886,346 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Feedback can be superior to observational training for both rule-based and information-integration category structures

    Get PDF
    The effects of two different types of training on rule-based and information-integration category learning were investigated in two experiments. In observational training, a category label is presented, followed by an example of that category and the participant's response. In feedback training, the stimulus is presented, the participant assigns it to a category and then receives feedback about the accuracy of that decision. Ashby, Maddox, and Bohil (2002) reported that feedback training was superior to observational training when learning information-integration category structures, but that training type had little effect on the acquisition of rule-based category structures. These results were argued to support the COVIS dual-process account of category learning. However, a number of non-essential differences between their rule-based and information-integration conditions complicate interpretation of these findings. Experiment 1 controlled, between category structures, for participant error rates, category separation, and the number of stimulus dimensions relevant to the categorization. Under these more controlled conditions, rule-based and information-integration category structures both benefitted from feedback training to a similar degree. Experiment 2 maintained this difference in training type when learning a rule-based category that had otherwise been matched, in terms of category overlap and overall performance, with the rule-based categories used in Ashby et al. These results indicate that differences in dimensionality between the category structures in Ashby et al. is a more likely explanation for the interaction between training type and category structure than the dual-system explanation they offered

    Optimal Sparse Decision Trees

    Full text link
    Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980's. The problem that has plagued decision tree algorithms since their inception is their lack of optimality, or lack of guarantees of closeness to optimality: decision tree algorithms are often greedy or myopic, and sometimes produce unquestionably suboptimal models. Hardness of decision tree optimization is both a theoretical and practical obstacle, and even careful mathematical programming approaches have not been able to solve these problems efficiently. This work introduces the first practical algorithm for optimal decision trees for binary variables. The algorithm is a co-design of analytical bounds that reduce the search space and modern systems techniques, including data structures and a custom bit-vector library. Our experiments highlight advantages in scalability, speed, and proof of optimality.Comment: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canad

    Isoelastic Agents and Wealth Updates in Machine Learning Markets

    Get PDF
    Recently, prediction markets have shown considerable promise for developing flexible mechanisms for machine learning. In this paper, agents with isoelastic utilities are considered. It is shown that the costs associated with homogeneous markets of agents with isoelastic utilities produce equilibrium prices corresponding to alpha-mixtures, with a particular form of mixing component relating to each agent's wealth. We also demonstrate that wealth accumulation for logarithmic and other isoelastic agents (through payoffs on prediction of training targets) can implement both Bayesian model updates and mixture weight updates by imposing different market payoff structures. An iterative algorithm is given for market equilibrium computation. We demonstrate that inhomogeneous markets of agents with isoelastic utilities outperform state of the art aggregate classifiers such as random forests, as well as single classifiers (neural networks, decision trees) on a number of machine learning benchmarks, and show that isoelastic combination methods are generally better than their logarithmic counterparts.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    A New Approach to Robot’s Imitation of Behaviors by Decomposition of Multiple-Valued Relations

    Get PDF
    Relation decomposition has been used for FPGA mapping, layout optimization, and data mining. Decision trees are very popular in data mining and robotics. We present relation decomposition as a new general-purpose machine learning method which generalizes the methods of inducing decision trees, decision diagrams and other structures. Relation decomposition can be used in robotics also in place of classical learning methods such as Reinforcement Learning or Artificial Neural Networks. This paper presents an approach to imitation learning based on decomposition. A Head/Hand robot learns simple behaviors using features extracted from computer vision, speech recognition and sensors

    Cognitive finance: Behavioural strategies of spending, saving, and investing.

    Get PDF
    Research in economics is increasingly open to empirical results. The advances in behavioural approaches are expanded here by applying cognitive methods to financial questions. The field of "cognitive finance" is approached by the exploration of decision strategies in the financial settings of spending, saving, and investing. Individual strategies in these different domains are searched for and elaborated to derive explanations for observed irregularities in financial decision making. Strong context-dependency and adaptive learning form the basis for this cognition-based approach to finance. Experiments, ratings, and real world data analysis are carried out in specific financial settings, combining different research methods to improve the understanding of natural financial behaviour. People use various strategies in the domains of spending, saving, and investing. Specific spending profiles can be elaborated for a better understanding of individual spending differences. It was found that people differ along four dimensions of spending, which can be labelled: General Leisure, Regular Maintenance, Risk Orientation, and Future Orientation. Saving behaviour is strongly dependent on how people mentally structure their finance and on their self-control attitude towards decision space restrictions, environmental cues, and contingency structures. Investment strategies depend on how companies, in which investments are placed, are evaluated on factors such as Honesty, Prestige, Innovation, and Power. Further on, different information integration strategies can be learned in decision situations with direct feedback. The mapping of cognitive processes in financial decision making is discussed and adaptive learning mechanisms are proposed for the observed behavioural differences. The construal of a "financial personality" is proposed in accordance with other dimensions of personality measures, to better acknowledge and predict variations in financial behaviour. This perspective enriches economic theories and provides a useful ground for improving individual financial services

    Compositional generalization in multi-armed bandits

    Get PDF
    To what extent do human reward learning and decision-making rely on the ability to represent and generate richly structured relationships between options? We provide evidence that structure learning and the principle of compositionality play crucial roles in human reinforcement learning. In a new multi-armed bandit paradigm, we found evidence that participants are able to learn representations of different reward structures and combine them to make correct generalizations about options in novel contexts. Moreover, we found substantial evidence that participants transferred knowledge of simpler reward structures to make compositional generalizations about rewards in complex contexts. This allowed participants to accumulate more rewards earlier, and to explore less whenever such knowledge transfer was possible. We also provide a computational model which is able to generalize and compose knowledge for complex reward structures. This model describes participant behaviour in the compositional generalization task better than various other models of decision-making and transfer learning

    How Can Social Networks Ever Become Complex? Modelling the Emergence of Complex Networks from Local Social Exchanges

    Get PDF
    Small-world and power-law network structures have been prominently proposed as models of large networks. However, the assumptions of these models usually lack sociological grounding. We present a computational model grounded in social exchange theory. Agents search attractive exchange partners in a diverse population. Agent use simple decision heuristics, based on imperfect, local information. Computer simulations show that the topological structure of the emergent social network depends heavily upon two sets of conditions, harshness of the exchange game and learning capacities of the agents. Further analysis show that a combination of these conditions affects whether star-like, small-world or power-law structures emerge.Complex Networks, Power-Law, Scale-Free, Small-World, Agent-Based Modeling, Social Exchange Theory, Structural Emergence
    corecore