574 research outputs found

    Placing Conditional Disclosure of Secrets in the Communication Complexity Universe

    Get PDF
    In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret z to Carol (who knows both x and y) if and only if the input (x,y) satisfies some predefined predicate f. Alice and Bob are allowed to send a single message to Carol which may depend on their inputs and some shared randomness, and the goal is to minimize the communication complexity while providing information-theoretic security. Despite the growing interest in this model, very few lower-bounds are known. In this paper, we relate the CDS complexity of a predicate f to its communication complexity under various communication games. For several basic predicates our results yield tight, or almost tight, lower-bounds of Omega(n) or Omega(n^{1-epsilon}), providing an exponential improvement over previous logarithmic lower-bounds. We also define new communication complexity classes that correspond to different variants of the CDS model and study the relations between them and their complements. Notably, we show that allowing for imperfect correctness can significantly reduce communication - a seemingly new phenomenon in the context of information-theoretic cryptography. Finally, our results show that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary step towards proving explicit lower-bounds against the class AM, or even AM cap coAM - a well known open problem in the theory of communication complexity. Thus imperfect CDS forms a new minimal class which is placed just beyond the boundaries of the "civilized" part of the communication complexity world for which explicit lower-bounds are known

    Algebra in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. The algebraic theme continues in some of the most exciting recent progress in computational complexity. There have been significant recent advances in algebraic circuit lower bounds, and the so-called "chasm at depth 4" suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model, and these are tied to central questions regarding the power of randomness in computation. Representation theory has emerged as an important tool in three separate lines of work: the "Geometric Complexity Theory" approach to P vs. NP and circuit lower bounds, the effort to resolve the complexity of matrix multiplication, and a framework for constructing locally testable codes. Coding theory has seen several algebraic innovations in recent years, including multiplicity codes, and new lower bounds. This seminar brought together researchers who are using a diverse array of algebraic methods in a variety of settings. It plays an important role in educating a diverse community about the latest new techniques, spurring further progress

    From usability to secure computing and back again

    Full text link
    Secure multi-party computation (MPC) allows multiple parties to jointly compute the output of a function while preserving the privacy of any individual party’s inputs to that function. As MPC protocols transition from research prototypes to realworld applications, the usability of MPC-enabled applications is increasingly critical to their successful deployment and widespread adoption. Our Web-MPC platform, designed with a focus on usability, has been deployed for privacy-preserving data aggregation initiatives with the City of Boston and the Greater Boston Chamber of Commerce. After building and deploying an initial version of the platform, we conducted a heuristic evaluation to identify usability improvements and implemented corresponding application enhancements. However, it is difficult to gauge the effectiveness of these changes within the context of real-world deployments using traditional web analytics tools without compromising the security guarantees of the platform. This work consists of two contributions that address this challenge: (1) the Web-MPC platform has been extended with the capability to collect web analytics using existing MPC protocols, and (2) as a test of this feature and a way to inform future work, this capability has been leveraged to conduct a usability study comparing the two versions ofWeb-MPC. While many efforts have focused on ways to enhance the usability of privacy-preserving technologies, this study serves as a model for using a privacy-preserving data-driven approach to evaluate and enhance the usability of privacy-preserving websites and applications deployed in realworld scenarios. Data collected in this study yields insights into the relationship between usability and security; these can help inform future implementations of MPC solutions.Published versio

    Selfishness and Malice in Distributed Systems

    Get PDF
    Large-scale distributed systems are increasingly prevalent. Two issues can impact the performance of such systems: selfishness and malice. Selfish players can reduce social welfare of games, and malicious nodes can disrupt networks. In this dissertation, we provide algorithms to address both of these issues. One approach to ameliorating selfishness in large networks is the idea of a mediator. A mediator implements a correlated equilibrium when it proposes a strategy to each player privately such that the mediators proposal is the best interest for every player to follow. In this dissertation, we present a mediator that implements the best correlated equilibrium for an extended El Farol game. The extended El Farol game we consider has both positive and negative network effects. We study the degree to which this type of mediator can decrease the social cost. In particular, we give an exact characterization of Mediation Value (MV) and Enforcement Value (EV) for this game. MV measures the efficiency of our mediator compared to the best Nash equilibrium, and EV measures the efficiency of our mediator compared to the optimal social cost. This sort of exact characterization is uncommon for games with both kinds of network effects. An interesting outcome of our results is that both the MV and EV values can be unbounded for our game. Recent years have seen significant interest in designing networks that are self-healing in the sense that they can automatically recover from adversarial attacks. Previous work shows that it is possible for a network to automatically recover, even when an adversary repeatedly deletes nodes in the network. However, there have not yet been any algorithms that self-heal in the case where an adversary takes over nodes in the network. In this dissertation, we address this gap. In particular, we describe a communication network over n nodes that ensures the following properties, even when an adversary controls up to t ≤ (1/4 − ε)n nodes, for any constant ε \u3e 0. First, the network provides point-to-point communication with message cost and latency that are asymptotically optimal in an amortized sense. Second, the expected total number of message corruptions is O(t(log* n)^2), after which the adversarially controlled nodes are effectively quarantined so that they cause no more corruptions. In the problem of reliable multiparty computation (RMC), there are n parties, each with an individual input, and the parties want to jointly and reliably compute a function f over n inputs, assuming that it is not necessary to maintain the privacy of the inputs. The problem is complicated by the fact that an omniscient adversary controls a hidden fraction of the parties. We describe a self-healing algorithm for this problem. In particular, for a fixed function f, with n parties and m gates, we describe how to perform RMC repeatedly as the inputs to f change. Our algorithm maintains the following properties, even when an adversary controls up to t ≤ (1/4 − ε)n parties, for any constant ε \u3e 0. First, our algorithm performs each reliable computation with the following amortized resource costs: O(m + n log n) messages, O(m + n log n) computational operations, and O(\ell) latency, where \ell is the depth of the circuit that computes f. Second, the expected total number of corruptions is O(t(log* n)^2). Our empirical results show that the message cost reduces by up to a factor of 60 for communication and a factor of 65 for computation, compared to algorithms of no self-healing

    Strengths and Weaknesses of Quantum Fingerprinting

    Full text link
    We study the power of quantum fingerprints in the simultaneous message passing (SMP) setting of communication complexity. Yao recently showed how to simulate, with exponential overhead, classical shared-randomness SMP protocols by means of quantum SMP protocols without shared randomness (QQ^\parallel-protocols). Our first result is to extend Yao's simulation to the strongest possible model: every many-round quantum protocol with unlimited shared entanglement can be simulated, with exponential overhead, by QQ^\parallel-protocols. We apply our technique to obtain an efficient QQ^\parallel-protocol for a function which cannot be efficiently solved through more restricted simulations. Second, we tightly characterize the power of the quantum fingerprinting technique by making a connection to arrangements of homogeneous halfspaces with maximal margin. These arrangements have been well studied in computational learning theory, and we use some strong results obtained in this area to exhibit weaknesses of quantum fingerprinting. In particular, this implies that for almost all functions, quantum fingerprinting protocols are exponentially worse than classical deterministic SMP protocols.Comment: 13 pages, no figures, to appear in CCC'0

    Near-Optimal Lower Bounds on the Threshold Degree and Sign-Rank of AC^0

    Full text link
    The threshold degree of a Boolean function f ⁣:{0,1}n{0,1}f\colon\{0,1\}^n\to\{0,1\} is the minimum degree of a real polynomial pp that represents ff in sign: sgn  p(x)=(1)f(x).\mathrm{sgn}\; p(x)=(-1)^{f(x)}. A related notion is sign-rank, defined for a Boolean matrix F=[Fij]F=[F_{ij}] as the minimum rank of a real matrix MM with sgn  Mij=(1)Fij\mathrm{sgn}\; M_{ij}=(-1)^{F_{ij}}. Determining the maximum threshold degree and sign-rank achievable by constant-depth circuits (AC0\text{AC}^{0}) is a well-known and extensively studied open problem, with complexity-theoretic and algorithmic applications. We give an essentially optimal solution to this problem. For any ϵ>0,\epsilon>0, we construct an AC0\text{AC}^{0} circuit in nn variables that has threshold degree Ω(n1ϵ)\Omega(n^{1-\epsilon}) and sign-rank exp(Ω(n1ϵ)),\exp(\Omega(n^{1-\epsilon})), improving on the previous best lower bounds of Ω(n)\Omega(\sqrt{n}) and exp(Ω~(n))\exp(\tilde{\Omega}(\sqrt{n})), respectively. Our results subsume all previous lower bounds on the threshold degree and sign-rank of AC0\text{AC}^{0} circuits of any given depth, with a strict improvement starting at depth 44. As a corollary, we also obtain near-optimal bounds on the discrepancy, threshold weight, and threshold density of AC0\text{AC}^{0}, strictly subsuming previous work on these quantities. Our work gives some of the strongest lower bounds to date on the communication complexity of AC0\text{AC}^{0}.Comment: 99 page
    corecore