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Abstract

Large-scale distributed systems are increasingly prevalent. Two issues can impact the per-

formance of such systems: selfishness and malice. Selfish players can reduce social welfare of

games, and malicious nodes can disrupt networks. In this dissertation, we provide algorithms

to address both of these issues.

One approach to ameliorating selfishness in large networks is the idea of a mediator. A

mediator implements a correlated equilibrium when it proposes a strategy to each player

privately such that the mediator’s proposal is the best interest for every player to follow. In

this dissertation, we present a mediator that implements the best correlated equilibrium for

an extended El Farol game. The extended El Farol game we consider has both positive and

negative network effects. We study the degree to which this type of mediator can decrease

the social cost. In particular, we give an exact characterization of Mediation Value (MV )

and Enforcement Value (EV ) for this game. MV measures the efficiency of our mediator

compared to the best Nash equilibrium, and EV measures the efficiency of our mediator
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compared to the optimal social cost. This sort of exact characterization is uncommon for

games with both kinds of network effects. An interesting outcome of our results is that both

the MV and EV values can be unbounded for our game.

Recent years have seen significant interest in designing networks that are self-healing in

the sense that they can automatically recover from adversarial attacks. Previous work shows

that it is possible for a network to automatically recover, even when an adversary repeatedly

deletes nodes in the network. However, there have not yet been any algorithms that self-

heal in the case where an adversary takes over nodes in the network. In this dissertation,

we address this gap. In particular, we describe a communication network over n nodes

that ensures the following properties, even when an adversary controls up to t ≤ (1/4− ε)n

nodes, for any constant ε > 0. First, the network provides point-to-point communication with

message cost and latency that are asymptotically optimal in an amortized sense. Second, the

expected total number of message corruptions is O(t(log∗ n)2), after which the adversarially

controlled nodes are effectively quarantined so that they cause no more corruptions.

In the problem of reliable multiparty computation (RMC), there are n parties, each with

an individual input, and the parties want to jointly and reliably compute a function f over n

inputs, assuming that it is not necessary to maintain the privacy of the inputs. The problem is

complicated by the fact that an omniscient adversary controls a hidden fraction of the parties.

We describe a self-healing algorithm for this problem. In particular, for a fixed function f ,

with n parties and m gates, we describe how to perform RMC repeatedly as the inputs to f

change. Our algorithm maintains the following properties, even when an adversary controls

up to t ≤ (1
4
− ε)n parties, for any constant ε > 0. First, our algorithm performs each

reliable computation with the following amortized resource costs: O(m+ n log n) messages,

O(m + n log n) computational operations, and O(`) latency, where ` is the depth of the

circuit that computes f . Second, the expected total number of corruptions is O(t(log∗ n)2).

Our empirical results show that the message cost reduces by up to a factor of 60 for

communication and a factor of 65 for computation, compared to algorithms of no self-healing.
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Chapter 1

Introduction

“The Future Has Arrived - It’s Just Not Evenly Distributed Yet.”

– William Gibson

Selfishness and malice have negative influences on the performance of distributed systems.

Selfish players in a game can reduce social welfare; and malicious nodes can seriously disrupt

the network. In this thesis, we study selfishness and malice in distributed systems, and we

provide solutions and algorithms to address these issues.

1.1 Selfishness

In a game theoretic setting, players are selfish, where they try to maximize their own utility,

without concern for others. Unfortunately, social welfare can decrease significantly when the

players are selfish compared to when they are benevolent.

In game theory, the Nash equilibrium [61] is one of the basic solution concepts for non-

cooperative games [18, 62]. Nash equilibrium is a situation, in which each player settles on

a strategy, where no incentive to change this strategy unilaterally. Note that there is no

communication among the players, and no player reveals his own strategy.

1



Chapter 1. Introduction

The Price of Anarchy [49] and the Price of Stability [4] are concepts in game theory to

measure how the efficiency of a system degrades due to selfish behavior of the players. The

Price of Anarchy is the ratio of the social cost of the worst Nash equilibrium to the optimal

social cost of benevolent and omniscient dictator. However, the Price of Stability is the ratio

of the social cost of the best Nash equilibrium to the optimal social cost of benevolent and

omniscient dictator.

In many games with a high Price of Stability, one way to reduce social cost is to find a

mediator with less social cost compared to the best Nash equilibrium. Informally, a mediator

is a trusted party that gives recommendations to the players, or it can even act on behalf of

the players. Note that each player has free will to accept or deny the mediator’s behavior.

Several papers [20, 21, 24, 27, 34, 42] have been conducted to analyze equilibria and

develop mediators for various games. They measure how efficient their equilibria or mediators

are in terms of price of anarchy [49], price of stability [4], price of mediation [20] and value

of correlation [8].

In this thesis, we study the El Farol game [5, 23, 26, 50] after we extend it to have both

types of network effects [28]. We design a mediator that implements the best correlated

equilibrium [10] of our game, and we measure how efficient our mediator is, in terms of the

value of correlation.

The classical El Farol game is one of the non-cooperative games [18, 62], where no player

cooperates with any other player and each player selects his action unilaterally. In this game,

each player chooses either to go to the El Farol restaurant or stay home. If any player decides

to stay, he has to pay a constant cost. If any player chooses to go, he has to pay a cost

which increases linearly as the total number of players that go increases. This shows that

the classical El Farol game has only a negative network effect [28].

However, many social and economic applications have both positive and negative network

effects [28]. Note that the positive network effect is that the more players that do the same

2



Chapter 1. Introduction

action, the less cost each one of them pays. In this thesis, we combine the positive and

negative network effects in one game, where we let the utility function, of the “go” action be

as follows. The more players that go, the less the cost of each player, up to a certain point

at which the cost of each player starts to increase due to congestion. The utility function

of the “stay” action remains a positive constant. In this way, we generalize the classical El

Farol game to have both positive and negative network effects.

In this thesis, we employ a mediator for a game that has both positive and negative

network effects, in order to improve the social welfare of this game, compared to the best

Nash equilibrium. We consider the type of mediator that implements correlated equilibrium

(CE) [10].

Correlated equilibrium is a probability distribution on a set of strategy profiles1. Note

that this probability distribution is known to all players. One strategy profile is selected

according to the probability distribution without announcing this selection to the players,

and it is used to recommend each player with a strategy. In correlated equilibrium, each

player has no incentive to deviate from the recommended strategy assuming that all other

players follow the recommendations.

Our mediator is a trusted coordinator, which uses a correlated equilibrium as follows.

First, this mediator selects one strategy profile according to the probability distribution of

the correlated equilibrium. Second, it makes use of the selected strategy profile to recommend

each player privately and separately with a strategy, where no player has incentive to deviate

unilaterally from the recommendation.

In Chapter 2, we describe our optimal mediator that implements the best correlated

equilibrium of our extended El Farol game. In particular, we show that the best correlated

equilibrium has two strategy profiles. Also, we describe how much our optimal mediator

improves the social welfare of our game, compared to the best Nash equilibrium and the

1A strategy profile is a vector of strategies, one strategy for each player.
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optimal social welfare.

In our analysis, we measure the efficiency of the best correlated equilibrium by the value

of correlation [8]. The value of correlation has two metrics: the mediation value and the

enforcement value. The mediation value measures the efficiency of the best correlated equi-

librium compared to the best Nash equilibrium; and the enforcement value measures the

efficiency of the best correlated equilibrium compared to the optimal social cost.

We show that the mediation value and the enforcement value can be unbounded, in

our extended El Farol game. Note that when the mediation value is unbounded, the best

correlated equilibrium is infinitely efficient compared to the best Nash equilibrium. Further,

when the enforcement value is unbounded, it shows that the best correlated equilibrium is

really inefficient compared to the optimal social cost.

1.2 Malice

A fault is a malfunction or a deviation from expected behavior. Faults can occur due to

a variety of reasons: hardware failure, power outage, software bugs, network problems and

attacks. These faults may be either fail-stop failures (crashes) or Byzantine failures. In

crashes, when a faulty node fails, it stops functioning and produces no output. Byzantine

faults are due to the presence of an adversary that can take over a subset of nodes (up to

some fraction of all nodes) and cause these nodes to behave in an arbitrary manner in order

to disrupt the system.

We consider fault tolerance to deal with these faults. Fault tolerance is the property of

enabling systems to function properly in the occurrence of failures. Byzantine fault tolerance

is more challenging than fail-stop fault tolerance.

For the fail-stop model, we can use acknowledgements in synchronous networks to detect

crashes without assuming a Public Key Infrastructure (PKI) [3, 80]. In particular, if a sender
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sends a message through a path of nodes to a receiver and the sender does not receive an

acknowledgement from the receiver in a known roundtrip time, then it is considered due to

a failure.

For Byzantine faults, the messages and acknowledgements can be signed (assuming a

PKI) to detect message corruptions. However, how could we detect corruptions and recover

networks without assuming a PKI in the presence of Byzantine nodes? In this thesis, we

answer this question in the affirmative.

There are ways to implement fault tolerance in the presence of Byzantine faults. A simple

approach is replication. In replication, several nodes redundantly perform the same tasks. If

their outputs are different, then there is a corruption. Unfortunately, replication is expensive

in terms of communication complexity and hardware cost. Another approach is self-healing.

We say that a network is self-healing when it detects corruptions, inspects the corruption

situation and recovers automatically from failures. Self-healing algorithms spend resources

only when necessary.

Many self-healing algorithms [19, 37, 38, 64, 73, 75] have been proposed to enable networks

to handle fail-stop faults. To the best of our knowledge, no self-healing algorithm has yet

been designed to handle Byzantine faults. In this thesis, we provide self-healing algorithms

to recover communication and computation networks in the presence of Byzantine faults.

In communication networks, a sender sends a message through a path of nodes to a

receiver. In the presence of Byzantine nodes, the message can be dropped or corrupted if

the path has at least one Byzantine node.

In Chapter 3, we develop a self-healing algorithm to recover communication networks

from Byzantine faults. In this algorithm, we let the sender send the message through a

path of nodes to the receiver, with some probability of triggering an algorithm that checks if

there is a corruption occurred during the message transmission. If a corruption is detected,

then a heavy-weight procedure is called. This procedure inspects the corruption situation
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to identify the nodes that corrupt the message; and so it quarantines these nodes. After all

bad nodes are quarantined, no more corruption occurs in the presence of static adversary.

The following fact is used for corruption detection in communication networks: if a coin

is flipped x times, where a coin is tail with constant probability, then the probability of

having a substring of tails of length Ω(log x) is at most 1/2. By this fact, we show that it is

expected that each interval of bad nodes, in which the adversary can corrupt the message,

shrinks logarithmically from round to round. After O(log∗ x) rounds 2, the interval of bad

nodes shrinks to size zero, at which the corruption is detected.

Moreover, we show that each time a corruption is detected, there is a progress of quaran-

tining Byzantine nodes. This implies that the number of times of calling the heavy-weight

procedure is bounded in an amortized sense.

Using these ideas, we are able to achieve the following result with our self-healing algo-

rithm. Assume we have a network with n nodes and t ≤ (1/4− ε)n Byzantine nodes, for any

constant ε > 0. Then the network provides a point to point communication of path length `,

with expected number of messages O(` + log n) and expected latency O(`) in an amortized

sense. The expected total number of message corruptions is O(t(log∗ n)2), after which the

Byzantine nodes are effectively quarantined so that they cause no more corruptions.

In computation networks, the computation is performed through a circuit of gates. Recall

that in the presence of Byzantine attacks, the Byzantine adversary can take over a subset of

gates (up to some fraction of the total number of gates) in order to disrupt the network.

In Chapter 4, we develop an algorithm that self-heals computation networks in the pres-

ence of Byzantine faults. The challenging part of this algorithm is to prove the following

lemma in order to detect corruptions in circuits. Given a directed acyclic graph of n nodes,

where each node survives with a constant probability, then the probability of having a rooted

2Note that log∗ x is the iterated logarithm function, which is an extremely slowly growing func-
tion.
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subgraph, of surviving nodes of size Ω(log n), is at most 1/2. We prove this lemma, and so

we show that any rooted subgraph of bad nodes that produces incorrect output at the root,

is expected to shrink logarithmically from round to round. This implies that after O(log∗ n)

rounds, any rooted subgraph of bad nodes, of size n, shrinks to size 0, at which the corruption

is detected.

Recall that when any corruption is detected, a recovery procedure is triggered in order

to quarantine the bad nodes. After all bad nodes are quarantined, the network is completely

healed, i.e., no more corruption occurs.

We thus obtain the following result. Assume we have n parties providing inputs to a

function f that can be computed by an arithmetic circuit with depth ` and containing m

gates. Then our algorithm performs a reliable computation with O(m + n log n) messages

sent by all parties, O(m + n log n) computational operations performed by all parties, and

O(`) latency. Moreover, the expected total number of times the computation returns a

corrupted output is O(t(log∗ n)2).

1.3 Dissertation Organization

In this thesis, we describe solutions to some problems caused by selfishness and malice. In

Chapter 2, we extend the El Farol game to have positive and negative network effects, and we

provide a full characterization of the optimal mediator, which implements the best correlated

equilibrium of this game. Chapter 3 describes Byzantine faults in communication networks,

and we provide a self-healing algorithm to recover these networks. In Chapter 4, we develop

a self-healing algorithm to recover computation networks from Byzantine faults. Finally, we

conclude and discuss open problems in Chapter 5.
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Chapter 2

Selfishness in Distributed Systems

“Power has only one duty - to secure the social welfare of the People.”

– Benjamin Disraeli

2.1 Introduction

When players act selfishly to minimize their own costs, the outcome with respect to the

social cost may be poor. The Price of Anarchy [49] and the Price of Stability [4] measure

the impact of selfishness on the social cost. In a game with a high Price of Stability, one

way to reduce social cost is to employ an appropriate mediator.

In the literature, there are several types of mediators [7, 27, 33, 34, 54, 66, 69, 70, 71, 79].

In this chapter, we consider the type of mediator that implements correlated equilibrium

(CE) [10]. Our mediator is a trusted external coordinator that gives a recommendation to

each player in such a way that no player has incentive to deviate from the recommendation.

We assume that the players are symmetric in the sense that they have the same utility

function and the probability the mediator suggests a strategy to some player is independent

of the identity of that player.
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Ashlagi et al. [8] define two metrics to measure the efficiency of mediators: the mediation

value (MV ) and the enforcement value (EV ). In this chapter, we compute these values,

adapted for games where players seek to minimize the social cost. The Mediation Value is

defined as the ratio of the minimum social cost over all Nash equilibria to the minimum

social cost over all mediators. The Enforcement Value is the ratio of the minimum social

cost over all mediators to the optimal social cost.

A mediator is optimal when its expected social cost is minimum over all mediators.

Thus, the Mediation Value measures the efficiency of the optimal mediator with respect to

the best Nash equilibrium; and the Enforcement Value measures the efficiency of the optimal

mediator with respect to the optimal social cost.

In this chapter, we design an optimal mediator, which implements the best correlated

equilibrium for a variant of the El Farol game. We measure the efficiency of our mediator in

terms of the mediation value and the enforcement value. Also, we show that the mediation

value and the enforcement value can be unbounded in our game.

2.1.1 El Farol Game

First we describe the classical El Farol game [5, 23, 26, 50]. El Farol is a tapas bar in Santa

Fe. Every Friday night, a population of people decide whether or not to go to the bar. If

too many people go, they will all have a worse time than if they stayed home, since the bar

will be too crowded. That is a negative network effect [28].

Now we provide an extension of the classical El Farol game, where both negative and

positive network effects [28] are considered. The positive network effect, we add to the game,

is that if too few people go, those that go will also have a worse time than if they stayed

home, since the bar will be too boring.
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Motivation

Our motivation for studying this problem comes from the following discussion in [28].

“It’s important to keep in mind, of course, that many real situations in fact display both

kinds of [positive and negative] externalities - some level of participation by others is good,

but too much is bad. For example, the El Farol Bar might be most enjoyable if a reasonable

crowd shows up, provided it does not exceed 60. Similarly, an on-line social media site with

limited infrastructure might be most enjoyable if it has a reasonably large audience, but not

so large that connecting to the Web site becomes very slow due to the congestion.”

We note that our extension of El Farol game is one of the simplest, non-trivial problems

for which a mediator can improve the social cost. Thus, it is useful for studying the power

of a mediation.

Formal Definition of the Extended El Farol Game

Now we formally define our game, which is non-atomic [11, 77], in the sense that no individual

player has significant influence on the outcome. The number of players, n, is very large

tending to infinity. The (c, s1, s2)-El Farol game has three parameters c, s1 and s2, where

0 < c < s1 and s2 > 0. Note that c represents the individual cost for a player that goes when

all other players stay; s1 is the decline rate of the individual cost to go; s2 is the growth

rate of the individual cost to go; and c/s1 represents the critical fraction of players that go,

at which the rate of the individual cost to go changes. In particular, if x is the fraction of

players to go, then the cost f(x) for any player to go is as follows:

f(x) =

 c− s1x 0 ≤ x ≤ c
s1

,

s2(x− c
s1

) c
s1
≤ x ≤ 1.

(2.1)

and the cost to stay is 1. The function f(x) is illustrated in the two plots of Figure 2.1.
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c < f(1)

c

1c/s1

-s1 s2

f(x)

x0

Positive 
Network Effect

Negative 
Network Effect

f(1) c

1c/s1

-s1 s2

f(x)

x0

Positive 
Network Effect

Negative 
Network Effect

c ≥ f(1)

f(1)

Figure 2.1: Cost to go, f(x), for any individual player

Our Contributions

The main contributions of this chapter are threefold:

• We design an optimal mediator, which implements the best correlated equilibrium for

an extension of the El Farol game with symmetric players. Notably, this extension

incorporates both negative and positive network effects.

• We give an exact characterization of the Mediation Value (MV ) and the Enforcement

Value (EV ) for our game.

• We show that both the MV and EV values can be unbounded for our game.

These main contributions were first presented as an extended abstract in [52].
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2.1.2 Chapter Organization

In Section 2.2, we discuss the related work. Section 2.3 states the definitions and notations

that we use in the El Farol game. Our results are given in Section 2.4, where we show our

main theorem that characterizes the best correlated equilibrium, and we compute accordingly

the Mediation Value and the Enforcement Value. The proof of Theorem 2.4.3 is shown in

Section 2.5.

2.2 Related Work

Christodoulou and Koutsoupias [24] analyze the price of anarchy and the price of stability

for Nash and correlated equilibria in linear congestion games. A consequence of their results

is that the EV for these games is at least 1.577 and at most 1.6, and the MV is at most

1.015.

Brandt et al. [21] compute the mediation value and the enforcement value in ranking

games. In ranking games, every outcome is a ranking of the players, and each player strictly

prefers high ranks over lower ones [22]. They show that for the ranking games with n > 2

players, EV = n − 1. They also show that MV = n − 1 for n > 3 players; and for n = 3

players, at least one player has more than two actions.

The authors of [27] design a mediator that implements a correlated equilibrium for a

virus inoculation game [9, 55]. In this game, there are n players, each corresponding to a

node in a square grid. Every player has either to inoculate itself (at a cost of 1) or to do

nothing and risk infection, which costs L > 1. After each node decides to inoculate or not,

one node in the grid selected uniformly at random is infected with a virus. Any node, v, that

chooses not to inoculate becomes infected if there is a path from the randomly selected node

to v that traverses only uninoculated nodes. A consequence of their result is that EV is

Θ(1) and MV is Θ((n/L)1/3) for this game.
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Jiang et al. [42] analyze the price of miscoordination (PoM) and the price of sequential

commitment (PoSC) in security games, which are defined to be a certain subclass of Stack-

elberg games. A consequence of their results is that MV is unbounded in general security

games and it is at least 4/3 and at most e
e−1

≈ 1.582 in a certain subclass of security games.

We note that a poorly designed mediator can make the social cost worse than what is

obtained from the Nash equilibria. Bradonjic et al. [20] describe the Price of Mediation

(PoM) which is the ratio of the social cost of the worst correlated equilibrium to the social

cost of the worst Nash equilibrium. They show that for a simple game with two players and

two possible strategies, PoM can be as large as 2. Also, they show for games with more

players or more strategies per player that PoM can be unbounded.

Papadimitriou and Roughgarden [65] develop polynomial time algorithms for finding

correlated equilibria in a broad class of succinctly representable multiplayer games. Unfor-

tunately, their results do not extend to non-atomic games; moreover, they do not allow for

direct computation of MV and EV, even when they can find the best correlated equilibrium.

Abraham et al. [1, 2] describe a distributed algorithm that enables a group of players to

simulate a mediator. This algorithm works robustly with up to linear size coalitions, and

up to a constant fraction of adversarial players. The result suggests that the concept of

mediation can be useful even in the absence of a trusted external party.

In all equilibria above, the mediator does not act on behalf of the players. However, a

more powerful type of mediators is described in [7, 33, 34, 54, 66, 69, 70, 71, 79], where a

mediator can act on behalf of the players that give that right to it.

For multistage games, the notion of the correlated equilibrium is generalized to the com-

munication equilibrium in [32, 58]. In communication equilibrium, the mediator implements

a multistage correlated equilibrium, where it communicates with the players privately to

receive their reports at every stage and accordingly selects the recommended strategy for

each player.
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In this chapter, we design a mediator that implements the best correlated equilibrium for

a game that has both positive and negative network effects. Also, we measure how efficient

our mediator is, in terms of the value of correlation [8].

2.3 Definitions and Notations

Now we state the definitions and notations that we use in the El Farol game.

Definition 2.3.1. A strategy profile is a vector of strategies, one strategy for each player.

Definition 2.3.2. A configuration, C(x), characterizes that a fraction of players, x, is being

advised to go; and the remaining fraction of players, (1− x), is being advised to stay.

Note that any configuration has at least one strategy profile. For instance, for n players,

C(1/2) has

(
n

n/2

)
different strategy profiles.

Definition 2.3.3. A configuration distribution, D{(C(x1), p1), . . . , (C(xk), pk)}, is a proba-

bility distribution over k ≥ 1 configurations, where (C(xi), pi) represents that configuration

C(xi) is selected with probability pi, for 1 ≤ i ≤ k. Note that 0 ≤ xi ≤ 1, 0 < pi ≤ 1,∑k
i=1 pi = 1 and if xi = xj then i = j for 1 ≤ i, j ≤ k.

For any player i, let E iG be the event that player i is advised to go, and Ci
G be the cost

for player i to go (assuming that all other players conform to the advice). Also let E iS be

the event that player i is advised to stay, and Ci
S be the cost for player i to stay. Since the

players are symmetric, we will omit the index i.

A configuration distribution, D{(C(x1), p1), . . . , (C(xk), pk)}, is a correlated equilibrium

iff E [CS|EG] ≥ E [CG|EG] and E [CG|ES] ≥ E [CS|ES].

Definition 2.3.4. A mediator is a trusted external party that uses a configuration distribu-

tion to advise the players such that this configuration distribution is a correlated equilibrium.
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The set of configurations and the probability distribution are known to all players. The me-

diator secretly selects a configuration according to the probability distribution, i.e., without

announcing this selection to the players. The advice the mediator sends to a particular

player, based on the selected configuration, is known only to that player.

2.4 Our Results

Our results are shown as follows. In Sections 2.4.1 and 2.4.2, we show the optimal social

cost when all players are benevolent, and the minimum social cost over all Nash equilibria,

for our extended El Farol game. In Section 2.4.3, we state our main theorem, Theorem

2.4.3, which characterizes the best correlated equilibrium and determines the Mediation

Value and Enforcement Value. Also, we provide corollaries showing when the best correlated

equilibrium is the best Nash equilibrium and when the Mediation Value and Enforcement

Value are unbounded.

In Sections 2.4.1, 2.4.2 and 2.4.3, we assume that the cost to stay is 1. In Section 2.4.4,

we justify this assumption. Moreover, in Section 2.4.5, we justify the assumption that both

the line segment of negative slope and the line segment of positive slope intersect with the

x-axis intersect at one point ( c
s1
, 0).

2.4.1 Optimal Social Cost

Lemma 2.4.1. For any (c, s1, s2)-El Farol game, the optimal social cost is (y∗f(y∗) + (1−

y∗))n, where y∗ =


1
2
( c
s1

+ 1
s2

) if c
s1
≤ 1

2
( c
s1

+ 1
s2

) ≤ 1,

c
s1

if c
s1
> 1

s2
,

1 otherwise.

Proof. By Equation (2.1), f(x) has two cases. Let f1(x) be f(x) for x ∈ [0, c
s1

], and let
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f2(x) be f(x) for x ∈ [ c
s1
, 1]. Also let h1(x) be the social cost when 0 ≤ x ≤ c

s1
, and

let h2(x) be the social cost when c
s1
≤ x ≤ 1. Thus, h1(x) = (xf1(x) + (1 − x))n and

h2(x) = (xf2(x) + (1− x))n.

We know that h1(x) is minimized at x = c
s1

. Further, we know that h2(x) is a quadratic

function with respect to x, and thus it has one minimum over x ∈ [ c
s1
, 1] at x = y∗, where:

y∗ =


1
2
( c
s1

+ 1
s2

) if c
s1
≤ 1

2
( c
s1

+ 1
s2

) ≤ 1,

c
s1

if c
s1
> 1

s2
,

1 otherwise.

Now let h∗ be the optimal social cost. Thus, h∗ = min(h1( c
s1

), h2(y∗)). Since f1( c
s1

) =

f2( c
s1

), we have h1( c
s1

) = h2( c
s1

). Hence, we obtain h∗ = min(h2( c
s1

), h2(y∗)). This implies

that h∗ = h2(y∗).

2.4.2 Best Nash Equilibrium

Lemma 2.4.2. For any (c, s1, s2)-El Farol game, if f(1) ≥ 1, then the best Nash equilibria

are: 1) at which the cost to go in expectation is equal to the cost to stay; and 2) at which all

players would rather stay; otherwise, the best Nash equilibrium is at which all players would

rather go. The social cost of the best Nash equilibrium is min(n, f(1) · n).

Proof. There are two cases for f(1) to determine the best Nash equilibrium.

Case 1: f(1) ≥ 1. Let Ny be a Nash equilibrium with the minimum social cost over all

Nash equilibria and with a y-fraction of players that go in expectation. If f(y) > 1, then at

least one player of the y-fraction of players would rather stay. Also if f(y) < 1, then at least

one player of the (1− y)-fraction of players would rather go. Thus, we must have f(y) = 1

or all players would rather stay. Assume that each player has a mixed strategy, where player

i goes with probability yi. Recall that Ny has a y-fraction of players that go in expectation.

Thus, y = 1
n

∑n
i=1 yi. Then the social cost is

∑n
i=1(yif(y) + (1− yi)), or equivalently, n.
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Case 2: f(1) < 1. In this case, the best Nash equilibrium is at which all players would

rather go, with a social cost of f(1) · n.

Therefore, the social cost of the best Nash equilibrium is min(n, f(1) · n).

2.4.3 Optimal Mediator

Theorem 2.4.3. For any (c, s1, s2)-El Farol game, if c ≤ 1, then the best correlated equilib-

rium is the best Nash equilibrium; otherwise, the best correlated equilibrium is D{(C(0), p),

(C(x∗), 1− p)}, where λ(c, s1, s2) = c( 1
s1

+ 1
s2

)−
√

c( 1
s1

+ 1
s2

)(c−1)

s2
,

x∗ =


λ(c, s1, s2) if c

s1
≤ λ(c, s1, s2) < 1,

c
s1

if λ(c, s1, s2) < c
s1

,

1 otherwise.

and p = (1−x∗)(1−f(x∗))
(1−x∗)(1−f(x∗))+c−1

. Moreover,

1) the expected social cost is (p+ (1− p)(x∗f(x∗) + (1− x∗)))n,

2) the Mediation Value (MV) is min(f(1),1)
p+(1−p)(x∗f(x∗)+(1−x∗)) and

3) the Enforcement Value (EV) is p+(1−p)(x∗f(x∗)+(1−x∗))
y∗f(y∗)+(1−y∗) , where

y∗ =


1
2
( c
s1

+ 1
s2

) if c
s1
≤ 1

2
( c
s1

+ 1
s2

) ≤ 1,

c
s1

if c
s1
> 1

s2
,

1 otherwise.

.

The proof of this theorem is deferred to the next Section.

The following two corollaries show when our mediation performs the same as the best

Nash equilibrium.
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Corollary 2.4.4. For any (c, s1, s2)-El Farol game, if c ≤ 1, then MV = 1.

Proof. By Theorem 2.4.3, if c ≤ 1, then the best correlated equilibrium is the best Nash

equilibrium. In particular, if f(1) < 1, then all players would rather go; otherwise, all players

stay, or a fraction of players go so that the cost to go in expectation is equal to the cost to

stay. This implies that MV = 1.

Now we show that for c > 1, if λ(c, s1, s2) ≥ 1, then the best correlated equilibrium is

the best Nash equilibrium, where all players would rather go.

Corollary 2.4.5. For any (c, s1, s2)-El Farol game, if c > 1 and λ(c, s1, s2) ≥ 1, then

MV = 1.

Proof. By Theorem 2.4.3, if c > 1 and λ(c, s1, s2) ≥ 1, then x∗ → 1 and p→ 0. Now we prove

that if λ(c, s1, s2) ≥ 1, then the best correlated equilibrium is the best Nash equilibrium of

the case f(1) < 1 in Lemma 2.4.2, i.e., if λ(c, s1, s2) ≥ 1, then f(1) must be less than 1. To

do so, we prove that λ(c, s1, s2) ≥ 1⇒ f(1) < 1. Assume by way of contradiction that

λ(c, s1, s2) ≥ 1⇒ f(1) ≥ 1. (2.2)

Recall that f(1) = s2(1 − c
s1

). By rearranging the right hand side of implication 2.2 after

substituting f(1) with s2(1 − c
s1

), we obtain λ(c, s1, s2) ≥ 1 ⇒ c
s1

+ 1
s2
≤ 1, or equivalently,

λ(c, s1, s2) ≥ 1⇒ c
s1

+ 1
s2
≤ λ(c, s1, s2). Recall that λ(c, s1, s2) = c( 1

s1
+ 1

s2
)−
√

c( 1
s1

+ 1
s2

)(c−1)

s2
.

Thus, we have

λ(c, s1, s2) ≥ 1 ⇒ c

s1

+
1

s2

≤ c(
1

s1

+
1

s2

)−

√
c( 1
s1

+ 1
s2

)(c− 1)

s2

⇒ c−
√
s2 · c(

1

s1

+
1

s2

)(c− 1) ≥ 1

⇒ c− 1 ≥ s2c(
1

s1

+
1

s2

)

⇒ s2 ·
c

s1

≤ −1,
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which contradicts since s1, s2 and c are all positive.

Hence, for λ(c, s1, s2) ≥ 1, we have x∗ → 1, p → 0 and f(1) < 1. By Theorem 2.4.3,

MV → 1.

Now we show that MV and EV can be unbounded in the following two corollaries. Corol-

lary 2.4.6 shows that the mediation can be infinitely beneficial over the best Nash equilibrium,

i.e., MV→∞. Corollary 2.4.7 shows that the social cost of the best correlated equilibrium

can be infinitely higher than the optimal social cost of benevolent players, i.e., EV → ∞.

Even so, the best correlated equilibrium has half the social cost of the best Nash equilibrium,

i.e., MV = 2.

Corollary 2.4.6. For any (2 + ε, 2+ε
1−ε ,

1
ε
)-El Farol game, as ε→ 0, MV→∞.

Proof. For any (2+ ε, 2+ε
1−ε ,

1
ε
)-El Farol game, we have f(1) = 1. By Theorem 2.4.3, we obtain

x∗ = 1− ε, f(x∗) = 0 and p = ε
1+2ε

for ε ≤ 1
2
(
√

3− 1). Thus we have

lim
ε→0

MV = lim
ε→0

min (f(1), 1)
ε

1+2ε
+ ε( 1+ε

1+2ε
)

=∞.

Corollary 2.4.7. For any (1 + ε, 1+ε
1−ε ,

1
ε
)-El Farol game, as ε→ 0, EV→∞.

Proof. For any (1 + ε, 1+ε
1−ε ,

1
ε
)-El Farol game, by Theorem 2.4.3, we obtain x∗ = 1 + ε2 −

ε
√

1 + ε2 and f(x∗) = 1 + ε−
√

1− ε2. Then we have

p =
(1− (1 + ε2 − ε

√
1 + ε2))(1− (1 + ε−

√
1− ε2))

(1− (1 + ε2 − ε
√

1 + ε2))(1− (1 + ε−
√

1− ε2)) + ε
.

Also we have y∗ = 1− ε and f(y∗) = 0 for ε ≤ 1
2
. Thus we have

lim
ε→0

EV = lim
ε→0

p+ (1− p)(x∗f(x∗) + (1− x∗))
y∗f(y∗) + (1− y∗)

=∞.
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Figure 2.2: Mediation Metrics with respect to s1 and s2

Based on these results, we show in Figures 2.2 and 2.3: the social cost of the best Nash

equilibrium (NE), the expected social cost of our optimal mediator (MED) and the optimal

Figure 2.3: Mediation Metrics with respect to c/s1
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social cost (OPT), normalized by n, with respect to s1, s2 and c/s1. Also we show the

corresponding Mediation Value (MV ) and Enforcement Value (EV ).

In Figure 2.2, the left plot shows that for c = 2 and s2 = 10, the values of NE, MED,

OPT increase, each up to a certain point, when s1 increases; however, the values of MV and

EV decrease. Also, MV reaches its peak at the point where the best Nash equilibrium starts

to remain constant with respect to s1. In the right plot, we set c = 2 and s1 = 2.25; it shows

that the values of NE, MED, OPT, MV and EV increase, each up to a certain point, when

s2 increases.

Figure 2.3 illustrates Corollaries 2.4.6 and 2.4.7, and it shows how fast MV and EV go

to infinity with respect to c/s1, where c/s1 = 1 − ε. The left plot shows that for any

(2 + ε, 2+ε
1−ε ,

1
ε
)-El Farol game, as c/s1 → 1 (or ε→ 0), MV →∞ and EV → 2. In the right

plot, for any (1 + ε, 1+ε
1−ε ,

1
ε
)-El Farol game, as c/s1 → 1 (or ε→ 0), EV →∞ and MV → 2.

Note that for any (c, s1, s2)-El Farol game, if c/s1 = 1, then all players would rather go,

with a social cost of 0. At this case, the best correlated equilibrium becomes the best Nash

equilibrium. Hence, once c/s1 reaches 1, MV suddenly drops to 1.

2.4.4 Cost to Stay Assumption

Now we justify our assumption that the cost to stay is unity. Let (c′, s′1, s
′
2, t
′)-El Farol game

be a variant of (c, s1, s2)-El Farol game, where 0 < c′ < s′1, s′ > 0 and the cost to stay is

t′ > 0. If x is the fraction of players to go, then the cost f ′(x) for any player to go is as

follows:

f ′(x) =

 c′ − s′1x 0 ≤ x ≤ c′

s′1
,

s′2(x− c′

s′1
) c′

s′1
≤ x ≤ 1.

The following lemma shows that any (c′, s′1, s
′
2, t
′)-El Farol game can be reduced to a (c, s1, s2)-

El Farol game.
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Lemma 2.4.8. Any (c′, s′1, s
′
2, t
′)-El Farol game can be reduced to a (c, s1, s2)-El Farol game

that has the same Mediation Value and Enforcement Value, where c = c′

t′
, s1 =

s′1
t′

and

s2 =
s′2
t′

.

Proof. In a manner similar to Theorem (2.4.3), for any (c′, s′1, s
′
2, t
′)-El Farol game, if c > t′,

then the best correlated equilibrium is D{(C(0), p′), (C(x′), 1− p′)}, where

λ′(c′, s′1, s
′
2, t
′) = c′(

1

s′1
+

1

s′2
)−

√
c′( 1

s′1
+ 1

s′2
)(c′ − t′)
s′2

;

x′ =


λ′(c′, s′1, s

′
2, t
′) if c′

s′1
≤ λ′(c′, s′1, s

′
2, t
′) < 1,

c′

s′1
if λ′(c′, s′1, s

′
2, t
′) < c′

s′1
,

1 otherwise.

and p′ = (1−x′)(t′−f ′(x′))
(1−x′)(t′−f ′(x′))+c′−t′ . Moreover,

1) the Mediation Value (MV ′) is min (f ′(1),t′)
p′t′+(1−p′)(x′f ′(x′)+(1−x′)t′) and

2) the Enforcement Value (EV ′) is p′t′+(1−p′)(x′f ′(x′)+(1−x′)t′)
y′f ′(y′)+(1−y′)t′ , where

y′ =


1
2
( c
′

s′1
+ t′

s′2
) if c′

s′1
≤ 1

2
( c
′

s′1
+ t′

s′2
) ≤ 1,

c′

s′1
if c′

s′1
> t′

s′2
,

1 otherwise.

.

Similarly, for c ≤ t′, we have MV ′ = 1 and EV ′ = min (f ′(1),t′)
y′f(y′)+(1−y′)t′ .

For both cases, by Theorem 2.4.3, if we set c = c′/t′, s1 = s′1/t
′ and s2 = s′2/t

′, then we

get f ′(x) = f(x) · t′, y′ = y∗ and λ′(c′, s′1, s
′
2, t
′) = λ(c, s1, s2). This implies that x′ = x∗ and

p′ = p. Thus, we obtain MV ′ = MV and EV ′ = EV .

2.4.5 Shifted-Up Cost

In the cost to go function, we assumed that both the line segment of negative slope and the

line segment of positive slope intersect with the x-axis intersect at one point ( c
s1
, 0).
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Now we analyze the case that the line segment of negative slope and the line segment of

positive slope intersect at point ( c
s1
, a), where a > 0 is a constant. Note that the cost to stay

is ta. Now the cost to go is as follows.

fa(x) =

 c− s1x+ a 0 ≤ x ≤ c
s1

,

s2(x− c
s1

) + a c
s1
≤ x ≤ 1.

We know that if ta ≤ a, then all players would rather stay. Now we analyze the case that

ta > a.

Compared to (c, s1, s2, ta − a)-El Farol game in Section 2.4.4, we have the following. 1)

The cost to stay increases by a; and 2) the individual cost to go increases by a for any

fraction of players that go. Those imply that for any action and for any fraction of players

that go, the individual cost increases by a positive constant a.

Therefore, this game of shifted-up cost can be reduced to (c, s1, s2, ta− a)-El Farol game.

In particular, after having the x, y and p of the best correlated equilibrium of (c, s1, s2, ta−a)-

El Farol game, we can obtain the following for the game of shifted-up cost. The best

correlated equilibrium is D{(C(0), p), (C(x), 1− p)}, with the following value of correlation:

MV =
min (fa(1), ta)

pta + (1− p)(xfa(x) + (1− x)ta)

and

EV =
pta + (1− p)(xfa(x) + (1− x)ta)

yfa(y) + (1− y)ta
.

2.5 Proof of Theorem 2.4.3

The proof of Theorem 2.4.3 has three main parts. First, we prove that if c > 1, then any

optimal mediator has two configurations, and we give a full characterization for such an

optimal mediator. Second, we prove that if c ≤ 1, then the best correlated equilibrium is
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the best Nash equilibrium. Third, we characterize the Mediation Value and the Enforcement

Value.

Recall that xi is the fraction of players that are advised to go in configuration C(xi), which

is selected with probability pi in a configuration distribution, D{(C(x1), p1), . . . , (C(xk), pk)},

for 1 ≤ i ≤ k. We call a mediator over k configurations if the configuration distribution this

mediator uses has k configurations. Also we define ∆(x) as the difference between the cost

to stay and the cost to go at x, for any 0 ≤ x ≤ 1. In particular, ∆(x) = 1 − f(x), where

f(x) is defined in Equation (2.1).

Now we state the notations that we use in the proof.

Definition 2.5.1. BCEi is a correlated equilibrium of i configurations with the least social

cost over all correlated equilibria of i configurations.

Definition 2.5.2. BCE≥i is a correlated equilibrium of ≥ i configurations with the least

social cost over all correlated equilibria of ≥ i configurations.

Definition 2.5.3. BCE is the best correlated equilibrium over all correlated equilibria.

2.5.1 Optimal Mediator for c > 1

In this section, we characterize an optimal mediator which implements BCE, for c > 1. In

order to do so, we have three main parts.

First, we show that BCE≥2 = BCE2. In particular, we show that BCE≥2 has exactly

two configurations: 1) one configuration that has a fraction of players advised to go such

that this fraction lies on the positive network effect, i.e., the line segment of negative slope

of f(x) in Figure 2.1; and 2) one configuration that has a fraction of players advised to go

such that this fraction lies on the negative network effect, i.e., the line segment of positive

slope of f(x) in Figure 2.1.
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Second, we give a full characterization of BCE≥2. In particular, we describe the proba-

bility distribution and the fraction of players advised to go for each configuration, in terms

of c, s1 and s2.

Third, we show that BCE≥2 ≤ BCE1, i.e., BCE≥2 has social cost of at most the social

cost of the best Nash equilibrium. Also, we show that for some values of c, s1 and s2, BCE≥2

reduces to BCE1. In particular, the probability distribution of BCE≥2 makes the optimal

mediator select almost surely one configuration, where this configuration is one of the best

Nash equilibria.

We start our proof by showing three properties of configuration distribution. These

properties are used in the main parts of the proof.

Properties of Configuration Distribution

We first show when a configuration distribution is a correlated equilibrium.

Fact 2.5.4. D{(C(x1), p1), . . . , (C(xk), pk)} is a correlated equilibrium iff

k∑
i=1

pixi∆(xi) ≥ 0 (2.3)

and

k∑
i=1

pi(1− xi)∆(xi) ≤ 0. (2.4)

Proof. Recall that E iG is the event that the mediator advises player i to go, Ci
G is the cost

for player i to go, E iS is the event that the mediator advises player i to stay, and Ci
S is the

cost for player i to stay. Also we will omit the index i since the players are symmetric.

By definition, D{(C(x1), p1), . . . , (C(xk), pk)} is a correlated equilibrium iff

E [CS|EG] ≥ E [CG|EG] and E [CG|ES] ≥ E [CS|ES].
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Note that:

E [CS|EG] = 1,

E [CG|EG] =

∑k
i=1 pif(xi)xi∑k

i=1 pixi
,

E [CG|ES] =

∑k
i=1 pif(xi)(1− xi)∑k

i=1 pi(1− xi)
,

and

E(CS|ES) = 1.

Therefore, D{(C(x1), p1), . . . , (C(xk), pk)} is a correlated equilibrium iff

∑k
i=1 pif(xi)xi∑k

i=1 pixi
≤ 1 (2.5)

and ∑k
i=1 pif(xi)(1− xi)∑k

i=1 pi(1− xi)
≥ 1. (2.6)

By rearranging Inequalities (2.5) and (2.6), we have

k∑
i=1

pixi(1− f(xi)) ≥ 0

and

k∑
i=1

pi(1− xi)(1− f(xi)) ≤ 0.

By definition, we know that ∆(xi) = 1− f(xi). This implies the statement of the fact.

In the following fact, we show the expected social cost of configuration distribution.
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Fact 2.5.5. The expected social cost of D{(C(x1), p1), . . . , (C(xk), pk)} is

(1−
k∑
i=1

pixi∆(xi))n.

Proof. Let Cost(C(xi)) be the cost of configuration C(xi) in D{(C(x1), p1), . . . , (C(xk), pk)},

for 1 ≤ i ≤ k. We know that the expected social cost of D{(C(x1), p1), . . . , (C(xk), pk)} is

k∑
i=1

piCost(C(xi)).

We have Cost(C(xi)) = (xif(xi) + (1 − xi))n, and since ∆(xi) = 1 − f(xi), it follows that

Cost(C(xi)) = (1− xi∆(xi))n. Therefore, the expected social cost is

k∑
i=1

pi(1− xi∆(xi))n,

or equivalently,

(
k∑
i=1

pi −
k∑
i=1

pixi∆(xi))n.

Finally, we note that
∑k

i=1 pi = 1.

Recall that ∆(x) is the difference between the cost to stay and the cost to go when x

players go. Now we show when ∆(x) of C(x) is zero, positive and negative.

Fact 2.5.6. For any configuration, C(x), if c > 1, then

∆(x) = 0⇐⇒
(
x =

c− 1

s1

)
∨
(
x =

1

s2

+
c

s1

∧ f(1) ≥ 1

)
;

∆(x) < 0⇐⇒
(

0 ≤ x <
c− 1

s1

)
∨
(

1

s2

+
c

s1

< x ≤ 1 ∧ f(1) > 1

)
; and

∆(x) > 0⇐⇒
(
c− 1

s1

< x <
1

s2

+
c

s1

∧ f(1) ≥ 1

)
∨
(
c− 1

s1

< x ≤ 1 ∧ f(1) < 1

)
.
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Proof. Recall that ∆(x) = 1− f(x). Then by Equation (2.1), we have

∆(x) =

 ∆1(x) 0 ≤ x ≤ c
s1

,

∆2(x) c
s1
≤ x ≤ 1.

, where ∆1(x) = 1− (c− s1x) and ∆2(x) = 1− s2(x− c
s1

). Now we do a case analysis for x.

Case 1: if 0 ≤ x ≤ c
s1

, then

∆1(x) = 0⇐⇒ x =
c− 1

s1

;

∆1(x) < 0⇐⇒ 0 ≤ x <
c− 1

s1

; and

∆1(x) > 0⇐⇒ c− 1

s1

< x ≤ c

s1

.

Case 2: if c
s1
≤ x ≤ 1, then

∆2(x) = 0⇐⇒ x =
1

s2

+
c

s1

∧ f(1) ≥ 1;

∆2(x) < 0⇐⇒
(

1

s2

+
c

s1

< x ≤ 1 ∧ f(1) > 1

)
; and

∆2(x) > 0⇐⇒
(
c

s1

≤ x <
1

s2

+
c

s1

∧ f(1) ≥ 1

)
∨
(
c

s1

≤ x ≤ 1 ∧ f(1) < 1

)
.

Now we describe the three main parts of the proof in detail.

(A) BCE≥2 = BCE2

In Lemma 2.5.18, we show that BCE≥2 = BCE2. Figure 2.4 shows the chart of facts and

lemmas required to prove this lemma.

Now we show Lemma 2.5.11, where for any correlated equilibrium of k ≥ 2 configurations

with a configuration C(x) where x ∈ (0, c
s1

), there exists a correlated equilibrium, with less
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Fact 2.5.7

Fact 2.5.8

Fact 2.5.9

Fact 2.5.10 Fact 2.5.16

Fact 2.5.13

Fact 2.5.12

Lemma 
2.5.11

Lemma 
2.5.15

Lemma 
2.5.17

Lemma 
2.5.18

Fact 2.5.14

BCE�2 = BCE2

Figure 2.4: Proof Chart of Lemma 2.5.18

social cost, of k configurations with no configuration C(x′) where x′ ∈ (0, c
s1

). The following

four facts are used to prove this lemma. See Figure 2.5.

Fact 2.5.7

Fact 2.5.8

Fact 2.5.9

Fact 2.5.10 Fact 2.5.16

Fact 2.5.13

Fact 2.5.12

Lemma 
2.5.11

Lemma 
2.5.15

Lemma 
2.5.17

Lemma 
2.5.18

Fact 2.5.14

BCE�2 = BCE2

Figure 2.5: Proof Chart of Lemma 2.5.18 after proving Lemma 2.5.11

Fact 2.5.7. For any correlated equilibrium, D{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)},

29



Chapter 2. Selfishness in Distributed Systems

where k ≥ 2 and 0 < xj <
c−1
s1

, there exists a correlated equilibrium, D{(C(x1), p1), . . . ,

(C(x′j), pj), . . . , (C(xk), pk)}, with less social cost, where x′j = 0.

Proof. LetMk be a mediator that usesD{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)}, where

0 < xj <
c−1
s1

. By Fact 2.5.4, we have

pjxj∆(xj) +
∑

1≤i≤k,i6=j

pixi∆(xi) ≥ 0 (2.7)

and

pj(1− xj)∆(xj) +
∑

1≤i≤k,i6=j

pi(1− xi)∆(xi) ≤ 0. (2.8)

Since 0 < xj <
c−1
s1

, by Fact 2.5.6, ∆(xj) < 0. Now let D{(C(x1), p1), . . . , (C(x′j), pj), . . . ,

(C(xk), pk)} be a configuration distribution that has x′j = 0. Thus, we have pjx
′
j∆(x′j) = 0

and pjxj∆(xj) < 0. By Inequality (2.7), we have

pjx
′
j∆(x′j) +

∑
1≤i≤k,i6=j

pixi∆(xi) > 0. (2.9)

We know that ∆(x′j) < ∆(xj) < 0 and (1− x′j) > (1− xj) > 0. Thus, we have

(1− x′j)∆(x′j) < (1− xj)∆(xj),

or equivalently,

∆(x′j) < (1− xj)∆(xj).

By Inequality (2.8), we get

pj∆(x′j) +
∑

1≤i≤k,i6=j

pi(1− xi)∆(xi) < 0. (2.10)

Now by Fact 2.5.4 and Inequalities (2.9) and (2.10), D{(C(x1), p1), . . . , (C(x′j), pj), . . .

, (C(xk), pk)} is a correlated equilibrium. Let M ′
k be a mediator that uses this correlated

equilibrium. By Fact 2.5.5, and since x′j = 0, the expected social cost of M ′
k is

(1−
∑

1≤i≤k,i6=j

pixi∆(xi))n.
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Moreover, by Fact 2.5.5, the expected social cost of Mk is

((1−
∑

1≤i≤k,i6=j

pixi∆(xi))− pjxj∆(xj))n.

Since ∆(xj) < 0 and xj > 0, the expected social cost of M ′
k is less than the expected social

cost of Mk.

Fact 2.5.8. If f(1) ≥ 1, then for any correlated equilibrium, D{(C(x1), p1), . . . , (C(xj), pj)

, . . . , (C(xk), pk)}, where k ≥ 2 and c−1
s1

< xj <
c
s1

, there exists a correlated equilibrium,

D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)}, with less social cost, where c
s1
< x′j <

c
s1

+ 1
s2

and f(x′j) = f(xj).

Proof. LetMk be a mediator that usesD{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)}, where

c−1
s1

< xj <
c
s1

. By Fact 2.5.4, we have

pjxj∆(xj) +
∑

1≤i≤k,i6=j

pixi∆(xi) ≥ 0 (2.11)

and

pj(1− xj)∆(xj) +
∑

1≤i≤k,i6=j

pi(1− xi)∆(xi) ≤ 0. (2.12)

Recall that c−1
s1

< xj < c
s1

and f(1) ≥ 1. Then ∃x′j : c
s1

< x′j < c
s1

+ 1
s2

and

f(x′j) = f(xj). Now let D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)} be a configura-

tion distribution. Since f(x′j) = f(xj), ∆(x′j) = ∆(xj). We know that x′j > xj, then

x′j∆(x′j) > xj∆(xi). By Inequality (2.11), we obtain

pjx
′
j∆(x′j) +

∑
1≤i≤k,i6=j

pixi∆(xi) > 0.

Since (1− x′j) < (1− xj), we have (1− x′j)∆(x′j) < (1− xj)∆(xj). By Inequality (2.12), we

get

pj(1− x′j)∆(x′j) +
∑

1≤i≤k,i6=j

pi(1− xi)∆(xi) < 0.
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Now by Fact 2.5.4, D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)} is a correlated equilib-

rium. Let M ′
k be a mediator that uses this correlated equilibrium. By Fact 2.5.5, the

expected social cost of M ′
k is

((1−
∑

1≤i≤k,i6=j

pixi∆(xi))− pjx′j∆(x′j))n,

and the expected social cost of Mk is

((1−
∑

1≤i≤k,i6=j

pixi∆(xi))− pjxj∆(xj))n.

Since pjx
′
j∆(x′j) > pjxj∆(xi), the expected social cost of M ′

k is less than the expected social

cost of Mk.

Fact 2.5.9. If f(1) < 1, then for any correlated equilibrium, D{(C(x1), p1), . . . , (C(xj), pj)

, . . . , (C(xk), pk)}, where k ≥ 2, c−1
s1

< xj <
c
s1

and f(xj) ≤ f(1), there exists a correlated

equilibrium, D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)}, with less social cost, where c
s1
<

x′j ≤ 1 and f(x′j) = f(xj).

Proof. We know that for c−1
s1

< xj <
c
s1

and f(xj) ≤ f(1) < 1, ∃x′j : c
s1
< x′j ≤ 1 and

f(x′j) = f(xj). In a manner similar to the proof of Lemma 2.5.8, we prove this Lemma.

Fact 2.5.10. If f(1) < 1, then for any correlated equilibrium, D{(C(x1), p1), . . . , (C(xj), pj)

, . . . , (C(xk), pk)}, where k ≥ 2, c−1
s1

< xj <
c
s1

and f(xj) > f(1), there exists a correlated

equilibrium, D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)}, with less social cost, where x′j =

1.

Proof. LetMk be a mediator that usesD{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)}, where

c−1
s1

< xj <
c
s1

. By Fact 2.5.4, we have

pjxj∆(xj) +
∑

1≤i≤k,i6=j

pixi∆(xi) ≥ 0 (2.13)
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and

pj(1− xj)∆(xj) +
∑

1≤i≤k,i6=j

pi(1− xi)∆(xi) ≤ 0. (2.14)

Now let D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)} be a configuration distribution,

where x′j = 1. For f(xj) > f(x′j) and f(x′j) < 1, ∆(x′j) > ∆(xj). We know that x′j > xj.

Thus, x′j∆(x′j) > xj∆(xi). By Inequality (2.13), we obtain

pjx
′
j∆(x′j) +

∑
1≤i≤k,i6=j

pixi∆(xi) > 0.

Also, we know that (1−xj) > 0 and ∆(xj) > 0. Thus, (1−xj)∆(xj) > 0. Since (1−x′j) = 0,

we have

(1− x′j)∆(x′j) < (1− xj)∆(xj).

By Inequality (2.14), we get

pj(1− x′j)∆(x′j) +
∑

1≤i≤k,i6=j

pi(1− xi)∆(xi) < 0.

Now by Fact 2.5.4, D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)} is a correlated equilib-

rium. Let M ′
k be a mediator that uses this correlated equilibrium. By Fact 2.5.5, the

expected social cost of M ′
k is

((1−
∑

1≤i≤k,i6=j

pixi∆(xi))− pjx′j∆(x′j))n,

and the expected social cost of Mk is

((1−
∑

1≤i≤k,i6=j

pixi∆(xi))− pjxj∆(xj))n.

Since pjx
′
j∆(x′j) > pjxj∆(xi), the expected social cost of M ′

k is less than the expected social

cost of Mk.

33



Chapter 2. Selfishness in Distributed Systems

Lemma 2.5.11. For any correlated equilibrium of k ≥ 2 configurations with a configuration

C(x) where x ∈ (0, c
s1

), there exists a correlated equilibrium, with less social cost, of k

configurations with no configuration C(x′) where x′ ∈ (0, c
s1

).

Proof. Facts 2.5.7, 2.5.8, 2.5.9 and 2.5.10 prove the statement of this lemma.

Now we show Lemma 2.5.15, where BCE≥2 has one configuration of a fraction of players

advised to go that lies on the positive network effect, and any other configuration has a

fraction of players advised to go that lies on the negative network effect. To show Lemma

2.5.15, we first prove Facts 2.5.12, 2.5.13 and 2.5.14, as illustrated in Figure 2.6.

Fact 2.5.7

Fact 2.5.8

Fact 2.5.9

Fact 2.5.10 Fact 2.5.16

Fact 2.5.13

Fact 2.5.12

Lemma 
2.5.11

Lemma 
2.5.15

Lemma 
2.5.17

Lemma 
2.5.18

Fact 2.5.14

BCE�2 = BCE2

Figure 2.6: Proof Chart of Lemma 2.5.18 after proving Lemma 2.5.15

Fact 2.5.12 shows that for any correlated equilibrium of k ≥ 2 configurations with a

configuration C(x) of ∆(x) = 0, there exists a correlated equilibrium of k−1 configurations,

that has less social cost, with no configuration C(x′) of ∆(x′) = 0. Facts 2.5.13 and 2.5.14

describe two properties of any correlated equilibrium that has at least two configurations,

with no configuration C(x′) of ∆(x′) = 0.
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Fact 2.5.12. For any correlated equilibrium, D{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)}

, where k ≥ 2 and ∆(xj) = 0, there exists a correlated equilibrium, D{(C(x1), p1
1−pj ), . . . ,

(C(xj−1),
pj−1

1−pj ), (C(xj+1),
pj+1

1−pj ), . . . , (C(xk),
pk

1−pj )}, with less expected social cost.

Proof. Let Mk be a mediator that uses D{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)} for

k ≥ 2, and there is some 1 ≤ j ≤ k such that ∆(xj) = 0.

We know that k ≥ 2. Thus, 0 < pj < 1. Now let D{(C(x1), p1
1−pj ), . . . , (C(xj−1),

pj−1

1−pj ),

(C(xj+1),
pj+1

1−pj ), . . . , (C(xk),
pk

1−pj )} be a configuration distribution over k − 1 configurations.

Since Mk is a mediator and ∆(xj) = 0, Constraints (2.3) and (2.4) of Fact 2.5.4 imply

that ∑
1≤i≤k,i6=j

pixi∆(xi) ≥ 0

and ∑
1≤i≤k,i6=j

pi(1− xi)∆(xi) ≤ 0.

Now if we multiply both sides of these two constraints by 1
1−pj , we have∑

1≤i≤k,i6=j

pi
1− pj

xi∆(xi) ≥ 0

and ∑
1≤i≤k,i6=j

pi
1− pj

(1− xi)∆(xi) ≤ 0.

By Fact 2.5.4, D{(C(x1), p1
1−pj ), . . . , (C(xj−1),

pj−1

1−pj ), (C(xj+1),
pj+1

1−pj ), . . . , (C(xk),
pk

1−pj )} is a

correlated equilibrium. Let Mk−1 be a mediator that uses this correlated equilibrium. By

Fact 2.5.5, the expected social cost of Mk−1 is

(1− 1

1− pj

∑
1≤i≤k,i6=j

pixi∆(xi))n,
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and since ∆(xj) = 0, the expected social cost of Mk is

(1−
∑

1≤i≤k,i6=j

pixi∆(xi))n.

We know that 0 < pj < 1 =⇒ 1
1−pj > 1. Therefore, the expected social cost Mk−1 is less

than the expected social cost of Mk.

Fact 2.5.13. Any correlated equilibrium, of k ≥ 2 configurations, with no configuration,

C(x) of ∆(x) = 0, has at least one configuration C(xu) of ∆(xu) > 0 and at least one

configuration C(xv) of ∆(xv) < 0, for 1 ≤ u, v ≤ k.

Proof. Assume that there exists a correlated equilibrium, of k ≥ 2 configurations, with no

configuration, C(x) of ∆(x) = 0.

Note that 0 < pi < 1 and 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ k. By Constraint (2.3) of Fact

2.5.4, there exists u such that ∆(xu) > 0 for 1 ≤ u ≤ k. Also, Constraint (2.4) of Fact 2.5.4

implies that there exists v such that ∆(xv) < 0 for 1 ≤ v ≤ k.

Fact 2.5.14. Any correlated equilibrium, of k ≥ 2 configurations, with no configuration,

C(x) where ∆(x) = 0, has
∑

1≤i≤k,i6=j pi∆(xi)(xi − xj) ≥ 0, for all 1 ≤ j ≤ k.

Proof. Let Mk be a mediator that uses D{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)}, with

no configuration C(x) of ∆(x) = 0. Now fix any 1 ≤ j ≤ k, and do a case analysis for

∆(xj) 6= 0.

Case 1: if ∆(xj) < 0, then by repeated application of Fact 2.5.4 we have∑
1≤i≤k,i6=j pi∆(xi)(1− xi)

(1− xj)|∆(xj)|
≤ pj ≤

∑
1≤i≤k,i6=j pi∆(xi)xi

xj|∆(xj)|
(2.15)

Removing pj from Inequality (2.15) and rearranging, we get

xj|∆(xj)|
∑

1≤i≤k,i6=j

pi∆(xi)(1− xi) ≤ (1− xj)|∆(xj)|
∑

1≤i≤k,i6=j

pi∆(xi)xi.
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By canceling the common terms, we have∑
1≤i≤k,i6=j

pi∆(xi)xj ≤
∑

1≤i≤k,i6=j

pi∆(xi)xi.

Case 2: if ∆(xj) > 0, then similarly by repeated application of Fact 2.5.4 we have

−
∑

1≤i≤k,i6=j pi∆(xi)xi

xj∆(xj)
≤ pj ≤

−
∑

1≤i≤k,i6=j pi∆(xi)(1− xi)
(1− xj)∆(xj)

(2.16)

Removing pj from Inequality (2.16) and rearranging, we get

xj∆(xj)
∑

1≤i≤k,i6=j

pi∆(xi)(1− xi) ≤ (1− xj)∆(xj)
∑

1≤i≤k,i6=j

pi∆(xi)xi.

By canceling the common terms, we have∑
1≤i≤k,i6=j

pi∆(xi)xj ≤
∑

1≤i≤k,i6=j

pi∆(xi)xi.

Since j is any value between 1 and k, this implies the statement of the lemma for every such

j.

Lemma 2.5.15. For any (c, s1, s2)-El Farol game, BCE≥2 has one configuration that has

no players advised to go, and any other configuration has at least a c
s1

-fraction of players

advised to go.

Proof. Let BCE≥2 = D{(C(x1), p1), . . . , (C(xk), pk)}. Now we prove that BCE≥2 must have

a configuration that has no player advised to go. We know by Facts 2.5.12 and 2.5.13 that ∃j :

∆(xj) < 0, where 1 ≤ j ≤ k. By Fact 2.5.6, ∆(xj) < 0 iff (xj ∈ (1/s2 +c/s1, 1] and f(1) > 1)

or xj ∈ [0, c−1
s1

). Now we do a case analysis for xj.

Case 1: xj ∈ (1/s2 + c/s1, 1] and f(1) > 1. Assume by way of contradiction that BCE≥2

has no configuration that has less than a c−1
s1

-fraction of players advised to go. Let xq be the

smallest fraction that is xq > 1/s2 + c/s1, where 1 ≤ q ≤ k. By Facts 2.5.6 and 2.5.12, for

1 ≤ r ≤ k,

∆(xr) =

 > 0 if xr < xq,

< 0 otherwise.
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Note that by the definition of the configuration distribution, if xr = xq then r = q. Therefore,

we have∑
1≤r≤k,r 6=q

pr∆(xr)(xr − xq) < 0. (2.17)

By Facts 2.5.12 and 2.5.14, Inequality (2.17) contradicts that BCE≥2 has the least social

cost over all correlated equilibria of k ≥ 2 configurations. Thus, BCE≥2 must have a

configuration, C(x), where x < c−1
s1

, and the rest of the argument is as in Case 2.

Case 2: xj ∈ [0, c−1
s1

). By Fact 2.5.7, xj = 0.

By the definition of the configuration distribution, BCE≥2 has no two configurations that

have the same fraction of players that are advised to go. Thus, BCE≥2 has one configuration

that has no players advised to go.

We know that ∆( c−1
s1

) = 0. By Fact 2.5.12, BCE≥2 has no configuration C( c−1
s1

). By

Lemma 2.5.11, BCE≥2 has no configuration with an x-fraction of players advised to go,

where x ∈ (0, c
s1

).

Now we show Lemma 2.5.17, where BCE≥2 has at most one configuration lies on the

negative network effect, and any other configuration lies on the positive network effect. In

order to do so, as shown in Figure 2.7, we prove Fact 2.5.16. This fact shows a property for

any configuration distribution which has at least two configurations that have fractions of

players advised to go such that these fractions lie on the negative network effect.

Fact 2.5.16. For any D{(C(x1), p1), . . . , (C(xi), pi), . . . , (C(xj), pj), . . . , (C(xk), pk)}, and

for any arbitrary xi and xj such that xj > xi ≥ c
s1

, there exists D{(C(x1), p1), . . . , (C(xi−1)

, pi−1), (C(xi+1), pi+1), . . . , (C(x′j), pi + pj), . . . , (C(xk), pk)}, where x′j = pi
pi+pj

xi +
pj

pi+pj
xj.

Moreover,

1) (pi + pj)x
′
j∆(x′j) > pixi∆(xi) + pjxj∆(xj); and

2) (pi + pj)(1− x′j)∆(x′j) < pi(1− xi)∆(xi) + pj(1− xj)∆(xj).
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Figure 2.7: Proof Chart of Lemma 2.5.18 after proving Lemma 2.5.17

Proof. Let D{(C(x1), p1), . . . , (C(xi), pi), . . . , (C(xj), pj), . . . , (C(xk), pk)} be a configuration

distribution that has xj > xi ≥ c
s1

. Also let D{(C(x1), p1), . . . , (C(xi−1), pi−1), (C(xi+1), pi+1)

, . . . , (C(x′j), pi+pj), . . . , (C(xk), pk)} be a configuration distribution that has x′j = pi
pi+pj

xi+
pj

pi+pj
xj. We know that 0 < pi, pj < 1 and xj > xi. Thus xi < x′j < xj. Assume by way of

contradiction that

(pi + pj)x
′
j∆(x′j) ≤ pixi∆(xi) + pjxj∆(xj),

or equivalently,

x′j∆(x′j) ≤
pi

pi + pj
xi∆(xi) +

pj
pi + pj

xj∆(xj).

Let p = pi
pi+pj

, so 1− p =
pj

pi+pj
. Then we have

x′j∆(x′j) ≤ pxi∆(xi) + (1− p)xj∆(xj).

Recall that for c
s1
≤ x ≤ 1, ∆(x) = 1− s2(x− c

s1
). Since c

s1
≤ xi, xj, x

′
j ≤ 1, we get

x′j(1− s2(x′j −
c

s1

)) ≤ pxi(1− s2(xi −
c

s1

)) + (1− p)xj(1− s2(xj −
c

s1

)).
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Since x′j = pxi + (1− p)xj, we have

x′j(−s2(x′j −
c

s1

)) ≤ pxi(−s2(xi −
c

s1

)) + (1− p)xj(−s2(xj −
c

s1

)).

We know that s2 > 0, and hence dividing by −s2, we get

x′j(x
′
j −

c

s1

) ≥ pxi(xi −
c

s1

) + (1− p)xj(xj −
c

s1

).

Since − c
s1
x′j = − c

s1
(pxi + (1− p)xj), we have

x′2j ≥ px2
i + (1− p)x2

j .

Substituting x′j by pxi + (1− p)xj, we get

p2x2
i + 2p(1− p)xixj + (1− p)2x2

j ≥ px2
i + (1− p)x2

j .

By rearranging, we have

p(1− p)(x2
j − 2xixj + x2

i ) ≤ 0.

Now since 0 < p < 1, we can divide by p(1− p), and we get

(xj − xi)2 ≤ 0,

which contradicts since xj 6= xi. This proves that

(pi + pj)x
′
j∆(x′j) > pixi∆(xi) + pjxj∆(xj). (2.18)

Now we prove that (pi + pj)(1− x′j)∆(x′j) < pi(1− xi)∆(xi) + pj(1− xj)∆(xj). To do so, we

first show that (pi + pj)∆(x′j) = pi∆(xi) + pj∆(xj).

We know that

x′j =
pi

pi + pj
xi +

pj
pi + pj

xj

⇐⇒ (pi + pj)x
′
j = pixi + pjxj

⇐⇒ (pi + pj)(x
′
j −

c

s1

) = pi(xi −
c

s1

) + pj(xj −
c

s1

)

⇐⇒ (pi + pj)s2(x′j −
c

s1

) = pis2(xi −
c

s1

) + pjs2(xj −
c

s1

)

⇐⇒ (pi + pj)(1− s2(x′j −
c

s1

)) = pi(1− s2(xi −
c

s1

)) + pj(1− s2(xj −
c

s1

))
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Recall that ∆(x) = 1− s2(x− c
s1

) when c
s1
≤ x ≤ 1. We know that c

s1
≤ xi, xj, x

′
j ≤ 1. Thus,

we get

(pi + pj)∆(x′j) = pi∆(xi) + pj∆(xj). (2.19)

By subtracting (2.18) from (2.19), we obtain

(pi + pj)(1− x′j)∆(x′j) < pi(1− xi)∆(xi) + pj(1− xj)∆(xj).

Lemma 2.5.17. For any (c, s1, s2)-El Farol game, BCE≥2 has at most one configuration,

C(x), where x ≥ c
s1

.

Proof. Assume by way of contradiction that BCE≥2 has at least two configurations that

have fractions of players advised to go such that these fractions are at least c
s1

. Now let

Mk be a mediator that uses BCE≥2 = D{(C(x1), p1), . . . , (C(xi), pi), . . . , (C(xj), pj), . . . ,

(C(xk), pk)}, where xj > xi ≥ c
s1

.

By Fact 2.5.4, we have

pixi∆(xi) + pjxj∆(xj) +
∑

1≤r≤k,r 6=i,r 6=j

prxr∆(xr) ≥ 0 (2.20)

and

pi(1− xi)∆(xi) + pj(1− xj)∆(xj) +
∑

1≤r≤k,r 6=i,r 6=j

pr(1− xr)∆(xr) ≤ 0. (2.21)

LetD{(C(x1), p1), . . . , (C(xi−1), pi−1), (C(xi+1), pi+1), . . . , (C(x′j), pi+pj), . . . , (C(xk), pk)}

be a configuration distribution that has x′j = pi
pi+pj

xi +
pj

pi+pj
xj. By Fact 2.5.16, we have

(pi + pj)x
′
j∆(x′j) > pixi∆(xi) + pjxj∆(xj) (2.22)

and

(pi + pj)(1− x′j)∆(x′j) < pi(1− xi)∆(xi) + pj(1− xj)∆(xj). (2.23)

41



Chapter 2. Selfishness in Distributed Systems

By Inequalities (2.20) and (2.22), we get

(pi + pj)x
′
j∆(x′j) +

∑
1≤r≤k,r 6=i,r 6=j

prxr∆(xr) > 0. (2.24)

Similarly, by Inequalities (2.21) and (2.23), we obtain

(pi + pj)(1− x′j)∆(x′j) +
∑

1≤r≤k,r 6=i,r 6=j

pr(1− xr)∆(xr) < 0. (2.25)

By Fact 2.5.4 and Inequalities (2.24) and (2.25), D{(C(x1), p1), . . . , (C(xi−1), pi−1), (C(xi+1)

, pi+1), . . . , (C(x′j), pi + pj), . . . , (C(xk), pk)} is a correlated equilibrium. Let Mk−1 be a me-

diator that uses this correlated equilibrium. By Fact 2.5.5, the expected social cost of Mk

is

((1−
∑

1≤r≤k,r 6=i,r 6=j

prxr∆(xr))− pixi∆(xi)− pjxj∆(xj))n,

and the expected social cost of Mk−1 is

((1−
∑

1≤r≤k,r 6=i,r 6=j

prxr∆(xr))− (pi + pj)x
′
j∆(x′j))n.

Since (pi+pj)x
′
j∆(x′j) > pixi∆(xi)+pjxj∆(xj), the expected social cost of Mk−1 is less than

the expected social cost of Mk. Further, by Lemma 2.5.15, BCE≥2 must have a configuration

that has no players advised to go; this implies that Mk has k ≥ 3 configurations.

Those contradict that BCE≥2 has the least social cost over all correlated equilibria of at

least two configurations.

Now we show Lemma 2.5.18 after proving Lemmas 2.5.15 and 2.5.17, as illustrated in Fig-

ure 2.8. In Lemma 2.5.18, we show that BCE2 = BCE≥2. Moreover, BCE2 has exactly two

configurations: one configuration lies on the negative network effect and one configuration

lies on the positive network effect.
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Figure 2.8: Proof Chart of Lemma 2.5.18 after proving Lemmas 2.5.15 and 2.5.17

Lemma 2.5.18. For any (c, s1, s2)-El Farol game, BCE≥2 = D{(C(0), p), (C(x), 1 − p)},

where 0 < p < 1; and c
s1
≤ x < 1

s2
+ c

s1
if f(1) ≥ 1, otherwise c

s1
≤ x ≤ 1.

Proof. By definition, BCE≥2 has at least two configurations. By Lemmas 2.5.15 and 2.5.17,

BCE≥2 has exactly two configurations. The first configuration has no players advised to go,

and the second configuration has an x-fraction of players advised to go, where x ≥ c
s1

. We

know by Fact 2.5.6 that ∆(0) < 0. Thus, the first configuration has ∆(0) < 0. By Fact

2.5.12, the second configuration must have ∆(x) > 0. We know that x ≥ c
s1

. By Fact 2.5.6,

if f(1) ≥ 1, then c
s1
≤ x < 1

s2
+ c

s1
; otherwise, c

s1
≤ x ≤ 1.

(B) Characterization of BCE≥2

After we have proven that BCE≥2 has exactly two configurations, we now characterize these

configurations along with the probability distribution in terms of c, s1 and s2.

Lemma 2.5.19. For any (c, s1, s2)-El Farol game, if c > 1, then BCE≥2 is D{(C(0), p),
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(C(x), 1− p)}, where λ(c, s1, s2) = c( 1
s1

+ 1
s2

)−
√

c( 1
s1

+ 1
s2

)(c−1)

s2
,

x =


λ(c, s1, s2) if c

s1
≤ λ(c, s1, s2) < 1,

c
s1

if λ(c, s1, s2) < c
s1

,

1 otherwise.

and p = (1−x)(1−f(x))
(1−x)(1−f(x))+c−1

.

Proof. Let M2 be a mediator that uses BCE≥2. By Lemma 2.5.18, M2 uses D{(C(0), p),

(C(x), 1− p)}, where c
s1
≤ x < 1

s2
+ c

s1
if f(1) ≥ 1; otherwise, c

s1
≤ x ≤ 1.

Now we determine p and x so that M2 has the least social cost as it implements BCE≥2.

First, we determine p. By Constraint (2.4) of Fact 2.5.4, we have

p∆(0) + (1− p)(1− x)∆(x) ≤ 0. (2.26)

We know that c > 1, ∆(0) = 1 − c and ∆(x) > 0. By rearranging Inequality (2.26), we

obtain

p ≥ (1− x)∆(x)

(c− 1) + (1− x)∆(x)
. (2.27)

Recall that the cost of any configuration, C(xi), is Cost(C(xi)) = (1− xi∆(xi))n. Thus,

we have Cost(C(0)) = n and Cost(C(x)) = (1− x∆(x))n.

Since ∆(x) > 0, Cost(C(x)) < n. Therefore, we obtain that Cost(C(x)) < Cost(C(0)).

We know that the expected social cost of M2 is pCost(C(0))+(1−p)Cost(C(x)). Recall that

BCE≥2 has the least social cost over all correlated equilibria of at least two configurations.

In order to compute the social cost of M2, given that Cost(C(0)) > Cost(C(x)), we compute

the smallest possible value of p in Inequality (2.27). Thus, we have p = (1−x)∆(x)
(c−1)+(1−x)∆(x)

.

Now we compute x of the social cost of M2. By Fact 2.5.5, the social cost of M2 is

(1− (1− p)x∆(x))n. Since p = (1−x)∆(x)
(c−1)+(1−x)∆(x)

, the social cost of M2 is (1− (c−1)x∆(x)
(c−1)+(1−x)∆(x)

)n,

or equivalently, (1− g(x))n, where g(x) = (c−1)x∆(x)
(c−1)+(1−x)∆(x)

.
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In order to minimize the social cost with respect to x, we maximize g(x) with respect to

x. Hence, we have

dg(x)

dx
=

(c− 1)[(c− 1 + (1− x)∆(x))(∆(x)− s2x) + x∆(x)((1− x)s2 + ∆(x))]

((c− 1) + (1− x)∆(x))2
.

By rearranging and canceling common terms, we obtain

dg(x)

dx
=

(c− 1)[(∆(x))2 + (c− 1)∆(x)− (c− 1)s2x]

((c− 1) + (1− x)∆(x))2
. (2.28)

We know that ∆(x) > 0, c
s1
≤ x < c

s1
+ 1

s2
, x ≤ 1 and c > 1. Thus, the denominator of the

right hand side of Equation (2.28) is always positive. By setting the numerator to zero and

dividing by c− 1, we get

(∆(x))2 + (c− 1)∆(x)− (c− 1)s2x = 0. (2.29)

By solving Equation (2.29), we have x = c( 1
s1

+ 1
s2

)±
√

c( 1
s1

+ 1
s2

)(c−1)

s2
. Now let λ(c, s1, s2) =

c( 1
s1

+ 1
s2

)−
√

c( 1
s1

+ 1
s2

)(c−1)

s2
and λ̄(c, s1, s2) = (c( 1

s1
+ 1

s2
) +

√
c( 1
s1

+ 1
s2

)(c−1)

s2
).

Since λ̄(c, s1, s2) > ( 1
s2

+ c
s1

), by Lemma 2.5.18, it is out of range. This implies that we

have one root x = λ(c, s1, s2).

Recall that g(x) is a quadratic function of x. Moreover, we know that dg(x)
dx
|(x= c

s1
)< 0 iff

λ(c, s1, s2) < c
s1

, and dg(x)
dx
|(x=1)> 0 iff λ(c, s1, s2) > 1. Further, we know that λ(c, s1, s2) <

c
s1

+ 1
s2

; and if f(1) ≥ 1, then c
s1
≤ x < 1

s2
+ c

s1
, otherwise, c

s1
≤ x ≤ 1.

Thus, for c
s1
≤ λ(c, s1, s2) ≤ 1, the maximum of g(x) is at x = λ(c, s1, s2); for λ(c, s1, s2) <

c
s1

, the maximum of g(x) is at x = c
s1

; and for λ(c, s1, s2) > 1, the maximum of g(x) is at

x = 1.

(C) BCE≥2 ≤ BCE1

We have proven that BCE≥2 = BCE2. Thus, for any (c, s1, s2)-El Farol game, if c > 1, then

BCE is either BCE1 or BCE2. Now we show that BCE2 has social cost of at most the
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social cost of BCE1.

Recall that the social cost of BCE2 is (1− g(x∗))n, where g(x) = (c−1)x∆(x)
(c−1)+(1−x)∆(x)

.

For f(1) > 1, by Lemma 2.4.2, the social cost of BCE1 is n. Since g(x∗) ≥ 0, (1−g(x∗)) ≤

1. Thus, the social cost of BCE2 is at most the social cost of BCE1.

For f(1) ≤ 1, by Lemma 2.4.2, the social cost of BCE1 is f(1)n. Since g(x) is maximized

at x = x∗, g(x∗) ≥ g(1). We know that g(1) = ∆(1). Thus, g(x∗) ≥ ∆(1), or equivalently,

1 − g(x∗) ≤ f(1). This implies that the social cost of BCE2 is at most the social cost of

BCE1.

Moreover, we know that if x∗ → 1, then p→ 0. In this case, BCE2 reduces to BCE1, i.e.,

the optimal mediator implements the best Nash equilibrium, where all players are advised

to go.

2.5.2 Optimal Mediator for c ≤ 1

The following lemma shows that if c ≤ 1, then the optimal mediator implements the best

Nash equilibrium.

Lemma 2.5.20. For any (c, s1, s2)-El Farol game, if c ≤ 1, then the best correlated equilib-

rium is the best Nash equilibrium.

Proof. First, in a manner similar to Fact 2.5.12, any optimal mediator over k ≥ 2 does not

have a configuration C(x) with ∆(x) = 0. Second, in a manner similar to Lemma 2.5.11,

for any correlated, D{(C(x1), p1), . . . , (C(xj), pj), . . . , (C(xk), pk)}, where 0 ≤ xj <
c
s1

, there

exists a correlated equilibrium, D{(C(x1), p1), . . . , (C(x′j), pj), . . . , (C(xk), pk)}, with less ex-

pected social cost, where c
s1
≤ x′j <

1
s2

+ c
s1

if f(1) ≥ 1; otherwise, c
s1
≤ x′j ≤ 1. Third,

in a manner similar to Lemma 2.5.17, any optimal mediator has at most one configuration,

C(x), where x ≥ c
s1

.
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Therefore, for c ≤ 1, the optimal mediator uses a configuration distribution of at most

one configuration. This implies that the best correlated equilibrium is a configuration dis-

tribution of one configuration, which is trivially the best Nash equilibrium that is stated in

Lemma 2.4.2.

2.5.3 Mediation Metrics

Now we compute the Mediation Value and the Enforcement Value. Recall that the Mediation

Value (MV ) is the ratio of the minimum social cost over all Nash equilibria to the minimum

social cost over all mediators; and the Enforcement Value is the ratio of the minimum social

cost over all mediators to the optimal social cost.

For c > 1, by Lemmas 2.4.2 and 2.5.19,

MV =
min(f(1), 1)

p+ (1− p)(xf(x) + (1− x))
;

and by Lemmas 2.4.1 and 2.5.19,

EV =
p+ (1− p)(xf(x) + (1− x))

yf(y) + (1− y)
.

For c ≤ 1, by Lemma 2.5.20,

MV = 1;

and by Lemmas 2.4.1 and 2.4.2,

EV =
min(f(1), 1)

yf(y) + (1− y)
.
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Chapter 3

Self-Healing Communication

“Fool me once, shame on you. Fool me twice, shame on me.”

– Randall Terry

3.1 Introduction

Self-healing algorithms protect critical properties of a network, even when that network is

under repeated attack. Such algorithms detect corruptions efficiently and expend resources

when it is necessary to repair damage done by an attacker. Thus, they provide significant

resource savings when compared to traditional robust algorithms, which expend significant

resources even when the network is not under attack.

The last several years have seen exciting results in the design of self-healing algorithms [19,

37, 38, 64, 73, 75]. Unfortunately, none of these previous results handle Byzantine faults,

where an adversary takes over nodes in the network and can cause them to deviate arbitrarily

from the protocol. This is a significant gap, since traditional Byzantine-resilient algorithms

are notoriously inefficient, and the self-healing approach could significantly improve efficiency.

In this chapter, we take a step towards addressing this gap. For a network of n nodes, we
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design self-healing algorithms for communication that tolerate up to 1/4 fraction of Byzantine

faults. Our algorithms enable any node to send a message to any other node in the network

with message and latency costs that are asymptotically optimal.

Moreover, our algorithms limit the expected total number of message corruptions. Ideally,

each Byzantine node would cause O(1) corruptions; our result is that each Byzantine node

causes O((log∗ n)2) corruptions in expectation. 1 2

This chapter is organized as follows. In Section 3.2, we describe our model. Our main

theorem is given in Section 3.3, and we provide a technical overview in Section 3.4. The

related work is discussed in Section 3.5. Section 3.6 describes our algorithms. The analysis

of our algorithms is shown in Section 3.7. Section 3.8 gives empirical results showing how

our algorithms improve the efficiency of the butterfly networks of [30].

3.2 Our Model

We assume a static Byzantine adversary in the sense that it takes over nodes before the

algorithm begins. The nodes that are controlled by the adversary are bad, and the other

nodes are good. The bad nodes may arbitrarily deviate from the protocol, by sending no

messages, excessive numbers of messages, incorrect messages, or any combination of these.

The good nodes follow the protocol.

Further, we assume that the adversary knows our protocol, but is unaware of the random

bits of the good nodes. We assume that each node has a unique ID. We say that node p has

a link to node q if p knows q’s ID and can thus directly communicate with node q. Also, we

assume the existence of a public key digital signature scheme, and thus a computationally

1Recall that log∗ n or the iterated logarithm function is the number of times logarithm must be
applied iteratively before the result is less than or equal to 1. It is an extremely slowly growing
function: e.g. log∗ 1010 = 5.

2We thus amend our initial quote to: “Fool me once, shame on you. Fool me ω((log∗ n)2) times,
shame on me.”
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bounded adversary. Also, we assume that the network remains physically connected even

after the adversary removes all Byzantine nodes.

Moreover, we assume partially synchronous communication model in the sense that any

message sent from one good node to another good node requires at most h time steps to be

sent and received, and the value h is known to all nodes. Also, we tolerate if the adversary is

rushing, where the bad nodes receive all messages from good nodes in a round before sending

out their own messages.

3.3 Our Contributions

This chapter provides a self-healing algorithm, SEND, that sends a message reliably from a

source node to a target node through a network. Our main theoretical result is summarized

in the following theorem.

Theorem 3.3.1. Assume we have a network with n nodes and t ≤ (1/4− ε)n bad nodes, for

any constant ε > 0. Then our algorithm has the following properties:

(1) in an amortized sense3, any call to SEND, to deliver a message reliably through a path

of length `, has expected number of messages O(` + log n) with expected latency O(`);

and

(2) the expected total number of times that SEND fails to deliver a message reliably is

O(t(log∗ n)2).

Our experimental results (Section 3.8) show that our algorithms reduce the message

cost, compared to a naive algorithm that has no self-healing properties, by a factor of 50 for

3In particular, if we call SEND L times through quorum paths, where `M is the longest such path,
then the expected total number of messages sent will be O(L(`M + log n) + t · (`M log2 n+ log5 n))
with latency O(`(L+ t)). Since t is fixed for large L, the expected number of messages per SEND
is O(`M + log n) with expected latency O(`).
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n = 14,116, and by a factor of 60 for n = 30,509.

3.4 Technical Overview

In this section, we describe quorum graph, naive communication through the quorum graph

and our self-healing approach for communication networks.

3.4.1 Quorum Graph of Communication Network

We define a quorum to be a set of Θ(log n) nodes, of which at most 1/4-fraction are bad.

Many results show how to create and maintain a network of quorums [14, 30, 31, 39, 46, 60,

76]. All of these results maintain what we will call a quorum graph in which each vertex

represents a quorum. The properties of the quorum graph are:

(1) each node is in O(log n) quorums;

(2) for any quorum Q, any node in Q can communicate directly to any other node in Q;

and

(3) for any quorums Qi and Qj that are connected in the quorum graph, any node in Qi

can communicate directly with any node in Qj and vice versa.

Moreover, we assume that for any two nodes x and y in a quorum, node x knows all quorums

that node y is in.

Note that the quorum graph is created after the adversary chooses the bad nodes.
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3.4.2 Communicating with Quorums

The communication in the quorum graph typically occurs as follows. When a node s sends

another node r some message m, there is a canonical quorum path, Q1, Q2, . . . , Q`, through

the quorum graph. This path is determined by the ID’s of both s and r. Note that we

assume that node s is a good node.

!

s

r

Figure 3.1: Quorum Graph of Communication Network

Figure 3.1 shows the communication between node s and node r through a quorum path

in the quorum graph, where the message is propagated from the left to the right.
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Q1 Q2 Q!-1 Q!s r

!

Figure 3.2: Naive Communication

3.4.3 Naive Communication

A correct but inefficient algorithm to route a message m reliably from a source node to a

target node is shown in Figure 3.2. In this algorithm, node s sends a message m to node

r through a path of quorums via all-to-all communication. Each node participating in the

quorum path takes the majority of the messages it receives in order to determine the true

value of m.

Unfortunately, this algorithm requires O(` log2 n) messages and latency O(`). A main

result of this chapter is to reduce the message cost to O(`+ log n) in an amortized sense.

3.4.4 Our Approach

An efficient approach to communication is to have a path of nodes selected uniformly at

random through the quorum path from node s to node r. In this path of nodes, each node

forwards the message it has received to eventually be received by node r. Unfortunately, a

single bad node in this path can corrupt the entire communication.

We provide an algorithm, CHECK, which detects if there has been a corruption. CHECK

is a light-weight algorithm in terms of message cost. Node s triggers CHECK with some
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probability. If CHECK detects a corruption, it calls HEAL, which is a heavy-weight algo-

rithm but it is bounded in an amortized sense. In particular, the expected total number of

calls to HEAL before all bad nodes are marked is O(t).

CHECK is implemented as either CHECK1 or CHECK2. CHECK1 runs in one round.

Node s resends the message through a path of subsets of 2 log log n nodes in the quorum path

via all-to-all communication. CHECK1 fails to detect corruptions if all nodes in any subset

are bad. A key lemma (Lemma 3.7.1) shows that this algorithm fails to detect a corruption

with probability less than 1/2 for ` ≤ log2 n
2

.

CHECK2 is a more sophisticated algorithm. It runs in O(log∗ n) rounds. In each round,

node s sends the message through a path of subsets of nodes in the quorum path. These

subsets are initially empty. In each round, a new node selected uniformly at random is added

to each subset.

In order to show how CHECK2 detects a corruption, we first define deception interval in

a round as a path of bad nodes that are selected in this round to be added to the subsets.

Note that the adversary selects the deception intervals, in which the bad nodes corrupt

the messages. Note further that if the adversary corrupts a message in any round, it has

to keep corrupting this message in all subsequent rounds. Thus, for i rounds of CHECK2

to fail to detect a corruption, there must be nesting levels of deception intervals in each

of those i rounds. A key lemma (Lemma 3.7.4) shows that any deception interval shrinks

logarithmically from round to round with probability at least 1/2. We use this lemma to show

that CHECK2 requires O(log∗ n) rounds to detect corruption with constant probability.4

In HEAL, each node has participated in communication is investigated in order to de-

termine which node(s) has corrupted the message. In particular, each node announces the

messages it has received. In this way, each call to HEAL identifies at least one pair of nodes

that are in conflict; informally, we say that a pair of nodes are in conflict if they each accuse

4This probability can be made arbitrarily close to 1 by adjusting the hidden constant in the
O(log∗ n) rounds. See Corollary 3.7.10.
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the other of malicious behavior. In such a situation, we know that at least one node in this

pair is bad. In HEAL, both nodes in each conflicting pair are marked, and these marked

nodes are prohibited from participating in future communication.

A naive approach would be to never unmark marked nodes. Unfortunately, this approach

fails because all nodes in a quorum may get marked and so inhibit communication. To avoid

this, we unmark the nodes of any quorum that has 1/2-fraction of nodes marked. A subtle

potential function argument (Lemma 3.7.12) shows that this marking scheme will mark all

bad nodes after O(t) calls to HEAL, after which the network is completely healed, i.e., no

more corruption will occur.

3.4.5 Marked Senders

We can allow marked nodes to call SEND, where it may be helpful to let the good nodes

that are marked still be able to lookup. However, the marked bad nodes may blow up the

message cost of SEND by a factor of O((log log n)2) if CHECK1 is used and by a factor of

O((log∗ n)2) if CHECK2 is used.

3.5 Related Work

Several papers [35, 40, 57, 81, 82] have discussed different restoration mechanisms to preserve

network performance by adding capacity and rerouting traffic streams in the presence of node

or link failures. They present mathematical models to determine global optimal restoration

paths, and provide methods for capacity optimization of path-restorable networks.

Our results are inspired by recent work on self-healing algorithms [19, 37, 38, 64, 73, 75].

A common model for these results is that the following process repeats indefinitely: an

adversary deletes some nodes in the network, and the algorithm adds edges. The algorithm
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is constrained to never increase the degree of any node by more than a logarithmic factor

from its original degree. In this model, researchers have presented algorithms that ensure

the following properties: the network stays connected and the diameter does not increase by

much [19, 37, 73]; the shortest path between any pair of nodes does not increase by much

[38]; and expansion properties of the network are approximately preserved [64].

Our results are also similar in spirit to those of Saia and Young [74] and Young et al. [84],

which both show how to reduce message complexity when transmitting a message across a

quorum path of length `. The first result, [74], achieves expected message complexity of

O(` log n) by use of bipartite expanders. However, this result is impractical due to high

hidden constants and high setup costs. The second result, [84], achieves expected message

complexity of O(`). However, this second result requires the sender to iteratively contact a

member of each quorum in the quorum path.

As mentioned earlier, several peer-to-peer networks have been described that provably

enable reliable communication, even in the face of adversarial attack [12, 13, 14, 25, 30, 39,

43, 60, 76]. To the best of our knowledge, our approach applies to each of these networks,

with the exception of [25]. In particular, we can apply our algorithms to asymptotically

improve the efficiency of the peer-to-peer networks from [14, 30, 39, 60, 76].

Similar to Young et al. [85], we use threshold cryptography as an alternative to Byzantine

Agreement.

In this chapter, we improve the results of [48] to tolerate up to t ≤ (1/4− ε)n bad nodes,

for any constant ε > 0, instead of t ≤ (1/8− ε)n bad nodes.

3.6 Our Algorithms

In this section, we describe our algorithms: SEND, SEND-PATH, CHECK and HEAL. The

main technical challenge of this chapter is in the design of the algorithm CHECK, which is
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described in Section 3.6.4.

3.6.1 Overview

The objective of our algorithms is to detect the corruption and to mark all bad nodes in the

network, after which no message corruption occurs. If a node is marked, it is not allowed

to participate in communication. Before our algorithms start, all nodes in the network are

initially unmarked.

Before discussing our main SEND algorithm, we describe that when a node x broad-

casts a message m, signed by the private key of a quorum Q, to a set of nodes S, it calls

BROADCAST (m,Q, S).

3.6.2 BROADCAST

In BROADCAST (Algorithm 1), we use threshold cryptography to avoid the overhead of

Byzantine Agreement.

In a (η, η′)-threshold cryptographic scheme, a private key is distributed among η nodes

in such a way that 1) any subset of more than η′ nodes can jointly reassemble the key; and

2) no subset of at most η′ nodes can recover the key. The private key can be distributed

using a Distributed Key Generation (DKG) protocol [45].

DKG generates the public/private key shares of all nodes in every quorum. We assume

that the public key share of each node and the public key of each quorum are known to all

nodes in the quorum and the neighboring quorums in the network.

In particular, we use a (|Q|, 3|Q|
4
− 1)-threshold scheme, where |Q| is the quorum size.

A node x calls BROADCAST in order to send a message m to all nodes in S so that: 1)

at least 3/4-fraction of the nodes in quorum Q have received the same message m; 2) they
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Algorithm 1 BROADCAST(m,Q, S) . A node x sends a message m, signed by quorum Q,

to a set of nodes S.
1: Node x sends message m to all nodes in Q.

2: Each node in Q signs m by its private key share to obtain its message share.

3: Each node in Q sends its message share back to node x.

4: Node x interpolates at least 3|Q|
4 message shares to obtain a signed-message of Q.

5: Node x sends this signed-message to all nodes in S.

agree upon the content of m; and 3) they give a permission to x to broadcast this message.

Any call to BROADCAST requires O(log n+ |S|) messages for signing the message m by

O(log n) nodes in quorum Q, with latency O(1).

3.6.3 SEND

Now we describe our main algorithm, SEND, that is stated formally in Algorithm 2. SEND

calls SEND-PATH, which is described in Algorithm 3.

Algorithm 2 SEND(m, r) . node s sends a message m reliably to node r.

1: Node s calls SEND-PATH (m, r).

2: With probability pc, node s calls CHECK (m, r).

In SEND-PATH, as shown in Figure 3.3, node s sends message m to node r through a

path of unmarked nodes selected uniformly at random. It is efficient in terms of message cost

and latency; but in the presence of bad nodes, it is vulnerable to corruption. Thus, we make

SEND call CHECK algorithm with probability pc, where CHECK detects, with probability

pd, if a message has been corrupted in the last call to SEND-PATH.

In CHECK, the message is sent from node s to node r through a path of subquorums,

where a subquorum is a subset of unmarked nodes selected uniformly at random in a quorum.

Unfortunately, while CHECK can determine if a corruption occurred, it does not specify the
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Algorithm 3 SEND-PATH(m, r) . node s sends a message m through a path of unmarked

nodes to node r.
Declaration: for 1 < i < `, let Ui be the set of all unmarked nodes in Qi. Also let w be the

maximum number of nodes in any quorum.

1: Node s sets R to be an array of w integers selected uniformly at random between 1 and w.

2: Node s broadcasts m and R to all nodes in Q1.

3: The nodes in Q1 calculate the node q2 using R[|U2|] to index U2’s nodes sorted by their IDs.

4: All nodes in Q1 send m to node q2.

5: for i = 2, . . . , `− 2 do

6: Node qi selects qi+1 ∈ Ui+1 uniformly at random.

7: Node qi sends m to node qi+1.

8: end for

9: Node q`−1 ∈ U`−1 broadcasts m to all nodes in Q`.

10: All nodes in Q` send m to node r.

location where the corruption occurred. Hence, if CHECK detects a corruption, HEAL

algorithm is called.

When HEAL is called, it identifies two neighboring quorums Qi and Qi+1 in the path,

for some 1 ≤ i < `, such that at least one pair of nodes in these quorums is in conflict and

Q1 Q2 Q!-1 Q!s r

!

Q!-2Q3

unmarked nodes
selected u.a.r.

Figure 3.3: SEND-PATH Algorithm
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at least one node in such pair is bad. These nodes are marked in all quorums they are in

and in their neighboring quorums. Moreover, in each call to HEAL, we mark at most one

good node. In order to always provide unmarked nodes to participate in communication, we

set the following condition. If (1/2− γ)-fraction of nodes in any quorum have been marked,

for a constant γ > 0, these nodes are set unmarked. Furthermore, in order to handle any

accusation against node s or node r in HEAL, we let the message be broadcasted to Q1 and

Q` in each call to SEND-PATH and CHECK.

Our model does not directly consider concurrency. In a real system, concurrent calls

to HEAL that overlap at a single quorum may allow the adversary to achieve multiple

corruptions at the cost of a single marked bad node. However, this does not effect correctness,

and, in practice, this issue can be avoided by serializing concurrent calls to SEND. For

simplicity of presentation, we leave the concurrency aspect out of this research.

3.6.4 CHECK

We implement CHECK as either CHECK1 or CHECK2. In this section, we describe

CHECK1 and CHECK2. Then, we compare between them in terms of message cost and

latency.

Throughout this section, we let Uj be the set of all unmarked nodes in Qj for 1 < j < `.

CHECK1

Now we describe CHECK1 that is stated formally as Algorithm 4. CHECK1 is a simpler

CHECK procedure compared to CHECK2. Although CHECK1 has a worse asymptotic

message cost, it performs well in practice.

CHECK1 is triggered by SEND with probability pc = 1/(log log n)2. CHECK1 runs in

one round, in which node s sends a message m to node r through a path of subquorums
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via all-to-all communication, see Figure 3.4. Note that each subquorum, Sj, has 2 log log n

nodes that are chosen uniformly at random with replacement from the nodes of Uj in the

quorum path, for 1 < j < `.

If any good node receives inconsistent messages or fails to receive an expected message

during CHECK1, it initiates a call to HEAL. However, CHECK1 fails to detect message

corruptions if all nodes of any subquorum in the quorum path are bad.

Algorithm 4 CHECK1(m, r) . checks in one round if there has been a corruption

Declaration: for 1 < j < `, let Uj be the set of all unmarked nodes in Qj and let each subquorum

Sj be initially empty. Note that each subquorum will have at most 2 log log n nodes. Also, let w

be the maximum number of nodes in any quorum.

1: Node s generates R as an ` by w by 2 log log n array of random integers.*

2: Node s sets m′ to be a message consisting of m, r, and R.

3: Node s broadcasts m′ to all nodes in Q1.

4: The nodes in Q1 use R2 to calculate the nodes of S2.**

5: The nodes in Q1 send m′ to the nodes of S2.

6: for j ← 2, . . . , `− 2 do

7: The nodes of Sj use Rj+1 to calculate the nodes of Sj+1.

8: The nodes of Sj send m′ to all nodes of Sj+1.

9: end for

10: The nodes of S`−1 broadcast m′ to all nodes in Q`.

11: The nodes of Q` send m′ to node r.

* R[j, k] is a multiset of 2 log log n integers selected uniformly at random with replacement between

1 and k, for 1 < j < ` and 1 ≤ k ≤ w.

** R[j, |Uj |], shortly Rj , has the indices of the nodes of Sj selected u.a.r. from the nodes of Uj ;

note that the nodes of Uj are sorted by their IDs.

Note that: if a node receives inconsistent messages or fails to receive an expected message, then

it initiates a call to HEAL.
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In Section 3.7, we show that if the message was corrupted during the last call to SEND-

PATH, the probability that CHECK1 fails to detect a corruption is less than 1/2 for ` ≤ log2 n
2

.

Hence, CHECK1 detects message corruptions with probability pd > 1/2. This requires

O(`(log log n)2 +log n · log log n) messages and latency O(`). But since CHECK1 is triggered

with probability 1/(log log n)2, it has expected message cost O(` + log n/ log log n), with

latency O(`/(log log n)2).

Q1 Q2 Q!s r

!

Q!-1

Subquorums

Q3 Q!-2

Figure 3.4: CHECK1 Algorithm

CHECK2

In this section, we describe CHECK2, which is stated formally as Algorithm 5. Note that

SEND calls CHECK2 with probability pc = 1/(log∗ n)2, and CHECK2 runs in 5(log∗ n+ 3)

rounds.

In CHECK2, firstly, node s generates a public/private key pair (kp, ks) to let the nodes

that receive kp verify any subsequent message signed by ks. As illustrated in Figure 3.5,

node s sends, in each round, a message m through a path of subquorums to node r. Note

that for each call to CHECK2, each subquorum, Sj, in the quorum path is initially empty,

and in each round, a new node xj ∈ Uj selected uniformly at random is added to Sj, for all

1 < j < `.

62



Chapter 3. Self-Healing Communication

Algorithm 5 CHECK2(m, r) . checks in multiple rounds if there has been a corruption

Declaration: for 1 < j < `, let Uj be the set of all unmarked nodes in Qj and let each subquorum

Sj be initially empty. Also let w be the maximum number of nodes in any quorum.

1: Node s generates public/private key pair (kp, ks).

2: for i← 1, . . . , 5(log∗ n+ 3) do

3: Node s generates Ri as an ` by w array of random integers.*

4: Node s sets mi = ([m, r, i, Ri]ks , kp).

5: Node s broadcasts mi to all nodes in Q1.

6: All nodes in Q1 use Ri2 to calculate node xi2 to be added to S2.**

7: The nodes in Q1 send mi to all nodes in S2.

8: The nodes in Q1 send R1, . . . , Ri−1 to node xi2.

9: for j ← 2, . . . , `− 2 do

10: All i nodes in Sj use Ri(j+1) to calculate node xi(j+1) to be added to Sj+1.

11: for k ← 1, . . . , i− 1 do

12: Node xkj sends mk to node xi(j+1).

13: Node xij uses Rk(j+1) to calculate node xk(j+1).

14: Node xij sends mi to node xk(j+1).

15: end for

16: Node xij sends mi to node xi(j+1).

17: end for

18: The nodes in S`−1 broadcast mi to all nodes in Q`.

19: All nodes in Q` send mi to node r.

20: end for

* Ri[j, k] is a uniformly random integer between 1 and k, for 1 < j < ` and 1 ≤ k ≤ w.

** Ri[j, |Uj |], shortly Rij , is the index of node, xij , to be selected u.a.r. from the nodes of Uj in

round i; note that the nodes of Uj are sorted by their IDs.

Note that: if a node has previously received kp, then it verifies each subsequent message with it;

also if a node receives inconsistent messages or fails to receive and verify an expected message, then

it initiates a call to HEAL.
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Q1 Q2 Q!-1 Q!s r

!
Subquorums

Q3 Q!-2

Round 1

unmarked nodes
selected u.a.r. in round 1 

Q1 Q2 Q!-1 Q!s r

!
Subquorums

Q3 Q!-2

Round 2

unmarked nodes
selected u.a.r. in round 2 

Figure 3.5: CHECK2 Algorithm

If any node receives inconsistent messages or fails to receive and verify any expected

message in any round, it initiates a call to HEAL. CHECK2 detects message corruptions

with probability pd ≥ 1/2. It requires O((` + log n)(log∗ n)2) message cost and O(` log∗ n)

latency. But since CHECK2 is triggered with probability 1/(log∗ n)2, it has expected message

cost O(`+ log n)) with expected latency O(`/ log∗ n).

An example run of CHECK2 is illustrated in Figure 3.6. In this figure, there is a column

for each subquorum from S2 to S`−1 in the quorum path and a row for each round of

CHECK2. For a given row and column, there is a G or B in that position depending on

whether the node selected in that particular round and that particular quorum is good (G)

or bad (B).
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Figure 3.6: Example run of CHECK2

Recall that a deception interval in a round is a path of bad nodes that are selected in

this round to be added to the subquorums in the quorum path. Note that the adversary’s

strategy to maximize the number of rounds before corruption detection is to select the longest

deception interval in the first row, and to keep corrupting the message in all subsequent

deception intervals.

In Figure 3.6, we show the deception intervals selected by the adversary. These intervals

are outlined by left and right bar in each row. Note that the left bar in each row specifies the

rightmost subquorum in which there is some good node that receives the correct message

m′. The right bar in each row specifies the leftmost subquorum in which there is some good

node that does not receive m′.

There are two key points by which CHECK2 detects message corruptions: 1) any de-

ception interval in any round never expands in any subsequent round; and 2) any deception

interval shrinks to length zero after O(log∗ n) rounds, with constant probability.

Deception intervals never expand? In order to show that any deception interval

never expands over rounds, we show that the left bar never moves leftwards, and the right

bar never moves rightwards.
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The left bar never moves leftwards because each good node receives the message m′ in

round i has to receive the same message in all subsequent rounds; otherwise, it will call

HEAL. Moreover, we know that for each round i, all nodes in each subquorum Sj send the

message to the new node that is selected in this round to be added to Sj+1 for 1 < j < `.

Thus, those good nodes that receive and provide m′ to the deception interval in round i will

provide the same message to all subsequent deception intervals.

Now we show that the right bar never moves rightwards. Recall that in each round, each

node that is added to each subquorum Sj sends the message it has received to all nodes in

Sj+1 for 1 < j < `. Thus, all good nodes that receive a message through a deception interval

in any round expect to receive the same message in all subsequent rounds. Also, each good

node that did not receive m′ in any round must not receive this message in all subsequent

rounds; otherwise, it will initiate a call to HEAL. This shows that the right bar never moves

rightwards.

Deception intervals shrink logarithmically? The reason that CHECK2 requires

O(log∗ n) rounds is because of a probabilistic result on the maximum length run in a sequence

of coin tosses. In particular, if we have a coin that takes on value “B” with probability at

most 1/2, and value “G” with probability at least 1/2, and we toss it x times, then the

expected length of the longest run of B’s is O(log x). Thus, if in some round, the distance

between the left bar and the right bar is x, we expect in the next round this distance will

shrink to O(log x). Intuitively, we might expect that, if the quorum path is of length `, then

O(log∗ `) rounds will suffice before the distance shrinks to 0. This intuition is formalized in

Lemma 3.7.9 (Section 3.7).

When the two bars meet, is the corruption detected? Figure 3.7 shows that

when the two bars meet, a corruption is detected. In this figure, as the deception intervals

shrink over rounds, node x in the last round receives message m′. Then node x forwards

this message to node y which has not previously received m′ in this call to CHECK2. As a

result, node y calls HEAL declaring that it has received inconsistent messages.
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Figure 3.7: A corruption is detected after the two bars meet.

If all nodes in one or more subquorums are bad, does CHECK2 successfully

detect message corruptions? We know that CHECK1 fails if all nodes in any subquorum

in the quorum path are bad. However, CHECK2 can detect corruptions even if all nodes

in multiple subquorums are bad. Recall that CHECK2 runs in O(log∗ n) rounds. In each

round, new nodes are selected uniformly at random to be added to the subquorums. This

makes the adversary not be able to know, before all rounds finish, if all the nodes in one or

more subquorums are bad. Thus, the adversary would rather select the longest deception

interval in the first round and keeps corrupting the message in the nesting deception intervals

in all subsequent rounds. Note that if the adversary corrupts the message in more than one

interval in the same round, it will increase the chance of detecting message corruption.

Figure 3.8 shows that even though all nodes in a subquorum S10 are bad, the good node

v receives message m′ from the bad node u, where node u is not in the deception interval

chosen by the adversary in row 3.

Furthermore, if all nodes in multiple subquorums are bad, then the corruptions that

occur in the deception intervals can be detected. Figure 3.9 shows that even if all nodes in

subquorums, S5, S10 and S15, are bad, the good node vi receives m′ from the bad node ui,
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Figure 3.8: A corruption can be detected even if all nodes in subquorum S10 are bad.

which is not in the deception intervals, for i ∈ {5, 10, 15}.
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Figure 3.9: A corruption can be detected even if all nodes in multiple subquorums, S5, S10

and S15, are bad.

A comparison between CHECK1 and CHECK2

CHECK1 has the following advantages over CHECK2. 1) CHECK1 has less latency, where

each call to CHECK1 runs in one round, and each call to CHECK2 runs in O(log∗ n) rounds;
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2) CHECK1 has fewer calls to broadcast, where any call to CHECK1 calls BROADCAST

twice, and any call to CHECK2 calls BROADCAST O(log∗ n) times; and 3) CHECK1 has

less message cost in expectation, when all bad nodes are marked.

However, CHECK2 has the following advantages over CHECK1. 1) CHECK2 can handle

a quorum path of length ` ≤ n but CHECK1 handles a quorum path of length ` ≤ log2 n
2

;

and 2) CHECK2 can have less message cost initially; note that it has less message cost per

round, and once it detects a corruption at any round, it terminates.

3.6.5 HEAL

When a message is corrupted and CHECK detects such a corruption, HEAL is called. HEAL

is described formally as Algorithm 6.

The purpose of calling HEAL is 1) to determine the location at which the corruption has

occurred; and 2) to mark the nodes that are in conflict.

Algorithm 6 HEAL . Node q′ ∈ Q′ calls HEAL after it detects a corruption.

1: q′ broadcasts the fact that it calls HEAL along with all the messages that it has received in

this call to SEND, to all nodes in Q′.

2: The nodes in Q′ verify that q′ received inconsistent messages before proceeding.

3: Q′ notifies that a call to HEAL is occurring, via all-to-all communication, to all quorums in the

quorum path.

4: INVESTIGATE

5: MARK-IN-CONFLICTS

When HEAL starts, all nodes, in each quorum in the quorum path, are notified. To

determine the location at which the corruption is occurred, HEAL investigates the corruption

situation in INVESTIGATE, which is stated formally as Algorithm 7. In INVESTIGATE,

each node, previously involved in SEND-PATH or CHECK, broadcasts to all nodes in its

quorum and the neighboring quorums, the messages they have received (and from whom)
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and the messages they have sent (and to whom) in the previous call to SEND-PATH or

CHECK.

Algorithm 7 INVESTIGATE . investigates the corruption situation

1: for each node, q /∈ {s, r}, involved in the last call to SEND-PATH or CHECK do

2: q compiles all messages they have received (and from whom) and they have sent (and to

whom) in the last call to SEND-PATH or CHECK.

3: q broadcasts these messages to all nodes in its quorum and the neighboring quorums.

4: end for

Algorithm 8 MARK-IN-CONFLICTS . marks the nodes that are in conflict

1: for each pair of nodes, (qk, qk+1) ∈ (Qk, Qk+1), that is in conflict*, for 1 ≤ k < ` do

2: node qk+1 broadcasts a conflict message “{qk, qk+1}” to all nodes in Qk+1,

3: each node in Qv forwards “{qk, qk+1}” to all nodes in Qk+1 and all nodes in Qk,

4: all nodes in Qk (or Qk+1) send “{qk, qk+1}” to all other quorums that have node qk (or

qk+1).

5: all nodes in each quorum that has qx or qk+1 send “{qk, qk+1}” to the neighboring quorums.

6: end for

7: for each node, q, that receives a conflict message “{qk, qk+1}” do

8: q marks the nodes qk and qk+1 in its marking table.

9: end for

10: if (0.49)-fraction of nodes in any quorum have been marked then

11: each of these nodes is set unmarked in all quorums.

12: each of these nodes is set unmarked in all its neighboring quorums.

13: end if

* A pair of nodes, (qk, qk+1) is in conflict if: 1) qk was scheduled to send a message to qk+1 at

some point in the last call to SEND-PATH or CHECK; and 2) qk+1 does not receive an expected

message from qk in INVESTIGATE, or qk+1 receives a message in INVESTIGATE that is different

from the message that it has received from qk in the last call to SEND-PATH or CHECK.

As a result of the investigation, HEAL identifies at least one pair of nodes that are in

conflict. Note that a pair of nodes are in conflict if they each have broadcasted messages
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that are in conflict with the messages broadcasted by the other. Each pair of nodes that has

been identified that they are in conflict, are marked in their quorums and the neighboring

quorums. (See MARK-IN-CONFLICTS that is stated formally as Algorithm 8).

Moreover, each pair of nodes that are in conflict has at least one bad node. Thus, at most

one good node is marked in each call to HEAL. In order to keep providing unmarked nodes

to participate in SEND-PATH and CHECK, we set the constraint that if a (1/2−γ)-fraction

of nodes in any quorum has been marked, they are set unmarked in all their quorums and

the neighboring quorums.

Even though we unmark nodes in some situation, we provide a potential function argu-

ment (Lemma 3.7.12), which shows that all bad nodes are marked after O(t) calls to HEAL.

After all bad nodes are marked, no more corruptions occur.

3.7 Analysis

In this section, we provide the analysis of our algorithms. We first prove that CHECK1

succeeds to detect corruptions with probability more than 1/2. Then, we prove the lemmas

required for Theorem 3.3.1, in which SEND calls CHECK2. Note that we let all logarithms

be base 2 throughout this section.

3.7.1 CHECK1

First, we show that if a message is corrupted in SEND-PATH, CHECK1 succeeds to detect

such a corruption with probability more than 1/2.

Lemma 3.7.1. If ` ≤ log2 n
2

, then CHECK1 fails to detect any message corruption with

probability less than 1/2.
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Proof. CHECK1 succeeds in detecting the message corruption if every subquorum has at

least one good node.

Note that the fraction of bad nodes in any quorum is at most 1/4. Note further that

at least (1/2 + γ)-fraction of the nodes in any quorum are unmarked, for γ > 0. Thus, the

probability that an unmarked bad node is selected uniformly at random is at most 1/2
1+2γ

.

Therefore, the probability that any subquorum of size 2 log log n has only bad nodes is less

than

(1/2)2 log logn = 1/ log2 n.

Union-bounding over all ` subquorums, the probability that CHECK1 fails to detect

corruptions is less than `/ log2 n. For ` ≤ log2 n
2

, the probability that CHECK1 fails is less

than 1/2.

3.7.2 CHECK2

In order to show that CHECK2 succeeds to detect corruptions with probability at least 1/2,

we first define the deception interval.

Definition 3.7.2. A deception interval, di(j, k), is a path of unmarked bad nodes, xiw’s, that

are added to the subquorums, Sw’s, in round i, for 1 < j ≤ w ≤ k < `, such that: 1) Qj−1 is

the rightmost quorum that has at least one good node, which provides the correct message to

node xij; and 2) Qk+1 is the leftmost quorum that has at least one good node, to which node

xik is scheduled to send and does not provide the correct message.

Note that we say a deception interval, di(j, k), in round i expands in any subsequent

round if there exists a deception interval, di′(j
′, k′), in round i′ > i such that j′ < j ≤ k′ or

j′ ≤ k < k′.

Note further that we say a deception interval, di(j, k), in round i shrinks to length x in
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round i′ > i if there exists a deception interval, di′(j
′, k′), in round i′ such that j ≤ j′ ≤ k′ ≤ k

and x = k′ − j′ + 1 < k − j + 1.

Now we prove that 1) any deception interval never expands; and 2) any deception interval

shrinks logarithmically from round to round. This will imply that in O(log∗ n) rounds, any

deception interval shrinks to length zero at which the corruption is detected.

Lemma 3.7.3. Any deception interval in any round never expands in any subsequent round;

otherwise, HEAL will be called.

Proof. For each deception interval, di(j, k), we have the following.

All good nodes in Qj−1, that have been selected and have received kp in rounds i or less,

must receive uncorrupted messages signed by ks, in all rounds subsequent to i; otherwise,

HEAL will be called. Those good nodes, that receive the message signed by ks, will send

this message to 1) node xij ∈ di(j, k); and 2) node xi′j′ ∈ di′(j′, k′), for all i′ > i, j′ ≥ j and

k′ ≤ k.

Moreover, all good nodes in Qk+1, that have not received the correct message from node

xik ∈ di(j, k), must not receive this message from node xi′k′ ∈ di′(j′, k′), for all i′ > i, j′ ≥ j

and k′ ≤ k; otherwise, they will call HEAL.

Now we prove that any deception interval shrinks logarithmically from round to round.

Lemma 3.7.4. When a coin is flipped x times independently given that each coin is tail

with probability at most (1/2− ε), for any constant ε > 0, then the probability of having any

substring of tails of length at least max(1, 2 log x) is at most 1/2.

Proof. The probability of having a specific substring of tails, of length at least 2 log x, is at

most (
1

2
− ε
)2 log x

<

(
1

2

)2 log x

=
1

x2
.
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Union bounding over all possible substrings of length 2 log x, then the probability of having

a substring of tails, of length at least 2 log x, is less than x 1
x2

. Thus, for x ≥ 2, 1
x
≤ 1

2
; and

for x = 1, the probability of having a substring of length at least max(1, 2 log x) is trivially

at most (1/2− ε) for ε > 0.

Corollary 3.7.5. When a coin is flipped x times independently given that each coin is tail

with probability at most (1/2− ε), for any constant ε > 0, then the probability of having any

substring of tails of length at least max(1, bx/2c) is at most 1/2.

Now let f(n) = 2 log n, and let f (i)(n) be the function of applying function f , i times,

over n. Also, we let log(i)(n) be the function of applying logarithm i times over n.

Fact 3.7.6. ∀n > 4 and ∀i ≥ 1 such that log(i)(n) ≥ 2,

f (i)(n) ≤ 4 log(i)(n).

Proof. We prove by induction over i ≥ 1 that for n > 4 and log(i)(n) ≥ 2,

f (i)(n) ≤ 4 log(i)(n).

Base case: for i = 1, by definition,

f(n) = 2 log n ≤ 4 log n.

Induction hypothesis: for log(j)(n) ≥ 2,

∀j < i, f (j)(n) ≤ 4 log(j)(n).

Induction step: by definition,

f (i)(n) = f(f (i−1)(n)).
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By induction hypothesis, for log(i−1)(n) ≥ 2,

f (i−1)(n) ≤ 4 log(i−1)(n).

Then, we have

f (i)(n) ≤ f(4 log(i−1)(n)) = 2 log(4 log(i−1)(n)),

or equivalently,

f (i)(n) ≤ 2(2 + log(i)(n)) ≤ 4 log(i)(n),

for log(i)(n) ≥ 2.

Now let f ∗(n) be the smallest value i such that f (i)(n) ≤ 16.

Fact 3.7.7. ∀n > 4, f ∗(n) ≤ log∗ n− 2.

Proof. Let j = log∗ n− 2. We know that 2 < log(j)(n) ≤ 4. By Fact 3.7.6, we have

f (j)(n) ≤ 4 log(j)(n) ≤ 16.

Thus, by definition, f ∗(n) ≤ j = log∗ n− 2.

Lemma 3.7.8. Assume that any deception interval of length x shrinks to length 2 log x in a

successful step. Then, for any deception interval of length x′ > 16, after log∗ x′−2 successful

steps, it shrinks to a length of at most 16.

Proof. Fact 3.7.7 proves this lemma.

The next lemma shows that the algorithm CHECK2 catches corruptions with probability

at least 1/2.

Lemma 3.7.9. Assume some node selected uniformly at random in the last call to SEND-

PATH has corrupted a message in a quorum path of length ` ≤ n. Then when CHECK2 is

called, with probability at least 1/2, some node will call HEAL.
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Proof. By Lemma 3.7.3, any deception interval never expands over rounds. For shrinking

deception intervals over rounds, we make use of Lemma 3.7.4 to shrink logarithmically any

deception interval of length more than 16; otherwise, deception intervals shrink geometrically

using Corollary 3.7.5.

Let Xi be an indicator random variable that is equal 1 if the deception interval in round

i shrinks logarithmically in round i + 1; and 0 otherwise. Recall that the longest deception

interval has length of at most ` ≤ n. By Lemma 3.7.8, after having at most log∗ n − 2 of

Xi’s equal 1, the longest deception interval of length more than 16 shrinks to a deception

interval of length at most 16.

Also let Yj be an indicator random variable that is equal 1 if the deception interval of

length x ≤ 16 in round j shrinks geometrically to a deception interval of length at most

bx/2c in round j + 1; and 0 otherwise.

We require at most log∗ n − 2 rounds in which the Xi’s equal 1 to shrink the longest

deception interval, d, of length at most n to a deception interval, d′, of length at most 16.

Further, we require at most 5 rounds in which the Yj’s equal 1, to shrink d′ to length 0.

By Lemma 3.7.4, for all 1 ≤ i ≤ 5(log∗ n−2), for each event ξ = (X1 = x1, ..., Xi−1 = xi−1)

where x1, . . . , xi−1 ∈ {0, 1}, Xi ∼ Bernoulli(pi) for some pi ≥ 1/2. Similarly, by Corollary

3.7.5, for all 1 ≤ j ≤ 25, for each event ξ′ = (Y1 = y1, ..., Yj−1 = yj−1) where y1, . . . ,

yj−1 ∈ {0, 1}, Yj ∼ Bernoulli(pj) for some pj ≥ 1/2.

Let ξX be the event that
∑5(log∗ n−2)

i=1 Xi ≥ (log∗ n − 2), and let ξY be the event that∑25
j=1 Yj ≥ 5.

We know that the probability, that any deception interval of size n shrinks to size zero,

is at least

Pr (ξX ∩ ξY ) = Pr(ξY |ξX) · Pr(ξX) = Pr(
25∑
j=1

Yj ≥ 5) · Pr(

5(log∗ n−2)∑
i=1

Xi ≥ (log∗ n− 2)).
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For all 1 ≤ k ≤ 5(log∗ n + 3), let Zk ∼ Bernoulli(1/2), and all Zk’s are independent

random variables. With inequalities in terms of stochastic dominance [15, 36, 47, 78], for all

i, j, k, Xi ≥st Zk and Yj ≥st Zk.

Pr(ξY |ξX) · Pr(ξX) ≥ Pr

(
25∑
j=1

Zj ≥ 5

)
· Pr

5(log∗ n−2)∑
i=1

Zi ≥ (log∗ n− 2)

 .

Note that E
(∑25

j=1 Zj

)
= 25/2, and E

(∑5(log∗ n−2)
i=1 Zi

)
= 5(log∗ n− 2)/2. Note further

that for ξX , n > 16, or equivalently, log∗ n ≥ 4.

By Chernoff bounds [53, 56], for δ = 3/5, we have:

Pr

(
25∑
j=1

Zj < 5

)
< e−

9
4 ,

and

Pr

5(log∗ n−2)∑
i=1

Zi < (log∗ n− 2)

 < e−(5/4)(log∗ n−2)(3/5)2 ≤ e−
9
10 .

This follows that Pr(ξY |ξX) · Pr(ξX) ≥
(

1− e− 9
4

)(
1− e− 9

10

)
≥ 1/2. Therefore, the

probability that CHECK2 succeeds in finding a corruption and calling HEAL is at least

1/2.

Corollary 3.7.10. If the number of rounds in CHECK2 is 13(log∗ n+ 3), then corruptions

are detected with probability at least 0.99.

Moreover, Table 3.1 shows that the more rounds CHECK2 has, the more probability of

detecting corruptions is.

# Rounds Probabilities
6(log∗ n+ 3) 0.7
7(log∗ n+ 3) 0.8
8(log∗ n+ 3) 0.85
9(log∗ n+ 3) 0.9

Table 3.1: # rounds versus probability of detecting corruptions
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3.7.3 HEAL

Lemma 3.7.11. If some node selected uniformly at random in the last call to SEND-PATH

has corrupted a message, then the algorithm HEAL will identify a pair of neighboring quo-

rums Qj and Qj+1, for some 1 ≤ j < `, such that at least one pair of nodes in these quorums

is in conflict and at least one node in such pair is bad.

Proof. First we show that if a pair of nodes x and y is in conflict, then at least one of them

is bad. Assume not. Then both x and y are good. Then node x would have truthfully

reported what it received; any message that x received would have been sent directly to y;

and y would have truthfully reported what it received from x. But this is a contradiction,

since for x and y to be in conflict, y must have reported that it received from x something

different than what x reported receiving.

Now consider the case where a selected unmarked bad node corrupted a message in the

last call to SEND-PATH. By the definition of corruption, there must be two good nodes qj

and qk such that j < k and qj received the message m′ sent by node s, and qk did not. We

now show that some pair of nodes between qj and qk will be in conflict. Assume this is not

the case. Then for all x, where j ≤ x < k, nodes qx and qx+1 are not in conflict. But then,

since node qj received the message m′, and there are no pairs of nodes in conflict, it must

be the case that the node qk received the message m′. This is a contradiction. Thus, HEAL

will find two nodes that are in conflict, and at least one of them will be bad.

Now we prove that at least one pair of nodes is found to be in conflict as a result of

calling HEAL. Assume that no pair of nodes is in conflict. Then for every pair of nodes x

and y, such that x was scheduled to send a message to y during any round i of CHECK2,

x and y must have reported that they received the same message in round i. In particular,

this implies via induction, that for every round i, for all j, where 1 ≤ j ≤ `, all nodes in the

sets Sj must have broadcasted that they received the message m′ that was initially sent by

node s in round i. But if this is the case, the node x that initially called HEAL would have
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received no inconsistent messages. This is a contradiction since in such a case, node x would

have been unsuccessful in trying to initiate a call to HEAL. Thus, some pair of nodes must

be found to be in conflict, and at least one of them is bad.

The next lemma bounds the number of times that HEAL must be called before all bad

nodes are marked.

Lemma 3.7.12. HEAL is called O(t) times before all bad nodes are marked.

Proof. By Lemma 3.7.11, if a message is corrupted in the last call to SEND-PATH and is

caught by CHECK, then HEAL is called. HEAL identifies at least one pair of nodes that

are in conflict.

Let p be the probability of selecting an unmarked bad node uniformly at random. Recall

that the fraction of bad nodes in any quorum is at most 1/4 and at any moment the fraction

of unmarked nodes in any quorum is at least (1/2 + γ) for γ > 0. Thus, we have

p ≤ 1

2

(
1

1 + 2γ

)
.

Now let b be the number of bad nodes that are marked, and let g be the number of good

nodes that are marked. Further, we let

f(b, g) = b−
(

p

1− p

)
g.

For each corruption caught, at least one bad node is marked. This implies that b increases

by at least 1 and g increases by at most 1. Note that p
1−p < 1. Thus, f(b, g) increases by at

least (1− p
1−p) > 0.

Moreover, when a (1/2− γ)-fraction of nodes in any quorum Q of size |Q| get unmarked

for a constant γ > 0, b decreases by at most p(1/2 − γ)|Q| and g decreases by at least

(1− p)(1/2− γ)|Q|. This implies that f(b, g) further increases by at least 0.
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Thus, f(b, g) is monotonically increasing by at least (1 − p
1−p) > 0 for each corruption

caught. Note that when all bad nodes are marked,

f(b, g) ≤ t.

Hence, all bad nodes are marked after at most
(

1−p
1−2p

)
t, or equivalently, at most

(
1 + 1

2γ

)
t/2,

calls to HEAL.

3.7.4 Our Theorem

Now we prove Theorem 3.3.1. Note that we consider that SEND calls CHECK2.

Theorem 3.3.1 Assume we have a network with n nodes and t ≤ (1/4− ε)n bad nodes, for

any constant ε > 0. Then our algorithm has the following properties. 1) In an amortized

sense, any call to SEND has O(`+ log n) expected number of messages with O(`) expected

latency; and 2) the expected total number of times that SEND fails to deliver a message

reliably is O(t(log∗ n)2).

Proof. We first show the message complexity and the latency of our algorithms. By Lemma

3.7.12, the number of calls to HEAL is O(t). Thus, the resource cost of all calls to HEAL

are bounded as the number of calls to SEND grows large. Therefore, for the amortized cost,

we consider only the cost of the calls to SEND-PATH and CHECK2.

When sending a message through ` quorums, SEND-PATH has message cost O(`+log n)

and latency O(`). Recall that CHECK2 has a message cost of O((` + log n)(log∗ n)2) and

a latency of O(` log∗ n), but CHECK2 is called only with probability 1/(log∗ n)2. Hence,

the call to SEND has amortized expected message cost O(`+ log n) and amortized expected

latency O(`).

More specifically, if we perform any number of message sends through quorum paths,

where `M is the longest such path, and L is the sum of the quorums traversed in all such
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paths, then the expected total number of messages sent will be O(L+ t · (`M log2 n+log5 n)),

and the latency is O(t · `M).

This is true since each call to HEAL has message cost O(`M log2 n+ log5 n) and latency

O(`M), where:

1. the node, x, making the call to HEAL broadcasts its reason of calling HEAL to all

nodes in its quorum, this has message cost O(log n) and latency O(1);

2. all nodes in every quorum in the quorum path are notified via all-to-all communication

when HEAL is called, these notifications have a message cost of O(`M log2 n) and a

latency of O(`M);

3. HEAL has O(log∗ n) broadcasts over at most `M quorums, that has message cost

O(`M log∗ n · log n) and latency O(1);

4. the message cost when all nodes in Q1 and Q` broadcast is O(log2 n) with latency O(1);

5. marking a pair of nodes that are in conflict has message cost O(log3 n) and latency

O(1); and

6. note that marking a pair of nodes that are in conflict could cause O(log n) quorums

to be unmarked. Note further that unmarking O(log n) nodes in any quorum has

a message cost of O(log4 n). Thus, unmarking O(log n) quorums has message cost

O(log5 n) and latency O(1).

Now we show the expected total number of corruptions. Recall that by Lemma 3.7.12,

the number of calls to HEAL before all bad nodes are marked is O(t). Thus, CHECK2 must

detect corruptions and calls HEAL O(t) times. Moreover, if a bad node caused a corruption

during a call to SEND-PATH, then by Lemmas 3.7.9 and 3.7.11, with probability at least 1/2,

CHECK2 will catch it. Note that CHECK2 is called with probability 1
(log∗ n)2

. Therefore,

the expected total number of corruptions is O(t(log∗ n)2).
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3.8 Empirical Results

3.8.1 Setup

In this section, we empirically compare between two algorithms in terms of the message cost,

the latency, the fraction of messages corrupted and the expected total number of corruptions,

via simulation.

The first algorithm we simulate is no-self-healing algorithm from [29]. This algorithm

has no self-healing properties, and simply uses all-to-all communication between quorums

that are connected in a butterfly network. The second algorithm is self-healing , wherein we

apply our self-healing algorithm in the butterfly networks triggering CHECK1 and CHECK2

separately.

In our experiments, we consider butterfly networks of sizes up to n = 30,509, where

` = blog nc − 2 and the quorum size is b4 log nc.

In one experiment, SEND calls CHECK1 with probability 1/(log log n)2 and with sub-

quorum size b2 log log nc. Another experiment has SEND trigger CHECK2 with probability

1/(log∗ n)2 and with subquorum size b2 log∗ nc.

Moreover, we do our experiments for several fractions of bad nodes such as f equal to

1/8, 1/16, 1/32 and 1/64, where f = t/n. Note that for larger f , marking and unmarking

processes are performed more frequently. This makes the simulation take longer to eventually

mark all bad nodes.

Our simulations consist of a sequence of calls to SEND over the network, given a pair

of nodes s, r, chosen uniformly at random, where node s sends a message to node r. We

simulate an adversary who at the beginning of each simulation chooses uniformly at random

without replacement a fixed number of nodes to control. Our adversary attempts to corrupt

messages between nodes whenever possible. Aside from attempting to corrupt messages, the
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adversary performs no other attacks.

3.8.2 Results

The results of our experiments are shown in Figures 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16,

3.17, 3.18 and 3.19. Our results highlight two strengths of our self-healing algorithms (self-

healing) when compared to algorithms without self-healing (no-self-healing). First, the mes-

sage cost per call to SEND decreases as the total number of calls to SEND increases. Second,

for a fixed number of calls to SEND, the message cost per call to SEND decreases as the total

number of bad nodes decreases. In particular, when there are no bad nodes, self-healing has

dramatically less message cost than no-self-healing .

In our experiments, we show the following for n = 14,116 and n = 30,509: 1) the

expected number of messages per call to SEND; 2) the expected latency per call to SEND;

3) the fraction of messages corrupted for each call to SEND; and 4) the expected total number

of corruptions. Moreover, we show the improvement factor of # messages that is the ratio of

the expected number of messages of the no-self-healing algorithm to the expected number of

messages of SEND; and we show the latency increase factor that is the ratio of the expected

latency of SEND to the expected latency of no-self-healing algorithm.

Expected Number of Messages

Figures 3.10 and 3.11 show that the expected number of messages per call to SEND decreases

as the total number of calls to SEND increases, and for a fixed number of calls to SEND,

the expected number of messages per call to SEND decreases as f decreases.

Table 3.2 shows that when all bad nodes are marked, self-healing has dramatically less

expected number of messages per call to SEND than no-self-healing .
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Figure 3.10: # messages per call to SEND versus # calls to SEND, for n = 14,116 and
n = 30,509, when SEND calls CHECK1.
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Figure 3.11: # messages per call to SEND versus # calls to SEND, for n = 14,116 and
n = 30,509, when SEND calls CHECK2.

n
self-healing

no-self-healing
CHECK1 CHECK2

14,116 598 1,078 30,390
30,509 649 1,177 39,100

Table 3.2: Expected # messages per call to SEND in self-healing and in no-self-healing for
n = 14,116 and n = 30,509.
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Improvement Factor of # Messages

Figures 3.12 and 3.13 show the ratio of the expected number of messages of the no-self-healing

algorithm to the expected number of messages of SEND (for CHECK1 and CHECK2), after

all bad nodes are marked. They show that the expected number of messages has been

improved by a factor of O(log2 n).
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Figure 3.12: Improvement Factor of # Messages for CHECK1 and CHECK2.
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Figure 3.13: Improvement Factor of # Messages for CHECK1 and CHECK2 with Error Bars
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Expected Latency

Figures 3.14 and 3.15 show that the latency of no-self-healing is less than the latency of

self-healing due to the latency of CHECK1 and CHECK2. Note that the unit of latency is

message hop.
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Figure 3.14: Latency per call to SEND versus # calls to SEND, for n = 14,116 and n =
30,509, when SEND calls CHECK1.
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Figure 3.15: Latency per call to SEND versus # calls to SEND, for n = 14,116 and n =
30,509, when SEND calls CHECK2.

Table 3.3 shows that for n = 14,116 and n = 30,506, after all bad nodes are marked,
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we have that: 1) self-healing calling CHECK2 has more latency than self-healing calling

CHECK1; and 2) the latency of self-healing is at most twofold the latency of no-self-healing .

n
self-healing

no-self-healing
CHECK1 CHECK2

14,116 17 23 12
30,509 18 25 13

Table 3.3: Expected latency per call to SEND in self-healing and in no-self-healing for
n = 14,116 and n = 30,509.

Latency Increase Factor

Figures 3.16 and 3.17 show the ratio of the expected latency of SEND (for CHECK1 and

CHECK2) to the expected latency of the no-self-healing algorithm, after all bad nodes are

marked or all selected leaders are good. They show that the expected latency increases by

a factor of Θ(1).
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Figure 3.16: Latency Increase Factor for CHECK1 and CHECK2
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Figure 3.17: Latency Increase Factor for CHECK1 and CHECK2 with Error Bars

Fraction of Messages Corrupted

The fraction of messages corrupted per call to SEND shows the probability that the message

is corrupted in this call.

# Calls to SEND #105
0 0.5 1 1.5 2 2.5 3 3.5

F
ra

ct
io

n 
of

 m
es

sa
ge

s 
co

rr
up

te
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n = 14116

self-healing; f = 1/64
self-healing; f = 1/32
self-healing; f = 1/16
self-healing; f = 1/8
no-self-healing

# Calls to SEND #105
0 1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 m
es

sa
ge

s 
co

rr
up

te
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n = 30509

self-healing; f = 1/64
self-healing; f = 1/32
self-healing; f = 1/16
self-healing; f = 1/8
no-self-healing

Figure 3.18: Fraction of messages corrupted versus # calls to SEND, n = 14,116 and n =
30,509, when SEND calls CHECK1.

In Figures 3.18 and 3.19, no-self-healing has no corruptions; however, for self-healing ,

the fraction of messages corrupted per call to SEND decreases as the total number of calls
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to SEND increases. Also, for a fixed number of calls to SEND, the fraction of messages

corrupted per call to SEND decreases as the total number of bad nodes decreases.
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Figure 3.19: Fraction of messages corrupted versus # calls to SEND, for n = 14,116 and
n = 30,509, when SEND calls CHECK2.

Expected Total Number of Corruptions

In Figures 3.18 and 3.19, for each network given the number of nodes and the fraction of

bad nodes, if we integrate the corresponding curve, then we get the total number of times

that the message is corrupted in all calls to SEND in this network.

Tables 3.4, 3.5, 3.6 and 3.7 show the fact that when SEND calls CHECK1, the expected

total number of corruptions is at most Σ1, where

Σ1 = 2

(
1− 2f

1− 4f

)
t(log∗ n)2,

and when SEND calls CHECK2, the expected total number of corruptions is at most Σ2,

where

Σ2 = 2

(
1− 2f

1− 4f

)
t(log log n)2.
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f total # corruptions Σ1

1/64 3,457 4,102
1/32 6,930 8,507
1/16 13,831 18,526
1/8 27,721 47,641

Table 3.4: Total # corruptions when SEND calls CHECK1 for n = 14,116.

f total # corruptions Σ2

1/64 3,454 7,293
1/32 6,918 15,124
1/16 13,845 32,859
1/8 27,685 84,696

Table 3.5: Total # corruptions when SEND calls CHECK2 for n = 14,116.

f total # corruptions Σ1

1/64 7,490 8,866
1/32 14,996 18,386
1/16 29,949 40,042
1/8 59,932 102,967

Table 3.6: Total # corruptions when SEND calls CHECK1 for n = 30,509.

f total # corruptions Σ2

1/64 7,498 15,762
1/32 14,989 32,687
1/16 29,970 71,187
1/8 59,969 183,054

Table 3.7: Total # corruptions when SEND calls CHECK2 for n = 30,509.
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Chapter 4

Self-Healing Computation

“Computations are everywhere, once you begin to look at things in a certain way.”

– Rudy Rucker

4.1 Introduction

How can we protect a network against adversarial attack? A traditional approach provides

robustness through redundant components. If one component is attacked, the remaining

components maintain functionality. Unfortunately, this approach incurs significant resource

cost, even when the network is not under attack.

An alternative approach is self-healing, where a network detects the damage made by

attacks, inspects the corruption situation and automatically recovers. Self-healing algorithms

expend additional resources only when it is necessary to repair from attacks.

In this chapter, we describe self-healing algorithms for the problem of reliable multiparty

computation (RMC). In the RMC problem, there are n parties, each with an individual input,

and the parties want to jointly compute a function f over n inputs. A hidden 1/4-fraction of

the parties are controlled by an omniscient Byzantine adversary. A party that is controlled
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by the adversary is said to be bad, and the remaining parties are said to be good. Our goal

is to ensure that all good parties learn the output of f . 1

RMC abstracts many problems that may occur in high-performance computing, sensor

networks, and peer-to-peer networks. For example, we can use RMC to enable performance

profiling and system monitoring, compute order statistics, and enable public voting.

Our main result is an algorithm for RMC that 1) is asymptotically optimal in terms of

total messages and total computational operations; and 2) limits the expected total number

of corruptions. Ideally, each bad party would cause O(1) corruptions; in our algorithm, each

bad party causes O((log∗m)2) corruptions in expectation.

This chapter is organized as follows. In Section 4.2, we describe our model. Our main

theorem is given in Section 4.3, and we provide a technical overview in Section 4.4. The

related work is discussed in Section 4.5. Section 4.6 describes our algorithms. The analysis

of our algorithms is shown in Section 4.7. Section 4.8 gives empirical results showing how

our algorithms improve the efficiency of the butterfly networks of [30].

4.2 Our Model

We assume a static Byzantine adversary that takes over t ≤ (1
4
− ε)n parties before the algo-

rithm begins, for any constant ε > 0. As mentioned previously, parties that are compromised

by the adversary are called bad, and the remaining parties are good. The bad parties may ar-

bitrarily deviate from the protocol, by sending no messages, excessive numbers of messages,

incorrect messages, or any combination of these. The good parties follow the protocol. We

assume that the adversary knows our protocol, but is unaware of the random bits of the

good nodes. We make use of a public key cryptography scheme, and thus we assume that

1Note that RMC differs from secure multiparty computation (MPC) only in that there is no
requirement to keep inputs private.
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the adversary is computationally bounded.

Also, we assume a partially synchronous communication model, where any message sent

from one good node to another good node requires at most h time steps to be sent and

received, and the value h is known to all nodes. We allow the adversary to be rushing in

the sense that the bad nodes receive all messages from good nodes in a round before sending

out their own messages.

We further assume that each party has a unique ID. We say that party p has a link to

party q if p knows q’s ID and can thus directly communicate with node q.

In the reliable multiparty computation problem, we assume that the function f can be

implemented with an arithmetic circuit over m gates, where each gate has two inputs and at

most two outputs.2 For simplicity of presentation, we focus on computing a single function

multiple times (with changing inputs). However, we can also compute multiple functions

with our algorithm.

4.3 Our Result

We describe an algorithm, COMPUTE, to efficiently solve reliable multiparty computation.

Our main result is summarized in the following theorem.

Theorem 4.3.1. Assume we have n parties providing inputs to a function f that can be

computed by an arithmetic circuit with depth ` and containing m gates. Then COMPUTE

solves RMC and has the following properties.

(1) In an amortized sense3, any execution of COMPUTE requires O(m+n log n) messages

2We note that any gate of any fixed in-degree and out-degree can be converted into a fixed
number of gates with in-degree 2 and out-degree at most 2.

3In particular, if we call COMPUTE L times, then the expected total number of messages sent
will be O(L(m+n log n)+t(m log2 n)). Since t is fixed, for large L, the expected number of messages
per COMPUTE is O(m+ n log n). Similar for the cost of computational operations.
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sent by all parties, O(m + n log n) computational operations performed by all parties,

and O(`) latency.

(2) The expected total number of times that COMPUTE returns a corrupted output is

O(t(log∗m)2).

The theoretical result of this chapter was first presented as an extended abstract in [72].

Our experimental results (Section 4.8) show that our algorithms reduce the message cost,

compared to the naive algorithm, by a factor of 65 for n = 8,191.

4.4 Technical Overview

Our algorithms make critical use of quorums and a quorum graph.

4.4.1 Quorum Graph of Computation Network

We define a quorum to be a set of Θ(log n) parties, of which at most 1/4-fraction are bad.

Many results show how to create and maintain a network of quorums [14, 30, 31, 39, 46, 59,

60, 76]. All of these results maintain what we will call a quorum graph in which each vertex

represents a quorum. The properties of the quorum graph are:

(1) each party is in Θ(log n) quorums;

(2) for any quorum Q, any party in Q can communicate directly to any other party in Q;

and

(3) for any quorums Q and Q′ that are connected in the quorum graph, any party in Q

can communicate directly with any party in Q′ and vice versa.
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Figure 4.1: Quorum Graph in Computation Network

Moreover, we assume that for any two parties x and y in a quorum, x knows all quorums

that y is in.

4.4.2 Computing with Quorums

We maintain a quorum graph with m+ n nodes: m nodes for the gates of the circuit and n

nodes for the inputs of the parties. The input nodes are connected to the gates using these

inputs, and the gate nodes are connected as in the circuit. Quorums are mapped to nodes

in this quorum graph as described above.

Figure 4.1 shows the quorum graph in which the computation is performed from the left

to the right. In particular, the input quorums are the leftmost quorums and the output

quorum is the rightmost quorum in the quorum graph.
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Figure 4.2: Computing through a circuit of quorums via all-to-all communication

4.4.3 Naive Computation

A correct but inefficient way to solve RMC is as follows. Each party si sends its input

to all parties of the appropriate input quorum. Then the computation is performed from

left to right. All parties in each quorum compute the appropriate gate operation on their

inputs, and send their outputs to all parties in the right neighboring quorums via all-to-

all communication. At the next level, all parties in each quorum take the majority of the

received messages in order to determine the correct input for their gate. At the end, the

parties in the rightmost quorum will compute the correct output of the circuit (See Figure

4.2). They then forward this output back from right to left through the quorum graph using

the same all-to-all communication and majority filtering (See Figure 4.3).

Unfortunately, this naive algorithm requires O((m+ n) log2 n) messages and O(m log n)

computational operations. Our main goal is to remove polylog and log factors. 4

4We note that such asymptotic improvements can be significant for large networks. For example,
if n = 4k, then our algorithm reduces message cost by a factor of O(log2 n) = 336.
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Figure 4.3: Sending back the result to all senders through a circuit of quorums via all-to-all-
communication

4.4.4 Our Approach

A more efficient approach is for each quorum to have a leader, and for this leader to receive

inputs, perform gate computations, and send off the output. Unfortunately, a single bad

leader can corrupt the entire computation.

To address this issue, we provide CHECK (Section 4.6.3). This algorithm determines if

there has been a corruption, and if so, it calls RECOVER (Section 4.6.4), which identifies

at least one pair of parties that are in conflict. Informally, we say that a pair of parties

are in conflict if they each accuse the other of malicious behavior. In such a situation, we

know that at least one party in the pair is bad. Our approach is to mark both parties in

each conflicting pair, and these marked parties are prohibited from participating in future

computation but they still can provide the inputs of the circuit. 5

The basic idea of CHECK is to redo the computation through subsets of parties; one

subset for each gate. CHECK runs in multiple rounds. Initially, all subsets are empty; and

5A technical point is that we may need to unmark all parties in a quorum if too many parties in
that quorum become marked. However, a potential function argument (Lemma 4.7.17) shows that
after O(t) markings, all bad parties will be marked.
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in each round, a new party is selected uniformly at random from each quorum to be added

to each subset. We call these parties the checkers. For convenience of presentation, we will

refer to the leaders as the checkers for round 0. For each round i ≥ 1, all i checkers at

gate g: 1) receive inputs to g from the checkers at each input gate for g; 2) compute the

gate output for g based on these inputs; and 3) send this output to the checkers at each

output gate for g. If a good checker ever receives inconsistent inputs, it calls RECOVER.

Unfortunately, waiting until a round where each gate has had at least one good checker

would require O(log n) rounds.

To do better, we use the following approach. Let G be the quorum graph as defined

above and let the checkers be selected as above. Call a subgraph of G bad in a given round

if all checkers in the nodes of that subgraph are bad; note that such a subgraph consists of

the new checkers that are added to the subsets in that round. When the adversary corrupts

an output of a bad subgraph of G in one round, it has to keep corrupting this output by

nesting levels of bad subgraphs of G in all subsequent rounds.

Recall that in each round, new checkers are selected uniformly at random. When CHECK

selects a good checker at a quorum, it is as removing the node associated with this quorum

from the quorum graph. Thus, we can view CHECK as repeatedly removing nodes from in-

creasingly smaller subgraphs of G until no nodes remain, at which the corruption is detected.

A key lemma (Lemma 4.7.4) shows that for any rooted directed acyclic graph (DAG), with

m nodes and maximum indegree 2, when each node is deleted independently with proba-

bility at least 1/2 + ε, for any constant ε > 0, the probability of having a connected DAG,

rooted at one node, with surviving nodes of size Ω(logm), is at most 1/2. By this lemma,

we show that CHECK requires only O(log∗m) rounds to detect a corruption with constant

probability.6

CHECK requires O((m + n log n)(log∗m)2) messages. Then, we can call it with proba-

6This probability can be made arbitrarily close to 1 by adjusting the hidden constant in the
O(log∗m) rounds. (See Corollary 4.7.13)
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bility 1/(log∗m)2 and obtain asymptotically optimal resource costs for the RMC problem,

while incurring O(t(log∗m)2) corruptions in expectation.

4.5 Related Work

Our results are inspired by recent work on self-healing algorithms. Early work of [35, 40, 57,

81, 82] discusses different restoration mechanisms to preserve network performance by adding

capacity and rerouting traffic streams in the presence of node or link failures. This work

presents mathematical models to determine global optimal restoration paths, and provides

methods for capacity optimization of path-restorable networks.

More recent work [19, 37, 38, 64, 73, 75] considers models where the following process

repeats indefinitely: an adversary deletes some nodes in the network, and the algorithm

adds edges. The algorithm is constrained to never increase the degree of any node by

more than a logarithmic factor from its original degree. In this model, researchers have

presented algorithms that ensure the following properties: the network stays connected and

the diameter does not increase by much [19, 37, 73]; the shortest path between any pair of

nodes does not increase by much [38]; expansion properties of the network are approximately

preserved [64]; and keeping network backbones densely connected [75].

This paper particularly builds on [48]. That paper describes self-healing algorithms that

provide reliable communication, with a minimum of corruptions, even when a Byzantine

adversary can take over a constant fraction of the nodes in a network. While our attack model

is similar to [48], reliable computation is more challenging than reliable communication,

and hence this paper requires a significantly different technical approach. Additionally, we

improve the fraction of bad parties that can be tolerated from 1/8 to 1/4.

Reliable multiparty computation (RMC) is closely related to the problem of secure mul-

tiparty computation (MPC) which has been studied extensively for several decades (see
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e.g. [6, 16, 17, 68, 83] or the recent book [67]). RMC is simpler than MPC in that it does not

require inputs of the parties to remain private. Our algorithm for RMC is significantly more

efficient than current algorithms for MPC, which require at least polylogarithmic blowup

in communication and computational costs in order to tolerate a Byzantine adversary. We

reduce these costs through our self-healing approach, which expends additional resources

only when corruptions occur, and is able to “quarantine” bad parties after O(t(log∗m)2)

corruptions.

4.6 Our Algorithms

In this section, we describe our algorithms: COMPUTE, EVALUATE, CHECK and RE-

COVER. Our algorithms aim at detecting corruptions and marking the bad parties. Note

that the parties that are marked are not allowed to participate in the computation; but they

still can provide inputs to the circuit. Note further that all parties are initially unmarked.

Recall that there are n parties, each provides an input to an input quorum, Qi, for

1 ≤ i ≤ n; and then the computation is performed through m quorums, Qj’s, for n + 1 ≤

j ≤ m + n. The result is produced at an output quorum Qm+n, and it is sent back to the

senders through the m quorums.

Before discussing our main COMPUTE algorithm, we describe that when a party x

broadcasts a message msg, signed by the private key of a quorum Q, to a set of parties S,

it calls BROADCAST (msg,Q, S).

4.6.1 BROADCAST

In BROADCAST (Algorithm 9), we use threshold cryptography to avoid the overhead of

Byzantine Agreement. In a (η, η′)-threshold cryptographic scheme, a private key is dis-
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tributed among η parties in such a way that 1) any subset of more than η′ parties can jointly

reassemble the key; and 2) no subset of at most η′ parties can recover the key. The private

key can be distributed using a Distributed Key Generation (DKG) protocol [45].

Algorithm 9 BROADCAST (msg,Q, S) . A party x sends message msg to a set of parties S

after signing it by the private key of quorum Q.

1: Party x calls SIGN (msg,Q). . signs msg by the private key of quorum Q.

2: Party x sends this signed-message to all parties in S.

In particular, we use (|Q|, 3|Q|
4
− 1)-DKG to generate for each quorum Q the following:

1) a (distributed) private key of Q, where a private key share is generated for each party in

Q; 2) a public key of Q to verify each message signed by the (distributed) private key of Q;

and 3) a public key share for each party in Q in order to verify any message signed by the

private key share of this party.

Note that for each quorum, Q, the public key of Q and the public key share of each party

in Q are known to all parties in Q and all parties in the neighboring quorums.

Recall that a party x calls BROADCAST (msg,Q, S) in order to send a message msg to

all parties in S after signing msg by the private key of quorum Q. Signing a message msg,

by the private key of Q, is formally stated in SIGN (msg,Q) (Algorithm 10). Note that we

let the message msg be signed by the private key of Q in order to fulfill the following: 1) at

least 3/4-fraction of the parties in quorum Q have received the same message msg; 2) they

agree upon the content of msg; and 3) they give permission to x to broadcast this message.

Algorithm 10 SIGN (msg,Q) . Signs message msg by the private key of quorum Q.

1: Party x sends message msg to all parties in Q.

2: Each party in Q signs msg by its private key share to obtain its message share.

3: Each party in Q sends its message share back to party x.

4: Party x interpolates at least 3|Q|
4 message shares to obtain a signed-message of Q.

Any call to BROADCAST has O(log n + |S|) messages and O(log n) computational op-
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erations for signing the message msg by O(log n) parties in Q, with latency O(1).

4.6.2 COMPUTE

Now we describe our main algorithm, COMPUTE (Algorithm 11), which calls EVALUATE

(Algorithm 12).

Algorithm 11 COMPUTE . performs a reliable computation sending result to parties

1: EVALUATE . computes and sends back the result through a circuit of leaders.

2: TRIGGER-CHECK . Output quorum triggers CHECK with probability 1/(log∗m)2.

In EVALUATE, the n parties broadcast their inputs to the input quorums; note that

we assume that all parties provide their inputs to the circuit in the same round. The input

quorums forward these inputs to a circuit of m leaders in order to perform the computation

and provide the result to the output quorum (See Figure 4.4). Then this result is sent back

to all senders (all parties) through the same circuit (See Figure 4.5). Note that we define a

leader of a quorum as a representative party of all parties in this quorum, and its leadership

is known to all parties in this quorum and the neighboring quorums.

In the presence of an adversary, EVALUATE is vulnerable to corruptions. Thus, COM-

PUTE calls TRIGGER-CHECK (Algorithm 13), in which the parties of the output quorum

decide together, to trigger CHECK (Algorithm 14) with probability 1/(log∗m)2, using se-

cure multiparty computation (MPC) [6, 17, 68]. CHECK is triggered in order to detect with

probability at least 1/2 if a computation was corrupted in the last call to EVALUATE.

Unfortunately, while CHECK can determine if a corruption occurred, it does not locate

where the corruption originally occurred. Thus, when CHECK detects a corruption, RE-

COVER (Algorithm 19) is called. In each call to RECOVER, two neighboring quorums in

the circuit are identified such that at least one pair of parties in these quorums is in conflict

and at least one party in this pair is bad. Then the parties that are in conflict are marked
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in all quorums they are in, and in their neighboring quorums. Moreover, for each pair of

leaders that are in conflict, their quorums elect a new pair of unmarked leaders uniformly at

random. Note that if (1/2− γ)-fraction of parties in any quorum have been marked, for any

constant γ > 0, e.g., γ = 0.01, they are set unmarked in all their quorums and in all their

neighboring quorums.
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Figure 4.4: Computing through a circuit of leaders in EVALUATE Algorithm
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Figure 4.5: Sending back the result to the senders through a circuit of leaders in EVALUATE
Algorithm
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Algorithm 12 EVALUATE . computes through a circuit of leaders producing the result at

the output quorum, and sends back the result to all parties.

1: for i = 1, . . . , n do . provides the inputs to the circuit.

2: Party si calls BROADCAST (ai, Qi, Qi). . si broadcasts its input ai to all parties in Qi.

3: All parties in Qi send ai to the leaders of the right neighboring quorums of Qi.

4: end for

5: for i = n+ 1, . . . ,m+ n− 1 do . performs the computation.

6: Let Qi′ and Qi′′ be the right neighboring quorums of Qi in the circuit.

7: if leader qi ∈ Qi receives all its inputs then

8: qi performs an operation on its inputs producing an output, bi.

9: qi sends bi to leader qi′ ∈ Qi′ and to leader qi′′ ∈ Qi′′ .

10: end if

11: end for

12: if leader qm+n ∈ Qm+n receives all its inputs then

13: qm+n performs an operation on its inputs producing an output, bm+n.

14: qm+n broadcasts bm+n to all parties in Qm+n.

15: end if

16: for i = m+ n, . . . , n+ 1 do . sends back the result to the leftmost leaders.

17: Let Qi′ and Qi′′ be left neighboring quorums of Qi in circuit, for n+ 1 ≤ i′, i′′ ≤ m+ n. *

18: Leader qi ∈ Qi sends bm+n to leader qi′ ∈ Qi′ and to leader qi′′ ∈ Qi′′ .

19: end for

20: for i = 1, . . . , n do . sends result to all parties after broadcasting it to the input quorums.

21: The leaders of Qi’s right neighboring quorums call BROADCAST (bm+n, Qi, Qi).

22: All parties in Qi send bm+n to sender si.

23: end for

* Recall that there are no leaders in the input quorums.

Moreover, we use BROADCAST in EVALUATE and CHECK in order to handle any

accusation issued in RECOVER against the parties that provide the inputs to the input

quorums, or those that receive the result in the output quorum.
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Algorithm 13 TRIGGER-CHECK . The parties of the output quorum Qm+n trigger

CHECK with probability 1/(log∗m)2.

1: Each party in Qm+n chooses an input: a real number uniformly distributed between 0 and 1.

2: The parties of Qm+n perform MPC to find the output, prob, which is the sum of all their inputs

modulo 1. . prob is the fractional part of the sum of their inputs.

3: if prob ≤ 1/(log∗m)2 then

4: CHECK

5: end if

Our model does not directly consider concurrency. In a real system, concurrent executions

of COMPUTE that overlap at a single quorum may allow the adversary to achieve multiple

corruptions at the cost of a single marked bad party. However, this does not effect correctness,

and, in practice, this issue can be avoided by serializing concurrent executions of COMPUTE.

For simplicity of presentation, we leave the concurrency aspect out of this research.

4.6.3 CHECK

In this section, we describe CHECK algorithm, which is stated formally as Algorithm 14.

In this algorithm, we make use of subquorums, where a subquorum is a subset of unmarked

parties in a quorum. Let Uk be the set of all unmarked parties in quorum Qk, for 1 ≤ k ≤

m+ n.

CHECK runs for O(log∗m) rounds. For each round i, the parties of the output quorum

Qm+n elect an unmarked party r from Qm+n to be in charge of the recomputation in round i,

where this election process is stated formally in ELECT (Algorithm 15). Then, the elected

party r calls REQUEST (Algorithm 16) to send a request through a DAG of subquorums,

SAj ’s, to the n senders in order to recompute (See Figure 4.6).

The recomputation process is stated formally as RECOMPUTE (Algorithm 17) and is

shown in Figure 4.7. In this process, each sender that receives this request provides its input
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to redo the computation through a DAG of subquorums, SBj ’s, producing the result at the

output quorum. When r receives this result, it calls RESEND (Algorithm 18) in order to

send the result back to the senders through a DAG of subquorums SCj ’s, for n+1 ≤ j ≤ m+n

(See Figure 4.8).

Algorithm 14 CHECK . Party r calls CHECK to check for corruptions.

Declaration: Let Uk be the set of all unmarked parties in quorum Qk, for 1 ≤ k ≤ m + n. Also

let m′ be the maximum number of parties in any quorum. Further, let subquorums, SAj , SBj and

SCj , be initially empty, for all n+ 1 ≤ j ≤ m+ n.

1: for i← 1, . . . , 14(log∗m+ 2(log c+ 1))* do

2: ELECT (Qm+n) . elects an unmarked party r ∈ Qm+n.

3: Party r constructs Ai, Bi and Ci to be three, m by m′, arrays of random integers.**

4: REQUEST (i, Ai, Bi) . r requests all senders to recompute.

5: RECOMPUTE . recomputes, producing the result, bim+n, at r.

6: RESEND (i, Ci, bim+n) . r sends back bim+n to all parties.

7: end for

* c = 2(1+2p)
log e(1−2p)2

; note that for any quorum Qk, p ≤ 1/2 − ε, is the probability of selecting a bad

party u.a.r. from Uk, for any constant ε > 0.

** Ai[k, k′], Bi[k, k′] and Ci[k, k′] are uniformly random integers between 1 and k′, for 1 ≤ k ≤ m

and 1 ≤ k′ ≤ m′.

Note that: if a party has previously received kp, then it verifies each subsequent message with

it; also if a party receives inconsistent messages or fails to receive and verify an expected message,

then it initiates a call to RECOVER.

Algorithm 15 ELECT (Q) . Parties in Q elect an unmarked party in Q using MPC.

1: Let each party in the set of unmarked parties, U ⊂ Q, is assigned a unique integer ∈ [0, |U |).

2: Each party in Q chooses an input: an integer uniformly distributed between 0 and |U | − 1.

3: The parties of Q perform MPC to find the output: the sum of all their inputs modulo |U |.

4: The party in U associated with this output number is the elected party.
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Algorithm 16 REQUEST (i, Ai, Bi) . r requests n senders through a DAG of subquorums,

SAj ’s, for n+ 1 ≤ j ≤ m+ n, to redo the computation.

1: Party r calls SIGN ([i, Ai, Bi, r], Qm+n). . signs [i, Ai, Bi, r] by Qm+n’s private key

2: Party r sets REQi = ([i, Ai, Bi, r]ks , kp). . (kp, ks) : public/private key pair of Qm+n

3: Party r sends REQi to all parties of quorum Qm+n.

4: All parties in Qm+n calculate party, qim+n ∈ Um+n, of index Aim+n to be added to SAm+n.*

5: for j ← m+ n, . . . , n+ 1 do . sends REQi through a DAG of subquorums.

6: Let Qj′ and Qj′′ be the left neighboring quorums of Qj in the circuit, for n + 1 ≤ j′, j′′ ≤

m+ n. **

7: All i parties in SAj calculate parties, qij′ and qij′′ , of indices Aij′ and Aij′′ , to be added to SAj′

and SAj′′ respectively.

8: Party qij calculate all parties in SAj′ and SAj′′ using A1
j′ , . . . , A

i
j′ and A1

j′′ , . . . , A
i
j′′ .

9: for k ← 1, . . . , i do . k refers to the rounds prior to round i.

10: Party qkj sends REQk to parties qij′ and qij′′ .

11: Party qij sends REQi to parties qkj′ and qkj′′ .

12: end for

13: end for

14: for k ← n, . . . , 1 do . The input quorums forward REQi to all senders.

15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the circuit.

16: All i parties in Sk′ and all parties in Sk′′ call BROADCAST (REQi, Qk, Qk).

17: All parties in Qk send REQi to sender sk.

18: end for

* Aij = Ai[j −n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties in Uj in

round i of REQUEST; note that all parties in Uj are sorted by their IDs, for n+ 1 ≤ j ≤ m+ n.

** Recall that there are no subquorums for the input quorums.
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Algorithm 17 RECOMPUTE . n senders provide inputs to a DAG of subquorums, SBj ’s, for

n+ 1 ≤ j ≤ m+ n, to recompute, producing a result, bim+n, at r.

1: for each sender sj that receives REQi, for 1 ≤ j ≤ n and n+ 1 ≤ j′, j′′ ≤ m+ n do

2: sj sets RECi to be a message consisting of its input aj and REQi.

3: sj broadcasts RECi to all parties in Qj .

4: Let Qj′ and Qj′′ be the right neighboring quorums of Qj in the circuit.

5: All parties in Qj calculate parties, qij′ and qij′′ , of indices Bi
j′ and Bi

j′′ , to be added to SBj′

and SBj′′ respectively.*

6: All parties in Qj send RECi to all parties in SBj′ and to all parties in SBj′′ .

7: All parties in Qj send REC1, . . . , RECi−1 to qij′ and qij′′ .

8: end for

9: for j ← n+ 1, . . . ,m+ n− 1 do . recomputes

10: Let Qj′ and Qj′′ be the right neighboring quorums of Qj in the circuit.

11: All i parties in SBj calculate parties, qij′ and qij′′ , of indices Bi
j′ and Bi

j′′ , to be added to SBj′

and SBj′′ respectively.

12: Party qij calculate all parties in SBj′ and SBj′′ using B1
j′ , . . . , B

i
j′ and B1

j′′ , . . . , B
i
j′′ .

13: for all 1 ≤ k ≤ i, qkj performs its operation on its inputs producing an output, bkj .

14: for k ← 1, . . . , i do

15: qkj sends bkj and RECk to parties qij′ and qij′′ .

16: qij sends bij and RECi to parties qkj′ and qkj′′ .

17: end for

18: end for

19: All i parties in Sm+n broadcast bim+n and RECi to all parties in Qm+n.

20: All parties in Qm+n send bim+n and RECi to party r. . r receives the result.

* Bi
j = Bi[j−n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties in Uj in

round i of RECOMPUTE; note that all parties in Uj are sorted by their IDs, for n+1 ≤ j ≤ m+n.

Note that in ELECT (Q), the parties of quorum Q perform MPC [6, 17, 68] to elect an

unmarked party, r, uniformly at random from Q. We know that at least half of the unmarked
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parties in Q are good. Thus, the elected party is good with probability at least 1/2. MPC

requires a message cost and a number of computational operations that are polylogarithmic

functions in n, and it runs in O(1) time.

Algorithm 18 RESEND (i, Ci, bim+n) . Party r sends back the result, bim+n, through a DAG

of subquorums, SCj ’s, to n senders, for n+ 1 ≤ j ≤ m+ n.

1: Party r calls SIGN ([i, Ci, bim+n, r], Qm+n). . signs it by Qm+n’s private key.

2: Party r sets RESi = ([i, Ci, bim+n, r]ks , kp). . (kp, ks) : public/private key pair of Qm+n.

3: Party r sends RESi to all parties of quorum Qm+n.

4: All parties in Qm+n calculate party, qim+n ∈ Um+n, of index Cim+n to be added to SCm+n.*

5: for j ← m+ n, . . . , n+ 1 do . sends back the result through a DAG of subquorums.

6: Let Qj′ and Qj′′ be the left neighboring quorums of Qj in the circuit, for n + 1 ≤ j′, j′′ ≤

m+ n. **

7: All i parties in SCj calculate parties, qij′ and qij′′ , of indices Cij′ and Cij′′ , to be added to SCj′

and SCj′′ respectively.

8: Party qij calculate all parties in SCj′ and SCj′′ using C1
j′ , . . . , C

i
j′ and C1

j′′ , . . . , C
i
j′′ .

9: for k ← 1, . . . , i do . k refers to the rounds prior to round i.

10: Party qkj sends RESk to parties qij′ and qij′′ .

11: Party qij sends RESi to parties qkj′ and qkj′′ .

12: end for

13: end for

14: for k ← n, . . . , 1 do . The input quorums forward RESi to all senders.

15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the circuit.

16: All i parties in Sk′ and all parties in Sk′′ call BROADCAST (RESi, Qk, Qk).

17: All parties in Qk send RESi to sender sk.

18: end for

* Cij = Ci[j −n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties in Uj in

round i of RESEND; note that all parties in Uj are sorted by their IDs, for n+ 1 ≤ j ≤ m+ n.

** Recall that there are no subquorums for the input quorums.
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Note further that during CHECK, if any party receives inconsistent messages or fails to

receive and verify any expected message in any round, it initiates a call to RECOVER.

CHECK detects message corruptions with probability at least 1/2. It requires O((m +

n log n)(log∗ n)2) message cost and O(` log∗ n) latency. But since CHECK is triggered with

probability 1/(log∗m)2, it has expected message cost O(m+n log n)) with expected latency

O(`/ log∗ n).

D1

D3

D2

D4 shrinks to size zero

Bad node Good node

Figure 4.9: Example run of CHECK
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An example run of CHECK is illustrated in Figures 4.9, 4.10 and 4.11. These figures

show that in each round, a circuit of parties is formed, where one party is selected u.a.r.

from each quorum in the quorum graph. Each of these parties performs the appropriate gate

operation on its inputs providing an output which is an input for the next gate in the circuit.

For a given circuit of parties and a given round, there is a white or black node depending

on whether the party selected in that particular round and that particular gate (quorum) is

good (white) or bad (black). Informally, we define a deception DAG, Di, in a round, i, as a

rooted DAG of bad nodes that are selected in this round to be added to the subquorums in

the quorum graph.

In Figure 4.9, we show the deception DAGs that are chosen by the adversary to corrupt

the computation over rounds. In particular, the adversary’s strategy is 1) to corrupt the

output of the maximum deception DAG in the first round; and 2) to keep corrupting this

output by nesting levels of deception DAGs in all subsequent rounds. These nesting levels

of deception DAGs are outlined in this figure.

There are two key points by which CHECK detects corruptions: 1) any deception DAG

in any round never extends in any subsequent round; and 2) any deception DAG is expected

to shrink logarithmically in size from round to round. This will imply that any deception

DAG shrinks to size zero after O(log∗ n) rounds, at which the corruption is detected.

Deception DAGs never extend? We know that each good party receives an input

message in any round has to receive the same input message in all subsequent rounds;

otherwise, it will call RECOVER. Moreover, for each round, we know that all parties in each

subquorum send their output message to the new party that is added in this round to the

next subquorum in the circuit. Thus, those good parties that provide their output message

to the deception DAG of this round will provide the same output message to all subsequent

deception DAGs. Recall that in each round, every party that is added to each subquorum,

S, sends its output message to all parties in the next subquorum, S ′, in the quorum graph.

112



Chapter 4. Self-Healing Computation

Thus, all good parties in S ′ that receive an input message through a deception DAG in any

round expect to receive the same input message in all subsequent rounds. Also, each good

party that did not receive the correct input message in any round must not receive this

message in all subsequent rounds; otherwise, it will initiate a call to RECOVER.

Node x computes 
a correct result, b', 

and sends it to Node y.

Node y did not 
receive b' previously.

Bad node Good node

Figure 4.10: A corruption is detected after the deception DAG shrinks to size zero.

Deception DAGs shrink logarithmically? A key lemma (Lemma 4.7.4) shows that

given a rooted DAG of size m, in which each bad node is selected u.a.r. with probability at
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most 1/2, then the probability of having a rooted subgraph of Ω(logm) bad nodes is at most

1/2. Intuitively, we could expect that O(log∗m) rounds will suffice to shrink any deception

DAG to size zero in a quorum graph of m gates.

When any deception DAG shrinks to size zero, is corruption detected? Figure

4.10 shows that when the deception DAG shrinks over rounds to size zero, node x in the

last round receives correct input messages. Then node x computes a correct output and

sends it to node y; however, node y has not previously received it as an input in this call

to CHECK. As a result, node y calls RECOVER declaring that it has received inconsistent

input messages.

A subquorum in which 
all nodes are bad

A subquorum in which 
all nodes are bad

Figure 4.11: A corruption can be detected even if all nodes in multiple subquorums are bad.
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If all nodes in multiple subquorums are bad, does CHECK successfully detect

message corruptions? CHECK can detect corruptions even if all parties in some subquo-

rums are bad. Recall that CHECK runs in O(log∗m) rounds. In each round, new parties are

selected u.a.r. to be added to the subquorums. This limits the adversary to know, before all

rounds finish, if all parties of any particular subquorum are bad. Thus, the adversary would

rather corrupt the output of the maximum deception DAG in the first round and keeps cor-

rupting this output over all subsequent deception DAGs. Note that if the adversary corrupts

more than one output in the same round, it will increase the chance of detecting corrup-

tions. Figure 4.11 shows that even though all parties in multiple subquorums are bad, most

of these parties behave as good parties since they are out of the deception DAGs selected by

the adversary.

4.6.4 RECOVER

When a computation is corrupted and CHECK detects this corruption, RECOVER is called.

The RECOVER algorithm is described formally as Algorithm 19. When RECOVER starts,

all parties in each quorum in the circuit are notified.

The main purpose of RECOVER is to 1) determine the location in which the corruption

occurred; and 2) mark the parties that are in conflict.

Algorithm 19 RECOVER . Party q′ ∈ Q′ calls RECOVER after it detects a corruption.

1: q′ broadcasts to all parties in Q′ the fact that it calls RECOVER along with the messages it

has received in this call to COMPUTE.

2: The parties in Q′ verify that q′ received inconsistent messages before proceeding.

3: Q′ notifies all quorums in the circuit via all-to-all communication that RECOVER is called.

4: INVESTIGATE . investigates all participants to determine corruption locations.

5: MARK-IN-CONFLICTS . marks the parties that are in conflict.
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Algorithm 20 INVESTIGATE . investigates the parties that have participated.

1: for each party, q, involved in the last call to EVALUATE or CHECK do

2: q compiles all messages they have received (and from whom) and they have sent (and to

whom) in the last call to EVALUATE or CHECK.

3: q broadcasts these messages to all parties in its quorum and neighboring quorums.

4: end for

Algorithm 21 MARK-IN-CONFLICTS . marks the parties that are in conflict.

1: for each pair of parties, (qx, qy), that is in conflict*, in quorums (Qx, Qy) do

2: party qy broadcasts a conflict message, {qx, qy}, to all parties in Qy.

3: each party in Qy forwards {qx, qy} to all parties in Qx.

4: all parties in Qx (or Qy) send {qx, qy} to the other quorums that has qx (or qy).

5: each quorum has qx or qy sends {qx, qy} to its neighboring quorums.

6: end for

7: for each party q that receives conflict message {qx, qy} do

8: q marks qx and qy in its marking table.

9: end for

10: if (1/2− γ)-fraction of parties in any quorum have been marked, for γ = 0.01 then

11: each of these parties is set unmarked in all its quorums.

12: each of these parties is set unmarked in all its neighboring quorums.

13: end if

14: for each pair of leaders, (qx, qy), that is in conflict, in quorums (Qx, Qy) do

15: ELECT(Qx) and ELECT(Qy) to elect a pair of unmarked leaders, (q′x, q
′
y).

16: Qx and Qy notify their neighboring quorums with (q′x, q
′
y).

17: end for

* A pair of parties, (qx, qy), is in conflict if: 1) qx was scheduled to send an output to qy at some

point in the last call to EVALUATE or CHECK; and 2) qy does not receive an expected message

from qx in INVESTIGATE, or qy receives a message in INVESTIGATE that is different than the

message that it has received from qx in the last call to EVALUATE or CHECK.

116



Chapter 4. Self-Healing Computation

To determine the location in which the corruption occurred, RECOVER calls INVESTI-

GATE (Algorithm 20) to investigate the corruption situation by letting each party involved

in EVALUATE or CHECK broadcast all messages they have received or sent. Then, RE-

COVER calls MARK-IN-CONFLICTS (Algorithm 21) in order to mark the parties that are

in conflict, where a pair of parties is in conflict if at least one of these parties broadcasted

messages that conflict with the messages broadcasted by the other party in this pair.

Note that each pair of parties that are in conflict has at least one bad party. Recall

that if (1/2 − γ)-fraction of parties in any quorum are marked, for any constant γ > 0,

e.g., γ = 0.01, they are set unmarked. Also, for each pair of leaders that get marked, their

quorums elect another pair of unmarked leaders.

4.7 Analysis

In this section, we prove the lemmas required for Theorem 4.3.1. Throughout this section,

all logarithms are base 2.

Recall that in each round of CHECK, a new unmarked party is selected u.a.r. from each

quorum in the circuit forming a new DAG of unmarked parties.

Definition 4.7.1. A Deception DAG, Di, is the maximal subgraph of the new DAG of

unmarked parties that are selected u.a.r. in round i, with the following properties: 1) it has

only bad parties; 2) it receives all its inputs, and each input is provided correct by at least

one good party; 3) it is rooted at one party, which does not provide a correct output to at

least one good party; and 4) all other outputs of this DAG are provided correct.

If the adversary corrupts the output of the root party in a deception DAG in any round,

then it has to keep corrupting this output by a deception DAG in each subsequent round;

otherwise, the good parties that expect to receive this output in each round will call RE-

COVER due to receiving inconsistent output messages.
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We say that a deception DAG, Di, in round i extends in round i + 1 if there exists a

deception DAG, Di+1, in round i+ 1 such that 1) there is at least one subquorum that has

a party in Di and a party in Di+1; and 2) there is at least one subquorum that has a party

in Di+1 but has no party in Di.

Also, we say that a deception DAG, Di, in round i shrinks in round i+ 1 if there exists a

deception DAG, Di+1, in round i+ 1 such that 1) each subquorum that has a party in Di+1

has a party in Di; and 2) there is at least one subquorum that has a party in Di but has no

party in Di+1.

Further, we say that a deception DAG, Di, shrinks logarithmically from round i to round

i+ 1 if |Di+1| = O(log |Di|).

4.7.1 CHECK

In the following lemmas, we first show that any deception DAG in any round never extends

in any subsequent round. Then we show that with probability at least 1/2, any deception

DAG shrinks logarithmically from round to round. This will imply that the expected number

of rounds to shrink any deception DAG to size zero is O(log∗m).

Note that in any round i, if a deception DAG, Di, shrinks to a deception DAG, Di+1, of

size zero in round i + 1, then the good party that did not receive the correct output from

Di in round i will receive the correct output in round i+ 1. As a result, this good party will

call RECOVER declaring that it has received inconsistent output messages.

Lemma 4.7.2. Any deception DAG in any round never extends.

Proof. We know by definition that any deception DAG is confined by 1) the good parties

that provide the inputs to this deception DAG; and 2) the good parties that receive the

outputs from it.
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In each round i, all i parties in each subquorum send their outputs to the new party

that is added to the next subquorum in this round. Thus, the good parties that provide the

correct inputs to a deception DAG in round i, will provide the correct inputs to all nesting

level of deception DAGs in all subsequent rounds.

Moreover, in each round i, each new party that is added to a subquorum in this round

sends its output to all i parties in the next subquorum. Thus, the good parties that receive

an output from a deception DAG in round i, must receive the same output from all nesting

level of deception DAGs in all subsequent rounds. Similarly, the good parties that did not

receive the correct output from a deception DAG in round i must not receive this output

from any nesting level of deception DAG in any subsequent round; otherwise, they will call

RECOVER.

Further, if a good party has previously received kp (the public key of Qm+n), then it

verifies each subsequent message with it; also if a party receives inconsistent messages or

fails to receive and verify an expected message, then it initiates a call to RECOVER.

Therefore, all good parties that confine a deception DAG in any round will restrict all

subsequent deception DAGs.

Now we show that any deception DAG shrinks logarithmically from round to round with

probability at least 1/2.

Definition 4.7.3. Rooted Directed Acyclic Graph (R-DAG) is a DAG in which, for a vertex

u called the root and any other node v, there is at least one directed path from v to u.

Lemma 4.7.4. Given any R-DAG, of size n, in which each node has indegree of at most

d and survives independently with probability at most p such that 0 < p ≤ 1
d
− ε, for any

constant ε > 0, then the probability of having a subgraph, rooted at some node, with surviving

nodes, of size Ω( logn
(1−pd)2

) is at most 1/2.
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Proof. This proof has three propositions. In this proof, we recall the exploration process

that was introduced in [44, 51].

Given an R-DAG, D(V,E) comprising a set V of nodes and a set E of edges, with size

n = |V | and maximum indegree d. After each node survives independently with probability

at most p such that 0 < p ≤ 1
d
− ε, for any constant ε > 0, we explore D to find a subgraph

of surviving nodes, of size more than k, rooted at an arbitrary node v (assuming that node

v survives).

Let D′(v) be the maximal subgraph of surviving nodes, rooted at node v. Let each node

in D have a status, which is either inactive, active or neutral. During the exploration process,

the status of any node can be changed. A node is inactive if this node and its children are

explored. A node is active if this node is explored and its children are not explored yet.

A node is neutral if it is neither active nor inactive, i.e., this node and its children are not

explored yet.

We let the exploration process run at most k ≥ 0 steps. Initially, we select an arbitrary

surviving node, v. We set the node v active and all other nodes neutral. At each step i, we

choose an active node, wi, in an arbitrary way, and we explore all its children as follows. For

all (wi, w
′
i) ∈ E such that w′i is neutral and survives, we set w′i active, otherwise w′i remains

as it is. After we explore all children of wi, we set wi inactive. Note that at any step, if there

is no active node, the exploration process terminates.

Now let di be the number of children of node wi for 1 ≤ i ≤ k. For 1 ≤ i ≤ k, let Xi

be a non-negative random variable for the number of surviving neutral children of wi, and

let Yi be a non-negative random variable for the number of surviving non-neutral children

of wi. Note that Y1 = 0. Hence, Xi ∼ Bin(di − Yi, p) if the exploration process does not

terminate before i steps; otherwise, Xi = 0. This implies that Xi ∼ Bin(di−Yi, pi) for some

0 ≤ pi ≤ p. Let Ai be a non-negative random variable for the total number of active nodes

after i steps, for 1 ≤ i ≤ k.
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Proposition 4.7.5. Ai =


∑k

i=1Xi − (k − 1) if Ai−1 > 0,

0 otherwise.

Proof. Since the process starts initially with one active node v, we have A0 = 1. Now we

have two cases of Ai−1 to compute Ai, 1 ≤ i ≤ k:

Case 1 (process terminates before i steps): If Ai−1 = 0, then Ai = 0.

Case 2 (otherwise): If Ai−1 > 0, then Ai = Ai−1 +Xi−1, where after exploring wi, the

total number of active nodes is the number of new active nodes (Xi) due to the exploration of

wi plus the total number of active nodes of previous steps (Ai−1), excluding wi that becomes

inactive at the end of step i.

Now let |D′(v)| be the number of nodes in D′(v).

Proposition 4.7.6. Pr(|D′(v)| > k) ≤ Pr(
∑k

i=1Xi ≥ k).

Proof. To prove this proposition, we first prove that Pr(|D′(v)| > k) ≤ Pr(Ak > 0), or

equivalently, we prove that |D′(v)| > k =⇒ Ak > 0. If |D′(v)| > k, then the exploration

process does not terminate before k steps. This implies that after k steps, there are k inactive

nodes and at least one active node remains. This follows that Ak > 0. Thus, we have

Pr(|D′(v)| > k) ≤ Pr(Ak > 0). (4.1)

Second, we prove that Pr(Ak > 0) ≤ Pr(
∑k

i=1 Xi − (k − 1) > 0), or equivalently, we

prove that Ak > 0 =⇒
∑k

i=1Xi− (k− 1) > 0. If Ak > 0, then Aj > 0 for all 1 ≤ j ≤ k. By

Proposition 4.7.5, we obtain that
∑j

i=1Xi− (j− 1) > 0 for all 1 ≤ j ≤ k. This follows that

Pr(Ak > 0) ≤ Pr(
k∑
i=1

Xi − (k − 1) > 0). (4.2)

By Inequalities (4.1) and (4.2), we obtain

Pr(|D′(v)| > k) ≤ Pr(
k∑
i=1

Xi − (k − 1) > 0),
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or equivalently,

Pr(|D′(v)| > k) ≤ Pr(
k∑
i=1

Xi > k − 1).

Since k is a positive integer, we have

Pr(|D′(v)| > k) ≤ Pr(
k∑
i=1

Xi ≥ k).

Proposition 4.7.7. Pr(
∑k

i=1Xi ≥ k) ≤ e−
(1−pd)2k

1+pd .

Proof. Likewise the proof of giant component in [41], for 1 ≤ i ≤ k, let X+
i ∼ Bin(d, p),

and let X+
1 , ..., X

+
k be independent random variables. We know that Yi ≥ 0 and di ≤ d for

1 ≤ i ≤ k.

Recall that for all i, for each event ξ = (X1 = x1, ..., Xi−1 = xi−1) where x1, ..., xi−1 ∈

{0, ..., d}, Xi ∼ Bin(di − Yi, pi), for some 0 ≤ pi ≤ p.

With inequalities in terms of stochastic dominance [15, 36, 47, 78], for all i, Xi ≤st X+
i .

Thus, we have

Pr(
k∑
i=1

Xi ≥ k) ≤ Pr(
k∑
i=1

X+
i ≥ k).

Now let Sk =
∑k

i=1X
+
i . By Chernoff bounds [53, 56, 63], for δ > 0, we obtain

Pr(Sk ≥ (1 + δ)E (Sk)) ≤
(

eδ

(1 + δ)(1+δ)

)E(Sk)

≤ e−
δ2

2+δ
E(Sk).

We know that Sk ∼ Bin(kd, p). Thus, E (Sk) = pdk. Therefore, we have

Pr(Sk ≥ (1 + δ)pdk) ≤ e−
δ2

2+δ
pdk.

For δ = 1−pd
pd

, we obtain

Pr(Sk ≥ k) ≤ e−
(1−pd)2k

1+pd .

122



Chapter 4. Self-Healing Computation

Now by Propositions 4.7.6 and 4.7.7, we have

Pr(|D′(v)| > k) ≤ e−
(1−pd)2k

1+pd .

We know that node v survives with probability at most p. Thus, we obtain

Pr(|D′(v)| > k) ≤ pe−
(1−pd)2k

1+pd .

Union bound over n nodes, then the probability that there exists a subgraph of D, rooted

at one node, having only surviving nodes, of size more than k is at most

nPr(|D′(v)| > k) ≤ npe−
(1−pd)2k

1+pd .

Note that n p e−
(1−pd)2k

1+pd ≤ 1/2 when k ≥ 1+pd
(1−pd)2 log e

log(2pn). Thus, the probability of

having such a subgraph of size more than 1+pd
(1−pd)2 log e

log(2pn), or equivalently, Ω
(

logn
(1−pd)2

)
,

is at most 1/2.

Corollary 4.7.8. For any R-DAG, of size n, the probability of having a subgraph, rooted at

one node, with surviving nodes, of size at least n/2 is at most 1/2.

Now, if a deception DAG shrinks logarithmically in a successful step, then how many

successful steps to shrink this deception DAG to a deception DAG of size zero or even of a

constant size?

Let f(n) = c log n, and let f (i)(n) be the function of applying function f , i times, over n.

Also, we let log(i)(n) be the function of applying logarithm i times over n.

Fact 4.7.9. ∀i ≥ 1 : log(i)(n) ≥ log c+ 1, f (i)(n) ≤ 2c log(i)(n).

Proof. We prove by induction over i ≥ 1 that for log(i)(n) ≥ log c+ 1,

f (i)(n) ≤ 2c log(i)(n).
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Base case: for i = 1, by definition,

f(n) = c log n ≤ 2c log n.

Induction hypothesis: for log(j)(n) ≥ log c+ 1,

∀j < i, f (j)(n) ≤ 2c log(j)(n).

Induction step: by definition,

f (i)(n) = f(f (i−1)(n)).

By induction hypothesis, for log(i−1)(n) ≥ log c+ 1,

f (i−1)(n) ≤ 2c log(i−1)(n).

Then,

f (i)(n) ≤ f(2c log(i−1)(n)) = c log(2c log(i−1)(n)),

or equivalently,

f (i)(n) ≤ c(1 + log c+ log(i)(n)) ≤ 2c log(i)(n),

for log(i)(n) ≥ log c+ 1.

Now let f ∗(n) be the smallest value i such that f (i)(n) ≤ c(2c+ log c+ 1).

Fact 4.7.10. ∀n > c(2c+ log c+ 1), f ∗(n) ≤ log∗ n− log∗(log c+ 1).

Proof. Let k = log∗ n− log∗ (log c+ 1)− 1. Then, log(k)(n) ≥ log c+ 1. By Fact 4.7.9,

f (k)(n) ≤ 2c log(k)(n).

With a further application of f to f (k)(n), we have

f (k+1)(n) ≤ c log(2c log(k)(n)) = c(1 + log c+ log(k+1)(n)).
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We know that log(k+1)(n) ≤ 2c. Thus, we obtain

f (k+1)(n) ≤ c(1 + log c+ 2c).

Therefore, by definition,

f ∗(n) ≤ k + 1 = log∗ n− log∗ (log c+ 1).

Lemma 4.7.11. Assume that any deception DAG of size n′ shrinks to a deception DAG of

size c log n′ in a successful step, for any constant c ≥ 1. Then, for a deception DAG of size

n > c(2c+ log c+ 1), after log∗ n− log∗ (log c+ 1) successful steps, it shrinks to a deception

DAG of size at most c(2c+ log c+ 1).

Proof. Fact 4.7.10 proves this lemma.

Let p be the probability of selecting an unmarked bad party uniformly at random in any

quorum. Recall that the fraction of bad parties in any quorum is at most 1/4, and at any

time the fraction of unmarked parties in any quorum is at least 1/2 + γ, for any constant

γ > 0. Thus, p ≤ 1/2
1+2γ

.

Now we show the expected number of rounds to shrink any deception DAG to size zero.

Lemma 4.7.12. With probability at least 1/2, any deception DAG of size m shrinks to size

zero in 14(log∗m+ 2(log c+ 1)) rounds, where c = 2(1+2p)
log e(1−2p)2

and p ≤ 1/2
1+2γ

, for any constant

γ > 0.

Proof. Given a deception DAG, of sizem. By Lemma 4.7.2, the deception DAG never extends

over rounds. For shrinking deception DAGs over rounds, we make use of Lemma 4.7.4 to

shrink logarithmically any deception DAG of size more than c(2c + log c + 1); otherwise,

deception DAGs shrink geometrically using Corollary 4.7.8.
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Let Xi be an indicator random variable that is equal 1 if the deception DAG in round i

shrinks logarithmically in round i+ 1; and 0 otherwise.

By Lemma 4.7.11, after at most log∗m − 1 rounds of Xi’s equal 1, the deception DAG

of size at most m shrinks to a size of at most c(2c+ log c+ 1).

Also let Yj be an indicator random variable that is equal 1 if the deception DAG of size

at most c(2c + log c + 1) ≤ 4c2 in round j shrinks geometrically by at most half the size in

round j + 1; and 0 otherwise.

In order to shrink the deception DAG of size n to 0, we require at most log∗m−1 rounds

of Xi’s equal 1 and at most 2 log c+ 3 rounds of Yj’s equal 1.

Note that in each round, the receiver that is elected by the output quorum is good with

probability at least 1/2. By Lemma 4.7.4, for all i, for each event ξ = (X1 = x1, ..., Xi−1 =

xi−1) where x1, ..., xi−1 ∈ {0, 1}, Xi ∼ Bernoulli(pi) for some pi ≥ 1/4. Also, by Corollary

4.7.8, for all j, for each event ξ′ = (Y1 = y1, ..., Yj−1 = yj−1) where y1, ..., yj−1 ∈ {0, 1},

Yj ∼ Bernoulli(pj) for some pj ≥ 1/4.

Let ξX be the event that
∑14(log∗m−1)

i=1 Xi ≥ (log∗m − 1), and let ξY be the event that∑14(2 log c+3)
j=1 Yj ≥ 2 log c+ 3.

We know that the probability, that any deception interval of size m shrinks to size zero,

is at least

Pr (ξX ∩ ξY ) = Pr(ξY |ξX) · Pr(ξX).

Pr(ξY |ξX) · Pr(ξX) = Pr(

14(2 log c+3)∑
j=1

Yj ≥ 2 log c+ 3) · Pr(

14(log∗m−1)∑
i=1

Xi ≥ (log∗m− 1)).

For all 1 ≤ k ≤ 14(log∗m + 2(log c + 1)), let Zk ∼ Bernoulli(1/4), and all Zk’s are

independent random variables. With inequalities in terms of stochastic dominance [15, 36,
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47, 78], for all i, j, k, Xi ≥st Zk and Yj ≥st Zk.

Pr(ξY |ξX) · Pr(ξX) ≥ Pr

14(2 log c+3)∑
j=1

Zj ≥ 2 log c+ 3

 · Pr

14(log∗m−1)∑
i=1

Zi ≥ (log∗m− 1)

 .

Note that E
(∑14(2 log c+3)

j=1 Zj

)
= 14(2 log c+3)/4, and E

(∑14(log∗m−1)
i=1 Zi

)
= 14(log∗m−

1)/4. Note further that for ξX , m > c(2c+ log c+ 1), or equivalently, log∗m ≥ 2.

By Chernoff bounds [53, 56], for δ = 5/7, we have:

Pr

14(2 log c+3)∑
j=1

Zj < 2 log c+ 3

 < e−
14(2 log c+3)(5/7)2

8 ≤ e−
75
28 ,

and

Pr

14(log∗m−1)∑
i=1

Zi < (log∗m− 1)

 < e−
14(log∗m−1)(5/7)2

8 ≤ e−
25
28 .

This follows that Pr(ξY |ξX) · Pr(ξX) ≥
(

1− e− 75
28

)(
1− e− 25

28

)
≥ 1/2.

Corollary 4.7.13. With probability at least 0.99, any deception DAG of size m shrinks to

size zero in 45(log∗m + 2(log c + 1)) rounds, where c = 2(1+2p)
log e(1−2p)2

and p ≤ 1/2
1+2γ

, for any

constant γ > 0.

Moreover, Table 4.1 shows that the more rounds CHECK has, the more probability of

detecting corruptions is.

# Rounds Probabilities
15(log∗m+ 2(log c+ 1)) 0.6
18(log∗m+ 2(log c+ 1)) 0.7
21(log∗m+ 2(log c+ 1)) 0.8
26(log∗m+ 2(log c+ 1)) 0.9

Table 4.1: # rounds versus probability of detecting corruptions

Now we show that for the adversary to maximize the number of rounds, in which no

corruption detected, is to consider the maximum deception DAG in the first round.

127



Chapter 4. Self-Healing Computation

Lemma 4.7.14. For the adversary to maximize the expected number of rounds, in which

no corruption detected, is to corrupt the output of the root party in the maximum deception

DAG of the first round.

Proof. For the case that the adversary considers multiple deception DAGs that are over-

lapped in the same round. Then the adversary corrupts more than one output in some

round. Now let D′ be the maximum deception DAG in this round. By Lemma 4.7.12, each

of these deception DAGs shrinks to size zero in an expected number of rounds that is at

most the expected number of rounds that D′ shrinks to size zero.

Similarly, the case that the adversary considers multiple disjoint deception DAGs in the

same round.

Therefore, for the adversary to maximize the expected number of rounds, in which no

corruption detected, is to consider only the maximum deception DAG in the first round of

CHECK.

The next lemma shows that CHECK catches corruptions with probability ≥ 1/2.

Lemma 4.7.15. Assume some party selected uniformly at random in the last call to EVAL-

UATE has corrupted a computation. Then when the algorithm CHECK is called, with prob-

ability at least 1/2, some party will call RECOVER.

Proof. Recall that the number of gates in the circuit is m. Thus, by Lemmas 4.7.12 and

4.7.14, this request is sent reliably to all input quorums in O(log∗m) rounds with probability

at least 1/2. Note that each request message, REQi, has a round number i. Hence, at any

round, if any good party in any input quorum receives a request message of round number

i and has not received (i − 1) request messages of proper round numbers, then it will call

RECOVER.

128



Chapter 4. Self-Healing Computation

If all input quorums receive all request messages properly in all O(log∗m) rounds, then

RECOMPUTE must be called properly O(log∗m) times by all input quorums. By Lemmas

4.7.12 and 4.7.14, the result is computed and sent reliably to the output quorum in O(log∗m)

rounds with probability at least 1/2.

Similarly, we know that in RECOMPUTE, the round number i is enclosed in RECi,

which is propagated with the computation results from the senders to the output quorum.

Thus, at any round, if any good party in the output quorum receives a result with a round

number i and has not received (i − 1) results with proper round numbers, then it will call

RECOVER.

Finally, if all parties in the output quorum receive all results properly in all O(log∗m)

rounds, then RESEND must be called O(log∗m) times by the output quorum. By Lem-

mas 4.7.12 and 4.7.14, the result of the computation is sent back reliably to all senders in

O(log∗m) rounds with probability at least 1/2. Thus, the probability that CHECK succeeds

in finding a corruption and calling RECOVER is at least 1/2.

4.7.2 RECOVER

Lemma 4.7.16. If some party selected uniformly at random in the last call to EVALUATE

or CHECK has corrupted a computation, then RECOVER will identify a pair of neighboring

quorums Q and Q′ such that at least one pair of parties in these quorums is in conflict and

at least one party in such pair is bad.

Proof. First, we show that if a pair of parties x and y is in conflict, then at least one of

them is bad. Assume not. Then both x and y are good. This implies that party x would

have truthfully reported what it received and sent; any result that x has computed would

have been sent directly to y; and y would have truthfully reported what it received from x.

But this is a contradiction, since for x and y to be in conflict, y must have reported that it
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received from x something different than what x reported sending.

Now consider the case where a selected unmarked bad leader corrupted the computation

in the last call to EVALUATE. By Lemma 4.7.15, with probability at least 1/2, some party,

q′ ∈ Q′, will call RECOVER. Recall that in RECOVER q′ broadcasts all messages it has

received to all parties in Q′. These parties verify if q′ received inconsistent messages before

proceeding.

In RECOVER, we know that each party, q ∈ Q, participated in the last call to COM-

PUTE broadcasts what it has received and sent to all parties in Q. Thus, all parties of Q

verify the correctness of q’s computation. Thus, if the corruption occurs due to an incorrect

computation made by a bad party, this corruption will be detected and all parties will know

that this party is bad.

Now if all parties compute correctly and CHECK detects a corruption, then we show that

there is some pair of parties will be in conflict. Assume this is not the case. Thus, by the

definition of corruption, there must be a deception DAG, in which all inputs are provided

correct and an output is corrupted at party q′. Then each pair of parties, (qj, qk) ∈ (Qj, Qk),

in the deception DAG that is rooted at q′, is not in conflict, for n+1 ≤ j < k ≤ m+n. Thus,

we have that 1) this DAG received all its inputs correct; 2) all parties compute correctly; and

3) no pair of parties is in conflict. This implies that it must be the case that q′ received the

correct output. But if this is the case, then q′ that initially called RECOVER would have

received no inconsistent messages. This is a contradiction since in such a case, this party

would have been unsuccessful in trying to initiate a call to RECOVER. Thus, RECOVER

will find two parties that are in conflict, and at least one of them will be bad.

The next lemma bounds the number of calls to RECOVER before all bad parties are

marked.

Lemma 4.7.17. RECOVER is called O(t) times before all bad parties are marked.
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Proof. By Lemma 4.7.16, if a corruption occurred in the last call to EVALUATE, and it

is caught by CHECK, then RECOVER is called. RECOVER identifies at least one pair of

parties that is in conflict, and each of such pairs has at least one bad party.

Now let b be the number of marked bad parties; and let g be the number of marked good

parties. Also let

f(b, g) = b−
(

p

1− p

)
g.

Note that since 0 < p ≤ 1/2
1+2γ

, for any constant γ > 0, we have 0 < p
1−p ≤

1
1+4γ

.

There are two cases at which f(b, g) change.

Case 1: for each corruption caught, at least one bad party is marked. Thus, b increases

by at least 1 and g increases by at most 1. This implies that f(b, g) increases by at least(
1−2p
1−p

)
.

Case 2: when (1/2−γ)-fraction of parties in any quorum Q get unmarked, for any constant

γ > 0, b decreases by at most p|Q|(1/2− γ) and g decreases by at least (1− p)|Q|(1/2− γ).

This implies that f(b, g) further increases by at least 0.

Hence, f(b, g) is monotonically increasing by at least
(

1−2p
1−p

)
for each corruption caught.

We know that when all bad parties are marked, f(b, g) ≤ t.

Therefore, after at most
(

1−p
1−2p

)
t, or at most

(
1 + 1

2γ

)
t, calls to RECOVER, all bad

parties are marked.

4.7.3 Proof of Theorem 4.3.1

We first show the message cost, the number of operations and the latency of our algorithms.

By Lemma 4.7.17, the number of calling RECOVER is at most O(t). Thus, the resource

cost of all calls to RECOVER is bounded as the number of calls to COMPUTE grows large.
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Therefore, for the amortized cost, we consider only the cost of the calls to EVALUATE and

CHECK.

When a computation is performed through a circuit of m gates with a circuit depth `,

EVALUATE has message cost O(m + n log n), number of operations O(m + n log n) and

latency O(`). CHECK has message cost O((m + n log n)(log∗m)2), number of operations

O((m+n log n) log∗m) and latency O(` log∗m), but CHECK is called only with probability

1/(log∗m)2. Hence, the call to CHECK has an amortized expected message cost O(m +

n log n), amortized computational operations O(m+n logn
log∗m

) and an amortized expected latency

O(`/ log∗m).

In particular, if we call COMPUTE L times, then the expected total number of messages

sent will be O(L(m + n log n) + t(m log2 n)) with expected total number of computational

operations O(L(m+ n log n) + t(m log n log∗m)) and latency O(`(L+ t)). This is true since

RECOVER is called O(t) times and each call to RECOVER has message cost O(m log2 n)

with computational operations O(m log n log∗m) and latency O(`).

Recall that by Lemma 4.7.17, the number of times CHECK must catch corruptions before

all bad parties are marked is O(t). In addition, if a bad party caused a corruption during

a call to EVALUATE, then by Lemmas 4.7.15 and 4.7.16, with probability at least 1/2,

CHECK will catch it. As a consequence, it will call RECOVER, which marks the parties

that are in conflict. RECOVER is thus called with probability 1/(log∗m)2, so the expected

total number of corruptions is O(t(log∗m)2).
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4.8 Empirical Results

4.8.1 Setup

In this section, we empirically compare two algorithms via simulation. We measure the fol-

lowing resource costs of these algorithms: message cost, latency, probability of computation

corruption and expected total number of corruptions. Note that the latency is measured as

the number of message hops.

The first algorithm we simulate is no-self-healing (Section 4.4.3). This algorithm simply

computes via all-to-all communication between quorums that are connected in binary-tree

circuits. The second algorithm is self-healing , wherein we apply our self-healing algorithm

in binary-tree circuits (Section 4.6).

In our experiments, we consider perfect binary-tree networks (in which each node has two

children and all leaf nodes have the same depth) of sizes up to n = 8,191, where ` = blog nc

and the quorum size is b4 log nc. COMPUTE calls CHECK with probability 1/(log∗ n)2, and

the subquorum size is b2 log∗ nc. For multiparty computation, by Asharovy and Lindelly [6],

we have that each call to MPC in a quorum of O(log n) nodes takes O(log3 n) messages and

O(1) latency. Also, we do our experiments for several fractions of bad nodes such as f equal

to 1/8, 1/16, 1/32 and 1/64, where f = t/n.

Our simulations consist of a sequence of calls to COMPUTE over the network. In each

call to COMPUTE, we let the output quorum request the n input quorums to provide inputs

in the same round to a circuit of m gates. Then the computation is performed through this

circuit producing an output at the output quorum. This output is sent back to the input

quorums.

We simulate an adversary who at the beginning of each simulation chooses uniformly at

random without replacement a fixed number of nodes to control. Our adversary attempts
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to corrupt computations, where it drops messages or it changes the bits of messages sent

between parties whenever possible. Aside from attempting to corrupt computations, the

adversary performs no other attacks.

4.8.2 Results

The results of our experiments are shown in Figures 4.12, 4.13, 4.14, 4.15 and 4.16. Our

results highlight two strengths of our self-healing algorithms (self-healing) when compared

to algorithms without self-healing (no-self-healing). First, the message cost per COMPUTE

decreases as the total number of calls to COMPUTE increases. Second, for a fixed number of

calls to COMPUTE, the message cost per COMPUTE decreases as the total number of bad

parties decreases. In particular, when there are no bad nodes, self-healing has dramatically

less message cost than no-self-healing .

Expected Number of Messages

Figure 4.12 shows that before all bad parties are marked or all selected leaders are good: 1)

the expected number of messages per call to COMPUTE decreases as the total number of

calls to COMPUTE increases; and 2) for a fixed number of calls to COMPUTE, the expected

number of messages per call to COMPUTE decreases as f decreases.

Table 4.2 shows that when all selected leaders are good, self-healing has dramatically less

expected number of messages per call to COMPUTE than no-self-healing .

n self-healing no-self-healing
4,095 764,821 28,297,456
8,191 1,021,623 66,435,642

Table 4.2: Expected # messages per call to COMPUTE in self-healing and in no-self-healing
for n = 4,095 and n = 8,191.
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Figure 4.12: # messages per call to COMPUTE versus # calls to COMPUTE, for n = 4,095
and n = 8,191.

Improvement Factor of # Messages

Figure 4.13 shows the ratio of the expected number of messages of the no-self-healing algo-
rithm to the expected number of messages of COMPUTE, after all bad nodes are marked or
all selected leaders are good.
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Figure 4.13: Improvement Factor of # Messages
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Expected Latency

Figures 4.14 shows that the latency of no-self-healing is less than the latency of self-healing

due to the expected latency of CHECK. Note that in any call to CHECK, if a corruption is

detected at any round, then CHECK is terminated in this round and RECOVER is called.

This figure shows that when all bad parties are marked (no more corruptions occur), each

call to CHECK will run all O(log∗ n) rounds.
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Figure 4.14: Latency per call to COMPUTE versus # calls to COMPUTE, for n = 4,095
and n = 8,191.

Table 4.3 shows that for n = 4,095 and n = 8,191, self-healing has latency that is at most

twofold the latency of no-self-healing .

n self-healing no-self-healing
4,095 58 33
8,191 63 36

Table 4.3: Expected latency per call to COMPUTE in self-healing and in no-self-healing for
n = 4,095 and n = 8,191.
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Latency Increase Factor

Figure 4.15 shows the ratio of the expected latency of COMPUTE to the expected latency

of the no-self-healing algorithm, after all bad nodes are marked or all selected leaders are

good. It shows that the expected latency increases by a factor of Θ(1).

Total Number of Nodes, n
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

La
te

nc
y 

In
cr

ea
se

 F
ac

to
r

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.15: Latency Increase Factor

Probability of Computation Corrupted

Figure 4.16 shows that the probability of computation corrupted per a call to COMPUTE

decreases as the total number of calls to COMPUTE increases. Also, for a fixed number of

calls to COMPUTE, this probability decreases as the total number of bad nodes decreases.
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Figure 4.16: The probability that the computation is corrupted versus # calls to COMPUTE,
for n = 4,095 and n = 8,191.

Expected Total Number of Corruptions

In Figure 4.16, for each network given the number of parties and the fraction of bad parties, if

we integrate the corresponding curve, then we get Σ(n), which is the expected total number

of times that the computation is corrupted in all calls to COMPUTE in a network of n

parties.

Table 4.4 shows the fact that Σ(n) = O(t(log∗ n)2). In particular, Σ(n) ≤ σ(n), where

σ(n) = 2

(
1− 2f

1− 4f

)
t(log∗ n)2.

f Σ(4,095) σ(4,095) Σ(8,191) σ(8,191)
1/64 1,029 2,116 2,069 4,232
1/32 2,097 4,388 4,214 8,777
1/16 4,351 9,557 8,720 19,114
1/8 9,366 24,576 18,759 49,152

Table 4.4: Total # corruptions for n = 4,095 and n = 8,191.
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Conclusion and Future Work

“The empires of the future are the empires of the mind.”

– Winston Churchill

5.1 Selfishness

5.1.1 Results

In this dissertation, we studied a variant of the El Farol game that had both positive and

negative network effects. Our goal was to maximize social welfare.

We know that selfishness of players deteriorates social welfare. Our goal is to maximize

the social welfare of our extended El Farol game. The basic idea of our approach is to

design an optimal mediator, which implements the best correlated equilibrium for this game.

Note that a mediator is an external trusted entity that advises each player separately and

privately with an action convincing the player that no incentive to deviate from the given

advice. Note further that optimal mediator is a mediator that maximizes the social welfare

over all mediators.
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In this dissertation, we have provided a full characterization of the best correlated equilib-

rium of the El Farol game. In particular, we have shown that the best correlated equilibrium

has two strategy profiles. Further, for certain values of c, s1 and s2, the probability distribu-

tion on these two strategy profiles enables the optimal mediator to almost surely select one

strategy profile, which is the best Nash equilibrium.

Moreover, we characterize the value of correlation, which shows the efficiency of mediation

subject to the best Nash equilibrium and the optimal social cost of benevolent players. The

value of correlation has two metrics: the mediation value and the enforcement value. The

mediation value is the ratio of the social cost of our optimal mediator to the social cost of

the best Nash equilibrium; and the enforcement value is the ratio of the social cost of our

optimal mediator to the optimal social welfare of benevolent players.

We show that the mediation value in our game can be unbounded in the sense that using

our mediator significantly improves the social cost of our game compared to the best Nash

equilibrium. Also, we show that the enforcement value can be unbounded, where our optimal

mediator is inefficient compared to the optimal social cost of benevolent players.

5.1.2 Open Problems

Several open questions remain. First, can we generalize our results for a game where the

players choose among more than two actions? Formally, we consider the following problem.

The Multi-Site El Farol game is a non-cooperative game, in which there are multiple sites

and each player must choose one site. All sites have identical cost functions of both types of

network effects.

Formally, given a set of n selfish players, and a set of k sites. Each player has to select one

site to go to, from the k sites. Each site has three parameters c, s1 and s2, where 0 < c < s1

and s2 > 0. If x is the fraction of players to go to site i, then the cost fi(x) for any player
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that goes to site i is as follows:

fi(x) =

 c− s1x 0 ≤ x ≤ c
s1

,

s2(x− c
s1

) c
s1
≤ x ≤ 1.

We assume that all sites have identical cost function, so we omit index i from fi(x). We

further assume that this game is non-atomic and symmetric. The objective is to measure

the value of correlation (MV and EV ) for this game. To measure these values, we consider

the following. What is the optimal solution when the players are benevolent? What is the

best Nash equilibrium? What is the best correlated equilibrium? Moreover, it is interesting

to determine how MV and EV change for fixed c, s1 and s2, as the number of sites changes.

A second interesting problem is as follows. We assume in our analysis that the utility

function is composed of linear negative and positive network effects. However, if the utility

function, f(x), is any polynomial of the fraction of players that go, what is the characteriza-

tion of optimal mediator? Is the minimum number of required strategy profiles of an optimal

mediator strongly related to the degree of this polynomial?

A third interesting problem is to maximize the social welfare if: a) our game becomes an

atomic game in the sense that at least one player has a significant influence on the outcome;

b) our game will have asymmetric players in the sense that at least two players have two

different utility functions; or c) our game becomes a cooperative game in the sense that the

players can cooperate having coalitions?

5.2 Malice

5.2.1 Results

There are two common fault models: fail-stop faults and Byzantine faults. In the fail stop

model, once a node in the system fails, it stops functioning and does not produce an output.
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Byzantine faults are more challenging. An adversary is assumed to take over a subset of

nodes causing Byzantine faults, where these nodes behave maliciously and may collude in

order to disrupt the system.

Replication and self-healing are two common approaches to achieve fault tolerance. In

replication, multiple nodes perform the same function redundantly. Unfortunately, replica-

tion requires expensive communication complexity and hardware cost even if the system is

not under attack. In self-healing algorithms, the network detects the corruptions, investi-

gates the failures and recovers automatically. These algorithms detect corruptions efficiently

and expend additional resources only when necessary in order to recover from faults.

Many papers have been conducted to self-heal networks in the fail-stop model. To the best

of our knowledge, there is no self-healing algorithm developed for recovering from Byzantine

attacks.

In this thesis, we developed self-healing algorithms that detect Byzantine corruptions

and quarantine the Byzantine nodes. We designed such algorithms for both communication

and computation networks. Our algorithms reduce message cost significantly compared to

algorithms that are not self-healing. The price we pay for this improvement is the possibility

of corruption.

We have proven two interesting lemmas for corruption detection. In these lemmas, we

have shown that there exists an efficient algorithm that checks if there was a corruption.

This algorithm proceeds in rounds. In each round, the longest substring (or the largest

subtree) of Byzantine nodes that were involved in the corruption is expected to shrink

logarithmically. The first lemma is for communication networks. This lemma is trivial

where if you flip a coin x times independently, and the coin is tail with constant probability,

then the probability of having a substring of tails of size Ω(log x) is less than 1/2. The

second lemma is for computation networks. It shows that given any tree of size n, in which

each node survives independently with a constant probability, then the probability of having
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a subtree, of surviving nodes of size Ω(log n), is less than 1/2. We also extend this result for

circuits.

When a corruption is detected, a recovery procedure is triggered in order to quarantine

the bad nodes. In this procedure, each node announces all messages that it has received and

sent. Then we mark any conflicting pair of nodes; note that any two nodes are in conflict if

they claim differently in terms of sending and receiving the messages.

5.2.2 Open Problems

Several open questions remain. In our self-healing algorithms, the expected total number of

corruptions is O(t(log∗ n)2)), where t is the number of bad nodes and n is the number of

nodes. This is slightly higher than a linear function of the total number of bad nodes. Can

we reduce the number of corruptions to O(t) keeping the same message cost and latency?

Also, we assume a partially synchronous communication model, which is crucial for our

CHECK algorithm to detect corruptions over rounds. Can we extend this algorithm to work

in asynchronous networks? Additionally, we assume a static adversary which must choose

which nodes to control at the beginning of our algorithm. Can we modify our algorithms to

self-heal networks in the presence of adaptive adversary, which can take over nodes at any

point during the course of the protocol? Also, can we deal with churn?

In communication networks, we assumed that the sender is a good node. Can we extend

our algorithms to tolerate the case where the sender is bad in such a way that 1) our

algorithms will remain efficient in terms of message cost; and 2) the network is resistant to

denial of service attacks?

Moreover, in each round of our CHECK algorithm, the sender provides an array of

random integers to select the nodes that will participate in this round uniformly at random.

Note that each array has O(` log n log log n) bits. If the message m has b bits, then the

communication complexity per call to SEND is O((` + log n)(` log n log log n + b)), and for
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naive communication, it is O(` log2 n ·b). In order to improve the communication complexity

of our algorithms, can we reduce the number of bits that is required to represent such arrays

to O(` log log n)?

Finally, in computation networks, we do not protect the privacy of the inputs of the

parties. Can we modify our algorithms to maintain the privacy of these inputs, i.e., imple-

menting secure multiparty computation [6, 16, 17, 68, 83]? Also, in a circuit of n inputs and

m gates, each array of random integers produced in CHECK has O(m log n log log n) bits.

Assuming that any input message has O(b) bits, then the communication complexity per

call to COMPUTE is O((m + n log n)(m log n log log n + b)), and O((m + n) log2 n · b) for

naive computation. Can we reduce the size of such an array to O(m log log n)?

Decentralized Approach

Now we suggest a decentralized approach that may: 1) reduce the communication complexity

of the arrays of random integers in CHECK; and 2) tolerate the possibility of having a bad

sender.

First, in order to reduce the communication complexity of these arrays to O(log log n), we

construct static paths in the sense that we initially select a set of O(log n) paths. Each path

is a vector of nodes; one node from each quorum in the quorum path is selected uniformly

at random, after the static adversary takes over the Byzantine nodes. Second, we modify

our CHECK algorithm to be decentralized in order to tolerate the case that the sender is

bad. In particular, for each round, one path in expectation is selected uniformly at random

from the set of static paths, in a decentralized manner. This path is added to the paths

that have been previously selected in this call to CHECK. Then the nodes in the leftmost

quorum resend the message to the rightmost quorum through the nodes of all added paths,

via all-to-all communication.

Now we show how a path is selected u.a.r. in a decentralized manner. We let each node
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Figure 5.1: Deception Intervals in Decentralized Approach

wake up independently with some probability so that one node in expectation wakes up.

Once a node wakes up, it does the following: 1) it notifies all nodes in its quorum that a new

path (i.e., the path that this node is in) is activating; and 2) it asks all nodes in its quorum

for the paths that have been previously activated in this call to CHECK. Then all nodes, in

the current path and the paths that have been activated, send a message (containing the ids

of these paths) to the sender and the receiver via all-to-all communication.

A challenge in this algorithm is the fact that for every round, when a node wakes up and

the message is supposed to propagate via all-to-all communication to all good nodes in the

selected static paths, there is no guarantee that all good nodes in these paths will receive this

message due to the presence of the Byzantine nodes. This affects the probability that the

deception interval shrinks logarithmically from round to round. If it is possible to show that

this probability remains constant, then the expected number of rounds required to detect
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corruptions is still O(log∗ n).

We run a simulation of this algorithm. In this simulation, we have a quorum path of

length n and a quorum size of log n, for 24 ≤ n ≤ 222. Figure 5.1 plots the average length of

the longest deception intervals for several consecutive rounds. This simulation suggests that

the deception intervals shrink logarithmically, in expectation, from round to round.

Recall that when a corruption is detected, the recovery procedure is triggered to identify

at least two nodes that are in conflict. Note that any two nodes, that are in conflict in the

static paths, are replaced with two other nodes. This implies that these static paths are

tuned with the new selected nodes.

For computation networks, in order to reduce the communication complexity of CHECK,

we may extend the decentralized approach we suggest for communication networks. In

particular, we initially select O(log n) static circuits after the adversary has chosen the

Byzantine nodes. Each circuit is a directed acyclic graph of nodes, and each node is selected

u.a.r. from a quorum that represents a gate in the computation network. In each round,

one node in expectation wakes up and initiates a checking of the computation of the circuit

that the node is in. If a corruption is detected, then a recovery procedure is triggered to

quarantine the bad nodes and to tune the static circuits accordingly.

5.3 Final Conclusion

In game theory, selfishness impairs social welfare compared to the optimal social welfare of

benevolent players. Many social and economic situations have both positive and negative

network effects. Our objective was to find an equilibrium that maximizes the social wel-

fare for these situations. Unfortunately, the best Nash equilibrium may have a poor social

welfare. Correlated equilibrium is a generalization of the Nash equilibrium. Finding the

best correlated equilibrium was an objective to show how much it can ameliorate the social
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welfare.

In this dissertation, we have shown that the best correlated equilibrium can substantially

improve the social welfare compared to the best Nash equilibrium in a game that has both

positive and negative network effects. We have provided an exact characterization of the best

correlated equilibrium, and we have described how efficient the best correlated equilibrium

is, compared to the best Nash equilibrium and the optimal social welfare. Interestingly,

there are certain cases in which the best correlated can infinitely improve the social welfare

compared to the best Nash equilibrium.

Fault tolerance is an essential requirement for enormous large-scale distributed systems.

Replication and self-healing are two common approaches to attain fault tolerance. Self-

healing has advantages over replication, where self-healing has less communication complex-

ity and it spends resources only when necessary. Many papers have been conducted to

self-heal networks in the presence of fail-stop faults. To the best of our knowledge, there is

no self-healing algorithm that recovers networks from Byzantine faults.

We have provided self-healing algorithms to recover communication and computation

networks from Byzantine faults. Our self-healing algorithms can efficiently detect corruptions

and quarantine Byzantine nodes. We have shown that each time a corruption is detected,

there is a progress towards quarantining all Byzantine nodes, after which no more corruptions

occur.

Finally, we have described several open problems for selfishness and malice. Moreover,

we have proposed a decentralized approach, for future work, that may improve the com-

munication complexity of our self-healing algorithms and let our algorithms work in a fully

decentralized manner.
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