3,291 research outputs found

    Tight Bounds for Gomory-Hu-like Cut Counting

    Full text link
    By a classical result of Gomory and Hu (1961), in every edge-weighted graph G=(V,E,w)G=(V,E,w), the minimum stst-cut values, when ranging over all s,t∈Vs,t\in V, take at most ∣V∣−1|V|-1 distinct values. That is, these (∣V∣2)\binom{|V|}{2} instances exhibit redundancy factor Ω(∣V∣)\Omega(|V|). They further showed how to construct from GG a tree (V,E′,w′)(V,E',w') that stores all minimum stst-cut values. Motivated by this result, we obtain tight bounds for the redundancy factor of several generalizations of the minimum stst-cut problem. 1. Group-Cut: Consider the minimum (A,B)(A,B)-cut, ranging over all subsets A,B⊆VA,B\subseteq V of given sizes ∣A∣=α|A|=\alpha and ∣B∣=β|B|=\beta. The redundancy factor is Ωα,β(∣V∣)\Omega_{\alpha,\beta}(|V|). 2. Multiway-Cut: Consider the minimum cut separating every two vertices of S⊆VS\subseteq V, ranging over all subsets of a given size ∣S∣=k|S|=k. The redundancy factor is Ωk(∣V∣)\Omega_{k}(|V|). 3. Multicut: Consider the minimum cut separating every demand-pair in D⊆V×VD\subseteq V\times V, ranging over collections of ∣D∣=k|D|=k demand pairs. The redundancy factor is Ωk(∣V∣k)\Omega_{k}(|V|^k). This result is a bit surprising, as the redundancy factor is much larger than in the first two problems. A natural application of these bounds is to construct small data structures that stores all relevant cut values, like the Gomory-Hu tree. We initiate this direction by giving some upper and lower bounds.Comment: This version contains additional references to previous work (which have some overlap with our results), see Bibliographic Update 1.

    Vertex Sparsification for Edge Connectivity in Polynomial Time

    Get PDF

    An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

    Get PDF
    Given an edge-weighted graph G with a set Q of k terminals, a mimicking network is a graph with the same set of terminals that exactly preserves the sizes of minimum cuts between any partition of the terminals. A natural question in the area of graph compression is to provide as small mimicking networks as possible for input graph G being either an arbitrary graph or coming from a specific graph class. In this note we show an exponential lower bound for cut mimicking networks in planar graphs: there are edge-weighted planar graphs with k terminals that require 2^(k-2) edges in any mimicking network. This nearly matches an upper bound of O(k * 2^(2k)) of Krauthgamer and Rika [SODA 2013, arXiv:1702.05951] and is in sharp contrast with the O(k^2) upper bound under the assumption that all terminals lie on a single face [Goranci, Henzinger, Peng, arXiv:1702.01136]. As a side result we show a hard instance for the double-exponential upper bounds given by Hagerup, Katajainen, Nishimura, and Ragde [JCSS 1998], Khan and Raghavendra [IPL 2014], and Chambers and Eppstein [JGAA 2013]

    Representative set statements for delta-matroids and the Mader delta-matroid

    Full text link
    We present representative sets-style statements for linear delta-matroids, which are set systems that generalize matroids, with important connections to matching theory and graph embeddings. Furthermore, our proof uses a new approach of sieving polynomial families, which generalizes the linear algebra approach of the representative sets lemma to a setting of bounded-degree polynomials. The representative sets statements for linear delta-matroids then follow by analyzing the Pfaffian of the skew-symmetric matrix representing the delta-matroid. Applying the same framework to the determinant instead of the Pfaffian recovers the representative sets lemma for linear matroids. Altogether, this significantly extends the toolbox available for kernelization. As an application, we show an exact sparsification result for Mader networks: Let G=(V,E)G=(V,E) be a graph and T\mathcal{T} a partition of a set of terminals T⊆V(G)T \subseteq V(G), ∣T∣=k|T|=k. A T\mathcal{T}-path in GG is a path with endpoints in distinct parts of T\mathcal{T} and internal vertices disjoint from TT. In polynomial time, we can derive a graph G′=(V′,E′)G'=(V',E') with T⊆V(G′)T \subseteq V(G'), such that for every subset S⊆TS \subseteq T there is a packing of T\mathcal{T}-paths with endpoints SS in GG if and only if there is one in G′G', and ∣V(G′)∣=O(k3)|V(G')|=O(k^3). This generalizes the (undirected version of the) cut-covering lemma, which corresponds to the case that T\mathcal{T} contains only two blocks. To prove the Mader network sparsification result, we furthermore define the class of Mader delta-matroids, and show that they have linear representations. This should be of independent interest

    On Quasipolynomial Multicut-Mimicking Networks and Kernelization of Multiway Cut Problems

    Get PDF

    Quasipolynomial multicut-mimicking networks and kernels for multiway cut problems

    Get PDF
    • …
    corecore