229 research outputs found

    A Note on Non-Perfect Secret Sharing

    Get PDF
    By using a recently introduced framework for non-perfect secret sharing, several known results on perfect secret sharing are generalized to non-perfect secret sharing schemes with constant increment, in which the amount of information provided by adding a single share to a set is either zero or some constant value. Specifically, we discuss ideal secret sharing schemes, constructions of efficient linear secret sharing schemes, and the search for lower bounds on the length of the shares. Similarly to perfect secret sharing, matroids and polymatroids are very useful to analyze these questions

    Matroids and Quantum Secret Sharing Schemes

    Full text link
    A secret sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum secret sharing schemes. In addition to providing a new perspective on quantum secret sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum secret sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum secret sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure state quantum secret sharing scheme with information rate one

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    Finding lower bounds on the complexity of secret sharing schemes by linear programming

    Get PDF
    Optimizing the maximum, or average, length of the shares in relation to the length of the secret for every given access structure is a difficult and long-standing open problem in cryptology. Most of the known lower bounds on these parameters have been obtained by implicitly or explicitly using that every secret sharing scheme defines a polymatroid related to the access structure. The best bounds that can be obtained by this combinatorial method can be determined by using linear programming, and this can be effectively done for access structures on a small number of participants. By applying this linear programming approach, we improve some of the known lower bounds for the access structures on five participants and the graph access structures on six participants for which these parameters were still undetermined. Nevertheless, the lower bounds that are obtained by this combinatorial method are not tight in general. For some access structures, they can be improved by adding to the linear program non-Shannon information inequalities as new constraints. We obtain in this way new separation results for some graph access structures on eight participants and for some ports of non-representable matroids. Finally, we prove that, for two access structures on five participants, the combinatorial lower bound cannot be attained by any linear secret sharing schemePeer ReviewedPostprint (author's final draft

    On Secret Sharing Schemes, Matroids and Polymatroids

    Get PDF
    The complexity of a secret sharing scheme is defined as the ratio between the maximum length of the shares and the length of the secret. The optimization of this parameter for general access structures is an important and very difficult open problem in secret sharing. We explore in this paper the connections of this open problem with matroids and polymatroids. Matroid ports were introduced by Lehman in 1964. A forbidden minor characterization of matroid ports was given by Seymour in 1976. These results are previous to the invention of secret sharing by Shamir in 1979. Important connections between ideal secret sharing schemes and matroids were discovered by Brickell and Davenport in 1991. Their results can be restated as follows: every ideal secret sharing scheme defines a matroid, and its access structure is a port of that matroid. In spite of this, the results by Lehman and Seymour and other subsequent results on matroid ports have not been noticed until now by the researchers interested in secret sharing. Lower bounds on the optimal complexity of access structures can be found by taking into account that the joint Shannon entropies of a set of random variables define a polymatroid. We introduce a new parameter, which is denoted by κ\kappa, to represent the best lower bound that can be obtained by this method. We prove that every bound that is obtained by this technique for an access structure applies to its dual structure as well. By using the aforementioned result by Seymour we obtain two new characterizations of matroid ports. The first one refers to the existence of a certain combinatorial configuration in the access structure, while the second one involves the values of the parameter κ\kappa that is introduced in this paper. Both are related to bounds on the optimal complexity. As a consequence, we generalize the result by Brickell and Davenport by proving that, if the length of every share in a secret sharing scheme is less than 3/2 times the length of the secret, then its access structure is a matroid port. This generalizes and explains a phenomenon that was observed in several families of access structures. Finally, we present a construction of linear secret sharing schemes for the ports of the Vamos matroid and the non-Desargues matroid, which do not admit any ideal secret sharing scheme. We obtain in this way upper bounds on their optimal complexity. These new bounds are a contribution on the search of examples of access structures whose optimal complexity lies between 1 and 3/2

    Polymatroids and polyquantoids

    Full text link
    When studying entropy functions of multivariate probability distributions, polymatroids and matroids emerge. Entropy functions of pure multiparty quantum states give rise to analogous notions, called here polyquantoids and quantoids. Polymatroids and polyquantoids are related via linear mappings and duality. Quantum secret sharing schemes that are ideal are described by selfdual matroids. Expansions of integer polyquantoids to quantoids are studied and linked to that of polymatroids

    Secret-Sharing Matroids need not be Algebraic

    Full text link
    We combine some known results and techniques with new ones to show that there exists a non-algebraic, multi-linear matroid. This answers an open question by Matus (Discrete Mathematics 1999), and an open question by Pendavingh and van Zwam (Advances in Applied Mathematics 2013). The proof is constructive and the matroid is explicitly given

    On the optimization of bipartite secret sharing schemes

    Get PDF
    Optimizing the ratio between the maximum length of the shares and the length of the secret value in secret sharing schemes for general access structures is an extremely difficult and long-standing open problem. In this paper, we study it for bipartite access structures, in which the set of participants is divided in two parts, and all participants in each part play an equivalent role. We focus on the search of lower bounds by using a special class of polymatroids that is introduced here, the tripartite ones. We present a method based on linear programming to compute, for every given bipartite access structure, the best lower bound that can be obtained by this combinatorial method. In addition, we obtain some general lower bounds that improve the previously known ones, and we construct optimal secret sharing schemes for a family of bipartite access structures.Peer ReviewedPostprint (author's final draft

    Optimal non-perfect uniform secret sharing schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer ReviewedPostprint (author's final draft
    • …
    corecore