A secret sharing scheme is a cryptographic protocol to distribute a secret
state in an encoded form among a group of players such that only authorized
subsets of the players can reconstruct the secret. Classically, efficient
secret sharing schemes have been shown to be induced by matroids. Furthermore,
access structures of such schemes can be characterized by an excluded minor
relation. No such relations are known for quantum secret sharing schemes. In
this paper we take the first steps toward a matroidal characterization of
quantum secret sharing schemes. In addition to providing a new perspective on
quantum secret sharing schemes, this characterization has important benefits.
While previous work has shown how to construct quantum secret sharing schemes
for general access structures, these schemes are not claimed to be efficient.
In this context the present results prove to be useful; they enable us to
construct efficient quantum secret sharing schemes for many general access
structures. More precisely, we show that an identically self-dual matroid that
is representable over a finite field induces a pure state quantum secret
sharing scheme with information rate one