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Abstract

We establish a directed analogue of Chung and Tetali’s isoperimetric inequality for graph
products. We use this inequality to obtain new bounds on the query complexity for testing
monotonicity of Boolean-valued functions over products of general posets.
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Chapter 1

Introduction

1.1 Property Testing

The notion of property testing was first coined by Rubinfeld and Sudan [29]. It can be seen
as a relaxation of the classic decision problem, where we want to determine if an object
has a property or not. By introducing a gray area where mistakes are allowed, we want
the property testing algorithm to be more efficient.

General property testing can be seen as the following problem: given query access to a
function, the tester wants to determine if the function possess some certain property or far
from having that property, where a small probability of failure is allowed.

There a few things we need to specify:

1. What types of queries are allowed?

2. How do we measure the distance from a property if the object does not possess the
property?

For item 1, it can be either oracle access to a set of points chosen by the tester or a set of
random points given by the oracle itself. In this thesis, we only focus on the setting where
the points are chosen by the tester.

As for item 2, there can be different measures depending on the type of object we want to
test. For boolean functions, it is common to use the number of mismatches between two
functions (over the same domain) as the distance measure, and then the distance to having
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Figure 1.1: A property testing algorithm is allowed to make any mistakes in the gray area

some certain property is the smallest distance between the function being tested and any
function that possesses the property. Therefore we often represent the property using the
set of objects that have the property.

In the work of Goldreich, Goldwasser, and Ron [20], the authors provide a framework
to extend the domain of testing to more complex combinatorial objects including graphs.
They also make a connection between property testing and probably approximately correct
(PAC) learning, where testing can offer new perspectives towards computational learning
theory.

The formal definition of a testing algorithm is the following.

Definition 1 (Testing Algorithm). Let P be a set of functions that map from an arbitrary
domain X to {0, 1}. A randomized algorithm A(f) is an ε-tester for property P if and
only if

• For all f ∈ P , Pr[A(f) = 1] ≥ 2/3

• For all f /∈ P such that dist(f, P ) > ε, Pr[A(f) = 0] ≥ 2/3

Note that the definition of dist(·, ·) and relevant ones are in Chapter 2.
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1.2 Monotonicity Testing

For any directed acyclic graph G, a function f : G → {0, 1} is monotone if f(u) ≤ f(v),
for every edge (u, v) ∈ E(G). A function f is ε-far from monotone for some parameter
ε > 0 if at least ε fraction of the points on G whose corresponding values in f need to be
changed to obtain a monotone function.

The following definition is often used when measuring the efficiency of a testing algorithm
for monotonicity.

Definition 2 (Query complexity of monotonicity). The query complexity of monotonicity
Qε(G) is the minimum number of queries to an unknown function f : G → {0, 1} that
a bounded-error randomized algorithm requires to distinguish monotone functions from
functions that are ε-far from monotone

The monotonicity testing problem for Boolean-valued functions is the following: for a given
directed acyclic graph G, what is Qε(G)?

This is one of the most well-studied problems in the field of property testing. We want to
determine if an object has a global property (monotonicity) by only utilizing local query
(values of the function).

The most naive solution is to query every single value of the function, and we reject the
function as being monotone if there is a non-monotone pair of points. This will result
in a query complexity that equals to the size of the domain. As it turns out, we can do
significantly better if we allow some margin of error and use the structural property of the
domain.

For those who are familiar with randomized algorithm, one might attempt to just sample
random edges by querying only adjacent points in the domain G. This is also known as
the edge test.

Definition 3 (Edge test). An edge test is the simple test that chooses an edge uniformly
at random from the domain G and queries the two end points of the edge and rejects the
function if these two end points form a violation of monotonicity.

3



Figure 1.2: The anti-majority function on a total over of length 8. Black points have value
1 and white points have value 0 on the function.

Algorithm 1: Edge test algorithm

1 Input: a DAG G, a function f : G→ {0, 1}, an distance parameter ε
2 Output: Accept or Reject
3 Draw an edge (u, v) uniformly at random from G.
4 Query f(u) and f(v).
5 If f(u) ≤ f(v): Accept f
6 Else: Reject f

Based on this definition of the edge test, we also have the definition for an edge tester.

Definition 4 (Edge tester). A monotonicity testing algorithm is an edge tester if it only
uses edge tests.

In other words, the edge tester should have the following structure:

Algorithm 2: Edge tester algorithm

1 Input: a DAG G, a function f : G→ {0, 1}, an distance parameter ε
2 Output: Accept or Reject
3 Repeat h(G, ε) times the edge test. Reject if found violation
4 Accept f

The algorithm should only specify the number of repetitions.

This simple algorithm is inefficient for some graphs, including the line. Imagine the anti-
majority function on the line where lower-half has the value of 1 and the upper-half has
the value of 0 (see Fig 1.2). The edge tester will have to examine Θ(n) edges, where n is
the length of the line. It is as bad as the naive algorithm that checks the entire domain.

However, for the boolean hypercube, as shown by Goldreich et al. [19], the edge tester can
achieve a query complexity of O(d

ε
), where d is the number of dimensions in the hypercube.

In this scenario, the edge tester is orders of magnitude better than the naive algorithm, as
the latter will require 2d queries.
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That raises the question: when is the edge tester efficient? In this thesis, we answer this
question with a general framework to describe how efficient the edge tester can be for
different graph products.

Theorem 1 (Informal version). For every d ≥ 1 and every product of directed acyclic
graph G = G1 × · · · ×Gd

1, there is a monotonicity tester with query complexity

Qε(G) = O

(
d

ε
·max
i≤d

(τ ′(Gi))

)
,

where τ ′(Gi) is a parameter depending only on Gi for some i ∈ {1, · · · , d}.

The best known algorithm to date is given by Halevy and Kushilevitz [22] with query

complexity Qε(G) = O(d·2
d

ε
· τ), where τ is another graph dependent parameter of some

base graph Gi. In Chapter 5, we show that this can be improved to O(d
5

ε
· τ) by only using

the theorems in their original paper.

1.3 Isoperimetry and Monotonicity Testing

The analysis of the above mentioned edge tester is non-trivial because we are dealing with
two very different quantities of the underlying structure. One is the fraction of edges that
violate monotonicity condition, while the other is the fraction of vertices that need to be
changed to obtain a monotone function. In the proof of Goldreich et al. [19], they are the
first to relate this problem to the study of discrete isoperimetry.

The classic isoperimetry study concerns the relation between the surface area and the
volume of an object, and tries to lower bound the surface area of the object by its volume.
For example, on a two-dimensional plane, given a closed shape of volume (in this case
area) V , its “surface area” (perimeter) S is at least

√
4πV . Furthermore, we know that

this minimum is achieved only when the shape is a circle.

An analogous definition also exists for discrete domains. For an undirected graph G(V,E),
we want to partition the set of vertices V into A and A. The volume of each set is its size
(sometimes normalized), and the surface area is measured by the number of edges that go
from one set to the other.

1Formal definition of a graph product is in Chapter 2.
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The edge isoperimetric number of a graph G,

iso(G) = min
0≤|S|≤n

2

|∂S|
|S|

,

is a fundamental parameter of interest in graphs. It describes the general relation between
a subset of a graph and its expansion. Many fundamental properties of graphs can be
derived from isoperimetric inequalities on this and other related isoperimetric numbers of
graphs.

We can also consider directed isoperimetric inequalities over general graphs by introducing
the directed isoperimetric constant of a directed acyclic graph.

Definition 5 (Isoperimetric constant). The directed isoperimetric constant of a directed
acyclic graph G is

iso−(G) = min
f

|I−(f)|
distmono(f)

2

where f is taken from all non-monotone function over G and

I−(f) = |∂−(f)|/|V | = |{(u, v) ∈ E : f(u) = 1 ∧ f(v) = 0}|/|V |

I−(f) and ∂−(f) are the negative influence and the negative boundary of the function f
respectively.

This definition of directed isoperimetric constant is an analogue to the classic isoperimetric
constant. For the numerator, instead of considering all edges going from one set to the
other, we only consider the edges that violate the monotonicity condition. As for the
denominator, we replace the distance to constant functions with distance to monotone
functions.

This definition of isoperimetric constant almost immediately gives a bound on the query
complexity of the edge tester over that graph.

Proposition 1. For every directed acyclic graph G = (V,E),

Qε(G) = O

(
|E|

|V |iso−(G)
· 1

ε

)
.

2The definition of distmono is in Chapter 2.
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Proof. We can get this bound by analyzing the query complexity of the edge tester over a
graph G. The rejection probability of a single edge test on a function f : G→ {0, 1} that
is at least ε-far from monotone is

|∂−(f)|
|E|

=
|V | · I−(f)

|E|
≥ |V | · distmono(f) · iso−(G)

|E|
.

Therefore we need to apply the edge test O
(

|E|
|V |iso−(G)

· 1
ε

)
times to reject the function with

high probability.

Our main technical result is that directed isoperimetric inequalities does not get much
smaller under graph product operations:

Theorem 2 (Directed isoperimetric inequality). For every d ≥ 1 and every product of
directed acyclic graphs G = G1 × · · · ×Gd,

min
i≤d

(iso−(Gi)) ≥ iso−(G) ≥ mini≤d(iso
−(Gi))

2
.

Theorem 2 can be viewed as a directed analogue of Chung and Tetali’s classic isoperimetric
inequality [15].

Chung–Tetali isoperimetric inequality. For every d ≥ 1 and every product of undi-
rected graph G = G1 × · · · ×Gd,

min
i≤d

(iso(Gi)) ≥ iso(G) ≥ mini≤d(iso(Gi))

2
.

When combined with Proposition 1, Theorem 2 gives upper bounds on the query complex-
ity for testing monotonicity of boolean functions using the edge tester over graph products,
which is formally stated as the following:

Theorem 1 (Formal version). For every d ≥ 1 and every product of directed acyclic graphs
G = G1 × · · · ×Gd,

Qε(G) = O

(
1

ε ·mini≤d(iso
−(Gi))

·
d∑
i=1

|Ei|
|Vi|

)
.
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1.4 Organization of this Thesis

In Chapter 2, we will introduce notation and definitions we will be using. Along with a
related work section providing some perspectives.

In Chapter 3, we will show the proof of the above mentioned directed isoperimetric in-
equality, i.e. Theorem 2.

In Chapter 4, we show how we can use the directed isoperimetric inequality to obtain
the monotonicity tester result, i.e. the proof of Theorem 1. We also explore some other
interesting graphs that exhibit nice isoperimetric constant, and therefore can be tested
effective for monotonicity under our framework.

In Chapter 5, we show how we can improve the query complexity of the algorithm given
by Halevy and Kushilevitz [22] by applying their theorem in a slightly different way.

8



Chapter 2

Preliminaries

In this chapter, we will introduce the notation and the definitions we use throughout the
thesis in Section 2.1, and also review related work in Section 2.2.

2.1 Definitions and Notation

The most important measure we need when it comes to property testing is the notion of
distance. Here we are mainly concerned about discrete domain with discrete range, and
therefore we will use the following definition for measuring distance between functions.

Definition 6 (Distance between functions). The distance between two function f : G →
{0, 1} and g : G→ {0, 1} over G = (V,E) is

dist(f, g) = |{x : f(x) 6= g(x)}|/|V | .

Now we can also measure a distance between a function to a property using the following
definition:

Definition 7 (Distance to monotonicity). The distance to monotonicity of f : G→ {0, 1}
is

distmono(f) = min
g

dist(f, g) .

where g is taken from all monotone functions.

In this thesis, we are interested in the query complexity of testing monotonicity of function
over graph products, and a graph product is defined as follows:

9



Figure 2.1: Example graph power of G, G2, G3. We can view this process as replacing
every node in the current graph with a copy of the base graph.

Definition 8 (Product graphs). Given directed acyclic graphs G and H, the product of
G and H, G × H is given by V (G × H) = {(u, v) : u ∈ G, v ∈ H}, and E(G × H) =
{((u, v), (u′, v′)) : (u = u′ ∧ (v, v′) ∈ E(H)) ∨ (v = v′ ∧ (u, u′) ∈ E(G))}

We can also apply this definition repeatedly to get higher order graph products.

In a graph product, we will often use the notion of dimension, where a “dimension” is
formed by considering all the copies of Gi in the product graph. Restricting the product
graph down to a single dimension is a commonly used technique throughout this thesis.

The following proposition is a basic property of graph products that describes the number
of edges and vertices in the product graphs in terms of that of the base graphs. In the
proof of this proposition, we will see how this concept of dimension can be used.

Proposition 2. Let G = G1 × · · · ×Gd. Then |V (G)| =
∏d

i=1 |V (Gi)| and

|E(G)| = |V (G)| ·
d∑
i=1

|E(Gi)|
|V (Gi)|

so that |E(G)|
|V (G)| =

∑d
i=1

|E(Gi)|
|V (Gi)| .

Proof. The number of edges along the ith dimension is |V (G)|
|V (Gi)| · |E(Gi)|, as there are |V (G)|

|V (Gi)|
copies of the base graph Gi. And therefore

|E(G)| =
d∑
i=1

|V (G)| · |E(Gi)|
|V (Gi)|

= |V (G)| ·
d∑
i=1

|E(Gi)|
|V (Gi)|

.

In the graph products setting, it is often useful to consider the distance to monotonicity for
a single dimension of the graph product. To formally define this, we also need the notation
for functional restriction.

10



Definition 9 (Functional restriction). The function f |iα,β : Gi → {0, 1} is a functional
restriction of f : G1 × · · · × Gd → {0, 1} onto Gi given by f |iα,β(x) = f(αxβ), where
α ∈ G1 × · · · ×Gi−1, β ∈ Gi+1 × · · · ×Gd.

Hence the function f |iα,β is f over a slice of Gi specified by α and β.

The distance to monotonicity in dimension i is then defined as:

Definition 10.

distimono(f) =
1

Πj 6=i|V (Gj)|
∑
α,β

distmono(f |iα,β) , 1

It is also useful to talk about the negative influence in one direction. That is, the average
negative influence of all copies of the base graph in that dimension. Or equivalently, the
average number of non-monotone edges per node in that dimension.

Definition 11 (Dimensional negative influence). The dimensional negative influence of a
function f : G = G1 × · · · ×Gd → {0, 1} is

I−i (f) =
1

Πj 6=i|V (Gj)|
∑
α,β

I−(f |iα,β).

Similar to the definition of total influence, the sum of dimensional negative influences
equals to the total negative influence.

Lemma 1. For any function f : G = G1 × · · · ×Gd → {0, 1},

I−(f) =
d∑
i=1

I−i (f)

Proof. We can establish a bijection between the violation pairs in the every functional
restriction and the original function. For every violation pair in the original function, it
must be in the form of (αxβ, αyβ) where x, y has an edge between them in Gi. Then this
pair can be mapped to the violation pair (x, y) in f |iα,β, and vice versa. Therefore we have

∂−(f) =
∑d

i=1

∑
α,β ∂

−(f |iα,β). After re-normalizing, we have

1We use
∑
α,β as a short-hand for

∑
α∈G1×···×Gi−1.β∈Gi+1×···×Gd

, where i should always be clearly
indicated in an outter scope.

11



d∑
i=1

I−i (f) =
d∑
i=1

1

Πj 6=i|V (Gj)|
∑
α,β

I−(f |iα,β)

=
d∑
i=1

1

Πj 6=i|V (Gj)|
∑
α,β

∂−(f |iα,β)

|V (Gi)|

=
1

|V (G)|

d∑
i=1

∑
α,β

∂−(f |iα,β)

=
1

|V (G)|
· ∂−(f)

= I−(f).

Another fact that we will use in later sections is that iso−(Gi) still serves as a lower
bound on the ratio between dimensional negative influence I−i and dimensional distance
to monotonicity distimono.

Lemma 2.

iso−(Gi) ≤
I−i (f)

distimono(f)
.

Proof. This is true because if we apply the definition of I−i and distimono with the normal-
ization factors canceled, we have

I−i (f)

distimono(f)
=

∑
α,β I

−(f |iα,β)∑
α,β distmono(f |iα,β)

.

Note that for any (α, β), iso−(Gi) ≤
I−(f |iα,β)

distmono(f |iα,β)
, so iso−(Gi) · distmono(f |iα,β) ≤ I−(f |iα,β).

Therefore,

iso−(Gi) ·
∑
α,β

distmono(f |iα,β) ≤
∑
α,β

I−(f |iα,β),

and so

iso−(Gi) ≤
I−i (f)

distimono(f)
.

12



2.2 Related Work

Monotonicity testing has been extensively studied over the past two decades with the main
focus on the hypercube and the hypergrid domain with different ranges. The majority of
testing algorithms can be categorized into the edge tester or the pair tester, with one
notable exception that we will see in later sections. The pair tester is a natural extension
of the edge tester, where instead of just picking adjacent vertices, a pair test consists of
queries to any two comparable vertices.

Definition 12 (Pair tester). A monotonicity testing algorithm is a pair tester if it only
uses the pair test. A pair test is the simple test that queries two comparable vertices drawn
from some distribution and rejects the function if these two vertices form a violation of
monotonicity.

In the following sections, we will review some of the previous result of monotonicity testing
over the hypercube, the hypergrid, general domains, and graph products.

2.2.1 Boolean Hypercube

Goldreich et al. [21] present the first analysis of edge tester for the boolean hypercube with
a query complexity of O(d2/ε). In the journal version of this paper [19], they improved
the upper bound to O(d/ε), which matches the lower bound for edge tester shown in the
same paper. In their proof of the query complexity of the monotonicity tester, they im-
plicitly prove a directed version of the well-known inequality I(f) ≥ Ω(var(f)) for boolean
hypercube using the shifting argument, which inspire the work in this thesis.

Goldreich et al. [19] was the best known monotoncity tester for the boolean hypercube for
over 15 years until Chakrabarty and Seshadhri [11] improved the result of Goldreich et al.
[19] to a query complexity of Õ(d7/8ε−3/2) by using a pair tester that samples pairs that are
at most O(

√
d) away from each other instead of an edge tester. This is the first sublinear

tester in terms of the number of dimensions d. They are also the first to explicitly identify
the link between directed isoperimetric inequality. In the proof, they show a directed
version of Margulis’ isoperimetric inequality, which is stronger than the inequality used
by Goldreich et al. [19], and immediately get a better upper bound on the corresponding
tester.

Khot, Minzer, and Safra [25] extend this idea further and later establish a directed analogue
of Talagrand’s isoperimetric inequality on the hypercube to obtain the optimal monotonic-
ity tester, improved the upper bound to Õ(

√
d/ε2).

13



On the lower bound side, Fischer et al. [18] develop the first lower bound result of Ω(log d)
for non-adaptive two-sided algorithm and Ω(

√
d) for non-adaptive one-sided algorithm. In

the same paper where Chakrabarty and Seshadhri [11] show the first sublinear tester, they
also improve the lower bound for non-adaptive two-sided algorithm to Ω̃(d1/5)). This is
later improved to Ω(d1/2−o(1)) by Chen et al. [12]. Therefore the result of Khot, Minzer,
and Safra [25] is indeed near optimal.

For adaptive algorithms, every lower bound for non-adaptive lower bound implies a cor-
responding lower bound for adaptive algorithm with a loss of a log-factor. Therefore, the
result of Fischer et al. [18] implies a lower bound of Ω(log log d) for the more general adap-
tive algorithms. And the result of Chen, Servedio, and Tan [13] implies a lower bound of
Ω(log d). The first polynomial bound of Ω̃(d1/4)) is given by Belovs and Blais [3], and later
improved to Ω(d1/3) by Chen, Waingarten, and Xie [14].

2.2.2 Boolean Hypergrid

The other domain that is most well-studied is the hypergrid, where the base graph is a
total order of length n. Therefore the hypercube is a special instance where n = 2.

Testing over the line (which is another special case of hypergrid with d = 1) was first
brought to attention by Ergün et al. [17], where they proposed a O(log n) pair tester for
the line. Note that their method is originally proposed for testing if an array is sorted, and
therefore works on general range as well.

In the work of Goldreich et al. [20], they propose a framework that can be used to construct
an O(1/ε) tester for boolean line (i.e. testing threshold function) that is neither an edge
tester nor a pair tester. The tester works by trying to learn where the threshold for the
function should be, and rejecting the function if the subsequent samples conflict with that
belief.

Dodis et al. [16] first studies the higher dimensional hypergrid. Their construction gives
an O(d

ε
log(n) log(|R|)) tester where R is the range of the function. When the range is

boolean, the above tester gives a bound of O(d
ε

log(n)). In their proof, they build a shifting
operator that can reduce the analysis of the hypergrid to the line. And then they construct
a 2-spanner graph to work with the shifting argument. We will be discussing more about
this in Section 4.2.

In the latest paper by Black, Chakrabarty, and Seshadhri [6, 7], they use a Margulis-
style isoperimetric inequality to achieve a query complexity of Õ(d5/6/ε), which is the first
sub-linear tester in terms of the number of dimensions in the domain for the hypergrid.

14



It is worth noting that there has been no lower bound specifically targeting the hypergrid.
It is mostly believed that testing on hypergrid should not be harder than testing over
hypercube because of various domain reduction techniques.

2.2.3 Testing over General Domain

Ficher et al. [18] give the first non-trivial result for testing functions over general graphs
using the pair tester. The tester requires O(

√
|V |/ε) queries. They convert the original

graph into a complete bipartite graph and draw a set of points and then check all compa-
rable points for non-monotonicity. The function is rejected if there is any violating pair.
The correctness follows from the matching lemma, which states that if the function is ε-far
from monotone, then there exists a matching of violated edges of size at least ε|V |/2.

For the special class of graphs with a sparse 2-spanner, Dodis et al. and Bhattacharyya
et al. [16, 5] show that there is an O( |E(2-TC(G))|

ε|V (G)| )-tester for such graphs. In particular,

Bhattacharyya et al. [5] give a method for constructing a sparse 2-spanner for any H-
minor-free graph, which gives query complexity of O(ε log2 |V (G)|) for these graphs. We
will give a in-depth look into these graphs in Section 4.3 and Section 4.4.

In the same paper of Ficher et al. [18], the authors also give a lower bound of |V |Ω( 1
log log |V | )

for non-adapt testers. This is the only lower bound result for testing over general domain.

2.2.4 Testing over Graph Products

As far as we know, the problem of testing over general graph products is studied only by
Halevy and Kushilevitz [22], where they give query complexity of O(d2d) ·maxi(Qε(Gi)).

However, they implicitly show a query complexity of O(d3/ε) ·Qε/2d2(G) for boolean func-
tions over general graph products. This result does not appear in their original paper
probably due to the fact that boolean range is not their main concern. For completeness,
we include the proof of this bound in Chapter 5

It is also worth mentioning that there is no lower bound specifically for product graphs,
only the general ones that apply to product graphs.
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Chapter 3

Proof of the Directed Isoperimetric
Inequality

In this chapter, we show that the technique of Goldreich et al. [19] can be extended to
general graph products. In particular, we construct a shifting argument that works on any
graph products beyond the hypercube. This immediately gives better query complexity
for many types of graph products as shown in Chapter 4.

The main goal of this chapter is to prove the directed isoperimetric inequality, which is
restated below.

Theorem 2 (Restated). For any directed acyclic graph G1 × · · · ×Gd,

min
i≤d

(iso−(Gi)) ≥ iso−(G1 × · · · ×Gd) ≥
mini≤d(iso

−(Gi))

2
.

3.1 Proof Overview

In the proof of Goldreich et al. [19], they show that there is a shifting operator that can
transform every function f : {0, 1}d → {0, 1} into a monotone function by modifying up to
2 ·distmono(f) fraction of the function. The number of points being changed in this shifting
operator is dependent only on I−(f), therefore it is possible to lower bound I− in terms of
distmono.

We take this technique one step further, and construct shifting operator that works in the
same fashion but over any general graph product instead of just the boolean hypercube.
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In our proof, we show that this new shifting operator has the same properties that we can
use to lower bound I−i in terms of distmono plus a graph dependent constant iso−. In fact,
we can also show that Goldreich et al. [19] is a special case of this shifting operator with
iso− being 1 for the boolean hypercube.

3.2 Shifting Operator

The core of our proof is to construct the proper shifting operator with desired properties.
In this section, we describe the shifting operator as an algorithm and summarized the
properties it possesses in Lemma 3.

Algorithm 3: Shifting operator

1 Input: a DAG G1 × · · · ×Gd, a function f : G→ {0, 1}, an integer i
2 Output: a function f : G→ {0, 1}
3 Let L be a linear extension of Gi

4 Let h = f
5 foreach p ∈ L from lowest to highest do
6 foreach α ∈ G1 × · · · ×Gi−1, β ∈ Gi+1 × · · · ×Gd do
7 if there exists q >G p such that f |iα,β(p) > f |iα,β(q) then
8 Select the highest such q (in L)
9 swap the values of h(αpβ) and h(αqβ)

10 return h

We claim that this operator satisfies three conditions:

Lemma 3. For every graph G = G1 × · · · ×Gd, every function f : G→ {0, 1} and every
i ∈ [d], the output h of the shifting operator (Algorithm 3) satisfies the following three
properties.

P1 h is monotone in dimension i, i.e. I−i (h) = 0;

P2 for every j ∈ [d], I−j (h) ≤ I−j (f);

P3 dist(f, h) ≤ 2 · I−i (f) · 1
iso−(Gi)

.

We will be using these three properties in our proof of Theorem 2.
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3.3 Proof of Lemma 3

In this section, we will prove the above mentioned three properties of the shifting operator
(Algorithm 3).

Property P1

Proof. We will show by strong induction that every time after p ∈ L being checked and
potentially swapped, there will be no violating like (r, p), where r <G p.

Base case: For nodes with in-degree of 0, this is trivially true.

Inductive step: For the case where p is swapped with some other node, assume towards the
contradiction that a violating pair (r, p), where r <G p, is created as result of the swap. By
definition, we have f |iα,β(r) = 1, f |iα,β(p) = 1, f |iα,β(q) = 0, h|iα,β(p) = 0, and h|iα,β(q) = 1.
Then αrβ would have swapped with αqβ, since they are comparable in G through p, which
is a contradiction to the fact that the lower node will always be swapped with the highest
node available.

For the case where p is not swapped with any higher node, again assume towards the
contradiction that there is a violating pair (r, p), where r <G p. By definition, we have
f |iα,β(r) = 1, f |iα,β(p) = 0. Since p is not swapped with any higher node, then we also
have for every q >G p, f |iα,β(q) = 0. Then r would have swapped with q when r is visited
by the algorithm since r <G p <G q . Then f |iα,β(r) should be 0, which contradicts our
assumption.

Thus at the end of this shifting operator, there will be no violation in dimension i.

Property P2

Proof. We will prove P2 by showing that during the shifting, for any two slices of Gi, the
number of non-monotone edge between them does not increase. We will explain in the
next paragraph why this construction is enough to prove P2.

Let g and g′ be the function h before and after each iteration of Line 5, i.e. every time a
pair of values being swapped. Formally, for any α ∈ G1×· · ·×Gi−1, β ∈ Gi+1×· · ·×Gd, γ ∈
G1 × · · · × Gi−1, δ ∈ Gi+1 × · · · × Gd, such that α ≤ γ and β ≤ δ with α 6= γ or β 6= δ,
let S = {p ∈ Gi : g|iα,β(p) > g|iγ,δ(p)} and S ′ = {p ∈ Gi : g′|iα,β(p) > g′|iγ,δ(p)}. We want to
show that |S| ≥ |S ′|. Here each pair of (α, β) and (γ, δ) will specify two slices of Gi in ith
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dimension. By considering the edges between these two copies of Gi for all possible pairs
of (α, β) and (γ, δ), it allows us to draw conclusion about Ij for any j 6= i.

If (g|iα,β(p), g|iγ,δ(p)) is (0, 0), then no values will be swapped by the shifting operator
therefore S = S ′.

If (g|iα,β(p), g|iγ,δ(p)) is (0, 1), let q be the point that gets swapped with γpδ if it exists
(otherwise we have S = S ′). Then after the swap, we have (g′|iα,β(p), g′|iγ,δ(p)) = (0, 0) and
(g′|iα,β(q), g′|iγ,δ(q)) = (0, 1) or (1, 1). There is no increase in the number of violating pairs.

If (g|iα,β(p), g|iγ,δ(p)) is (1, 0), let q be the point that gets swapped with αpβ if it exists
(otherwise we have S = S ′ again). Then after the swap, we have (g′|iα,β(p), g′|iγ,δ(p)) = (0, 0)
and (g′|iα,β(q), g′|iγ,δ(q)) = (1, 0) or (1, 1). Therefore we always remove the violating pair at
(αpβ, γpδ) and add at most one violating pair at (αqβ, γqδ). Hence there is no increase in
the number of violating pairs.

If (g|iα,β(p), g|iγ,δ(p)) is (1, 1), let q be the point that gets swapped with αpβ if it exists, and
let q′ be the point that gets swapped with γpδ if it exists. We can divide this into three
cases:

1. If q does not exist, it means that all comparable points above p in g|iα,β are all 1’s.
Therefore (g′|iα,β(p), g′|iγ,δ(p)) = (1, 0) and (g′|iα,β(q′), g′|iγ,δ(q′)) = (1, 1). We add one
violating pair at (αpβ, γpδ) and remove one violating pair at (αq′β, γq′δ). Therefore
there is no increase.

2. If q′ does not exists it means that all comparable points above p in g|iγ,δ are all 1’s.
Therefore (g′|iα,β(p), g′|iγ,δ(p)) = (0, 1) and (g′|iα,β(q′), g′|iγ,δ(q′)) = (1, 1). There is no
increase.

3. If both q, q′ exist and (g′|iα,β(q), g′|iγ,δ(q)) = (1, 0), then it implies that q <L q
′ and

therefore g|iα,β(q′) = 1, and hence (g|iα,β(q′), g|iγ,δ(q′)) = (1, 0) and (g′|iα,β(q′), g′|iγ,δ(q′)) =
(1, 1). We add one violating pair at (αqβ, γqδ) and remove one violating pair at
(αq′β, γq′δ). Therefore there is no increase. Note that it is impossible to create a
violation at g′|iγ,δ(q′), since it is always 1.

Property P3

Proof. For any violation identified in f |iα,β, at least one of the end points need to be changed
to obtain a monotone function. Notice that the shifting operator never swaps value on a
node twice because after a swap, the lower node p is never touched again and the higher
node q will have every node above being 1 which cannot form any violating pair.
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Combining these two facts, we have dist(f, h) is at most twice as large as distimono(f).
Therefore we have

dist(f, h) ≤ 2 ·
V (Gi) ·

∑
α,β distmono(f |iα,β)

V (G)
= 2 · distimono(f)

From Lemma 2, we have

iso−(Gi) ≤
I−i (f)

distimono(f)
.

Combining these two inequalities, we finally arrive at

dist(f, h) · iso−(Gi) ≤ 2 · distimono(f) · iso−(Gi) ≤ 2 · I−i (f).

3.4 Proof of Theorem 2

Now equipped with Lemma 3, we are ready to prove our main theorem. We restate the
theorem again for reference:

Theorem 2 (Restated). For any directed acyclic graph G1 × · · · ×Gd,

min
i≤d

(iso−(Gi)) ≥ iso−(G1 × · · · ×Gd) ≥
mini≤d(iso

−(Gi))

2
.

Proof. For any product of directed acyclic graphs G = G1 × · · · × Gd and any function
f : G → {0, 1} that satisfies distmono(f) = ε, let f1, · · · , fd+1 be the sequence of functions
we get from applying above shifting operation, where f1 is the original function and fd+1

is the final resulting function. From P1 and P2, we know that the fd+1 is a monotone
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function over G. The distance between the initial function and the resulting function is

dist(f1, fd+1) ≤
d∑
i=1

dist(fi, fi+1)

≤
d∑
i=1

2 · I−i (fi) ·
1

iso−(Gi)
(from P3)

≤
d∑
i=1

2 · I−i (f) · 1

iso−(Gi)
(from P2)

≤ 2

mini≤d(iso
−(Gi))

d∑
i=1

I−i (f) (taking the largest factor)

=
2

mini≤d(iso
−(Gi))

· I−(f) . (from Lemma 1)

Therefore we have
I−(f)

ε
≥ mini≤d(iso

−(Gi))

2

for any function, which by the definition of isoperimetric constant implies

iso−(G1 × · · · ×Gd) ≥
mini≤d(iso

−(Gi))

2
.

For the left half of the inequality, we can show that by constructing a function over G =
G1 × · · · ×Gd that achieves the same I− to distmono ratio.

Without loss of generality, we can assume the minimum is taken from G1, then let f be
the function that achieves this minimum I− to distmono ratio. We can construct f ′ : G =
G1 × · · · × Gd → {0, 1} in the following way: f ′(x1, · · · , xd) = f(x1), where xi ∈ Gi. i.e.,
the function whose every functional restriction onto G1 is always f . Then we have

I−(f ′) =
|∂−(f)| · |V (G2 × · · · ×Gd)|

|V (G)|
=
|∂−(f)|
|V (G1)|

= I−(f).

As for distance to monotonicity, all functional restriction of f ′ onto G1 will have to be trans-
formed into monotone function in order for the transformed f ′ to be monotone, therefore,

distmono(f ′) =
|distmono(f)| · |V (G1)| · |V (G2 × · · · ×Gd)|

|V (G)|
= distmono(f).
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Combining those two equations, we have

I−(f ′)

distmono(f ′)
=

I−(f)

distmono(f)
.

Thus we have,
min
i≤d

(iso−(Gi)) ≥ iso−(G1 × · · · ×Gd).

This intuition behind the left half of inequality is that by granting the ability to manip-
ulate the function on a finer granularity, we should be able to achieve lower isoperimetric
constant. However, the other half of inequality tells that one can only hope to reduce
isoperimetric constant by a half. It remains open whether the bound is tight.

22



Chapter 4

Monotonicity Testing Result

In this chapter we will show the monotonicity testing results we can get from applying
the directed isoperimetric inequality on many types of graph products. We do this by
studying the isoperimetric constant of different base graphs, and then applying the directed
isoperimetric inequality we get from Chapter 3 to extend the result to their corresponding
power/products.

In particular, we will show the improved bound of testing general graph products in Section
4.1; a simplified version of a O(d log n) bound for the hypergrid in Section 4.2; the bound
of products of transitive closures and spanner graphs in Section 4.3; the bound of product
of H-minor free graphs in Section 4.4; and lastly the bound on constant comparable graphs
in Section 4.5.

4.1 General Graph Products

The improve bound for testing monotonicity over general graph products follows almost
immediately from the directed isoperimetric inequality.

Theorem 1 (Restated). For every directed acyclic graph product G = G1 × · · · ×Gd,

Qε(G) = O

(
1

ε ·mini≤d(iso
−(Gi))

·
d∑
i=1

|Ei|
|Vi|

)
.
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Proof. For any function f : G = G1 × · · · × Gd → {0, 1}, the rejection probability of the
edge tester is

I−(f) · |V (G)|
|E(G)|

=
I−(f)∑d
i=1

|Ei|
|Vi|

(from Proposition 2)

≥ iso−(G) · distmono(f)∑d
i=1

|Ei|
|Vi|

(from Definition 5)

≥ mini≤d(iso
−(Gi)) · distmono(f)

2 ·
∑d

i=1
|Ei|
|Vi|

(from Theorem 2)

Therefore, from Proposition 1, by repeating the edge test O
(

1
ε·mini≤d(iso−(Gi))

·
∑d

i=1
|Ei|
|Vi|

)
times, the function will be rejected with high probability.

This is the most general bound we can get from directly applying the inequality we have
from Chapter 3. In the following chapters, we will show results on more specific graphs by
studying their isoperimetric constants.

4.2 Hypergrid

In this section, we use our inequality and an augmented hypergrid to show that test-
ing monotonicity of boolean functions over hypergrid can be done with query complexity
O(d

ε
log n), matching the bound given by Dodis et al. [16]. We will use the same augmented

line construction used by Dodis et al. [16], but we also demonstrate how this can fit into
our framework of isoperimetric constant.

Theorem 3. There is a monotonicity testing algorithm for the hypergrid [n]d with query
complexity O(d log n/ε)

Proof. To prove the theorem, we only need to construct a augmented line L which satisfies
that

1. E(L)/V (L) = log(n),

2. and iso−(L) = 1.
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Figure 4.1: An example of the above algorithm executed on a line of length 8. The arcs
above are from the first round of iteration, and the arcs underneath are from the second
round. This construction was first given by Dodis et al. [16] in their proof of Proposition
9.

Once we have these conditions, the theorem itself follows from Theorem 1.

Without loss of generality, we assume n is a power of 2. We construct the following
augmented line.

Algorithm 4: Augmented Line

1 Let L be a linear order
2 foreach i in 1, 2, 4, · · · , log(n)− 1 do
3 foreach j in 1, 2, 3, · · · dn/2ie do
4 color the node i · j with color i
5 Connect every node to two closest colored nodes with color i

6 return L

We call these colored nodes hubs. We use different colors mainly to distinguish between
different rounds of execution, a node can have multiple color. At the end of the algorithm,
we have E(L) = n log(n) and therefore the first condition is satisfied.

For the second condition, we argue that between any two nodes, there must be a node they
both connect to, if they are not already connected. As for any pair that are k away from
each other, let m be the smallest power of 2 that are greater than k. These two nodes
must be contain by two other nodes of color log(m) that are m away. They must both be
connected the middle point this range.

Therefore if any pair forms a violation, there is also a violation between either of the pair
and the node they both connect to. This will mean the ratio between the I− and distmono

is 1 for any function, i.e., iso−(L) = 1.

By apply Theorem 1, we have the query complexity of edge tester over boolean hypergrid
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is O(d
ε

log n)

4.3 Transitive-Closures Spanners

In this section, we will explore a special type of supergraph called spanner graphs. We
show that both the transitive closure and 2-spanner graphs of any base graph possess an
isoperimetric constant of Θ(1).

The study of such graphs is also pioneered by Dodis et al. [16] in an application to the
augmented line in their work. And later formally proven by Bhattacharyya et al. [5] where
it is also used in showing the query complexity of H-minor free graph.

Transitive closure of a graph is constructed by adding edges between all comparable nodes,
i.e.,

Definition 13 (Transitive Closure). the transitive closure TC(G) of a directed acyclic
graph G is a graph that satisfies:

1. V (TC(G)) = V (G);

2. E(TC(G)) = {(u, v) : there exists a path from u to v in G}.

And then the definition of k-TC-spanner is obtained by relaxing the above condition by
allowing two vertices to be not directly connected.

Definition 14 (k-TC-spanner). A graph G′ is a k-TC-spanner k-TC(G) of a directed
acyclic graph G if G′ satisfies that:

1. V (k-TC(G)) = V (G);

2. E(k-TC(G)) is a subset of E(TC(G)) and for all comparable vertices u, v there exists
a path from u to v of length less than or equal to k in k-TC(G).

Transitive closures and 2-TC-spanners behave very nicely under our isoperimetric constant
framework.

Lemma 4. For k = 1 or k = 2 and every directed acyclic graph G, iso−(k-TC(G)) = Ω(1)

We will use a lemma by Dodis et al. [16], which is stated as following:
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Lemma (Lemma 7 of Dodis et al. [16]). For every directed acyclic graph G and every
function f : G→ {0, 1}, the violation graph of f on G has a matching of size distmono(f) ·
|V (G)|/2. The violation graph is formed all pairs (u, v) such that u < v and f(u) > f(v).

Then our lemma follows directly from this matching lemma.

Proof of Lemma 4. For k = 1, consider any maximum matching in the violation graph.
Since E(TC(G)) contains all comparable pairs, then the edges in the maximum matching
must be a subset of E(TC(G)). Therefore I−(f)/distmono(f) ≥ 1/2 for all f .

For k = 2, consider any maximum matching in the violation graph. For any pair (u, v) in
the matching, if (u, v) is an edge in the 2-TC(G), then we have an violated edge. Otherwise,
we know that there is a w such that (u,w) and (w, v) are both edges of 2-TC(G). And
exactly one of them is a violation edge. Since this is a matching, w can serve as an endpoint
for at most another edge. Therefore for every four vertices in the matching, there has to
be at least one violation edge in 2-TC(G). Thus I−(f)/distmono(f) ≥ 1/4 for all f .1

Therefore we can test monotonicity over products of transitive closures and 2-TC-spanners
effectively.

Theorem 4. Let G = G1 × · · · × Gd where each of Gi is a transitive closure or a 2-TC-
spanner graph. Then there exists a monotonicity tester for G that satisfies that

Qε(G) = O

(
1

ε
·

d∑
i=1

|Ei|
|Vi|

)
.

Proof. By replacing the mini≤d(iso
−(Gi)) in Theorem 1 with iso−(TC(G)) = iso−(2 −

TC(G)) = Ω(1) from Lemma 4

In fact, we can also give a upper bound of 1 for iso− for all graphs.

Lemma 5. For any directed acyclic graph G, iso−(G) ≤ 1

Proof. Given a graph G, choose any maximal node s, and one of the maximal node that s
covers, call it t. We set f(s) = 0 and f(t) = 1. For the rest of the graph, set f(v) = 1 if
t < v, and f(v) = 0 otherwise. For this function, there is exactly one pair of violation and
one point needs to be changed to obtain a monotone function. Therefore, I−(f) = 1/|V (G)|
and distmono(f) = 1/|V (G)|, which gives iso−(G) ≤ 1.

1Note that this technique used in k = 2 case was first introduced by Bhattacharyya et al. [5].
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4.4 H-minor free Graphs

In this section, we will show how to extend the result of Bhattacharyya et al. [5] on
H-minor free graphs to products of such graphs.

First we will need to define graph minors.

Definition 15 (Graph minors). An undirected graph H is a minor of G if H can be
obtained by a sequence of edge contractions in G.

Based on this definition, we can also define a minor-closed family of graphs.

Definition 16 (Minor-closed families). A family F is minor-closed if it contains every
minor of every graph in F .

Finally, H-minor free families are special minor-closed families.

Definition 17 (H-minor free families). For a finitely large graph set H and a minor-closed
family of graphs F , F is H-minor-free if for all H ∈ H, H /∈ F .

The notion of H-minor free graphs have lots of applications. For example, the family of
all planar graphs are H-minor free for H = {K5, K3,3}.

In the paper of Bhattacharyya et al. [5], they show a construction of a 2-TC-spanner for
any graph of a family of an H-minor free graph, which gives the following theorem:

Theorem 4.3 of Bhattacharyya et al. [5]. If G′ belongs to an H-minor-free graph
family, and if G is a directed graph whose underlying undirected graph is G′, then G has a
2-TC-spanner of size O(|V (G)| log2 |V (G)|).

Therefore, by applying our Theorem 1, we can have the following theorem for testing
products of such graphs.

Theorem 5. Let G = G1 × · · · × Gd, where Gi’s all have an undirected underlying graph
that belongs to some Hi-minor-free family for some Hi. Then we have

Qε(G) = O

(
1

ε
·

d∑
i=1

log2 |V (Gi)|

)
= O

(
d

ε
max
i

log2 |V (Gi)|
)
.
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Proof. By the construction of Bhattacharyya et al. [5], we know that there is a 2-TC-
spanner for each of Gi with O(|V (G)| log2 |V (G)|) edges. Therefore the ratios between the
number of edges and the number of vertices in these 2-TC-spanners are log2 |V (Gi)| for all
Gi’s.

By Lemma 4, iso− is 1 for the 2-TC-spanners. Thus, the result follows once we apply these
numbers to Theorem 1

Note that the product graph G is not necessarily H-minor free for some Hi. Therefore our
result is an improvement for such graphs as there is no specialized bound for such graphs.

4.5 Constant Comparable Graphs

If in graphs have limited comparability, then it is easy to test monotonicity over this type
of graphs, and even their products

This type of graphs retains the property of a transitive closure without the extra edges,
hence can be tested effectively under our framework. In fact, it has a query complexity of
O(dk2/ε) where d is the number of dimensions and k is the comparable constant mentioned
above.

We will first define comparability formally.

Definition 18. A direct acyclic graph G is a k-comparable graph if for any v ∈ V (G), v is
comparable to at most k other vertices in G.

The two point line is a very special case of this type of graph with k = 1.

Theorem 6. For any direct acyclic G = G1 × · · · × Gd, where in each of Gi, every node
is only comparable to at most k other nodes, we have

Qε(G) = O(dk2/ε).

Proof. Notice that E(Gi)/V (Gi) ≤ k because every node can be adjacent to at most k
other nodes.

And iso−(Gi) = Ω(1/k) in such graphs, since for every pair of violation, at most 2k other
nodes need to be changed to obtain a monotone function. And this does not propagate
to more than constant number of nodes at second level, otherwise the graph will not be
constant comparable. Therefore, by applying Theorem 1, we have Qε(G) = O(dk2/ε).
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Figure 4.2: The top and bottom layer both have k nodes. In this function, we can see only
1 violating edge but have to change half of the graph to obtain a monotone function.

Note that the bound of the isoperimetric constant in this proof is reachable in the graph
given in the following Figure 4.2:

This result is interesting because in the product graph, the comparability grows exponen-
tially, and yet with our theorem we can still have a tester with linear query complexity.
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Chapter 5

Improved Bound of Halevy and
Kushilevitz

Here we will show how we can result from their original paper to construct a monotonicity
tester that has a polynomial query complexity instead of exponential.

Theorem 7. There is an ε monotonicity tester for boolean functions the graph product
G = G1 × · · · ×Gd with query complexity O(d3/ε) ·maxi(Qε/d2(Gi)).

Our proof is built upon the same fundamental lemma, where Halevy and Kushilevitz [22]
give a way to bound the distance to monotonicity in each dimension in terms of the distance
to monotonicity of the entire product domain.

Lemma (Lemma 3.1 of Halevy and Kushilevitz [22]). For any directed acyclic graph G,
and function f : G1 ×G2 → {0, 1}, we have

distmono(f) ≤ 2 · (dist1
mono(f) + dist2

mono(f)).

The main technique novelty is to apply the lemma of Halevy and Kushilevitz recursively
instead of iteratively to get the following corollary:

Corollary 1. For any directed acyclic graph G = G1 × · · · × Gd, and function f : G →
{0, 1}, we have

distmono(f) ≤ d ·
∑
i

distimono(f).
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Proof. Without loss of generality, we can assume d is a power of 2. Since if otherwise,
we can append graphs with a single vertex to the product without changing the resulting
G. Now let G′ = (G1 × · · · × Gd/2) and G′′ = ×(Gd/2+1 × · · · × Gd), so that we can also
view G = G1 × · · · ×Gd as G = G′ ×G′′. We will use dist′mono and dist′′mono to denote the
distance to monotonicity by considering G′ and G′′ as the first and second dimension of G.
Therefore we have

distmono(f) ≤ 2 · (dist′mono(f) + dist′′mono(f)).

We can repeat this process recursively on G′ and G′′ until we reach the base graphs. We
will have

distmono(f) ≤ 2log d ·
∑
i

distimono(f) = d ·
∑
i

distimono(f).

We will also need the following lemma for the proof:

Lemma 6. Let D be any distribution with range in [0, 1] that has EX∼D[X] = µ, then

PrX∼D[X ≥ µ/2] ≥ µ

2− µ
.

Proof. This lemma is actually a special case of Markov’s inequality. We will prove this for
the sake of completeness for this thesis.

By the way of contradiction, assume that less than µ
2−µ of the sample space has value less

than µ/2, then the expected value of a random sample from the distribution is less than

µ

2− µ
· 1 + (1− µ

2− µ
) · µ

2
=

µ

2− µ
+
µ

2
− µ2

2(2− µ)
= µ

which is a contradiction.

Now we are ready to prove Theorem 7, which is restated here:

Theorem 7 (Restated). There is an ε monotonicity tester for boolean functions the graph
product G = G1 × · · · ×Gd with query complexity O(d3/ε) ·maxi(Qε/d2(Gi))

Proof. We claim that the following tester satisfies the query complexity condition.

From Corollary 1, we know that at least one of the dimensions has distimono(f) ≥ ε/d2. By
Lemma 6, we know at least ε

2d2−ε fraction of the slices are at least ε
2d2

-far from monotone.
Hence the rejection probability of applying the base tester T to a random slice in a random
dimension is Ω(1

d
) ·Ω( ε

2d2−ε) ·Θ(1). If we repeat the base tester Θ(d3/ε) times with distance
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1 Repeat Θ(d3/ε) times:
2 Choose i ∈ [d] uniformly at random
3 Choose α ∈ G1 × · · · ×Gi−1 and β ∈ Gi+1 × · · · ×Gd uniformly at random.
4 Apply the base tester T on f |iα,β with distance parameter set to ε

2d2

parameter set to ε/d2, the base tester will catch a violation with high probability. Therefore
the query complexity of the resulting tester is O(d3/ε) ·Qε/d2(G)) = O(d5/ε) ·Qε(G)) when
the base tester is a linear tester.1

1A tester is linear if Qε(G) is linearly dependent on 1/ε
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