537 research outputs found

    Review of dc-dc converters for multi-terminal HVDC transmission networks

    Get PDF
    This study presents a comprehensive review of high-power dc-dc converters for high-voltage direct current (HVDC) transmission systems, with emphasis on the most promising topologies from established and emerging dc-dc converters. In addition, it highlights the key challenges of dc-dc converter scalability to HVDC applications, and narrows down the desired features for high-voltage dc-dc converters, considering both device and system perspectives. Attributes and limitations of each dc-dc converter considered in this study are explained in detail and supported by time-domain simulations. It is found that the front-to-front quasi-two-level operated modular multilevel converter, transition arm modular converter and controlled transition bridge converter offer the best solutions for high-voltage dc-dc converters that do not compromise galvanic isolation and prevention of dc fault propagation within the dc network. Apart from dc fault response, the MMC dc auto transformer and the transformerless hybrid cascaded two-level converter offer the most efficient solutions for tapping and dc voltage matching of multi-terminal HVDC networks

    Soft-switching modular multilevel converters for efficient grid integration of renewable sources

    Get PDF
    The Modular Multilevel Converter (MMC) concept is a modern energy conversion structure that stands out for a number of interesting features that opens wide application chances in Power Systems, for example for efficient grid integration of renewable sources. In these high-voltage, high-power application fields, a high efficiency is mandatory. In this regard, an interesting and promising development opportunity could be to make soft-switching the elementary converters of the submodules (cells), half H-bridges or full H-bridges, obtaining at the same time the advantage of increasing the switching frequency. The ARCP or the AQRDCL soft-switching topologies appear adequate for this purpose. This paper is dedicated to examining these development possibilities

    Soft-switching cells for Modular Multilevel Converters for efficient grid integration of renewable sources

    Get PDF
    The Modular Multilevel Converter (MMC) concept is a modern energy conversion structure that stands out for a number of interesting features that opens wide application chances in Power Systems, for example for efficient grid integration of renewable sources. In these high-voltage, high-power application fields, a high efficiency is mandatory. In this regard, an interesting and promising development opportunity could be to make soft-switching the elementary converters of the submodules (cells), half H-bridges or full H-bridges, obtaining at the same time the advantage of increasing the switching frequency. The-Active Resonant Commutated Pole Converter (ARCP) or the Auxiliary Quasi Resonant DC-link Inverter (AQRDCL) soft-switching topologies appear adequate for this purpose. This paper is dedicated to examining these development possibilities

    Power collection and integration on the electric grid from offshore wind parks

    Get PDF
    There is a lot of potential in offshore wind parks due to the amount of available area. The parks get bigger in size and will continue to grow in the future. In this article a new converter topology for offshore wind parks is proposed. This topology is meant to be for large offshore wind parks sited far from shore and it is based on DC collection and transmission. All the converters are located in the nacelle of the wind turbines and the turbines are connected in series directly connected to shore without any transformation stages. The electrical system, from the generator to the grid connection of the turbine, is modeled in PSCAD. The model consists of an induction machine, a 3-phase AC to 1-phase AC converter, a high frequency high power transformer and a full-bridge converter. The AC-AC converter has a new type of reverse-blocking IGBTs and the switches are controlled with a dedicated switching pattern. The simulations show that the switching pattern gives the expected square wave voltage from the AC-AC converter. The new converter topology reduces the converter losses due to fewer converter stages, the architecture of the reverse-blocking IGBT and the new switching pattern.reviewe

    DC/DC converter for offshore DC collection network

    Get PDF
    Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes.Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes

    Assessment of novel power electronic converters for drives applications

    Get PDF
    Phd ThesisIn the last twenty years, industrial and academic research has produced over one hundred new converter topologies for drives applications. Regrettably, most of the published work has been directed towards a single topology, giving an overall impression of a large number of unconnected, competing techniques. To provide insight into this wide ranging subject area, an overview of converter topologies is presented. Each topology is classified according to its mode of operation and a family tree is derived encompassing all converter types. Selected converters in each class are analysed, simulated and key operational characteristics identified. Issues associated with the practical implementation of analysed topologies are discussed in detail. Of all AC-AC conversion techniques, it is concluded that softswitching converter topologies offer the most attractive alternative to the standard hard switched converter in the power range up to 100kW because of their high performance to cost ratio. Of the softswitching converters, resonant dc-link topologies are shown to produce the poorest output performance although they offer the cheapest solution. Auxiliary pole commutated inverters, on the other hand, can achieve levels of performance approaching those of the hard switched topology while retaining the benefits of softswitching. It is concluded that the auxiliary commutated resonant pole inverter (ACPI) topology offers the greatest potential for exploitation in spite of its relatively high capital cost. Experimental results are presented for a 20kW hard switched inverter and an equivalent 20kW ACPI. In each case the converter controller is implanted using a digital signal processor. For the ACPI, a new control scheme, which eliminates the need for switch current and voltage sensors, is implemented. Results show that the ACPI produces lower overall losses when compared to its hardswitching counterpart. In addition, device voltage stress, output dv/dt and levels of high frequency output harmonics are all reduced. Finally, it is concluded that modularisation of the active devices, optimisation of semiconductor design and a reduction in the number of additional sensors through the use of novel control methods, such as those presented, will all play a part in the realisation of an economically viable system.Research Committee of the University of Newcastle upon Tyn

    Induction heating converter's design, control and modeling applied to continuous wire heating

    Get PDF
    Induction heating is a heating method for electrically conductive materials that takes advantage of the heat generated by the Eddy currents originated by means of a varying magnetic field. Since Michael Faraday discovered electromagnetic induction in 1831, this phenomena has been widely studied in many applications like transformers, motors or generators' design. At the turn of the 20th century, induction started to be studied as a heating method, leading to the construction of the first industrial induction melting equipment by the Electric Furnace Company in 1927. At first, the varying magnetic fields were obtained with spark-gap generators, vacuum-tube generators and low frequency motor-generator sets. With the emergence of reliable semiconductors in the late 1960's, motor-generators were replaced by solid-state converters for low frequency applications. With regard to the characterization of the inductor-workpiece system, the first models used to understand the load's behavior were based on analytical methods. These methods were useful to analyze the overall behavior of the load, but they were not accurate enough for a precise analysis and were limited to simple geometries. With the emergence of computers, numerical methods experienced a tremendous growth in the 1990's and started to be applied in the induction heating field. Nowadays, the development of commercial softwares that allow this type of analysis have started to make the use of numerical methods popular among research centers and enterprises. This type of softwares allow a great variety of complex analysis with high precision, consequently diminishing the trial and error process. The research realized in last decades, the increase in the utilization of numerical modeling and the appearance and improvement of semiconductor devices, with their corresponding cost reduction, have caused the spread of induction heating in many fields. Induction heating equipments can be found in many applications, since domestic cookers to high-power aluminum melting furnaces or automotive sealing equipments, and are becoming more and more popular thanks to their easy control, quick heating and the energy savings obtained. The present thesis focuses on the application of induction heating to wire heating. The wire heating is a continuous heating method in which the wire is continuously feeding the heating inductor. This heating method allows high production rates with reduced space requirements and is usually found in medium to high power industrial processes working 24 hours per day. The first chapters of this study introduce the induction heating phenomena, its modeling and the converters and tanks used. Afterwards, a multichannel converter for high-power and high-frequency applications is designed and implemented with the aim of providing modularity to the converter and reduce the designing time, the production cost and its maintenance. Moreover, this type of structure provides reliability to the system and enables low repairing times, which is an extremely interesting feature for 24 hours processes. Additionally, a software phase-locked loop for induction heating applications is designed and implemented to prove its flexibility and reliability. This type of control allows the use of the same hardware for different applications, which is attractive for the case of industrial applications. This phase-locked loop is afterwards used to design and implement a load-adaptative control that varies the references to have soft-switching according to load's variation, improving converter's performance. Finally, the modeling of a continuous induction wire hardening system is realized, solving the difficulty of considering the mutual influence between the thermal, electromagnetic and electric parameters. In this thesis, a continuous process is modeled and tested using numerical methods and considering converter's operation and influence in the process.Postprint (published version

    A review on integrated battery chargers for electric vehicles

    Get PDF
    Electric vehicles (EVs) contain two main power electronics systems, namely, the traction system and the battery charging system, which are not used simultaneously since traction occurs when the EV is travelling and battery charging when the EV is parked. By taking advantage of this interchangeability, a single set of power converters that can perform the functions of both traction and battery charging can be assembled, classified in the literature as integrated battery chargers (IBCs). Several IBC topologies have been proposed in the literature, and the aim of this paper is to present a literature review of IBCs for EVs. In order to better organize the information presented in this paper, the analyzed topologies are divided into classical IBCs, IBCs for switched reluctance machines (SRMs), IBCs with galvanic isolation, IBCs based on multiple traction converters and IBCs based on multiphase machines. A comparison between all these IBCs is subsequently presented, based on both requirements and possible functionalities.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. T.J.C.S. is supported by the FCT scholarships SFRH/BD/134353/2017 and COVID/BD/151993/2021
    • …
    corecore