-Wolf code design

Practical SW coding is implemented via syndrome-based binning. Each bit plane

of a quantized source is partitioned into bins indexed by syndromes of a channel

code. The encoder computes the syndrome s = xHT and sends it to the decoder

at rate RSW = (n − k)/n b/s, where x is a length-n binary sequence and H is the

(n− k)× n parity-check matrix. At the decoder end, based on the side information

y and received syndrome s, the decoder finds the recovered sequence x̂ in the coset

Cs =
{
x ∈ {0, 1}n : xHT = s

}
, i.e.,

x̂ = argmax
x∈Cs

p(x|y) (5.6)

For practical SW coding, we choose LDPC codes because of their capacity-

approaching performance and flexibility in code design. The message-passing de-

coding algorithm can also be applied to SW coding with a little modification. LDPC

codes can be designed for different components according to the log-likelihood ratio

(LLR) distribution of the correlation channel. In our case, the LLR distribution is

very similar to that of a binary AWGN channel, e.g., the conditional probability dis-

tribution function (p.d.f.) of the LLR of one WZ coded component is shown in Fig.

25. Therefore, we choose LDPC codes designed for AWGN channels at different rates

for different component correlation models.

d. Joint estimation at the decoder

In our scheme, when decoding the frames from the i-th view with depth information

D̂ at the decoder, as shown in Fig. 21, the simultaneous frame from previously i− 1

decoded views can be warped to the current view frame Hi as side information frame

SIi. If the depth information D̂ is accurate enough, SIi can be considered as consisting
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Fig. 25. The conditional p.d.f.’s of the LLR of the 1st bit plane of anchor frame DCT

coefficients (non-zero DC coefficient signs), given the transmitted bit is 0 or

1.

of i− 1 noised versions of Hi, i.e.,

SI
(j)
i = Hi +N S,j

i , j = 1, . . . , i− 1, (5.7)

where N S,j
i represents the noise between Hi and previously decoded frame Ĥj , which

is caused by camera sensor difference, inaccurate pixel mapping, as well as random

thermal noise. On the other hand, the decoded version H̃i is also a noised version of

Hi, i.e.,

H̃i = Hi +N C
i , (5.8)

where N C
i represents the noise caused by quantization, filtering, etc. Since N C

i and

N S
i are from different sources, they can be considered independent. Therefore, if the

reconstructed version Ĥi is jointly estimated from H̃i and SIi with MSE criterion, the

noise power can be reduced. If the noises are AWGN noise, we know that a linear

combination of input signals weighted by noise variances is optimal. However, in our

case, N C
i is nearly Laplacian and N S

i is much more complicated. Thus, the optimal
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estimator is difficult to determine. Therefore the optimal estimator Ĥi

(

H̃i, SIi, D̂
)

should be computed using Bayes model.

To achieve an optimal estimation Ĥi from H̃i and SIi in MSE sense, we need to

find the conditional expectation, i.e.,

Ĥi = E
[

Hi

∣
∣
∣H̃i, SIi, D̂

]

, (5.9)

for i = 2, . . . , L. If assuming pixel-wise independence for a given frame, we have

Ĥi(x, y) = E
[

Hi(x, y)
∣
∣
∣H̃i(x, y), SIi(x, y)

]

, (5.10)

for any pixel (x, y) in the frame Hi. Then, for a given set of values of Hi(x, y) = h

and SIi(x, y) = s, we have

E
[

Hi(x, y)
∣
∣
∣H̃i(x, y) = h, SIi(x, y) = s

]

=

∫

Hi(x,y)

Hi(x, y)p
(

Hi(x, y)
∣
∣
∣H̃i(x, y) = h, SIi(x, y) = s

)

dHi(x, y), (5.11)

and by Bayes’ theorem, the conditional p.d.f. can be written as

p
(

Hi(x, y)
∣
∣
∣H̃i(x, y) = h, SIi(x, y) = s

)

=
p
(

H̃i(x, y) = h, SIi(x, y) = s |Hi(x, y)
)

p
(

H̃i(x, y) = h, SIi(x, y) = s
) · p (Hi(x, y))

=
p
(

H̃i(x, y) = h |Hi(x, y)
)

p (SIi(x, y) = s |Hi(x, y))

p
(

H̃i(x, y) = h, SIi(x, y) = s
) · p (Hi(x, y))

=
pNC

i
(h−Hi(x, y)) pN S

i
(s−Hi(x, y))

p
(

H̃i(x, y) = h, SIi(x, y) = s
) · p (Hi(x, y)) , (5.12)

where pNC
i
(·) and pN S

i
(·) are the p.d.f.’s of N C

i and N S
i , respectively. Since the values
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of Hi(x, y) and SIi(x, y) are known, by (5.11) and (5.12), we have

E
[

Hi(x, y)
∣
∣
∣H̃i(x, y) = h, SIi(x, y) = s

]

=

∫

Hi(x,y)

p (Hi(x, y))Hi(x, y)pNC
i
(h−Hi(x, y)) pN S

i
(s−Hi(x, y)) dHi(x, y).

(5.13)

For simplicity, we assume that the statistics for N C
i and N S

i are independent of

pixel position (x, y) as well as the temporal order i, and we also assume that the

original pixel luma value Hi(x, y) appears with equal probability. Then (5.13) can be

simplified as

E
[

Hi(x, y)
∣
∣
∣H̃i(x, y) = h, SIi(x, y) = s

]

=

∫ hmax

hmin

xpNC
i
(h− x) pN S

i
(s− x) dx,

(5.14)

where hmin and hmax are the minimum and maximum possible values of Hi(x, y).

By using (5.14), the optimal estimation of Hi(x, y) for any given H̃i and SIi can be

trained from the a few frames shot by the set of cameras with identical configuration.

From the above analysis, it should be noticed that the joint estimation process

only requires accurate pixel-to-pixel correspondence. Therefore, as long as the pixel-

wise depth information is acquired at the decoder, joint estimation can be performed

from multiple decoded simultaneous frames from other camera views, which is not

limited to MT video coding and can be applied to various multiview video applica-

tions.

B. Depth camera assisted MT video coding

In this section, we chiefly describe how to use separately encoded and transmitted

depth information in MT video coding. The block diagram of MT video coding
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scheme with depth camera assistance is shown in Fig. 26. In this scheme, depth

information D consists of depth images (or depth maps) of the current scene at time

slots 1, 2, . . . , n, which are denoted as D1,D2, . . . ,Dn.

Texture sequence L
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WZ encoder
L− 1

WZ encoder II
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encoder
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Fig. 26. The block diagram of the proposed MT video coding scheme with depth cam-

era assistance.

Therefore, if we assume that WZ coding approaches conditional entropy, the

total transmission rate RMT
TD (D) of the MT coding scheme with depth camera help

can be written as

RMT
TD (D) = RMT

D (D) +

L∑

i=1

RMT
Ti (Hi, D, D̂) (5.15)

= H
(

D̂
)

+H
(

Ĥ1(D)
)

+

L∑

i=2

H
(

Ĥi(D)
∣
∣
∣Ĥ1(D), . . . , Ĥi−1(D), D̂

)

,

(5.16)

where RMT
D (D) is the rate of the depth information D, RMT

Ti
(Hi, D) is the rate of

texture sequence Hi given distortion measure D and reconstructed depth information

D̂. It can be seen that compared to (5.2), the MT scheme with depth camera help

transmit depth information D with additional rate H
(

D̂
)

. However, it is shown

in the Section C that by utilizing depth information at the decoder, the correlation
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at the decoder can be largely improved and thus the total rate is actually reduced.

Moreover, a compromise should be made between the quality and transmission rate

of the depth information since more accurate depth information costs more rate to

transmit but provides higher correlation between different views thus lowering the

texture sequence rate H
(

Ĥi(D)
∣
∣
∣Ĥ1(D), . . . , Ĥi−1(D), D̂

)

, i = 2, . . . , L, and vice

versa.

As mentioned in Section A, we only discuss the side information generation

process here for both MT video coding with/without depth camera, since this is the

difference between the two schemes.

1. Anchor frame warping

Since an anchor frame is only allowed to be predicted from simultaneous frames

from other views, we need to transmit depth information to the decoder for anchor

frames, and the decoded frames from other views can be warped to the current view

using depth information. The issue of depth information compression has been well

discussed [52, 53, 54]. However, since the accuracy of depth value is critical in our

application, we code each depth value losslessly, while downsampling the resolution

of depth image to restrict the transmission rate RD(D) of the depth information.

Since the depth information at time t consists of a depth map with each pixel

showing the depth values, we can consider the depth information Dt is also a picture

frame shot by an imaginary camera with known configurations and parameters and

synchronized with the camera set. Thus for a pixel position (xD, yD) in the depth

map (or the depth coordinate), Dt(xD, yD) is the implicit depth value (the distance

between its corresponding object position in the space, or world coordinate and the
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imaginary camera). Then by multiview geometry, we have [55]:

Dt(xD, yD) · (xD, yD, 1)T =KDRD(XD, YD, ZD, 1)
T, (5.17)

whereKD andKD are the 3×3 intrinsic matrices and RD, RD are the 3×4 rotation

matrices (or extrinsic matrices) of the imaginary depth camera, and (XD, YD, ZD) is

the corresponding object position in the world coordinate. Therefore, the actual

depth (ZD) of any world coordinate position (XD, YD, ZD) at time t can be derived

if it is shown in Dt.

With the decoded depth information D̂, the warping process is as follows (shown

in Fig. 27). Let (X, Y, Z) be an actual position in the world coordinate, (xm, ym) and

(xn, yn) (1 ≤ m,n ≤ L) be the corresponding points in the camera coordinates of the

m-th and n-th camera views, respectively. We have [55]:

zm · (xm, ym, 1)T =KmRm(X, Y, Z, 1)
T (5.18)

zn · (xn, yn, 1)T =KnRn(X, Y, Z, 1)
T, (5.19)

where Km and Kn are the intrinsic matrices and Rm, Rn are the rotation matrices,

and zm, zn are implicit depth values associated with pixel positions (xm, ym) and

(xn, yn) in the two camera coordinates, respectively. These matrices can be calibrated

and calculated when the camera positions and focal lengths are fixed. For each pixel

position (xm, ym) in the m-th camera view frame, we acquire the corresponding depth

Z in the world coordinate from the decoded depth information D̂ by using (5.17),

thus we can solve for (zm, X, Y ) from the three equations implied by (5.18). Then

using (5.19), the pixel correspondence (xm, ym) ↔ (xn, yn) between the left and the

right view can be computed, and warping can be performed from a left view frame

to a new frame such that it looks like it were shot by the right view.
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Fig. 27. Multiview geometry for frame warping from camera view m to camera view

n.

It should be noticed that if we replace one of the equations from (5.18) and

(5.19) with (5.17) using the same world coordinate position (X, Y, Z), then similar

derivations follow, which means the the decoded depth information D̂t can also be

warped to any camera view. The decoded depth information warped to the i-th

camera view can be denoted as D̂i,t. Then the pixel-to-pixel mapping between D̂i,t

and Hi,t can be acquired, facilitating further discussion in this paper.

It can be seen that the warping process is time invariant if camera positions and

configurations are fixed when the video sequences are shot. Therefore, we can denote

the warping function from j-th view to the i-th view as Wj,i(·). With the above

approach, for any given anchor frame Hi,t, we can get its side information frame
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(denoted as SI
(j)
i,t ) from Ĥj,t, i.e.,

SI
(j)
i,t = Wj,i

(

Ĥj,t, D̂i,t

)

, j = 1, 2, . . . , i− 1. (5.20)

Since we have all previous i−1 frames at time t decoded, the decoder side information

SIi,t for an anchor frame Hi,t consists of i − 1 side information frames warped from

previously decoded frames:

SIi,t =
{

SI
(1)
i,t , SI

(2)
i,t , . . . , SI

(i−1)
i,t

}

=
{

W1,i

(

Ĥ1,t, D̂i,t

)

,W2,i

(

Ĥ2,t, D̂i,t

)

, . . . ,Wi−1,i

(

Ĥi−1,t, D̂i,t

)}

. (5.21)

If the depth information Dt is accurate enough, the only noise in SIi,t comes from

camera sensor difference and thermal noise, which can be considered as spatial and

temporal independent. Therefore, we can generate decoder side information for WZ

coded components of Hi,t with high precision.

Remarks:

Occlusion will occur in both depth map warping and texture frame warping with

known depth, which means that scenes shot by one camera view might be occluded

thus not appear in another camera view at the same time, thus no depth or texture

values can be assigned to the occluded regions the during warping. Occlusion is caused

by the geometry of the scene and the configuration of camera set, etc. To minimize

the affect from occlusion in frame warping, first we can utilize warping from multiple

views to the current view, which can provide more complete information of the scene,

since a region in the world coordinate occluded in one view could be captured in

another view at the same time. For those regions still occluded after the first step,

we need to search for the nearest available neighbor in the frame for depth or texture

values to construct a reasonable side information frame.
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2. Non-anchor frame warping

For a non-anchor frame Hi,t, since temporal prediction can be performed, the depth

information for such frames can be predicted by the frame motion information of

previously decoded frames from other camera views, i.e., the motion between Ĥj,t

and Ĥj,t′, j = 1, . . . , i − 1, together with the depth information Dt′ from previously

decoded frames at time t′, thus saving transmission rate for depth information while

maintaining acceptable depth information quality. If H1,t′ , . . . ,HL,t′ are coded as

anchor frames, the depth information Dt′ can be used directly for depth information

estimation at time t since Dt′ is transmitted to the decoder losslessly. On the other

hand, if H1,t′ , . . . ,HL,t′ are coded as non-anchor frames, we do not have instant depth

information at the decoder. However, since we already have the reconstructed frames

Ĥ1,t′ , . . . , ĤL,t′, the decoder side depth information can be estimated from any two

reconstructed frames, and then used to further estimation of depth information at

time t can be performed.

In detail, let Hi,t, Hi,t′ be two right view frames, where frames at time t′ have all

been reconstructed at the decoder thus we have Ĥ1,t′ . . . , ĤL,t′, and now we are trying

to estimate the depth information for frame warping at time t: D̃t. First, consider

the case that H1,t′ , . . . ,HL,t′ are coded as anchor frames. The scheme in this case is

shown in Fig. 28.

In this case, let Hj,t, j < i, be the j-th view frame at time t, and since it is

coded before Hi,t, we already have its reconstruction Ĥj,t. Thus, we can estimate the

motion M
(t′,t)
j in the j-th view between time t′ and t from Ĥj,t′ to Ĥj,t, i.e., finding

M
(t′,t)
j such that for every pixel (x, y) in the j-th view frame, we have

Ĥj,t′

(

x+M
(t′,t)
j,h (x, y), y +M

(t′,t)
j,v (x, y)

)

= Ĥj,t(x, y). (5.22)
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Fig. 28. The non-anchor frame warping process with neighboring anchor frames.

where M
(t′,t)
j,h (x, y) and M

(t′,t)
j,v (x, y) are the horizontal and vertical components of

motion vector at pixel position (x, y) of M
(t′,t)
j . From Section 1, since the depth

information D̂t′ is known, then the pixel mapping between the i-th and j-th views

at time t′ can be acquired, i.e., for a given pixel position (x′, y′) in Hi,t′, we can find

its corresponding pixel position (x, y) in Hj,t′ by using D̂t′ . Moreover, since these

two positions maps to one point in the world coordinate, and the motion vector in

the j-th camera view coordinate is M
(t′,t)
j (x, y), from the geometry shown in Fig. 29,

we can find that the best estimation of the motion vector in the i-th camera view

coordinate is

M̃
(t′,t)
i (x′, y′) =

di(x
′, y′)

dj(x, y)
·M (t′,t)

j (x, y) · cos θij , (5.23)

where di(x, y), dj(x, y) are the distance from the world coordinate pixel to camera i

and j, respectively, and θij is the angle formed by the normal rays of the two cameras.

These parameters can be derived from the extrinsic and intrinsic matrices of camera

i and j.

Thus, since D̂t′ can be warped to the i-th view to D̂i,t′ , which has identical
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Fig. 29. The geometry of motion vector estimation between different camera views.

camera configurations and parameters as Hi,t, from (5.22) and (5.23) we can estimate

the depth information for the i-th view at time t using

D̃i,t(x
′, y′) = D̂i,t′

(

x′ + M̃
(t′,t)
i,h (x′, y′), y′ + M̃

(t′,t)
i,v (x′, y′)

)

= D̂i,t′

(

x′ +
di(x

′, y′)

dj(x, y)
·M (t′,t)

j,h (x, y) · cos θij , y′ +
di(x

′, y′)

dj(x, y)
·M (t′,t)

j,v (x, y) · cos θij
)

,

(5.24)

where M̃
(t′,t)
i,h (x′, y′) and M̃

(t′,t)
i,v (x′, y′) are the horizontal and vertical components of

the estimated motion vector M̃
(t′,t)
i (x′, y′).

In the above process, similar to the warping process in Section 1, occlusion

will occur because of the difference of depth distribution in the two views and the

inaccuracy of depth estimation, which means the estimation from D̂i,t′ to D̃i,t not

one-one mapping. To eliminate such occlusion with minimal loss, the position in D̃i,t

that can not find a proper estimation from D̂i,t′ will share the depth value from the

neighboring pixel with smallest depth.
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Thus, after it is acquired, D̃i,t can be further warped to the j-th view as the

estimation of depth D̃j,t by using (5.17), and then Ĥj,t can be warped to the i-th view

using D̃j,t as a side information frame SI
(j)
i,t , and the warping process is complete.

In the case that H1,t′ , . . . ,HL,t′ are coded as non-anchor frames, the depth esti-

mation scheme is shown in Fig. 30. In this case, the difference is that there is no

instantly decoded depth information for the reference frames. Therefore, instead of

using D̂t to estimate D̃t directly, we need to first estimate the reference frame depth,

denoted as D̃∗
t′ . To estimate depth from multiple views, various stereo matching al-

gorithms can be applied [56], which should consider matching cost of pixel texture

values differences and texture shape differences and thus can produce well shaped

depth (or disparity) images. In this application, we are considering R-D performance

instead of depth map integrity, and a simplified stereo matching algorithm for depth

estimation is illustrated as follows.

Ĥj,t′ D̃∗

i,t′ Ĥi,t′

M
(t′,t)
j D̃i,t

Ĥj,t SI
(j)
i,t Hi,t

non-anc. frm.

Reference

Motion est.

Non-anc. frm.

Frame warping

Depth est.

Reference depth

info. est.

Fig. 30. The non-anchor frame warping process with neighboring non-anchor frames.

For a reasonable estimation, notice that we have all decoded reference frames

H1,t′ , . . . ,HL,t′ available at the decoder, thus for each pair, say from j-th to i-th view,

of frame warping, we can estimate the reference depth information only D̃∗
i,t′ from
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the two reference frames Ĥj,t′ and Ĥi,t′ by searching for the disparity between them.

This can be written as an optimization problem as

D̃∗
i,t′ = argmin

D̃i,t′

∥
∥
∥Wj,i

(

Ĥj,t′, D̃i,t′

)

− Ĥi,t′

∥
∥
∥

2

2
. (5.25)

This problem can be solved similarly to the process of motion search in video coding

without R-D optimization using MSE criterion if we treat the spatial difference as

temporal, and the complexity is therefore of the same magnitude.

From the above description, we can see that if depth information is available at

the decoder, frame warping for both anchor frames and non-anchor frames can be

implemented by limited calculations, which can greatly reduce the decode side com-

plexity while keeping the frame warping accuracy for acceptable R-D performance,

since complicated stereo matching algorithms are not necessary for finding the pixel

mapping between frames from different views.

Remarks:

1. In Section 1 and 2, we described the side information generation process in MT

coding with depth camera assistance. For non-anchor frames in the MT video

coding scheme without depth information transmitted, the process in 2 can be

exactly followed, since depth information can always be estimated from decoded

reference frames.

2. The warping process in Section 1 and the depth estimation process in Section 2

are also used in anchor frame warping in the MT scheme without depth camera,

where the depth information D̃t is estimated by the reconstructed anchor frame

H̃1,t from the first view and the decoded coarse layer H̃C
2,t of the anchor frame

from the second view.
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C. Experimental results

We implemented our MT video coding scheme (both with and without depth camera

assistance) for two scenarios: multiview video sequence set argon with synchronized

depth sequence, and standard MVC test sequences akko&kayo and rena, for which

we generated corresponding depth sequence by ourselves. The results for these two

scenarios are shown in Subsection 1 and 2, respectively.

1. Experiment on sequence argon

In order to get correlated video sequences, we employ L = 4 HD cameras (Pilot GigE

vision cameras by Basler Vision Technologies) which output colored video frames,

and one depth camera (SwissRanger SR4000), which outputs the depth value for

every points in the current scene, in grey-scale form. The four HD cameras are fixed

closely and horizontally to a cage, while the depth camera is placed closely above

one of the HD cameras. This compact setup is implemented for higher correlation

between different views and thus better coding performance, as shown in Fig. 31,

and an example of the original depth camera frame is shown in Fig. 32. To ensure

synchronization between different cameras, all cameras are triggered by a single series

rectangular wave at 20 Hz1. This system can be easily extended to the scenario with

L > 4 cameras.

The cameras are calibrated before shooting video sequences. While calibration

for cameras with identical resolution has been well investigated [57] and thus can be

accurately done, calibration between an HD-resolution texture camera and a QCIF-

resolution depth camera can have significant calibration error. Therefore, after apply-

1The hardware setup was implemented at AT&T Labs-Research, Florham Park,
NJ 07932.
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Fig. 31. The camera system setup for the collection of four correlated video sequences.

Fig. 32. An original depth frame with QCIF resolution.

ing the calibration method in [57], to reduce the calibration error and the inaccuracy

brought by upsampling of the depth map to HD resolution, the depth sequence needs

to be compressed before transmission, and then further refined after decoding before

using it to assist pixel warping between different views.

• Compression of depth sequence: Several approaches have been proposed

to compress the depth sequence (see e.g., [52, 53, 54]). In our setup, we use

H.264/AVC to compress the depth sequence (to Rd bytes with distortion Dd)

for simplicity. The distortion Dd measures the inaccuracy between the true

depth map and decoded depth map. Therefore, given decoded depth sequence

with distortion, the accuracy of decoder end pixel mapping between two camera

views depends on Dd and thus Rd. A high quality depth sequence costs more

rate to encode, but gives better decoder side information and thus lowering

the rate Rt for the texture sequence, and vice versa. Therefore, a tradeoff has

to be made between Rt and Rd. Given a fixed texture sequence quantization
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parameter (QP) qt, Rt and Rd are both functions of depth sequence QP qd.

Thus, we need to solve the optimization problem

R∗ = min
qd

Rt(qd) + Rd(qd), (5.26)

to achieve the best compression performance.

In practice, since QP’s are integers, the problem can be solved by searching over

qd. For example, given qd, compute R(qd) = Rt(qd) +Rt(qd) and R(qd +∆q1) =

Rt(qd +∆q1) +Rt(qd +∆q1) using MT video coding scheme. If R(qd) > R(qd +

∆q1), then compute R(qd +∆q1 +∆q2); otherwise compute R(qd −∆q1). This

process is performed until a minimum rate R (q⋆d) is achieved (both R (q⋆d −∆qn)

and R (q⋆d +∆qn) are larger than R (q⋆d) for small ∆qn).

In our experiment with argon, we search over different depth sequence QP’s at

an average texture sequence PSNR of 47.0 dB for the first GOP. As shown in

Fig. 33, the optimal rate is achieved at q⋆d = 28, with Rd(28) = 656 bytes (for

the first GOP).

22 23 24 25 26 27 28 29 30
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R
t
(q

d
)
+

R
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Fig. 33. MT video coding at rate Rt(qd)+Rd(qd) with depth camera vs. depth sequence

QP qd for the first GOP.

• Refinement of depth sequence: We refine the low-resolution depth sequence

frames from the depth camera to fit their corresponding HD frames. A decoded
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depth map typically has both calibration and upsampling error, which means

the pixel position error in the upsampled depth map can be quite large. It is

thus not practical to employ existing refinement algorithms directly. We thus

devise a successive bilateral filtering refinement algorithm, based on the layer-

wise algorithm of [58].

Our successive algorithm can be viewed as a k-step bilateral filtering refinement

method when the HD frame has mk times resolution (in width or height) of the

depth frame. In each refinement step, the depth map is upsampled only m

times before filtering to ensure the calibration and upsampling error is limited

and thus corrected by the fixed-window-size bilateral filter.

It should be noted that the assistance of decoded depth maps is that it pro-

vides a relatively accurate initialization for the iterative refinement algorithm.

Therefore, even highly-quantized depth maps will not deteriorate the refined

depth map much, since the quantization error can be compensated by stereo

matching.

Our algorithm can also be used when the depth camera is turned off. In this

case it becomes one of the stereo matching algorithms for multiple view vision.

This facilitates comparing depth camera assisted MT video coding with the case

when there is no depth camera.

For successive depth refinement, since the scene range of the depth camera is

larger than that of the HD cameras and the depth camera has a resolution be-

tween 10 to 20 times lower than the HD cameras (this can be seen by comparing

Fig. 32, Fig. 34(a), and Fig. 34(b)), we choose k = 2 and m = 4, which means

we first refine the depth map to 1/4 of the HD size of the texture views, then

upsample it to full-HD size to make a successive refinement. We also utilize
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left and right HD frames (when available) that can be warped to the current

camera view using the calibration parameters, in order to help refinement of

the current depth map.

An example of the successive depth refinement result is shown in Fig. 34. The

effectiveness of depth camera assistance can be easily seen by comparing Figs.

34(c) and 34(d). We can also see from Figs. 34(c) and 34(b) that the refined

depth map is much closer to the true depth distribution than the original one.

(a) The original HD frame. (b) The pre-processed (warped)
depth frame.

(c) The refined depth frame. (d) The depth frame generated
without the depth camera.

(e) Side information with depth
camera help.

(f) Side information without
depth camera help.

Fig. 34. An example of depth map refinement.
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For MT video coding of the four HD texture sequences (partially shown in Figs.

34), each sequence has 100 frames, which are divided into 10 GOPs, each with 10

frames using an “IPPP...” structure. We set QP = 22 and follow the H.264/AVC

scheme, the only difference is that Wyner-Ziv coding compresses to the SW rate

(or conditional entropy), whereas H.264/AVC compresses to the self entropy of the

quantization indices. Since all the cameras are fixed, we assume that the camera

parameters are known to the decoder before the decoding process.

With the help of depth sequence (coded with QP=28), the average PSNR (over

100 frames) of the side information for Wyner-Ziv coding of H3 (the last center view)

is 38.6 dB. In contrast, the corresponding average PSNR is 31.7 dB without depth,

i.e., the side information is solely generated from the previously decoded texture

frames. In Fig. 34, compared with the original HD texture frame (Fig. 34(a)), we

can see that the quality of a side information frame with depth camera assistance

(Fig. 35(d)) is much higher in both background and foreground than that without

depth camera assistance (Fig. 34(f)).

We compare MT video coding (with and without depth sequence) with both

simulcast and JMVM coding, because the former gives an upper sum-rate limit of

MT video coding, while the latter provides a loose lower bound on the sum-rate. The

sum-rate comparisons and percentage of rate savings over H.264/AVC based simulcast

are given in Table V, where MT I denotes the MT coding scheme without the help

of depth camera at the decoder end, and MT II denotes the MT coding scheme with

this help. And for MT II, a rate of 6933 bytes for the depth sequence is included

when counting the total bit rate. In each case, the same average PSNR’s of 46.82

dB, 47.23 dB, 47.14 dB, and 47.21 dB for the four texture sequences respectively are

achieved.

From Table V, we see that:



165

• MT video coding with depth sequence only gains 1.43% in sum-rate over that

without depth sequence, even though the quality of the decoder side information

with the help of a depth camera significantly improves that without the depth

camera (as seen in Fig. 34). This means that much needs to be done to improve

the performance of our MT video coding scheme − in terms of turning better

side information quality into larger sum-rate savings.

• MT video coding with depth sequence saves 2.59% in sum-rate over simulcast,

whereas JMVM does 6.98% better. This underlines the difficulty of signifi-

cantly outperforming simulcast with both distributed MT video coding and

joint JMVM coding, largely due to the inaccuracy of the depth information.

• The R-D performance improvements (for both MT II over MT I, and MT over

simulcast) are achieved at the cost of higher complexity at the decoder, the

encoding complexity of MT I and MT II stays roughly the same, which complies

with the application requirement of MT video coding.

2. Experiment on standard MVC test sequences akko&kayo and rena

We also implemented our scheme for the standard MVC test sequence sets akko&kayo

(5 views) and rena (8 views) with resolution 640 × 480 and sequence length 300.

The two sets of sequences are provided with intrinsic and extrinsic matrices for each

view, and thus frame warping is available. Since we compare the performance of our

MT scheme with JM reference software for simulcast encoding and JMVM reference

software for joint encoding, and only bi-directional temporal prediction is allowed

in the prediction structure of the current JMVM, we need to make the temporal

prediction structure identical for the three schemes for fair comparison. Therefore

we follow the standard MVC prediction temporal structure (one anchor frame for
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Table V. Sum-rates comparison of different schemes.

GOP Sum-rate (in bytes)

number Simulcast MT I MT II JMVM

1 496436 489893 482118 454844

2 623899 616986 610627 583718

3 627720 620919 611322 585217

4 528388 521036 511645 484062

5 559221 552213 541295 517049

6 650392 643889 636377 611772

7 665571 658950 651919 628064

8 599016 591632 582869 554862

9 564457 556905 546755 519087

10 664972 658280 650261 623988

Total 5980072 5910703 5825188 5562663

Savings − 1.16% 2.59% 6.98%

every 8 frames and hierarchical bi-directional prediction is used for the 7 non-anchor

frames between two nearest anchor frames) and “IPPP” mode is used for inter-view

prediction. Other H.264/AVC settings include anchor frame QP 22, high profile with

FRExt off, luma only mode, and CAVLC for entropy coding.

Since the actual depth data is not available for these two sets for sequences,

we semi-manually generated downsampled depth images (with resolution 80 × 60)

for each anchor frame that is WZ coded. The depth images are generated using

segmentation and block pixel matching (since the camera parameters are given, the

distances between matched pixels can be transferred to depth values). Since the
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camera position configuration is simple and the correlation between different views

is relatively high, even the depth generated is coarse, the accuracy of frame warping

is still acceptable. Thus, we expect that if more advanced depth cameras can be

provided, the performance of our scheme can be largely improved.

An example of depth image assisted frame warping can be seen in Fig. 35 and

Fig. 36. We can see that although the depth image is rather inaccurate in shape

(mainly because the downsampling process), the quality of side information frame

is still acceptable. For comparison, we also tried the MPEG 3DV depth estimation

software DERS [59] for depth generation, and the resulting depth and side information

frames are shown in Fig. 37 (we only provided results for akko&kayo, since DERS

software is not designed for the camera configuration in rena, which is not configured

with parallel but angled cameras). We can see that though the depth information

generated by DERS is more detailed, the visual quality of side information frame does

not differ much from that of our approach. And the actual PSNR of side information

frame by DERS is nearly 5 dB lower than that of our approach, since whereas the

shape of depth image is close to the truth, the depth values are not as accurate as

those of our method. In addition, since it is more detailed, transmitting the depth

image generated by DERS costs much more bits (59,928 bits by H.264/AVC lossless

encoding for the frame in Fig. 35(a), compared to 2,030 bits for the frame in Fig.

35(a)).

The comparison of average side information frame quality (measured in PSNR)

with that of decoded frames is shown in Table VI. It can be seen that the PSNR

of side information frames is about 10 dB lower than that of decoded frames. This

also indicates that in the joint estimation step, the weight of decoded frames should

be much larger than that of side information frames. For simplicity, in the joint

estimation process, we use linear combination of a decoded frame H̃i,t and a side
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information frame SI
(i−1)
i,t from the nearest view, i.e.,

Ĥi,t = ccH̃i,t + csSI
(i−1)
i,t , (5.27)

and the coefficients acquired by training, and the PSNR gain for using joint estimation

is 0.12 dB for akko&kayo and 0.21 dB for rena with depth camera assistance, which

corresponds to bit rate savings of 2.11% and 3.47% of total bit rate, respectively.

(a) The depth image of the camera view
1 frame (resolution: 80× 60).

(b) The original camera view 0 frame
(resolution: 640× 480).

(c) The camera view 1 frame to be WZ
coded.

(d) The side information frame for 35(c)
warped from camera view 0 frame
(PSNR: 32.24dB).

Fig. 35. An example of depth image assisted frame warping, from sequence set

akko&kayo, camera view 0 and 1, first frame.
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Table VI. Comparison of average frame quality (in PSNR, dB) between decoded

frames and corresponding side information frames (with depth camera as-

sistance). Anchor frame QP is set at 22.

akko&kayo (5 views) rena (5 views)

Anchor Non-anchor Anchor Non-anchor

Dec. 44.15 42.56 46.89 45.05

SI 32.24 30.75 37.67 36.96

The bit rate saving comparisons can be see in Table VII and VIII, in which

MT I and MT II correspond to scheme without and with depth camera assistance

respectively. In this table, it is shown that with depth camera assistance, the sum

rate saving is improved by 4% on average, even at the cost of extra bit rate for depth

information. We can also see that the sum rate saving achieved by the proposed

MT scheme is about half of that achieved by the joint scheme. This means that

the sum rate loss of the MT scheme over joint scheme is 8.53% of the total rate on

average of the two sets of sequences. The sum rate loss is more significant than that

in quadratic Gaussian MT source stated in Chapter IV, and the main reason is that

both the sources themselves and correlation between different sources are much more

complicated (with non-stationary distribution, spatial and temporal memory, etc.)

than the model in theoretical analysis. Another cause is the inaccuracy of depth

information, which is relatively coarse and thus the mapping error exists, especially

at object edges.

It also can be seen that while the MT anchor frame saving is smaller than that

of joint scheme (Since we only transmit depth information for anchor frames, the bit

rate cost of depth image is counted in anchor frame bit rates in the Table VII and

VIII), MT scheme achieves better savings for non-anchor frames compared to joint
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scheme (spatial prediction for non-anchor frames gain little). This is mainly due to

the fact that joint estimation can be used for non-anchor frames with the presence of

depth information, thus the information from other views can be better exploited.

Table VII. Bit rates (in bytes) of different schemes and their rate savings compared

to the simulcast scheme at the same target average PSNR (sequence

akko&kayo, 5 views).

Anchor Non-anc. Total Saving

Simul. 4610772 3077424 7688196 —

MT I 4385191 2877692 7262883 5.53%

MT II 4097542 2877692 6975234 9.27%

Joint 3178183 3071071 6249254 18.72%

Table VIII. Bit rates (in bytes) of different schemes and their rate savings compared

to the simulcast scheme at the same target average PSNR (sequence rena,

8 views).

Anchor Non-anc. Total Saving

Simul. 4171724 3592631 7764355 —

MT I 4100289 3216446 7316735 5.77%

MT II 3780787 3216446 6997233 9.88%

Joint 2796082 3609400 6405482 17.50%

Detailed MT saving results with depth camera assistance is shown in Table IX

and X, in which bit rate savings for different components in the bitstream are pro-

vided. From the table, we can see that by providing depth information at the decoder,

we transmit 1.29% and 0.92% more bit rate for the two sequence sets respectively.

However, this rate loss can be compensated by much more rate savings acquired from
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higher side information quality, e.g., the joint estimation is not applicable without

depth information at the decoder, and the rate savings from joint estimation only are

already more than the bit rate for depth information for each sequence set.

Table IX. Rate savings (in bytes) achieved by different components in the bit stream

(sequence akko&kayo). Average mutual information is provided for WZ

coded components.

Component Mutual info. Bytes Saved % saved

Intra mode 0.23 34314 0.44%

Anchor DCT coeff. 0.40 395481 5.09%

Depth info. — -71729 -0.92%

Inter mode 0.09 7902 0.10%

MVD 0.15 24604 0.32%

Non-anc. DCT coeff. 0.24 107006 1.38%

Joint Estimation — 269544 3.47%

Additionally, we fix the average transmission rate (akko&kayo at 1.2 Mbps per

view, rena at 0.6 Mbps per view, at frame rate of 30 fps) and compare the PSNR

performance vs. different frames. The result is shown in Fig. 38. and 39

Remarks:

• The current depth information is generated by processing video frames from dif-

ferent views jointly. However, since we encode and transmit it separately, this

scheme is still a MT scheme if we consider the depth information as another

video source, which contains the geometrical relation between different texture

sequences. Particularly, if the depth information can be automatically collected
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Table X. Rate savings (in bytes) achieved by different components in the bit stream

(sequence rena). Average mutual information is provided for WZ coded

components.

Component Mutual info. Bytes Saved % saved

Intra mode 0.31 74243 0.97%

Anchor DCT coeff. 0.58 507657 6.59%

Depth info. — -99238 -1.29%

Inter mode 0.08 5953 0.08%

MVD 0.13 24313 0.32%

Non-anc. DCT coeff. 0.09 38026 0.49%

Joint Estimation — 162009 2.11%

and synchronized with the texture sequences (new devices, such as depth cam-

eras, are available now, but well calibrated and synchronized sequences are still

rare), the application of the proposed scheme will becomes straightforward.

• By transmitting additional depth information to the decoder, the R-D perfor-

mance of MT video coding can be improved. This indicates that the correlation

between different camera view sequences can be more thoroughly exploited by

providing their geometrical relations, which help to acquire pixel-to-pixel cor-

respondence between simultaneous frames from different camera views. If such

correspondence is accurate, the correlation model between different views will

become much simpler since only pixel value noise that is independent between

different views needs to be considered. Therefore, the advantage of using depth

information should not only benefit MT video coding, but also become a more

efficient means of representation for other applications with multiple correlated
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video sequences.
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(a) The depth image of the camera view
1 frame (resolution: 80× 60).

(b) The original camera view 0 frame
(resolution: 640× 480).

(c) The camera view 1 frame to be WZ
coded.

(d) The side information frame for 36(c)
warped from camera view 0 frame
(PSNR: 37.67dB).

Fig. 36. An example of depth image assisted frame warping, from sequence set rena,

camera view 0 and 1, first frame.
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(a) The depth image of camera view 1
frame generated by DERS.

(b) The side information frame for 35(c)
warped from camera view 0 frame by
DERS (PSNR 27.38dB).

Fig. 37. Depth and side information frame using DERS for depth estimation.
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(a) akko&kayo view 1
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(b) akko&kayo view 2
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(c) akko&kayo view 3
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(d) akko&kayo view 4
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(e) akko&kayo view 5
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Fig. 38. Comparison of PSNR (in dB) vs. frame number for simulcast, MT and joint

schemes. First GOP, 1 anchor frame followed by 7 hierarchically bi-predicted

non-anchor frames. Sequence akko&kayo.
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Fig. 39. Comparison of PSNR (in dB) vs. frame number for simulcast, MT and joint

schemes. First GOP, 1 anchor frame followed by 7 hierarchically bi-predicted

non-anchor frames. Sequence rena.
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CHAPTER VI

CONCLUSIONS

In this dissertation, the theory and application of MT video coding is analyzed in

detail. First, two theoretical results in quadratic Gaussian MT source coding are

shown. A new sufficient condition is provided for BT sum-rate tightness. And the

behavior of sum-rate loss in quadratic Gaussian MT source coding is also analyzed.

Following the theoretical results and extending the code designs in [17] for

quadratic Gaussian two-terminal source coding, this dissertation also proposed the

first code design for quadratic Gaussian MT direct and indirect source coding prob-

lems that have recently been shown to have tight sum-rate bound. TCQ/TCVQ and

LDPC codes are employed to approach corner points of the rate region. A model-

based approximation to the LLR distribution is provided to simplify the LDPC code

design with no additional rate loss. Simulation results show that in the three- and

four-terminal cases in the high-rate scenario, the sum-rate loss due to practical coding

can be achieved as low as 0.106 b/s for a transmission rate of 9.095 b/s, while in the

low-rate scenario the sum-rate loss is 0.146 b/s for a sum rate of 4.131 b/s. The rate

loss in the low-rate scenario is relatively higher due to the smaller granular gain of

TCVQ.

In accordance with the advancement of research on RD analysis in MT source

coding theory, and the development of distributed video sensor network and its 3-D

applications, we provided detailed analysis and experiment results for MT video cod-

ing with depth information separately transmitted to the decoder under the H.264/AVC

framework in this dissertation. By utilizing the depth information to acquire better

decoder side information, we are able to achieve an average sum rate saving of about

9.58% over simulcast scheme implemented by JM reference software, about 4% bet-
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ter than that without depth camera. Comparison to MVC scheme implemented by

JMVM reference software shows that MT scheme suffers a sum rate loss of 8.53%,

which conforms with the result in MT source coding theory. Moreover, given depth

information, joint estimation can also be performed to improve the quality of re-

constructed sequence frames for both MT and MVC schemes, which indicates the

importance of using additional depth information in 3D video applications. Since

the depth information we use is still simple and relatively coarse, we expect that if

more advanced depth information collecting devices are equipped in multiview video

sequence acquisition, the performance of MT video coding could be further improved,

and even joint video coding scheme other applications, e.g., 3D-TV, free view-point

TV, etc., would also benefit from this.
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[17] Y. Yang, V. Stanković, Z. Xiong, and W. Zhao, “On multiterminal source code

design,” IEEE Trans. Inform. Theory, vol. 54, pp. 2278-2302, May 2008.

[18] M. Marcellin and T. Fischer, “Trellis coded quantization of memoryless and

Gaussian-Markov sources,” IEEE Trans. Communications, vol. 38, pp. 82-93,

Jan. 1990.

[19] T. Fischer, M. Marcellin, and M. Wang, “Trellis-coded vector quantization,”

IEEE Trans. Inform. Theory, vol. 37, pp. 1551-1566, Nov. 1991.

[20] Y. Yang, S. Cheng, Z. Xiong, and W. Zhao, “Wyner-Ziv coding based on TCQ

and LDPC codes,” IEEE Trans. Communications, vol. 54, pp. 2278-2302, May

2008.

[21] X. Zhu, A. Aaron and B. Girod, “Distributed compression for large camera

arrays,” Proc. IEEE Workshop on Statistical Signal Proc., St. Louis, MO, Sept.

2003.

[22] M. Flierl and B. Girod, “Coding of multi-view image sequences with video sen-

sors,” Proc. of ICIP’06, pp. 609-612, Atlanta, GA, Oct. 2006.

[23] M. Flierl and P. Vandergheynst, “Distributed coding of highly correlated image

sequences with motion-compensated temporal wavelets,” EURASIP J. Applied

Signal Proc., Article ID 46747, 2006.

[24] X. Guo, Y. Lu, F. Wu, W. Gao, and S. Li, “Distributed multi-view video coding,”

Proc. SPIE VCIP, San Jose, CA, Jan. 2006.

[25] I. Tosic and P. Frossard, “Geometry-based distributed scene representation with

omnidirectional vision sensors,” IEEE Trans. Image Processing, vol. 17, pp. 1033-

1046, Jul. 2008.



183

[26] N. Gehrig and P. Dragotti, “Geometry-driven distributed compression of the

plenoptic function: Performance bounds and constructive algorithms,” IEEE

Trans. Image Processing, vol. 18, pp. 457-470, Mar. 2009.

[27] T. Wiegand, G. Sullivan, G. Bjøtegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 560–576, Jul. 2003.
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APPENDIX A

PROOF OF LEMMA 12

Proof. To prove Lemma 17, we use a rigorous numerical method that is based on the

following two propositions.

Proposition 2. Denote the optimal p in P2(x) for fixed (x, λ) ∈ [0, 1)2 as

p∗(x, λ)
∆
= arg max

p∈(0,1]:g2(λ,p ;x)≥0
f2(λ, p ; x), (A.1)

then p∗(x, λ) must satisfy

p∗(x, λ) = min(pf (x, λ), pg(x, λ)), (A.2)

where pf (x, λ), pg(x, λ) are the solutions to (A.3) and (A.4) as follows.

p(2− 4xλ+ 4pλ+ 2xλ2
− 5xpλ2 + xpλ3

− 2xp2λ3 + 2p2λ2)

(1 + pλ)2(1− x)
· ln

(

(1− xλ)p

1− x+ (1− xλ)p

)

= 1, (A.3)

1− x− p+ pλ− p
2
λ = 0. (A.4)

Proof. In this proof, we denote f = f2(λ, p ; x), g = g2(λ, p ; x). First, we show that
for any fixed x and λ, f is a concave function of p. In fact, (A.5) - (A.7) hold as
follows,

2 ln 2
∂2f

∂p2
=

2− 4xλ+ 4pλ+ 2xλ2
− 5xpλ2 + xpλ3

− 2xp2λ3 + 2p2λ2

(1 + pλ)2(1− x+ p− pxλ)
+ ln(

(1− xλ)p

1− x+ (1− xλ)p
)·

2(1− 3xp2λ3
− 3xpλ2

− 2xλ+ 3pλ+ xλ2 + 3p2λ2
− xp3λ4 + p3λ3)

(1− x)(1 + pλ)3
(A.5)

≤
2− 4xλ+ 4pλ+ 2xλ2

− 5xpλ2 + xpλ3
− 2xp2λ3 + 2p2λ2

(1 + pλ)2(1− x+ p− pxλ)
+

(

−
1− x

1− x+ (1− xλ)p

)

·

2(1− 3xp2λ3
− 3xpλ2

− 2xλ+ 3pλ+ xλ2 + 3p2λ2
− xp3λ4 + p3λ3)

(1− x)(1 + pλ)3
(A.6)

= −
xpλ2(1− λ)(3 + pλ)

(1 + pλ)3(1− x+ p− pxλ)
≤ 0. (A.7)
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where (A.6) is due to the fact that

(1− 3xp2λ3 − 3xpλ2 − 2xλ+ 3pλ+ xλ2 + 3p2λ2 − xp3λ4 + p3λ3) (A.8)

=(1− 2xλ+ xλ2) + (3p2λ2 − 3xp2λ3) + (3pλ− 3xpλ2) + (p3λ3 − xp3λ4) ≥ 0,

and ln(1 − x) ≤ −x, with x = 1−x
1−x+(1−xλ)p

∈ (0, 1). Hence the (scaled) first order

derivative

2 ln 2
∂f

∂p
= 1 + p(2− 4xλ+ 4pλ+ 2xλ2 − 5xpλ2

+ xpλ3 − 2xp2λ3 + 2p2λ2)(1 + pλ)−2(1− x)−1

· ln
(

(1− xλ)p

1− x+ (1− xλ)p

)

∆
= 1 + C (λ, p, x) · ln[D(λ, p, x)] (A.9)

is monotonically decreasing in p. Moreover, since ∂f
∂p

satisfies

lim
p→0

[

2 ln 2
∂f

∂p

]

= 1 > 0,

and

2 ln 2
∂f

∂p

∣
∣
∣
∣
p=1

= 1 +
(2− 4xλ+ 4λ+ 2xλ2 − 5xλ2 + xλ3 − 2xλ3 + 2λ2)

(1 + λ)2(1− x)

· ln
(

1− xλ

1− x+ (1− xλ)

)

≤ 1 +
(2− 4xλ+ 4λ+ 2xλ2 − 5xλ2 + xλ3 − 2xλ3 + 2λ2)

(1 + λ)2(1− x)
·
(

− 1− x

2 − x− xλ

)

= − x(1 − λ)

(1 + λ)2(2− x− xλ)
< 0.

we know that for any (x, λ) pair, there must be a solution to (A.3) in the range
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p ∈ (0, 1), which means pf (x, λ) is well defined and must satisfy

2 ln 2
∂f

∂p







> 0 p ∈ (0, pf(x, λ))

= 0 p = pf(x, λ)

< 0 p ∈ (pf(x, λ), 1]

.

Then since pg(x, λ) is the solution to g = 1−x−p+pλ−p2λ = 0, and g is monotonically

decreasing in p, we know that p = pf(x, λ) must satisfy g ≥ 0 if pf(x, λ) ≤ pg(x, λ);

and f must be monotone increasing in p ∈ (0, pg(x, λ)) if pg(x, λ) < pf(x, λ). Hence

(A.2) must hold for any fixed (x, λ).

Proposition 3. For any rectangular region Ω =
{
(x, λ) : x ≤ x < x, λ ≤ λ < λ

}
with

x, x, λ, λ ∈ [0, 1), define

p = min

(

max(
κ(1− x)

1− xλ
, pf(Ω)), pg(Ω)

)

, p = min(pf(Ω), pg(Ω)), w =
1− xλ

1− x
,

y =
(1 + pλ− x− p− p2λ)(1− x+ p− pλx)

(1 + pλ)(1− x)
,

where

κ = − 1

2W−1(− 1
2
√
e
) + 1

= 0.39795255

is a constant satisfying

1 + 2κ · ln
[

κ

1 + κ

]

= 0, (A.10)

with W−1(x) being the Lambert W function in the branch [−1
e
, 0), and pf(Ω), pf (Ω),
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pg(Ω), pg(Ω) are the solutions of p ∈ (0, 1] to (A.11) - (A.14)as follows, respectively.

1 +
p(2− 4xλ+ 4pλ+ 2xλ

2
− 5xpλ2 + xpλ

3
− 2xp2λ3 + 2p2λ

2
)

(1 + pλ)2(1− x)
ln

(

(1− xλ)p

1− x+ (1− xλ)p

)

= 0, (A.11)

1 +
p(2− 4xλ+ 4pλ+ 2xλ2

− 5xpλ
2
+ xpλ3

− 2xp2λ
3
+ 2p2λ2)

(1 + pλ)2(1− x)
ln

(

(1− xλ)p

1− x+ (1− xλ)p

)

= 0, (A.12)

1− x− p+ pλ− p
2
λ = 0, (A.13)

1− x− p+ pλ− p
2
λ = 0. (A.14)

Then for any (x, λ) ∈ Ω, the optimal p∗(x, λ) defined in (A.1) must satisfy

p ≤ p∗(x, λ) ≤ p, (A.15)

with the corresponding maximum function value upper-bounded by

max
(x,λ)∈Ω

f ∗(x, λ) ≤ f(Ω)
∆
=
x

2
log2(1 + λp) +

y

2
log2(1 + wp) +

1− x− y

2
log2(wp).

(A.16)

Proof. In this proof, we again denote f = f2(λ, p ; x), g = g2(λ, p ; x).

In the rectangular region (x, λ) ∈ Ω where 0 ≤ x ≤ x < x < 1 and 0 ≤ λ ≤ λ <

λ ≤ 1, we can lower- and upper-bound C (λ, p, x) and D(λ, p, x) (defined in (A.9)) as

C (λ, p, x) |(x,λ)∈Ω≥ C (Ω, p)
∆
=
p(2− 4xλ+ 4pλ+ 2xλ2 − 5xpλ

2
+ xpλ3 − 2xp2λ

3
+ 2p2λ2)

(1 + pλ)2(1− x)
,

C (λ, p, x) |(x,λ)∈Ω≤ C (Ω, p)
∆
=
p(2− 4xλ+ 4pλ+ 2xλ

2 − 5xpλ2 + xpλ
3 − 2xp2λ3 + 2p2λ

2
)

(1 + pλ)2(1− x)
,

D(λ, p, x) |(x,λ)∈Ω≥ D(Ω, p)
∆
=

(1− xλ)p

1− x+ (1− xλ)p
,

D(λ, p, x) |(x,λ)∈Ω≤ D(Ω, p)
∆
=

(1− xλ)p

1− x+ (1− xλ)p
,

where the last two inequalities hold because D(λ, p, x) is monotonically increasing in

x and monotonically decreasing in λ. Clearly,

ln[D(Ω, p)] < 0, ln[D(Ω, p)] < 0, C (Ω, p) > 0, C (Ω, p) > 0, (A.17)
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where (A.17) is true because

2− 4xλ+ 4pλ+ 2xλ2 − 5xpλ2 + xpλ3 − 2xp2λ3 + 2p2λ2

= 2p2λ2(1− xλ) + pλ(1− xλ)(4− xλ) + 2(1− xλ)2 + xλ2(1− x)(2 + pλ) > 0,

for any (x, λ) ∈ [0, 1)2 (and thus (x, λ) and (x, λ)). Hence

2 ln 2
∂f

∂p
|(x,λ)∈Ω ≥ 1 + C (Ω, p) · ln[D(Ω, p)]

∆
= ḟ−(Ω, p), for any p ∈ (0, 1] (A.18)

2 ln 2
∂f

∂p
|(x,λ)∈Ω ≤ 1 + C (Ω, p) · ln[D(Ω, p)]

∆
= ḟ+(Ω, p), for any p ∈ (0, 1].

Now pf(Ω), pf (x, λ), and pf(Ω) are the solutions to ḟ−(Ω, p) = 0, ∂f
∂p

= 0, and

ḟ+(Ω, p) = 0, respectively, and we claim that

pf(Ω) ≤ pf(x, λ) ≤ pf (Ω) for any (x, λ) ∈ Ω, (A.19)

since otherwise assume that, e.g., pf (Ω) > pf(x, λ) for some (x, λ) ∈ Ω, leading to a

contradiction

0 =
∂f

∂p
|p=pf(x,λ)>

∂f

∂p
|p=pf (Ω)≥

1

2 ln 2
ḟ− (Ω, pf(Ω)

)
= 0,

where the first inequality is true because ∂f
∂p

is monotonically decreasing in p, and the

second inequality is due to (A.18). On the other hand, from (A.10) and the facts that

2 ln 2
∂f

∂p
= 1 +

[
2p(1− xλ)

1− x
− xpλ(1− λ)(2 + pλ)

(1 + pλ)2(1− x)

]

· ln[D(Ω, p)]

≥ 1 +
2p(1− xλ)

1− x
· ln[D(Ω, p)] = 1 + 2

[
p(1− xλ)

1− x

]

· ln
[

p(1−xλ)
1−x

1 + p(1−xλ)
1−x

]

,

g ≥ 1− x− p+ pλ− p2λ, g ≤ 1− x− p+ pλ− p2λ,
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we can use similar argument as in the proof of (A.19) to show that for any (x, λ) ∈ Ω,

pf(x, λ)(1− xλ)

1− x
≥ κ ⇒ pf(x, λ) ≥ κ(1− x)

1− xλ
≥ κ(1− x)

1− xλ
. (A.20)

and

pg(Ω) ≤ pg(x, λ) ≤ pf(Ω) for any (x, λ) ∈ Ω. (A.21)

Thus (A.15) follows from (A.2), (A.19), (A.20), (A.21), and the definitions of p and

p.

Finally, to prove (A.16), we use the equivalent definition of f given in (3.68) with

w and y defined in (3.65) and (3.66), respectively. Then (A.16) is due to the facts

that w ≤ w and y ≤ y for any (x, λ) ∈ Ω and p = p∗(x, λ).

Now we split the rectangle 0 ≤ x < 1, 0 ≤ λ < 1 into Nc small rectangular cells

denoted as

Ωk =
{
(x, λ) : xk ≤ x < xk, λk ≤ λ < λk

}
,

for k = 1, 2, ..., Nc, and compute the four values pf(Ω), pf(Ω), pg(Ω), pg(Ω) for each

cell. Then we can define

Ωg=0 =
⋃

k∈{1,2,...,Nc} : pf (Ωk)≥ pg(Ωk)

Ωk.

Obviously, Ωg=0 is an (x, λ) region inside which the maximum f ∗(x, λ) must be

achieved on the boundary g2(λ, p
∗(x, λ) ; x) = 0, since for any (x, λ) ∈ Ωk such that
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pf(Ωk) ≥ pg(Ωk), it must be true that

pg(x, λ) ≤ pg(Ωk) ≤ pf(Ωk) ≤ pf (x, λ)

⇒ p∗(x, λ) = min(pf (x, λ), pg(x, λ)) = pg(x, λ)

⇒ p∗(x, λ) satisfies g2(λ, p
∗(x, λ) ; x) = 0.

Conversely, for a pair (x, λ), if f ∗(x, λ) is not achieved on the boundary g2(λ, p
∗(x, λ) ; x) =

0, then we must have (x, λ) /∈ Ωg=0.

Then if g2(λ
max2(x), pmax2(x) ; x) > 0 for some x ∈ [0, 1), i.e., if fmax2(x) is not

achieved on the boundary, it must hold that (x, λmax2(x)) /∈ Ωg=0, which is equivalent

to (x, λmax2(x)) ∈ Ωk for some Ωk 6⊂ Ωg=0, due to the definition of Ωg=0. Hence

fmax2(x) ≤ max
k∈{1,2,...,Nc}:Ωk 6⊂Ω

g=0,xk≤x<xk

f(Ωk)
∆
= f

g>0
(x), (A.22)

where f
g>0

(x) can be computed numerically up to arbitrary precision for any given

x ∈ [0, 1).

Now we proceed to prove Lemma 17. To do this, we compute

max
x∈[0,1)

f
g>0

(x) = max
k∈{1,2,...,Nc}:Ωk 6⊂Ω

g=0
f(Ωk) = 0.1076069180

∆
= f o

max,

where the maximum of 0.1076069180 is achieved in the rectangular region Ωk cen-

tered at
xk+xk

2
= 0.7760825000,

λk+λk

2
= 0.8730725000. Then for any x ∈ [0, 1),

if the maximum function value fmax2(x) is achieved at a non-boundary point, i.e.,

g2(λ
max2(x), pmax2(x) ; x) > 0, then due to (A.22), it holds that

fmax2 (x) ≤ f
g>0

(x) ≤ f o
max = 0.1076069180. (A.23)

On the other hand, since the solution to P2b(x) is always a lower bound on that
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to P2(x), we apply Lemma 16 and obtain

fmax2

(
N

L

)

≥ τ

(
N

L

)

, (A.24)

and it is easy to verify that

fmax1(N) ≥ f1(ν(x), 1, 1, µ(x), N, 0, L−N) = τ

(
N

L

)

, (A.25)

where fmax1(N) denotes the maximum function value in PL
1 when N ∈ {0, 1, ..., L− 1}

is fixed. In addition, due to the fact that ∂τ(x)
∂x

> 0 when x < x⋆, and ∂τ(x)
∂x

< 0 when

x > x⋆, we know that for any integer L ≥ 2, if there exists an integer N such that

0.777 ≤ N
L
≤ 0.849, it must hold that

τ

(
N

L

)

≥ min(τ(0.777), τ (0.849)) = 0.1076149432 > f o
max.

Now assume that (3.72) does not hold for some L ∈ {5, 6, 9, 10, ...}. Then we

have a contradiction

f o
max ≥ fmax2

(
Nmax2

L

)

≥ fmax2

(
N

L

)

≥ τ

(
N

L

)

> f o
max,

where the first inequality is due to the assumption and (A.23), the second inequality

comes from the definition of Nmax2 , the third inequality is proved in (A.24), while the

last inequality is due to the fact that for any L ∈ {5, 6, 9, 10, ...}, there always exists

an N ∈ {1, 2, ..., L− 1} such that 0.777 ≤ N
L

≤ 0.849. To verify the latter fact, we

write

0.777 ≤ 4

5
,
5

6
,
7

9
,
8

10
,
9

11
,
10

12
,
11

13
,
11

14
≤ 0.849,

and note that 0.849− 0.777 = 0.072 > 1
L
for any integer L > 14.

The last case is when L = 7, for which no integer N ∈ {0, 1, 2, ..., 6} satisfies

0.777 ≤ N
L

≤ 0.849. For this case, we prove (3.72) by computing f
g>0 (N

L

)
for all
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N ∈ {0, 1, 2, ..., 6}, which gives

max
N∈{0,1,2,...,6}

f
g>0
(
N

L

)

= max{0.0983224677, 0.0987674177, 0.0996073967, 0.1007807547,

0.1025463428, 0.1055466980, 0.0443653176}= 0.1055466980.

(A.26)

Then (3.72) must be true since otherwise we have a contradiction

0.1055466980 ≥ f
g>0
(
Nmax2

L

)

≥ fmax2

(
Nmax2

7

)

≥ fmax2

(
N

7

)

≥ τ

(
6

7

)

= 0.1071970579,

where the four inequalities are due to (A.26), (A.22), definition of Nmax2 , and (A.24),

respectively.

Now we have proved that (3.72) holds for any L 6∈ {2, 3, 4, 8}. To verify the first

equation in (3.83), we need to show that for L ≥ 2,

L · max
N∈{1,2,...,L−1}

τ(
N

L
) = L ·max

[

τ

(⌊Lx⋆⌋
L

)

, τ

(⌈Lx⋆⌉
L

)]

,

which follows from the facts that ∂τ(x)
∂x

> 0 when x < ⌊Lx⋆⌋
L

< x⋆ and ∂τ(x)
∂x

< 0 when

x > ⌈Lx⋆⌉
L

> x⋆. All other equations in (3.83) are trivial consequences of (3.73) -

(3.78), (3.81) and (3.82).
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