

Texts in Computing

Volume 22

Languages, Machines,
and Classical Computation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/186329767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Volume 9
Logic for Artificial Intelligence & Information Technology
Dov M. Gabbay

Volume 10
Foundations of Logic and Theory of Computation
Amílcar Sernadas and Cristina Sernadas

Volume 11
Invariants: A Generative Approach to Programming
Daniel Zingaro

Volume 12
The Mathematics of the Models of Reference
Francesco Berto, Gabriele Rossi and Jacopo Tagliabue

Volume 13
Picturing Programs
Stephen Bloch

Volume 14
JAVA: Just in Time
John Latham

Volume 15
Design and Analysis of Purely Functional Programs
Christian Rinderknecht

Volume 16
Implementing Programming Languages. An Introduction to Compilers and Interpreters
Aarne Ranta, with an appendix coauthored by Markus Forsberg

Volume 17
Acts of the Programme Semantics and Syntax. Isaac Newton Institute for the Mathematical
Sciences, January to July 2012.
Arnold Beckmann and Benedikt Löwe, eds.

Volume 18
What Is a Computer and What Can It Do? An Algorithms-Oriented Introduction to the
Theory of Computation
Thomas C. O’Connell

Volume 19
Computational Logic. Volume 1: Classical Deductive Computing with Classical Logic
Luis M. Augusto

Volume 20
An Introduction to Ontology Engineering
C. Maria Keet

Volume 21
A Mathematical Primer on Computability
Amílcar Sernadas, Cristina Sernadas, João Rasga and Jaime Ramos

Volume 22
Languages, Machines, and Classical Computation
Luis M. Augusto

Texts in Computing Series Editor
Ian Mackie mackie@lix.polytechnique.fr

Languages, Machines,
and Classical Computation

Luis M. Augusto

© Individual author and College Publications 2019. All rights reserved.

ISBN 978-1-84890-300-5

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Cover produced by Laraine Welch

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

Contents

Preface xii

I Introduction 1

1 Classical computation: Turing, von Neumann, and Chom-

sky 2

1.1 Computers, information, and computations 2
1.2 Computational problems, algorithms, and decisions 3
1.3 The Turing-von Neumann paradigm 4
1.4 Models of classical computation: Automata 8
1.5 The Chomsky hierarchy 9

II Preliminaries and notation 14

2 Mathematical notions 15

2.1 Basic notions . 15
2.1.1 Sets, relations, functions, and operations 16
2.1.2 Binary relations and ordered sets 24

2.2 Discrete structures . 31
2.2.1 Algebraic structures and operations 32

2.2.1.1 Algebras and morphisms 32
2.2.1.2 Boolean algebras 33

2.2.2 Graphs and trees 38
2.3 Proof techniques . 43

2.3.1 Mathematical and structural induction 44
2.3.2 Proof by contradiction 45

III Languages, machines, and classical computation 48

3 Formal grammars and languages 49

3.1 Basic notions . 50
3.1.1 Strings and operations on strings 50

v

Contents

3.1.2 Formal languages and operations thereon 52
3.1.3 Formal grammars 55

3.1.3.1 Central notions 55
3.1.3.2 Rules, symbols, and grammar cleaning . 57

3.2 Regular languages . 65
3.2.1 Regular expressions 65
3.2.2 Regular grammars 70
3.2.3 Properties of the regular languages 76

3.2.3.1 Pumping lemma for regular languages . . 76
3.2.3.2 Algebra and linear equations for regular

languages 77
3.2.3.3 Closure properties of the regular languages 79

3.3 Context-free languages . 84
3.3.1 Context-free grammars 84

3.3.1.1 Context-free vs. context-sensitive gram-
mars . 84

3.3.1.2 Normal forms for CFGs I: Chomsky nor-
mal form 86

3.3.1.3 Normal forms for CFGs II: Greibach nor-
mal form 90

3.3.1.4 Derivation, or parse, trees 95
3.3.1.5 Ambiguity and inherent ambiguity 96

3.3.2 Properties of the context-free languages 101
3.3.2.1 Pumping lemma for CFLs and Ogden’s

lemma 101
3.3.2.2 Further properties of CFLs 104

3.4 Recursively enumerable languages 112
3.5 The Chomsky hierarchy (I) 118

4 Models of computation 121

4.1 Finite-state machines . 121
4.1.1 Finite automata 122

4.1.1.1 Basic aspects of finite automata 123
4.1.1.2 Characteristic equations 129
4.1.1.3 The pumping lemma for regular languages131
4.1.1.4 The Myhill-Nerode theorem and FAmin-

imization 132
4.1.1.5 Deterministic and non-deterministic FAs 138
4.1.1.6 Kleene’s theorem and the properties of

RG L . 145
4.1.2 Finite transducers 149

4.1.2.1 Moore and Mealy machines 149

vi

Contents

4.1.2.2 Equivalence of finite transducers 154
4.1.2.3 Minimizing finite transducers 156
4.1.2.4 Conversion of transducers into acceptors 161

4.2 Pushdown automata . 170
4.2.1 Basic aspects of PDAs 170
4.2.2 Two acceptance modes by PDAs: Final state and

empty stack . 174
4.2.3 Equivalence between CFLs and PDAs 175
4.2.4 CFLs accepted by deterministic PDAs 180

4.2.4.1 Deterministic PDAs 180
4.2.4.2 LR(k) grammars 182

4.3 Turing machines . 196
4.3.1 Basic aspects of Turing machines 196
4.3.2 Turing machines computing functions 199
4.3.3 Turing machines accepting languages 201

4.3.3.1 Turing machines and unrestricted gram-
mars . 201

4.3.3.2 Linear-bounded automata: Special Tur-
ing machines for CSGs 205

4.3.4 The universal Turing machine 206
4.4 The Chomsky hierarchy (II) 212

5 Computability and complexity 216

5.1 The decision problem and Turing-decidability 216
5.2 Undecidable problems and Turing-reducibility 219
5.3 The Chomsky hierarchy (III) 225
5.4 Computational complexity 227

5.4.1 Computational problems 227
5.4.2 The Blum axioms and complexity measures 228
5.4.3 Complexity classes 232
5.4.4 The Cook-Levin theorem and polynomial-time re-

ducibility . 237
5.5 The Chomsky hierarchy (IV) 249

Bibliography 251

Bibliographical references 252

Index 256

vii

List of Figures

1.5.1 The basic postulate of the Chomsky hierarchy. 11
1.5.2 Two derivation trees. 13

2.1.1 A partially ordered set. 27
2.1.2 Hasse diagram of a poset. 31
2.2.1 A simple graph with five vertices and seven edges. 40

3.2.1 A labeled digraph ~G (r) for a regular expression r. 71
3.2.2 A labeled digraph ~G (G) corresponding to a left-linear

grammar G. 74
3.2.3 The digraph ~G′ (G′) obtained from ~G (G). 75
3.3.1 Derivation tree of the string w = acbabc ∈ L (G) with the

corresponding partial derivation trees. 97
3.3.2 Two leftmost derivations of the string a+ a ∗ a. 98
3.3.3 Parse tree of an unambiguously derived string. 100
3.3.4 Parse trees for productions (1) S → a and (2) S → AB. . . 102
3.3.5 Parse tree for z = uviwxiy. 103
3.4.1 A derivation graph of the string bab generated by a UG. . 115

4.1.1 Computer model of a FA. 123
4.1.2 State diagrams of FAs. 126
4.1.3 A FA with two accepting states and one rejecting state. . . 126
4.1.4 A FA for the regular language L = {c, ba}∗ {ac, aab∗}. . . 127
4.1.5 A finite automaton M for the pumping lemma. 132
4.1.6 A FA (1) and its minimal equivalent FA (2). 137
4.1.7 A NDFA for the language L = {001}∗ {0, 010}∗. 139
4.1.8 Equivalent NDFAs with and without ǫ-transitions. 142
4.1.9 Equivalent NDFA (1) and FA (2). 146
4.1.10 Schematic diagrams for FAs accepting (i) L1 ∪ L2, (ii)

L1L2, and (iii) (L1)
∗. 148

4.1.11 A FA accepting L = L1 ∪ L2. 148
4.1.12 Moore (1) and Mealy (2) machines. 151
4.1.13 A Mealy machine (1) and its equivalent Moore machine (2).157
4.1.14 A Mealy machine (1) and its minimal equivalent (2). . . . 162
4.1.15 A Moore machine converted into a FA. 163
4.1.16 Deterministic finite automata. 166

viii

List of Figures

4.1.17 Mealy machines. 168
4.1.18 A barcode. 169
4.2.1 Computer model for a PDA. 171
4.2.2 A PDAM accepting the language L (M) = {ambm|m ≥ 0}.

173
4.2.3 Proving the equivalence of L (M) = N (M). 176
4.2.4 NDFA recognizing the viable prefixes for the CFG of Bal-

anced Parentheses. 187
4.2.5 Pushdown automata. 192
4.2.6 A PDA accepting L (M) =

{

u ∈ Σ∗|u = wwR
}

. 193
4.3.1 Computer model for a Turing machine. 197
4.3.2 A Turing machine that computes the function f (m,n) =

m+ n for m,n ∈ Z
+. 200

4.3.3 Turing machineMT that computes the function f (m,n) =
2m+ 3n for m,n ∈ Z

+. 202
4.3.4 Program for Turing machine MT that computes the func-

tion f (m,n) = 2m+ 3n for m,n ∈ Z
+. 203

4.3.5 The encodings 〈MT 〉 and 〈MT , z〉. 208
4.3.6 A combination of Turing machines. 210
4.3.7 A Turing machine. 211

5.2.1 A combination of Turing machines. 224
5.3.1 The Chomsky hierarchy and beyond: Decidable, Turing-

recognizable, and not-Turing-recognizable languages. . . . 226
5.4.1 The hierarchy of complexity classes with corresponding

tractability status. 236
5.4.2 A tableau for the Turing machine M. 242
5.4.3 Typical structure of NP-completeness proofs by polynomial-

time reductions. 245

ix

List of Tables

3.5.1 The Chomsky hierarchy. 119

4.4.1 The extended Chomsky hierarchy: Grammars, languages,
and associated computer models. 214

5.3.1 Decidability (“Yes”) and undecidability (“No”) of some prop-
erties of interest for the Chomsky hierarchy. 226

5.4.1 Rates of growth of some standard functions. 233

x

List of Algorithms

3.1 Grammar cleaning . 59
3.2 Left-/Right-linear grammar to right-/left-linear grammar 75
3.3 Chomsky-normal-form Transformation 88
3.4 Greibach-normal-form Transformation 91
3.5 Language class by grammar type 120

4.1 Deterministic FA minimization 136
4.2 Subset-construction algorithm 144
4.3 Partition refinement for the states of a Mealy machine . . 159
4.4 Mealy machine minimization 160

xi

Preface

Teachers tend to be picky with the material they use in teaching con-
texts. This may be for personality reasons, but the variety of contexts
and students also plays a role in this pickiness. Be it as it may, it of-
ten is the case that students end up with teaching material in many
formats and from many different sources, creating often a lack of unifor-
mity, both in notation and terminology. Because I am picky for all the
reasons above, I typically feel that my teaching task is substantially fa-
cilitated and optimized when I have gone to the great lengths of putting
all the material for a particular academic subject together in a single
manual or textbook. This guarantees not only conceptional and nota-
tional uniformity, but also a selection of approaches that I feel work well,
or better, for particular topics or problems.
This book is not about discovering the wheel; that is, possibly no novel

contents are to be found in it. The objective when writing it was that
of “putting together” a textbook on the classical theory of computing. If
there is any novel aspect in this textbook, it may well be the fact that
I insist on preceding the terms “(theory of) computation” and “(theory
of) computing” with the adjective “classical” to collect under the same
label the Chomsky hierarchy and the Turing-von Neumann paradigm of
computing. The former comprises three closely associated central topics,
to wit, formal grammars, formal languages, and models of computation
(a.k.a machines, or automata), and the latter gives to these, namely
via the Turing machine, measures of the spatial and temporal costs of
computation. I say that this collection constitutes (the) classical (theory
of) computation, because many, often newer, other forms of computing
have emerged or become (more) popular since the Turing “revolution,”
many of which today may be said to constitute the non-classical (theory
of) computation. This is, for the initiated, more immediately the field of
quantum computing, but other forms of computation such as artificial
neural networks and evolutionary computing may be seen as also non-
classical versions of computing.
It is arguably possible to produce a textbook on formal languages,

grammars, and automata with no emphasis on computing, let alone
with any specific computational concerns. One such approach might be
with linguists in mind, though contemporary linguistics is not averse to

xii

Preface

computation. On the extreme pole of this position, formal grammars,
languages, and automata are often reduced to the theory of computation,
namely as it serves the theoretical foundations of the digital computer.
Without taking a reductive view, I discuss formal languages and gram-
mars from the viewpoint of computation, and consider the associated
automata as models thereof. This said, readers with other foci will find
that the computational perspective taken here does not hinder–and may
even facilitate–their particular interests and concerns.
The backbone of this book is undoubtedly the Chomsky hierarchy.

Although much computing has run in the digital computer since N.
Chomsky first conceived it, it still works well for combining the mostly
linguistic approach with the computational one. In particular, it keeps
reminding us that we are linguistic beings to the point that one of
our most interesting creations–the digital computer–is language-based
through and through, a feature well-patent in the famous Turing Test,
a “test” conceived by the creator of the Turing machine to distinguish
a human computer from a non-human one. Indeed, it seems to have
been the rationale in Turing (1950) that language is sufficient to distin-
guish the human from the non-human computer or reasoner. More than
anything, it might have been this insistence on the verbal behavior of
computers that motivated the can-of-worms idea of AI (artificial intel-
ligence) as ultimately aiming at human-like machines, at least from the
viewpoint of intelligence, if not of emotion.
There is no way to go around this and it requires emphasis: (clas-

sical) computing is a mathematical subject. Although the presence of
automata, of which the most famous is the Turing machine, lends it a fla-
vor of engineering, these are not physical machines nor can they be; they
are mathematical objects. To be sure, the digital computer is based on
the Turing machine, but this has a feature–an infinite tape–that makes
of the former a mere approximation of the latter. The mathematical
nature of this subject accounts for the clearly mathematical approach
in this book: I distinguish statements into definitions and propositions,
and provide proofs (or sketches thereof) to further distinguished–if not
distinct–statements, to wit, theorems and their companion lemmas and
corollaries. The numbering of such statements finds its utility in inter-
nal referencing, if it gives a more high-brow quality to the main text. I
reserve the status of theoremhood for statements of higher importance
than propositions, but the reader is free to consider (most) propositions
in this text as de-facto theorems; the fact that proofs are provided (or
left as exercises) for propositions supports this view.
This mathematical nature of the subject also justifies the large se-

lection of exercises here provided. Indeed, only few students are gifted

xiii

Preface

with mathematical skills that free them from the arduous and time-
consuming practice of doing exercises. On the other hand, some may
find this a pleasant activity. Between these fall most mortals, one should
think. But the selection of exercises in this book was also guided by the
belief that one should be confronted with novel material and problems,
in order to develop research, as well as creative, skills.

Still with regard to the mathematical nature of this text, there are
throughout it a few algorithms for the computation of specific functions
(e.g., computing the Chomsky normal form of a given grammar). I chose
not to stick to a single pseudo-code or to a single algorithm format in
the belief that different algorithms can be better grasped in distinct
ways. Yet another advantage of this might be the familiarity with diverse
pseudo-codes and algorithm formats. Importantly, too, no programming
language or software plays any role whatsoever in this book. This is so
deliberately to keep the subject matter as general as possible, untied to
specific implementations or applications.

As said above, the aim for this book is not (re)inventing the wheel.
Although classical computing and its theory are in a current state of
development, with many a problem as focus of research–notably so the
P=?NP problem–, the subject of the theory of classical computing has
attained a certain fixed form that is historically justified. In the second
half of last century, when this subject emerged, an abundance of text-
books and monographs were published, and a few of these established
themselves as standard references in the field. As such, it is only natural
that in pedagogical pursuits one should resort to them as sources. This I
do with two such classics in particular, to wit, Davis & Weyuker (1983)
and Hopcroft & Ullman (1979), the latter of which has evolved into the
more undergraduate-friendly Hopcroft, Motwani, & Ullman (2013). A
further source is Du & Ko (2001), a thoroughly mathematical approach.
Readers can greatly benefit from a direct use of all these referenced
works. Texts and manuals on this subject matter directed at under-
graduate audiences abound, with many a good one to further assist
readers in their academic pursuits. Referencing them all is of course
impossible, but interested readers know where to find them. More spe-
cific, often more advanced, literature is cited throughout this text in the
appropriate places; in particular, I cite the works in which important
results (e.g., theorems) were first published.

Lastly, this textbook is a further elaboration on what was originally
a chapter in a book of mine first published by College Publications, to
wit, Augusto (2018). In this book, a chapter on the theory of comput-
ing appeared to be relevant, because issues such as Turing-completeness
of logic programming and the complexity of the satisfiability problem

xiv

Preface

(a.k.a SAT) required a minimal grasp of, among other topics, the Tur-
ing machine. Having resorted to this chapter to teach topics in au-
tomata, formal languages, and the classical theory of computation, and
having obtained satisfactory results, I decided to expand it to what
is now the present textbook. The main guideline for this expansion
was the inclusion of topics that were left out in the mentioned chap-
ter for spatial and temporal reasons, but which are essential for a fuller
treatment of this subject. Some of these new topics–e.g., characteristic
equations of finite automata, grammar cleaning algorithm–may appear
quite inessential from an Anglo-Saxon perspective, but my individual
work with Spanish students preparing themselves to take exams on the
above-mentioned topics made me realize the need to be as encompass-
ing and comprehensive as possible, namely with the large diversity of
readers of this subject in mind.

I wish to thank Dov M. Gabbay, the scientific director of College
Publications, and Ian Mackie, the editor for the Texts in Computing
series, for publishing this book. My thanks go also to Jane Spurr, the
managing director, for a smooth publication process.

Madrid, February 2019

Luis M. S. Augusto

xv

