27,140 research outputs found

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    Languages, machines, and classical computation

    Get PDF
    3rd ed, 2021. A circumscription of the classical theory of computation building up from the Chomsky hierarchy. With the usual topics in formal language and automata theory

    Finite-State Complexity and the Size of Transducers

    Full text link
    Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    On the Commutative Equivalence of Context-Free Languages

    Get PDF
    The problem of the commutative equivalence of context-free and regular languages is studied. In particular conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated

    Splicing Systems from Past to Future: Old and New Challenges

    Full text link
    A splicing system is a formal model of a recombinant behaviour of sets of double stranded DNA molecules when acted on by restriction enzymes and ligase. In this survey we will concentrate on a specific behaviour of a type of splicing systems, introduced by P\u{a}un and subsequently developed by many researchers in both linear and circular case of splicing definition. In particular, we will present recent results on this topic and how they stimulate new challenging investigations.Comment: Appeared in: Discrete Mathematics and Computer Science. Papers in Memoriam Alexandru Mateescu (1952-2005). The Publishing House of the Romanian Academy, 2014. arXiv admin note: text overlap with arXiv:1112.4897 by other author

    Complexity of Problems of Commutative Grammars

    Full text link
    We consider commutative regular and context-free grammars, or, in other words, Parikh images of regular and context-free languages. By using linear algebra and a branching analog of the classic Euler theorem, we show that, under an assumption that the terminal alphabet is fixed, the membership problem for regular grammars (given v in binary and a regular commutative grammar G, does G generate v?) is P, and that the equivalence problem for context free grammars (do G_1 and G_2 generate the same language?) is in Π2P\mathrm{\Pi_2^P}
    • …
    corecore