3,320 research outputs found

    On Improving the Efficiency of Tensor Voting

    Full text link

    Gap Filling of 3-D Microvascular Networks by Tensor Voting

    Get PDF
    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Comments on "A closed-form solution to Tensor voting: theory and applications"

    Get PDF
    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Lotito, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: del Fresno, Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentin
    corecore