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Abstract
Given an edge-weighted graph G with a set Q of k terminals, a mimicking network is a graph
with the same set of terminals that exactly preserves the sizes of minimum cuts between any
partition of the terminals. A natural question in the area of graph compression is to provide
as small mimicking networks as possible for input graph G being either an arbitrary graph or
coming from a specific graph class.

In this note we show an exponential lower bound for cut mimicking networks in planar
graphs: there are edge-weighted planar graphs with k terminals that require 2k−2 edges in any
mimicking network. This nearly matches an upper bound of O(k22k) of Krauthgamer and Rika
[SODA 2013, arXiv:1702.05951] and is in sharp contrast with the O(k2) upper bound under the
assumption that all terminals lie on a single face [Goranci, Henzinger, Peng, arXiv:1702.01136].
As a side result we show a hard instance for the double-exponential upper bounds given by
Hagerup, Katajainen, Nishimura, and Ragde [JCSS 1998], Khan and Raghavendra [IPL 2014],
and Chambers and Eppstein [JGAA 2013].
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1 Introduction

One of the most popular paradigms when designing effective algorithms is preprocessing.
These days in many applications, in particular mobile ones, even though fast running
time is desired, the memory usage is the main limitation. The preprocessing needed for
such applications is to reduce the size of the input data prior to some resource-demanding
computations, without (significantly) changing the answer to the problem being solved. In
this work we focus on this kind of preprocessing, known also as graph compression, for flows
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and cuts. The input graph needs to be compressed while preserving its essential flow and cut
properties.

Central to our work is the concept of a mimicking network, introduced by Hagerup,
Katajainen, Nishimura, and Ragde [6]. Let G be an edge-weighted graph with a set Q ⊆ V (G)
of k terminals. For a partitionQ = S]S̄, a minimum cut between S and S̄ is called aminimum
S-separating cut. A mimicking network is an edge-weighted graph G′ with Q ⊆ V (G′) such
that the weights of minimum S-separating cuts are equal in G and G′ for every partition
Q = S ] S̄. Hagerup et al [6] observed the following simple preprocessing step: if two vertices
u and v are always on the same side of the minimum cut between S and S̄ for every choice of
the partition Q = S ] S̄, then they can be merged without changing the size of any minimum
S-separating cut. Such a procedure always leads to a mimicking network with at most 22k

vertices.
The above upper bound can be improved to a still double-exponential bound of roughly

2( k−1
b(k−1)/2c), as observed both by Khan and Raghavendra [7] and by Chambers and Eppstein [2].

In 2013, Krauthgamer and Rika [10] observed that the aforementioned preprocessing step can
be adjusted to yield a mimicking network of size O(k222k) for planar graphs. Furthermore,
they introduced a framework for proving lower bounds, and showed that there are (non-
planar) graphs, for which any mimicking network has 2Ω(k) edges; a slightly stronger lower
bound of 2(k−1)/2 has been shown by Khan and Raghavendra [7]. On the other hand, for
planar graphs the lower bound of [10] is Ω(k2). Furthermore, the planar graph lower bound
applies even in the special case when all the terminals lie on the same face.

Very recently, two improvements upon these results for planar graphs have been announced.
In a sequel paper, Krauthgamer and Rika [11] improve the polynomial factor in the upper
bound for planar graphs to O(k22k) and show that the exponential dependency actually
adheres only to the number of faces containing terminals: if the terminals lie on γ faces, one
can obtain a mimicking network of size O(γ22γk4). In a different work, Goranci, Henzinger,
and Peng [5] showed a tight O(k2) upper bound for mimicking networks for planar graph
with all terminals on a single face.

Our results

We complement these results by showing an exponential lower bound for mimicking networks
in planar graphs.

I Theorem 1.1. For every integer k ≥ 3, there exists a planar graph G with a set Q of k
terminals and edge cost function under which every mimicking network for G has at least
2k−2 edges.

This nearly matches the upper bound of O(k22k) of Krauthgamer and Rika [11] and is in
sharp contrast with the polynomial bounds when the terminals lie on a constant number of
faces [5, 11]. Note that it also nearly matches the improved bound of O(γ22γk4) for terminals
on γ faces [11], as k terminals lie on at most k faces.

As a side result, we also show a hard instance for mimicking networks in general graphs.

I Theorem 1.2. For every integer k ≥ 1, there exists a graph G with a set Q of 3k + 1
terminals and 22Ω(k) vertices such that no two vertices can be identified without strictly
increasing the size of some minimum S-separating cut.

The example of Theorem 1.2, obtained by essentially reiterating the construction of
Krauthgamer and Rika [10], shows that the doubly exponential bound is natural for the
preprocessing step of Hagerup et al [6], and one needs different techniques to improve upon
it.
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Related work

Apart from the aforementioned work on mimicking networks [5, 6, 7, 10, 11], there has
been substantial work on preserving cuts and flows approximately, see e.g. [1, 4, 12]. If one
wants to construct mimicking networks for vertex cuts in unweighted graphs with deletable
terminals (or with small integral weights), the representative sets approach of Kratsch and
Wahlström [8] provides a mimicking network with O(k3) vertices, improving upon a previous
quasipolynomial bound of Chuzhoy [3].

We prove Theorem 1.1 in Section 2 and show the example of Theorem 1.2 in Section 3.

2 Exponential lower bound for planar graphs

In this section we present the main result of the paper. We provide a construction that
proves that there are planar graphs with k terminals whose mimicking networks are of size
Ω(2k).

In order to present the desired graph, for the sake of simplicity, we describe its dual
graph (G, c). We let Q = {fn, fs, f1, f2, . . . , fk−2} be the set of faces in G corresponding to
terminals in the primal graph G∗.1 There are two special terminal faces fn and fs, referred
to as the north face and the south face. The remaining faces of Q are referred to as equator
faces.

A set S ⊂ Q is important if fn ∈ S and fs /∈ S. Note that there are 2k−2 important sets;
in what follows we care only about minimum cuts in the primal graph for separations between
important sets and their complements. For an important set S, we define its signature as a
bit vector χ(S) ∈ [2]|Q|−2 whose i’th position is defined as χ(S)[i] = 1 iff fi ∈ S. Graph G
will be composed of 2k−2 cycles referred to as important cycles, each corresponding to an
important subset S ⊂ Q. A cycle corresponding to S is referred to as Cχ(S) and it separates
S from S. Topologically, we draw the equator faces on a straight horizontal line that we call
the equator. We put the north face fn above the equator and the south face fs below the
equator. For any important S ⊂ Q, in the plane drawing of G the corresponding cycle Cχ(S)
is a curve that goes to the south of fi if fi ∈ S and otherwise to the north of fi. We formally
define important cycles later on, see Definition 2.1.

We now describe in detail the construction of G. We start with a graph H that is almost
a tree, and then embed H in the plane with a number of edge crossings, introducing a new
vertex on every edge crossing. The graph H consists of a complete binary tree of height k− 2
with root v and an extra vertex w that is adjacent to the root v and every one of the 2k−2

leaves of the tree. In what follows, the vertices of H are called branching vertices, contrary
to crossing vertices that will be introduced at edge crossings in the plane embedding of H.

To describe the plane embedding of H, we need to introduce some notation of the vertices
of H. The starting point of our construction is the edge e = {w, v}. Vertex v is the first
branching vertex and also the root of H. In vertex v, edge e branches into e0 = {v, v0}
and e1 = {v, v1}. Now v0 and v1 are also branching vertices. The branching vertices are
partitioned into layers L0, . . . , Lk−2. Vertex v is in layer L0 = {v}, while v0 and v1 are in
layer L1 = {v0, v1}. Similarly, we partition edges into layers EH0 , . . . EHk−1. So far we have
EH0 = {e} and EH1 = {e0, e1}.

1 Since the argument mostly operates on the dual graph, for notational simplicity, we use regular symbols
for objects in the dual graph, e.g., G, c, fi, while starred symbols refer to the dual of the dual graph,
that is, the primal graph.

IPEC 2017
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Figure 1 The graph G.

The construction continues as follows. For any layer Li, i ∈ {1, . . . , k−3}, all the branching
vertices of Li = {v00...0 . . . v11...1} are of degree 3. In a vertex va ∈ Li, a ∈ [2]i, edge ea ∈ EHi
branches into edges e0a = {va, v0a}, e1a = {va, v1a} ∈ EHi+1, where v0a, v1a ∈ Li+1. We
emphasize here that the new bit in the index is added as the first symbol. Every next layer is
twice the size of the previous one, hence |Li| = |EHi | = 2i. Finally the vertices of Lk−2 are
all of degree 2. Each of them is connected to a vertex in Lk−3 via an edge in EHk−2 and to
the vertex w via an edge in EHk−1.

We now describe the drawing of H, that we later make planar by adding crossing vertices,
in order to obtain the graph G. As we mentioned before, we want to draw equator faces
f1, . . . fk−2 in that order from left to right on a horizontal line (referred to as an equator).
Consider equator face fi and vertex layer Li for some i > 0. Imagine a vertical line through
fi perpendicular to the equator, and let us refer to it as an i’th meridian. We align the
vertices of Li along the i’th meridian, from the north to the south. We start with the vertex
of Li with the (lexicographically) lowest index, and continue drawing vertices of Li more and
more to the south while the indices increase. Moreover, the first half of Li is drawn to the
north of fi, and the second half to the south of fi. Every edge of H, except for e, is drawn
as a straight line segment connecting its endpoints. The edge e is a curve encapsulating the
north face fn and separating it from fs-the outer face of G.
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Figure 2 The layer Ei+1. The vertex and edge names are black, their weights are blue.

The crossing vertices are added whenever the line segments cross. This way the edges of
H are subdivided and the resulting graph is denoted by G. This completes the description
of the structure and the planar drawing of G. We refer to Figure 1 for an illustration of the
graph G. The set Ei consists of all edges of G that are parts of the (subdivided) edges of EHi
from H, see Figure 2. We are also ready to define important cycles formally.

I Definition 2.1. Let S ⊂ Q be important. Let π be a unique path in the binary tree
H − {w} from the root v to v←−−

χ(S), where
←−· operator reverses the bit vector. Let π′ be the

path in G corresponding to π. The important cycle Cχ(S) is composed of e, π′, and an edge
in Ek−1 adjacent to v←−−

χ(S).

We now move on to describing how weights are assigned to the edges of G. The
costs of the edges in G admit k − 1 values: c1, c2, . . . ck−2, and C. Let ck−2 = 1. For
i ∈ {1 . . . k − 3} let ci =

∑k−2
j=i+1 |Ej |cj . Let C =

∑k−2
j=1 |Ei|ci. Let us consider an arbitrary

edge eba = {va, vba} for some a ∈ [2]i, i ∈ {0 . . . k − 3}, b ∈ {0, 1} (see Figure 2 for an
illustration). As we mentioned before, eba is subdivided by crossing vertices into a number of
edges. If b = 0, then edge eba is subdivided by2 dec(a) crossing vertices into dec(a) + 1 edges:
e1
ba = {va, x1

ba}, e2
ba = {x1

ba, x
2
ba} . . . e

dec(a)+1
ba = {xdec(a)

ba , vba}. Among those edges edec(a)+1
ba is

assigned cost C, and the remaining edges subdividing eba are assigned cost ci. Analogically,
if b = 1, then edge eba is subdivided by 2i − 1 − dec(a) crossing vertices into 2i − dec(a)
edges: e1

ba = {va, x1
ba}, e2

ba = {x1
ba, x

2
ba} . . . e

2i−dec(a)
ba = {x2i−1−dec(a)

ba , vba}. Again, we let

2 For a bit vector a, dec(a) denotes the integral value of a read as a number in binary.

IPEC 2017
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Figure 3 Primal graph G∗.

edge e2i−dec(a)
ba have cost C, and the remaining edges subdividing eba are assigned cost ci.

Finally, all the edges connecting the vertices of the last layer with w have weight ck−2 = 1.
The cost assignment within an edge layer is presented in Figure 2.

This finishes the description of the dual graph G. We now consider the primal graph G∗
with the set of terminals Q∗ consisting of the k vertices of G∗ corresponding to the faces Q
of G. In the remainder of this section we show that there is a cost function on the edges
of G∗, under which any mimicking network for G∗ contains at least 2k−2 edges. This cost
function is in fact a small perturbation of the edge costs implied by the dual graph G.

In order to accomplish this, we use the framework introduced in [10]. In what follows,
mincutG,c(S, S′) stands for the minimum cut separating S from S′ in a graph G with cost
function c. Below we provide the definition of the cutset-edge incidence matrix and the Main
Technical Lemma from [10].

I Definition 2.2 (Incidence matrix between cutsets and edges). Let (G, c) be a k-terminal
network, and fix an enumeration S1, . . . Sm of all 2k−1− 1 distinct and nontrivial bipartitions
Q = Si ∪ Si. The cutset-edge incidence matrix of (G, c) is the matrix AG,c ∈ {0, 1}m×E(G)

given by

(AG,c)i,e =
{

1 if e ∈ mincutG,c(Si, Si)
0 otherwise.

I Lemma 2.3 (Main Technical Lemma of [10]). Let (G, c) be a k-terminal network. Let AG,c
be its cutset-edge incidence matrix, and assume that for all S ⊂ Q the minimum S-separating
cut of G is unique. Then there is for G an edge cost function c̃ : E(G) 7→ R+, under which
every mimicking network (G′, c′) satisfies |E(G′)| ≥ rank(AG,c).

Recall that G∗ is the dual graph to the graph G that we constructed. By slightly
abusing the notation, we will use the cost function c defined on the dual edges also on the
corresponding primal edges. Let Q∗ = {fn∗, fs∗, f1

∗, . . . fk−2
∗} be the set of terminals in G∗

corresponding to fn, fs, f1, . . . fk−2 respectively. We want to apply Lemma 2.3 to G∗ and Q∗.
For that we need to show that the cuts in G∗ corresponding to important sets are unique
and that rank(AG∗,c) is high.

As an intermediate step let us argue that the following holds.
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I Claim 1. There are k edge disjoint simple paths in G∗ from fn
∗ to fs∗: π0, π1, . . . , πk−2,

πk−1. Each πi is composed entirely of edges dual to the edges of Ei whose cost equals C. For
i ∈ {1 . . . k − 2}, πi contains vertex fi∗. Let πni be the prefix of πi from fn

∗ to fi∗ and πsi be
the suffix from fi

∗ to fs∗. The number of edges on πi is 2i, and the number of edges on πni
and πsi is 2i−1.

Proof. The primal graph G∗ together with paths π0, π1 . . . πk−2, πk−1 is pictured in Figure 3.
The paths πk−2, πk−1 visit the same vertices in the same manner, so for the sake of clarity
only one of these paths is shown in the picture. This proof contains a detailed description of
these paths and how they emerge from in the dual graph G.

Consider a layer Li. Recall that for any ba ∈ [2]i edge eba of the almost tree is subdivided in
G, and all the resulting edges are in Ei. If b = 0, then edge eba is subdivided by dec(a) crossing
vertices into dec(a) + 1 edges: e1

ba = {va, x1
ba}, e2

ba = {x1
ba, x

2
ba} . . . e

dec(a)+1
ba = {xdec(a)

ba , vba},
where c(edec(a)+1

ba ) = C. Analogically, if b = 1, then edge eba is subdivided by 2i − 1− dec(a)
crossing vertices into 2i − dec(a) edges: e1

ba = {va, x1
ba}, e2

ba = {x1
ba, x

2
ba} . . . e

2i−dec(a)
ba =

{x2i−1−dec(a)
ba , vba}. Again, c(e2i−dec(a)

ba ) = C. Consider the edges of Ei incident to vertices
in Li. If we order these edges lexicographically by their lower index, then each consecutive
pair of edges shares a common face. Moreover, the first edge e1

00...0 is incident to fn and the
last edge e1

11...1 is incident to fs. This gives a path πi from fn to fs through fi in the primal
graph where all the edges on πi have cost C. Path πk−1 is given by the edges of Ek−1 in a
similar fashion and path π0 is composed of a single edge dual to e. J

We move on to proving that the condition in Lemma 2.3 holds. We extend the notion of
important sets S ⊆ Q to sets S∗ ⊆ Q∗ in the natural manner.

I Lemma 2.4. For every important S∗ ⊂ Q∗, the minimum cut separating S∗ from S∗ is
unique and corresponds to cycle Cχ(S) in G.

Proof. Let C be the set of edges of G corresponding to some minimum cut between S∗

and S∗ in G∗. Let S ⊆ Q be the set of faces of G corresponding to the set S∗. We start
by observing that the edges of G∗ corresponding to Cχ(S) form a cut between S∗ and S∗.
Consequently, the total weight of edges of C is at most the total weight of the edges of Cχ(S).

By Claim 1, C contains at least k edges of cost C, at least one edge of cost C per edge
layer (it needs to hit an edge in every path π0, . . . πk−1). Note that Cχ(S) contains exactly k
edges of cost C. We assign the weights in a way that C is larger than all other edges in the
graph taken together. This implies that C contains exactly one edge of cost C in every edge
layer Ei. In particular, C contains the edge e = {v, w}.

Furthermore, the fact that fi∗ lies on πi implies that the edge of weight C in Ei ∩ C lies
on πni if fi∗ /∈ S and lies on πsi otherwise. Consequently, in G∗ − C there is one connected
component containing all vertices of S∗ and one connected component containing all vertices
of S∗. By the minimality of C, we infer that G∗ −C contains no other connected components
apart from the aforementioned two components. By planarity, since any minimum cut in a
planar graph corresponds to a collection of cycles in its dual, this implies that C is a single
cycle in G.

Let ei be the unique edge of Ei ∩ C of weight C and let e′i be the unique edge of Ei ∩ Cχ(S)
of weight C. We inductively prove that ei = e′i and that the subpath of C between ei and
ei+1 is the same as on Cχ(S). For the base of the induction, note that e0 = e′0 = e.

Consider an index i > 0 and the face fi. If fi ∈ S, i.e., fi belongs to the north side, then
ei lies south of fi, that is, lies on πsi . Otherwise, if fi /∈ S, then ei lies north of fi, that is,
lies on πni .

IPEC 2017
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Let va and vba be the vertices of Cχ(S) that lie on Li−1 and Li, respectively. By the
inductive assumption, va is an endpoint of e′i−1 = ei−1 that lies on C. Let ei = xvbc, where
vbc ∈ Li and let e′i = x′vba. Since C is a cycle in G that contains exactly one edge on each
path πi, we infer that C contains a path between va and vbc that consists of ei and a number
of edges of Ei of weight ci. A direct check shows that the subpath from va to vba on Cχ(S) is
the unique such path with minimum number of edges of weight ci. Since the weight ci is
larger than the total weight of all edges of smaller weight, from the minimality of C we infer
that vba = vbc and C and Cχ(S) coincide on the path from va to bba.

Consequently, C and Cχ(S) coincide on the path from the edge e = vw to the vertex
v←−−
χ(S) ∈ Lk−2. From the minimality of C we infer that also the edge {w, v←−−

χ(S)} lies on the
cycle C and, hence, C = Cχ(S). This completes the proof. J

I Claim 2. rank(AG,c) ≥ 2k−2.

Proof. Recall Definition 2.1 and the fact that Cχ(S) is defined for every important S ⊆ Q.
This means that the only edge in Ek−1 that belongs to Cχ(S) is the edge adjacent to v←−−χ(S). Let
us consider the part of adjacency matrix where rows correspond to the cuts corresponding to
Cχ(S) for important S ⊂ Q and where columns correspond to the edges in Ek−1 of weight
C. Let us order the cuts according to

←−−
χ(S) and the edges by the index of the adjacent

vertex in Lk−2 (lexicographically). Then this part of AG,c is an identity matrix. Hence,
rank(AG,c) ≥ 2k−2. J

Lemma 2.4 and Claim 2 provide the conditions necessary for Lemma 2.3 to apply. This
proves our main result stated in Theorem 1.1.

3 Doubly exponential example

In this section we show an example graph for which the compression technique introduced by
Hagerup et al [6] does indeed produce a mimicking network on 22Ω(k) vertices. Our example
relies on doubly exponential edge costs. Note that an example with single exponential
costs can be compressed into a mimicking network of size single exponential in k using the
techniques of [8].

Before we go on, let us recall the technique of Hagerup et al [6]. Let G be a weighted
graph and Q be the set of terminals. Observe that a minimum cut separating S ⊂ Q from
S = Q \ S, when removed from G, divides the vertices of G into two sides: the side of S
and the side of S. The side is defined for each vertex, as all connected components obtained
by removing the minimum cut contain a terminal. Now if two vertices u and v are on the
same side of the minimum cut between S and S for every S ⊂ Q, then they can be merged
without changing the size of any minimum S-separating cut. As a result there is at most 22k

vertices in the graph. After this brief introduction we move on to describing our example.
Our construction builds up on the example provided in [10] in the proof of Theorem 1.2.

Without loss of generality, assume that k is divisible by 3 and that l :=
(
k
2
3k

)
is even. Their

graph is a complete bipartite graph G = (Q,U,E), where one side of the graph consists
of the k terminals Q = {q1, . . . , qk}, and the other side of the graph consists of l =

(
k
2
3k

)
non-terminals U = {uS1 , . . . , uSl

}, with S1, . . . , Sl denoting the different subsets of terminals
of size 2/3k. The costs of the edges of G are as follows: every non-terminal uSi

is connected
by edges of cost 1 to every terminal in Si , and by edges of cost 2 + ε to every terminal in
Si = Q \Si, for ε = 1/k. We modify the cost function defined in this example by multiplying
each edge cost by a constant α that we define later. We also need to be more careful with
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Figure 4 Illustration of the construction. The two panels correspond to two cases in the proof,
either uSi ∈ Zj (top panel) or uSi /∈ Zj (bottom panel).

ε. We set ε = 3
k + 6

k2 . In addition to that we build a third layer of m =
(
l
l/2
)
vertices

W = {wZ1 , . . . , wZm
}, where Z1, . . . , Zm denote different subsets of U of size l/2. There is

a complete bipartite graph between U and W . An edge {uSi
, wZj

} has cost 0 if uSi
∈ Zj

and has cost 1 otherwise. We add one more vertex to the graph which we refer to as x and
connect it with edges of cost l/2− 1 to each vertex in W . Let us refer to the resulting graph
as G′. We let Q′ = Q ∪ {x} be the corresponding terminal set; a set S ⊆ Q′ is important if
x /∈ S and |S| = 2

3k.

I Lemma 3.1. Let S′i ⊂ Q be important. For α = 22k · 2k, the vertex wZj
is on the Si-side

of the minimum cut between Si and Si if and only if uSi ∈ Zi.

Proof. In [9] it is proven that the unique minimum cut separating Si from Si inG, |Si| = 2/3k,
partitions vertices into Si side: Y = {uSi}∪Si and Si side: V (G)\Y = {uSj : j 6= i}∪Si. We
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refer to [9] for the proof details, but the reason why this holds is the following. The terminals
are connected only via vertices of U . Every vertex uSj

can either cut the edges E(uSj
, Si)

connecting uSj
with Si (choosing Si side) or cut the edges E(uSj

, Si) connecting uSj
with

Si (choosing Si side). For j = i it holds that c(E(USj , Si)) = 2/3k while c(E(uSj , Si)) =
(2 + ε)k/3, so it is better for uSi

to join Si side. Moreover, the difference between these two
values is greater than 1 for ε = 3

k + 6
k2 . For j 6= i it holds that c(E(uSj , Si)) ≥ 2/3k + (1 + ε)

while c(E(uSj
, Si)) ≤ k/3(2 + ε) − (1 + ε). It is easy to verify that for ε = 3

k + 6
k2 it is

better for uSj to join Si side and that the difference between the two alternative cut values is
greater than 1. The bottom line is that uSi

picks Si side, whereas all other uSj
vertices pick

Si side. If a vertex switches sides, the value of the minimum cut increases by more than 1.
In our example we multiply all the edge weights in this example by α, so the increase in

the cut value is more than α. Let us now consider graph G′ with terminal set Q′. Consider the
cut between Si and Si = Q′ \Si (so Si contains x). Graph G′ contains G as a subgraph, so to
disconnect Si from Q\Si, each vertex uSj

again has to cut either E(uSj
, Si) or E(uSj

, Q\Si).
Set α = 22k · 2k. Consider the minimum cut in G. The minimum cut in G′ restricted to G
uses the same edges. It does not pay of to flip sides for any vertex in U , as we can never
make up for the difference α with no more than |U | · |W | edges of cost 1. Now fix a vertex
wZj
∈W . We consider two cases: uSi

∈ Zj and uSi
/∈ Zj ; see also Figure 4.

Case 1: uSi ∈ Zj.

As argued above, all vertices of U choose their side according to what is best in G, so uSi is
the only vertex in U on the Si side. To join the Si side, wZj

has to cut edges {x,wZj
} and

{uSi , wZj} of total cost l/2− 1. To join the Si side, wZj needs to cut l/2 edges of cost 1 to
vertices uSi′ for uSi′ /∈ Zj , i

′ 6= i. Thus, it is less costly if wZj
joints the Si side.

Case 2: uSi /∈ Zj.

Again all vertices of U choose their side according to what is best in G, so uSi is the only
vertex in U on the Si side. To join the Si side, wZj

has to cut edges {x,wZj
} and {uSi

, wZj
}

of total cost l/2. To join the Si side, wZj
needs to cut l/2− 1 edges of cost 1 to vertices uSi′

for uSi′ /∈ Zj , i
′ 6= i. Thus, it is less costly for wZj

to join the Si side. J

Lemma 3.1 shows that G′ cannot be compressed using the technique presented in [6]. To see
that let us fix two vertices wZj and wZj′ and let Si ∈ Zj \ Zj′ . Then, Lemma 3.1 shows that
wZj

and wZj′ lie on different sides of the minimum cut between Si and Si. Thus, wZj
and

wZj′ cannot be merged. Similar but simpler arguments show that no other pair of vertices in
G′ can be merged, finishing the proof of Theorem 1.2.
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