94 research outputs found

    On Minimizing Crossings in Storyline Visualizations

    Get PDF
    In a storyline visualization, we visualize a collection of interacting characters (e.g., in a movie, play, etc.) by xx-monotone curves that converge for each interaction, and diverge otherwise. Given a storyline with nn characters, we show tight lower and upper bounds on the number of crossings required in any storyline visualization for a restricted case. In particular, we show that if (1) each meeting consists of exactly two characters and (2) the meetings can be modeled as a tree, then we can always find a storyline visualization with O(nlogn)O(n\log n) crossings. Furthermore, we show that there exist storylines in this restricted case that require Ω(nlogn)\Omega(n\log n) crossings. Lastly, we show that, in the general case, minimizing the number of crossings in a storyline visualization is fixed-parameter tractable, when parameterized on the number of characters kk. Our algorithm runs in time O(k!2klogk+k!2m)O(k!^2k\log k + k!^2m), where mm is the number of meetings.Comment: 6 pages, 4 figures. To appear at the 23rd International Symposium on Graph Drawing and Network Visualization (GD 2015

    Computing Storyline Visualizations with Few Block Crossings

    Full text link
    Storyline visualizations show the structure of a story, by depicting the interactions of the characters over time. Each character is represented by an x-monotone curve from left to right, and a meeting is represented by having the curves of the participating characters run close together for some time. There have been various approaches to drawing storyline visualizations in an automated way. In order to keep the visual complexity low, rather than minimizing pairwise crossings of curves, we count block crossings, that is, pairs of intersecting bundles of lines. Partly inspired by the ILP-based approach of Gronemann et al. [GD 2016] for minimizing the number of pairwise crossings, we model the problem as a satisfiability problem (since the straightforward ILP formulation becomes more complicated and harder to solve). Having restricted ourselves to a decision problem, we can apply powerful SAT solvers to find optimal drawings in reasonable time. We compare this SAT-based approach with two exact algorithms for block crossing minimization, using both the benchmark instances of Gronemann et al. and random instances. We show that the SAT approach is suitable for real-world instances and identify cases where the other algorithms are preferable.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Block Crossings in Storyline Visualizations

    Full text link
    Storyline visualizations help visualize encounters of the characters in a story over time. Each character is represented by an x-monotone curve that goes from left to right. A meeting is represented by having the characters that participate in the meeting run close together for some time. In order to keep the visual complexity low, rather than just minimizing pairwise crossings of curves, we propose to count block crossings, that is, pairs of intersecting bundles of lines. Our main results are as follows. We show that minimizing the number of block crossings is NP-hard, and we develop, for meetings of bounded size, a constant-factor approximation. We also present two fixed-parameter algorithms and, for meetings of size 2, a greedy heuristic that we evaluate experimentally.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Text and Spatial-Temporal Data Visualization

    Get PDF
    In this dissertation, we discuss a text visualization system, a tree drawing algorithm, a spatial-temporal data visualization paradigm and a tennis match visualization system. Corpus and corpus tools have become an important part of language teaching and learning. And yet text visualization is rarely used in this area. We present Text X-Ray, a Web tool for corpus-based language teaching and learning and the interactive text visualizations in Text X-Ray allow users to quickly examine a corpus or corpora at different levels of details: articles, paragraphs, sentences, and words. Level-based tree drawing is a common algorithm that produces intuitive and clear presentations of hierarchically structured information. However, new applications often introduces new aesthetic requirements that call for new tree drawing methods. We present an indented level-based tree drawing algorithm for visualizing parse trees of English language. This algorithm displays a tree with an aspect ratio that fits the aspect ratio of the newer computer displays, while presenting the words in a way that is easy to read. We discuss the design of the algorithm and its application in text visualization for linguistic analysis and language learning. A story is a chain of events. Each event has multiple dimensions, including time, location, characters, actions, and context. Storyline visualizations attempt to visually present the many dimensions of a story’s events and their relationships. Integrating the temporal and spatial dimension in a single visualization view is often desirable but highly challenging. One of the main reasons is that spatial data is inherently 2D while temporal data is inherently 1D. We present a storyline visualization technique that integrate both time and location information in a single view. Sports data visualization can be a useful tool for analyzing or presenting sports data. We present a new technique for visualizing tennis match data. It is designed as a supplement to online live streaming or live blogging of tennis matches and can retrieve data directly from a tennis match live blogging web site and display 2D interactive view of match statistics. Therefore, it can be easily integrated with the current live blogging platforms used by many news organizations. The visualization addresses the limitations of the current live coverage of tennis matches by providing a quick overview and also a great amount of details on demand

    In Search of Patient Zero: Visual Analytics of Pathogen Transmission Pathways in Hospitals

    Get PDF
    Pathogen outbreaks (i.e., outbreaks of bacteria and viruses) in hospitals can cause high mortality rates and increase costs for hospitals significantly. An outbreak is generally noticed when the number of infected patients rises above an endemic level or the usual prevalence of a pathogen in a defined population. Reconstructing transmission pathways back to the source of an outbreak -- the patient zero or index patient -- requires the analysis of microbiological data and patient contacts. This is often manually completed by infection control experts. We present a novel visual analytics approach to support the analysis of transmission pathways, patient contacts, the progression of the outbreak, and patient timelines during hospitalization. Infection control experts applied our solution to a real outbreak of Klebsiella pneumoniae in a large German hospital. Using our system, our experts were able to scale the analysis of transmission pathways to longer time intervals (i.e., several years of data instead of days) and across a larger number of wards. Also, the system is able to reduce the analysis time from days to hours. In our final study, feedback from twenty-five experts from seven German hospitals provides evidence that our solution brings significant benefits for analyzing outbreaks

    Story of a 'Storyline Visualization' in High School Readings

    Get PDF
    Storyline visualization, as a process of illustrating data that has a course of events via a visual medium, has been used in the area of film making for a very long time. Not so long ago, it has moved from the paper version to the digital word allowing for a wider usage. In this paper we propose its usage as a teaching tool in the area of literature reading for the Croatian class (primary language). We have conducted a preliminary research in five Croatian high schools of a different profile to see how storyline visualization, and visualization of school materials in general, affects students understanding of the material being studied. Each school participated with two groups of students where one group was exposed to the storyline visualization of a novel Prokleta avlija by Ivo Andrić [N=103 in total] during the reading period, and the other one was reading without the visualization [N=93 in total]. We will present our results taking into account students’ gender and type of a school

    VariantFlow: Interactive Storyline Visualization Using Force Directed Layout

    Get PDF
    The study of literature is changing dramatically by incorporating new opportu- nities that digital technology presents. Data visualization overturns the dynamic for literary analysis by revealing and displaying connections and patterns be- tween elements in text. Literary scholars compare and analyze textual variations in different versions of a lost original text and work to reconstruct the original text in the form of a critical edition. A critical edition notes textual variations in extensive footnotes, collectively called a critical apparatus. Information in the apparatus is of great interest to scholars who seek to explore complex relation- ships between text versions. Motivated by application to classical Latin texts, we adapted the storyline technique to visualize a critical apparatus. The visualiza- tion facilitates guided discovery of similarities and dissimilarities between prior text versions, which are difficult to detect and reason about with traditional deep reading and spreadsheet-based methods. Storyline visualizations help users understand and analyze the interactions between entities in a story and explore how entity relationships evolve over time. Typical design considerations in existing storyline techniques include minimiz- ing line crossing and line wiggling, which are computationally intense problems. Generating storyline layouts in real time is a substantial challenge to interactive visualization. Existing storyline techniques support limited user interaction dueto the high cost of layout. We contribute a force directed layout algorithm that dynamically reflows storyline layouts with best effort response to internal and coordinated interactions. We anticipate that the characteristics of our layout algorithm will allow for graceful response to a wide variety of interaction types, speeds, and patterns. We conducted a user study to evaluate the legibility of our storyline layout after convergence. The evaluation results demonstrate that most users can accurately complete a wide variety of visual metaphor interpretation, reading, and pattern recognition tasks within 20 seconds
    corecore