20,636 research outputs found

    The expressive power of modal logic with inclusion atoms

    Get PDF
    Modal inclusion logic is the extension of basic modal logic with inclusion atoms, and its semantics is defined on Kripke models with teams. A team of a Kripke model is just a subset of its domain. In this paper we give a complete characterisation for the expressive power of modal inclusion logic: a class of Kripke models with teams is definable in modal inclusion logic if and only if it is closed under k-bisimulation for some integer k, it is closed under unions, and it has the empty team property. We also prove that the same expressive power can be obtained by adding a single unary nonemptiness operator to modal logic. Furthermore, we establish an exponential lower bound for the size of the translation from modal inclusion logic to modal logic with the nonemptiness operator.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Axiomatizing modal inclusion logic

    Get PDF
    Modal inclusion logic is modal logic extended with inclusion atoms. It is the modal variant of first-order inclusion logic, which was introduced by Galliani (2012). Inclusion logic is a main variant of dependence logic (Väänänen 2007). Dependence logic and its variants adopt team semantics, introduced by Hodges (1997). Under team semantics, a modal (inclusion) logic formula is evaluated in a set of states, called a team. The inclusion atom is a type of dependency atom, which describes that the possible values a sequence of formulas can obtain are values of another sequence of formulas. In this thesis, we introduce a sound and complete natural deduction system for modal inclusion logic, which is currently missing in the literature. The thesis consists of an introductory part, in which we recall the definitions and basic properties of modal logic and modal inclusion logic, followed by two main parts. The first part concerns the expressive power of modal inclusion logic. We review the result of Hella and Stumpf (2015) that modal inclusion logic is expressively complete: A class of Kripke models with teams is closed under unions, closed under k-bisimulation for some natural number k, and has the empty team property if and only if the class can be defined with a modal inclusion logic formula. Through the expressive completeness proof, we obtain characteristic formulas for classes with these three properties. This also provides a normal form for formulas in MIL. The proof of this result is due to Hella and Stumpf, and we suggest a simplification to the normal form by making it similar to the normal form introduced by Kontinen et al. (2014). In the second part, we introduce a sound and complete natural deduction proof system for modal inclusion logic. Our proof system builds on the proof systems defined for modal dependence logic and propositional inclusion logic by Yang (2017, 2022). We show the completeness theorem using the normal form of modal inclusion logic

    On independence-friendly fixpoint logics

    Get PDF
    Nous introduisons une extension aux points fixes de la logique IF (faite pour l’indépendance) de Hintikka et Sandu. Nous donnons des résultats sur sa complexité et son pouvoir expressif. Nous la relions aux jeux de parité à information imparfaite, et nous montrons une application à la définition d’un mu-calcul modal fait pour l’indépendance.We introduce a fixpoint extension of Hintikka and Sandu’s IF (independence-friendly) logic. We obtain some results on its complexity and expressive power. We relate it to parity games of imperfect information, and show its application to defining independence-friendly modal mu-calculi

    The Expressive Power of Modal Dependence Logic

    Full text link
    We study the expressive power of various modal logics with team semantics. We show that exactly the properties of teams that are downward closed and closed under team k-bisimulation, for some finite k, are definable in modal logic extended with intuitionistic disjunction. Furthermore, we show that the expressive power of modal logic with intuitionistic disjunction and extended modal dependence logic coincide. Finally we establish that any translation from extended modal dependence logic into modal logic with intuitionistic disjunction increases the size of some formulas exponentially.Comment: 19 page

    Relation-Changing Logics as Fragments of Hybrid Logics

    Full text link
    Relation-changing modal logics are extensions of the basic modal logic that allow changes to the accessibility relation of a model during the evaluation of a formula. In particular, they are equipped with dynamic modalities that are able to delete, add, and swap edges in the model, both locally and globally. We provide translations from these logics to hybrid logic along with an implementation. In general, these logics are undecidable, but we use our translations to identify decidable fragments. We also compare the expressive power of relation-changing modal logics with hybrid logics.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    Relation-changing modal operators

    Get PDF
    We study dynamic modal operators that can change the accessibility relation of a model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to delete, add or swap an edge between pairs of elements of the domain. We define a generic framework to characterize this kind of operations. First, we investigate relation-changing modal logics as fragments of classical logics. Then, we use the new framework to get a suitable notion of bisimulation for the logics introduced, and we investigate their expressive power. Finally, we show that the complexity of the model checking problem for the particular operators introduced is PSpace-complete, and we study two subproblems of model checking: formula complexity and program complexity.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fervari, Raul Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    • …
    corecore