16 research outputs found

    A polynomial lower bound for testing monotonicity

    Get PDF
    We show that every algorithm for testing n-variate Boolean functions for monotonicity has query complexity Ω(n1/4). All previous lower bounds for this problem were designed for nonadaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive) monotonicity testers was only Ω(logn). Combined with the query complexity of the non-adaptive monotonicity tester of Khot, Minzer, and Safra (FOCS 2015), our lower bound shows that adaptivity can result in at most a quadratic reduction in the query complexity for testing monotonicity. By contrast, we show that there is an exponential gap between the query complexity of adaptive and non-adaptive algorithms for testing regular linear threshold functions (LTFs) for monotonicity. Chen, De, Servedio, and Tan (STOC 2015) recently showed that non-adaptive algorithms require almost Ω(n1/2) queries for this task. We introduce a new adaptive monotonicity testing algorithm which has query complexity O(logn) when the input is a regular LTF

    Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing

    Get PDF
    We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions f:{0,1}^d ? ?. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function f over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of f to monotonicity and the structure of violations of f to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity O?(min(r ?d,d)), where r is the size of the image of the input function. (The best previously known tester makes O(d) queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are ?-far from monotone can be approximated nonadaptively within a factor of O(?{d log d}) with query complexity polynomial in 1/? and the dimension d. This query complexity is known to be nearly optimal for nonadaptive algorithms even for the special case of Boolean functions. (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves O(d log r)-approximation.

    Improved Monotonicity Testers via Hypercube Embeddings

    Get PDF

    Monotonicity Testing for Boolean Functions over Graph Products

    Get PDF
    We establish a directed analogue of Chung and Tetali's isoperimetric inequality for graph products. We use this inequality to obtain new bounds on the query complexity for testing monotonicity of Boolean-valued functions over products of general posets
    corecore