7 research outputs found

    Oil spill detection using optical sensors: a multi-temporal approach

    Get PDF
    Oil pollution is one of the most destructive consequences due to human activities in the marine environment. Oil wastes come from many sources and take decades to be disposed of. Satellite based remote sensing systems can be implemented into a surveillance and monitoring network. In this study, a multi-temporal approach to the oil spill detection problem is investigated. Change Detection (CD) analysis was applied to MODIS/Terra and Aqua and OLI/Landsat 8 images of several reported oil spill events, characterized by different geographic location, sea conditions, source and extension of the spill. Toward the development of an automatic detection algorithm, a Change Vector Analysis (CVA) technique was implemented to carry out the comparison between the current image of the area of interest and a dataset of reference image, statistically analyzed to reduce the sea spectral variability between different dates. The proposed approach highlights the optical sensors’ capabilities in detecting oil spills at sea. The effectiveness of different sensors’ resolution towards the detection of spills of different size, and the relevance of the sensors’ revisiting time to track and monitor the evolution of the event is also investigated

    ВСрификация Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях ΠΏΠΎ аэрофотоснимкам Π½Π° основС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния

    Get PDF
    The article solves the problem of verifying oil spills on the water surfaces of rivers, seas and oceans using optical aerial photographs, which are obtained from cameras of unmanned aerial vehicles, based on deep learning methods. The specificity of this problem is the presence of areas visually similar to oil spills on water surfaces caused by blooms of specific algae, substances that do not cause environmental damage (for example, palm oil), or glare when shooting (so-called look-alikes). Many studies in this area are based on the analysis of synthetic aperture radars (SAR) images, which do not provide accurate classification and segmentation. Follow-up verification contributes to reducing environmental and property damage, and oil spill size monitoring is used to make further response decisions. A new approach to the verification of optical images as a binary classification problem based on the Siamese network is proposed, when a fragment of the original image is repeatedly compared with representative examples from the class of marine oil slicks. The Siamese network is based on the lightweight VGG16 network. When the threshold value of the output function is exceeded, a decision is made about the presence of an oil spill. To train the networks, we collected and labeled our own dataset from open Internet resources. A significant problem is an imbalance of classes in the dataset, which required the use of augmentation methods based not only on geometric and color manipulations, but also on the application of a Generative Adversarial Network (GAN). Experiments have shown that the classification accuracy of oil spills and look-alikes on the test set reaches values of 0.91 and 0.834, respectively. Further, an additional problem of accurate semantic segmentation of an oil spill is solved using convolutional neural networks (CNN) of the encoder-decoder type. Three deep network architectures U-Net, SegNet, and Poly-YOLOv3 have been explored for segmentation. The Poly-YOLOv3 network demonstrated the best results, reaching an accuracy of 0.97 and an average image processing time of 385 s with the Google Colab web service. A database was also designed to store both original and verified images with problem areas.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях Ρ€Π΅ΠΊ, ΠΌΠΎΡ€Π΅ΠΉ ΠΈ ΠΎΠΊΠ΅Π°Π½ΠΎΠ² ΠΏΠΎ оптичСским аэрофотоснимкам с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ являСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΡ…ΠΎΠΆΠΈΡ… Π½Π° Ρ€Π°Π·Π»ΠΈΠ²Ρ‹ Π½Π΅Ρ„Ρ‚ΠΈ областСй Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… Ρ†Π²Π΅Ρ‚Π΅Π½ΠΈΠ΅ΠΌ водорослСй, вСщСств, Π½Π΅ приносящих экологичСский ΡƒΡ‰Π΅Ρ€Π± (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, пальмовоС масло), Π±Π»ΠΈΠΊΠΎΠ² ΠΏΡ€ΠΈ съСмкС ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… явлСний (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Β«Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠΈΒ»). МногиС исслСдования Π² Π΄Π°Π½Π½ΠΎΠΉ области основаны Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Ρ€Π°Π΄Π°Ρ€ΠΎΠ² с синтСзированной Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€ΠΎΠΉ (Synthetic Aperture Radar (SAR) images), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠΉ классификации ΠΈ сСгмСнтации. ΠŸΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ вСрификация способствуСт ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ экологичСского ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΡ‰Π΅Ρ€Π±Π°, Π° ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ нСфтяного пятна ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для принятия Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΡƒΡΡ‚Ρ€Π°Π½Π΅Π½ΠΈΡŽ послСдствий. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ оптичСских снимков ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡ΠΈ Π±ΠΈΠ½Π°Ρ€Π½ΠΎΠΉ классификации Π½Π° основС сиамской сСти, ΠΊΠΎΠ³Π΄Π° Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ исходного изобраТСния ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ сравниваСтся с Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΈΠ· класса нСфтяных пятСн Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях. Основой сиамской сСти слуТит облСгчСнная ΡΠ΅Ρ‚ΡŒ VGG16. ΠŸΡ€ΠΈ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ значСния Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ принимаСтся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΠ²Π° Π½Π΅Ρ„Ρ‚ΠΈ. Для обучСния сСти Π±Ρ‹Π» собран ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ‡Π΅Π½ собствСнный Π½Π°Π±ΠΎΡ€ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚-рСсурсов. БущСствСнной ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ являСтся Π½Π΅ΡΠ±Π°Π»Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ классам, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎ примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ, основанных Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° гСомСтричСских ΠΈ Ρ†Π²Π΅Ρ‚ΠΎΠ²Ρ‹Ρ… манипуляциях, Π½ΠΎ ΠΈ Π½Π° основС Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΡΠΎΡΡ‚ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ сСти (Generative Adversarial Network, GAN). ЭкспСримСнты ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Β«Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠΎΠ²Β» Π½Π° тСстовой Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ достигаСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ 0,91 ΠΈ 0,834 соотвСтствСнно. Π”Π°Π»Π΅Π΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π° сСмантичСской сСгмСнтации нСфтяного пятна с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ свСрточных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй (БНБ) Ρ‚ΠΈΠΏΠ° ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Ρ‰ΠΈΠΊ-Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Ρ‰ΠΈΠΊ. Для сСгмСнтации исслСдовались Ρ‚Ρ€ΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… сСтСй, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ U-Net, SegNet ΠΈ Poly-YOLOv3. Π›ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ΅Ρ‚ΡŒ Poly-YOLOv3, достигнув точности 0,97 ΠΏΡ€ΠΈ срСднСм Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ снимка 385 с Π²Π΅Π±-сСрвисом Google Colab. Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»Π° спроСктирована Π±Π°Π·Π° Π΄Π°Π½Π½Ρ‹Ρ… для хранСния исходных ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½Ρ‹ΠΌΠΈ областями

    ВСрификация Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях ΠΏΠΎ аэрофотоснимкам Π½Π° основС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях Ρ€Π΅ΠΊ, ΠΌΠΎΡ€Π΅ΠΉ ΠΈ ΠΎΠΊΠ΅Π°Π½ΠΎΠ² ΠΏΠΎ оптичСским аэрофотоснимкам с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ являСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΡ…ΠΎΠΆΠΈΡ… Π½Π° Ρ€Π°Π·Π»ΠΈΠ²Ρ‹ Π½Π΅Ρ„Ρ‚ΠΈ областСй Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… Ρ†Π²Π΅Ρ‚Π΅Π½ΠΈΠ΅ΠΌ водорослСй, вСщСств, Π½Π΅ приносящих экологичСский ΡƒΡ‰Π΅Ρ€Π± (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, пальмовоС масло), Π±Π»ΠΈΠΊΠΎΠ² ΠΏΡ€ΠΈ съСмкС ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… явлСний (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Β«Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠΈΒ»). МногиС исслСдования Π² Π΄Π°Π½Π½ΠΎΠΉ области основаны Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Ρ€Π°Π΄Π°Ρ€ΠΎΠ² с синтСзированной Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€ΠΎΠΉ (Synthetic Aperture Radar (SAR) images), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠΉ классификации ΠΈ сСгмСнтации. ΠŸΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ вСрификация способствуСт ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ экологичСского ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΡ‰Π΅Ρ€Π±Π°, Π° ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ нСфтяного пятна ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для принятия Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΡƒΡΡ‚Ρ€Π°Π½Π΅Π½ΠΈΡŽ послСдствий. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ оптичСских снимков ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡ΠΈ Π±ΠΈΠ½Π°Ρ€Π½ΠΎΠΉ классификации Π½Π° основС сиамской сСти, ΠΊΠΎΠ³Π΄Π° Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ исходного изобраТСния ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ сравниваСтся с Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΈΠ· класса нСфтяных пятСн Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях. Основой сиамской сСти слуТит облСгчСнная ΡΠ΅Ρ‚ΡŒ VGG16. ΠŸΡ€ΠΈ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ значСния Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ принимаСтся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΠ²Π° Π½Π΅Ρ„Ρ‚ΠΈ. Для обучСния сСти Π±Ρ‹Π» собран ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ‡Π΅Π½ собствСнный Π½Π°Π±ΠΎΡ€ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚-рСсурсов. БущСствСнной ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ являСтся Π½Π΅ΡΠ±Π°Π»Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ классам, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎ примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ, основанных Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° гСомСтричСских ΠΈ Ρ†Π²Π΅Ρ‚ΠΎΠ²Ρ‹Ρ… манипуляциях, Π½ΠΎ ΠΈ Π½Π° основС Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΡΠΎΡΡ‚ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ сСти (Generative Adversarial Network, GAN). ЭкспСримСнты ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Β«Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠΎΠ²Β» Π½Π° тСстовой Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ достигаСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ 0,91 ΠΈ 0,834 соотвСтствСнно. Π”Π°Π»Π΅Π΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π° сСмантичСской сСгмСнтации нСфтяного пятна с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ свСрточных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй (БНБ) Ρ‚ΠΈΠΏΠ° ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Ρ‰ΠΈΠΊ-Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Ρ‰ΠΈΠΊ. Для сСгмСнтации исслСдовались Ρ‚Ρ€ΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… сСтСй, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ U-Net, SegNet ΠΈ Poly-YOLOv3. Π›ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ΅Ρ‚ΡŒ Poly-YOLOv3, достигнув точности 0,97 ΠΏΡ€ΠΈ срСднСм Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ снимка 385 с Π²Π΅Π±-сСрвисом Google Colab. Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»Π° спроСктирована Π±Π°Π·Π° Π΄Π°Π½Π½Ρ‹Ρ… для хранСния исходных ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½Ρ‹ΠΌΠΈ областями

    Impacts of Oil Spills on Altimeter Waveforms and Radar Backscatter Cross Section

    Get PDF
    Ocean surface films can damp short capillary-gravity waves, reduce the surface mean square slope, and induce sigma0 blooms in satellite altimeter data. No study has ascertained the effect of such film on altimeter measurements due to lack of film data. The availability of Environmental Response Management Application (ERMA) oil cover, daily oil spill extent, and thickness data acquired during the Deepwater Horizon (DWH) oil spill accident provides a unique opportunity to evaluate the impact of surface film on altimeter data. In this study, the Jason-1/2 passes nearest to the DWH platform are analyzed to understand the waveform distortion caused by the spill as well as the variation of Οƒ0 as a function of oil thickness, wind speed, and radar band. Jason-1/2 Ku-band Οƒ0 increased by 10 dB at low wind speed (s-1) in the oil-covered area. The mean Οƒ0 in Ku and C bands increased by 1.0-3.5 dB for thick oil and 0.9-2.9 dB for thin oil while the waveforms are strongly distorted. As the wind increases up to 6 m s-1, the mean Οƒ0 bloom and waveform distortion in both Ku and C bands weakened for both thick and thin oil. When wind exceeds 6 m s-1, only does the Οƒ0 in Ku band slightly increase by 0.2-0.5 dB for thick oil. The study shows that high-resolution altimeter data can certainly help better evaluate the thickness of oil spill, particularly at low wind speeds. Β© 2017. American Geophysical Union

    Human and environmental exposure to hydrocarbon pollution in the Niger Delta:A geospatial approach

    Get PDF
    This study undertook an integrated geospatial assessment of human and environmental exposure to oil pollution in the Niger Delta using primary and secondary spatial data. This thesis begins by presenting a clear rationale for the study of extensive oil pollution in the Niger Delta, followed by a critical literature review of the potential application of geospatial techniques for monitoring and managing the problem. Three analytical chapters report on the methodological developments and applications of geospatial techniques that contribute to achieving the aim of the study. Firstly, a quantitative assessment of human and environmental exposure to oil pollution in the Niger Delta was performed using a government spill database. This was carried out using Spatial Analysis along Networks (SANET), a geostatistical tool, since oil spills in the region tend to follow the linear patterns of the pipelines. Spatial data on pipelines, oil spills, population and land cover data were analysed in order to quantify the extent of human and environmental exposure to oil pollution. The major causes of spills and spatial factors potentially reinforcing reported causes were analysed. Results show extensive general exposure and sabotage as the leading cause of oil pollution in the Niger Delta. Secondly, a method of delineating the river network in the Niger Delta using Sentinel-1 SAR data was developed, as a basis for modelling potential flow of pollutants in the distributary pathways of the network. The cloud penetration capabilities of SAR sensing are particularly valuable for this application since the Niger Delta is notorious for cloud cover. Vector and raster-based river networks derived from Sentinel-1 were compared to alternative river map products including those from the USGS and ESA. This demonstrated the superiority of the Sentinel-1 derived river network, which was subsequently used in a flow routing analysis to demonstrate the potential for understanding oil spill dispersion. Thirdly, the study applied optical remote sensing for indirect detection and mapping of oil spill impacts on vegetation. Multi-temporal Landsat data was used to delineate the spill impact footprint of a notable 2008 oil spill incident in Ogoniland and population exposure was evaluated. The optical data was effective in impact area delineation, demonstrating extensive and long-lasting population exposure to oil pollution. Overall, this study has successfully assembled and produced relevant spatial and attribute data sets and applied integrated geostatistical analytical techniques to understand the distribution and impacts of oil spills in the Niger Delta. The study has revealed the extensive level of human and environmental exposure to hydrocarbon pollution in the Niger Delta and introduced new methods that will be valuable fo

    On MODIS Retrieval of Oil Spill Spectral Properties in the Marine Environment

    No full text
    With its two daily acquisitions and the possibility to obtain near-real-time data free of charge, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) shows interest- ing potential as a cost-effective supplementary tool for oil spill monitoring in the marine environment. The mechanism behind MODIS oil feature detection, as well as the type of information that might be retrieved, strictly depends on the illumination condi- tions. In the presence of sunglint contamination, MODIS can just locate the oil spill as a sea surface roughness anomaly, in similarity with radar observations, and no additional spectral information can be retrieved. MODIS detection in the absence of sunglint con- tamination however might allow extraction of oil feature spectral properties, which, in turn, may help in oil discrimination and classification. Careful atmospheric correction must be applied. An example of oil spill spectral property extraction from MODIS images is here shown for the Deepwater Horizon accidental oil spill.JRC.H.1-Water Resource
    corecore