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On independence-friendly fixpoint logics

J. C. Bradfield
University of Edinburgh

Résumé : Nous introduisons une extension aux points fixes de la logique IF
(faite pour l’indépendance) de Hintikka et Sandu. Nous donnons des résultats
sur sa complexité et son pouvoir expressif. Nous la relions aux jeux de parité à
information imparfaite, et nous montrons une application à la définition d’un
mu-calcul modal fait pour l’indépendance.

Abstract: We introduce a fixpoint extension of Hintikka and Sandu’s IF
(independence-friendly) logic. We obtain some results on its complexity and
expressive power. We relate it to parity games of imperfect information, and
show its application to defining independence-friendly modal mu-calculi.

Philosophia Scientiæ, 8 (2), 2004, 125–144.
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1 Introduction

The topic of this issue, independence-friendly logic, is a logic introduced
by Sandu and Hintikka [Sandu 1993, Hintikka & Sandu 1996] which
gives an alternative account of branching quantifiers (Henkin quantifiers)
in terms of games of imperfect information. It allows the expression of
quantifiers where the choice must be independent of specified earlier
choices; it has existential second-order power. As well as its interest for
philosophical and mathematical logicians, it also has some natural reso-
nances with the theory of concurrency in computer science. Specifically,
in earlier work, we have argued that the modal analogues of IF logic have
a role to play in concurrency theory, partly inspired by previous work by
Alur, Henzinger and Kupferman [Alur et al. 1997], in which a temporal
logic using imperfect information is studied. (See [Bradfield 2000] and
[Bradfield & Fröschle 2002] for discussions of this role and its relation to
other work in concurrency theory.)

Given a first-order logic, or a logic like IF that is supposed to look
first-order (even though it isn’t), it is natural for modal logicians of a
certain bent to want to add fixpoint operators. One motivation is just
the mathematical interest of studying inductive definability in many con-
texts; a more computer-science-based motivation is the desire to be able
to produce an IF analogue of Kozen’s [Kozen 1983] modal mu-calculus, a
popular and interesting temporal logic – see [Bradfield & Stirling 2001]
for an introductory survey of modal mu-calculus.

In [Bradfield 2000], we asserted that using the semantics given to IF
by Hodges [Hodges 1997], it was possible to define an IF fixpoint logic. In
this article, we give a detailed definition of IF least fixpoint logic (which,
typically of IF logics, is a little more subtle than one first thinks), and
then study it.

In section 2, we deal with the preliminaries, the existing syntax and
semantics of IF logic. Sections 3, 4 and 5 are the main part of the paper;
in section 3 we give the detailed definitions of IF fixpoint logic and its
semantics; in section 4 we give a couple of interesting examples; and in
section 5 we establish some partial results on complexity and expressive
power. Then in section 6 we return to the game-theoretic roots of IF by
giving a suitable notion of parity game of imperfect information, which
gives an alternative semantics for IF fixpoint logic. Finally, in section 7
we briefly sketch the application to IF modal mu-calculus that was one
of the original motivations for looking at IF with fixpoints.

This article is a revised version of [Bradfield 2003], presented at Com-
puter Science Logic 2003 in Vienna. I thank the referee for some helpful
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suggestions.

2 IF-FOL syntax and semantics

First of all, we state one important notational convention: we take
the scope of all quantifiers and fixpoint operators to extend as far to the
right as possible.

For the purposes of this article, we will use only a sublanguage of
IF-FOL (sometimes just IF for short). The full languages advocated by
Hintikka and analysed by Hodges and others include the possibility of
conjunctions and disjunctions that are independent of previous quanti-
fiers. These operators do not introduce inherently new problems, but
they do introduce some additional complexity (and space) in defining
the semantics. We will therefore ignore them, and consider only the
independent quantifiers; the interested reader can use [Hodges 1997] to
put back the independent junctions.

One of the more tedious features of IF-FOL is the need to be more
pedantic than usual in keeping track of free variables etc., as not all the
things one takes for granted in usual logic are true in IF-FOL. When
introducing fixpoint operators, even more care is needed, and we shall
therefore give the semantics even more pedantically than Hodges did.

Definition 1. Assume the usual FOL set of proposition (P, Q etc.),
relation (R, S etc.), function (f, g etc.) and constant (a, b etc.) symbols,
with given arities. Assume also the usual variables v, x etc. We write
�x,�v etc. for tuples of variables, and similarly for tuples of other objects;
we use concatenation of symbols to denote concatenation of tuples with
tuples or objects.

For formulae φ and terms t, the (meta-level) notations φ[�x] and t[�x]
mean that the free variables of φ or t are included in the variables �x,
without repetition.1

The terms of IF-FOL are as usual constructed from variables, con-
stants and function symbols. The free variables of a term are as usual;
the free variables of a tuple of terms are the union of the free variables
of the terms.

We assume equality = is in the language, and atomic formulae are
defined as usual. The free variables of the formula R(�t) are those of �t.

1[Hodges 1997] writes φ(�x), but we wish to distinguish the meta-notation for free
variables from the object-level syntax for atomic formulae and the meta-notation for
assigning values to variables.
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The compound formulae are given as follows:

Conjunction and disjunction. If φ[�x] and ψ[�y] are formulae, then
(φ ∨ ψ)[�z] and (φ ∧ ψ)[�z] are formulae, where �z is the union of �x and �y.

Quantifiers. If φ[�y, x] is a formula, x a variable, and W a finite set
of variables, then (∀x/W. φ)[�y] and (∃x/W. φ)[�y] are formulae. If W is
empty, we write just ∀x. φ and ∃x. φ.

Game negation. If φ[�x] is a formula, so is (∼φ)[�x].

Flattening. If φ[�x] is a formula, so is (↓ φ)[�x].

(Negation. ¬φ is an abbreviation for ∼ ↓ φ.) ⊳

Definition 2. IF-FOL+ is the logic in which ∼, ↓ and ¬ are applied
only to atomic formulae. ⊳

In the independent quantifiers the intention is that the choices of the
player are independent of the values of the variables in the set W . In
terms of imperfect information, the player does not know the values of
the W -variables at the choice point. Hence the Henkin quantifier ∀x ∃y

∀u∃v

can be written as ∀x/∅. ∃y/∅. ∀u/{x, y}. ∃v/{x, y}. If one then plays
the usual model-checking game with this additional condition, which
can be formalized by requiring strategies to be uniform in the ‘unknown’
variables, one gets a game semantics which characterizes the Skolem
function semantics in the sense that Eloise has a winning strategy iff the
formula is true. However, these games are not determined, so it is not
true that Abelard has a winning strategy iff the formula is untrue. For
example, ∀x

∃y .x = y (or ∀x.∃y/{x}. x = y) is untrue in any structure with
more than one element, but Abelard has no winning strategy.

The trump semantics of Hodges [Hodges 1997], with variants by oth-
ers, gives a Tarski-style semantics for this logic, equivalent to the im-
perfect information game semantics given by Hintikka and Sandu. The
semantics is as follows:

Definition 3. Let a structure A be given, with constants, propositions
and relations interpreted in the usual way. A deal �a for φ[�x] or �t [�x] is
an assignment of an element of A to each variable in �x. Given a deal �a
for a tuple of terms �t [�x], let �t(�a) denote the tuple of elements obtained
by evaluating the terms under the deal �a.

If φ[�x] is a formula and W is a subset of the variables in �x, two deals

�a and �b for φ are ≃W -equivalent (�a ≃W
�b) iff they agree on the variables

not in W . A ≃W -set is a non-empty set of pairwise ≃W -equivalent deals.

The interpretation [[φ]] of a formula is a pair (T, C) where T is the
set of trumps, and C is the set of cotrumps.
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• If (R(�t))[�x] is atomic, then a non-empty set D of deals is a trump
iff �t(�a) ∈ R for every �a ∈ D; D is a cotrump iff it is non-empty
and �t(�a) /∈ R for every �a ∈ D.

• D is a trump for (φ ∧ ψ)[�x] iff D is a trump for φ[�x] and D is a
trump for ψ[�x]; D is a cotrump iff there are cotrumps E, F for φ, ψ
such that every deal in D is an element of either E or F .

• D is a trump for (φ∨ψ)[�x] iff it is non-empty and there are trumps
E of φ and F of ψ such that every deal in D belongs either to E
or F ; D is a cotrump iff it is a cotrump for both φ and ψ.

• D is a trump for (∀y/W. ψ)[�x] iff the set {�ab | �a ∈ D, b ∈ A } is a
trump for ψ[�x, y]. D is a cotrump iff it is non-empty and there is
a cotrump E for ψ[�x, y] such that for every ≃W -set F ⊆ D there
is a b such that {�ab | �a ∈ F } ⊆ E.

• D is a trump for (∃y/W. ψ)[�x] iff there is a trump E for ψ[�x, y]
such that for every ≃W -set F ⊆ D there is a b such that {�ab |
�a ∈ F } ⊆ E; D is a cotrump iff the set {�ab | �a ∈ D, b ∈ A } is a
cotrump for ψ[�x, y].

• D is a trump for ∼φ iff D is a cotrump for φ; D is a cotrump for
∼φ iff it is a trump for φ.

• D is a trump (cotrump) for ↓ φ iff D is a non-empty set of members
(non-members) of trumps of φ. ⊳

A sentence is true in the usual sense if {〈〉} ∈ T (the empty deal is
a trump set), and false in the usual sense if {〈〉} ∈ C; this corresponds
to Eloise or Abelard having a uniform winning strategy. Otherwise, it is
undetermined.

Note that the game negation ∼ provides the usual de Morgan duali-
ties.

A trump for φ is essentially a set of winning positions for the model-
checking game for φ, for a given uniform strategy, that is, a strategy
where choices are uniform in the ‘hidden’ variables. The most intricate
part of the above definition is the clause for ∃y/W. ψ: it says that a trump
for ∃y/W. ψ is got by adding a witness for y, uniform in the W -variables,
to trumps for ψ.

It is easy to see that any subset of a trump is a trump. In the case
of an ordinary first-order φ(�x), the set of trumps of φ is just the power
set of the set of tuples satisfying φ. To see how a more complex set
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of trumps emerges, consider the following formula, which has x free:
∃y/{x}. x = y. Any singleton set of deals is a trump, but no other set of
deals is a trump. Thus we obtain that ∀x.∃y/{x}. x = y has no trumps
(unless the domain has only one element).

The following definition is for later convenience: a set T of sets of
deals is well-dealt if for every D ∈ T , D is non-empty and D′ ∈ T for
every non-empty D′ ⊆ D. A formula has well-dealt semantics (T, C)
if T and C are well-dealt; the above semantics ensures that all IF-FOL
formulae have well-dealt semantics.

[Hodges 1997] shows that every well-dealt set is the semantics of some
IF formula (given suitable atomic relations), giving us

Proposition 4. On a structure A with n elements, IF formulae of length
m require space exponential in nm to represent their semantics.

Proof. The set of tuples for m free variables has nm elements;
Given a k element set, there are 2k subsets, but not all sets of subsets
are well-dealt; however, there are about 2k/

√
k sets of size k/2, and

hence at least 22k/
√

k well-dealt sets of subsets. (Cameron and Hodges
[Cameron & Hodges 2001] look in more detail at the combinatorics of
trumps.)

We can record the easy loose upper bounds on the time complexity
of IF-FOL operations:

Proposition 5. In a structure A of size n, the trump components of the
IF operators can be calculated in the following times on formulae with
m free variables, where k = nm: ∨ and ∧ in 2k+1 · k2; ∀x in 2k · k3n;
∃x/W in 2k+k lg n.

Proof. A crude analysis of the cost of computing the trump seman-
tics more or less directly from the definitions. Note that the computation
for ∃ has further exponential factors above the 2k from the number of
possible trumps, effectively due to the computation of choice functions.

In the case of IF, these exponential upper bounds are much worse
than is really required for determining whether a deal satisfies (i.e. is a
singleton trump for) an IF formula, since IF expressible properties are
in NP (because we can guess values for choice functions).
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3 Adding fixpoint operators.

The prime motivation for considering fixpoint extensions is in the modal
setting, where it is a standard way to produce temporal logics from modal
logics. However, fixpoint extensions to IF logics raise a number of issues,
and it is useful to recall briefly the first-order case.

In the classical settings, fixpoint operators are added to allow sets or
relations to be inductively defined by formulae: µ(x, X).φ(x, X), where
X is a set variable, is the least set A such that A = { x | φ(x, A) }, and
the syntax of formulae is extended to allow terms of the form t ∈ X or t ∈
µ(x, X).φ(x, X) (among set theorists) or X(t) and (µ(x, X).φ(x, X))(t)
(among finite model theorists).

In applying this directly to IF-FOL, there is the obvious problem that
we no longer have a simple notion of an element satisfying a formula,
so the usual definition no longer type-checks. There are two possible
approaches, depending on how one views the use of fixpoint terms. If
one takes the view that their purpose is to define sets, and the logic is a
means to this end, then it is natural to retain the use of set variables, and
work out how to make φ(x, X) reduce to a boolean. On the other hand, if
one views fixpoint operators as a means of introducing recursion into the
logical formulae, it is more natural to decide that fixpoint terms should
have the same semantics as other formulae, namely sets of trumps, and
that therefore the variables X range over trump sets rather than sets.
We then have to decide the meaning of X(t). This is the approach we
suggested in [Bradfield 2000], and will now pursue.

Definition 6. IF-LFP extends the syntax of IF-FOL as follows:

• There is a set Var = {X, Y, . . .} of fixpoint variables. Each variable
X has an arity (ar1(X), ar2(X)); ar1(X) is the arity of the fixpoint,
and ar2(X) is the number of free parameters of the fixpoint.

• If X is a fixpoint variable, and �t an ar1(X)-vector of terms then
X(�t) is a formula.

• The notation φ(X) indicates that X is among the free fixpoint vari-
ables of φ. If φ(X)[�x, �z] is a formula with ar1(X) free individual
variables �x and ar2(X) free individual variables �z, and �t is a se-
quence of ar1(X) terms with free variables �y, then (µ(X,�x).φ)(�t )[�z, �y]
is a formula; provided that φ is IF-FOL+.

• Similarly for ν(X,�x).φ. ⊳
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The process of extending the trump semantics to fixpoint formulae is
not entirely straightforward. First we define valuations for free fixpoint
variables.

Definition 7. A fixpoint valuation V maps each fixpoint variable X to
a pair

(VT (X), VC(X)) ∈ (℘(℘(Aar1(X)+ar2(X))))2.

Let D be a non-empty set of deals for X(�t)[�x, �z, �y], where �y are the free

variables of �t not already among �x, �z. A deal d = �a�c�b ∈ D, where �a,�c,�b
are the deals for �x, �z, �y respectively, determines a deal d′ = �t(d)�c for
X [�x, �z]. Let D′ = { d′ | d ∈ D }. D is a trump for X(�t) iff D′ ∈ VT (X);
it is a cotrump iff D′ ∈ VCX. ⊳

Then we define a suitable complete partial order on denotations:

Definition 8. If (T1, C1) and (T2, C2) are elements of (℘(℘(An)))2, de-
fine (T1, C1) � (T2, C2) iff T1 ⊆ T2 and C1 ⊇ C2. ⊳

Lemma 9. If φ(X)[�x, �z] is an IF-FOL+ formula and V is a fixpoint
valuation, the map on (℘(℘(Aar1(X)+ar2(X)))2 given by

(T, C) �→ [[φ]]V [X:=(T,C)]

is monotone with respect to �; hence it has least and greatest fixpoints,
with ordinal approximants defined in the usual way.

Definition 10. [[µ(X, x).φ(X)[�x, �z]]] is the least fixpoint of the map just
defined; [[ν(X, x).φ(x)[�x, �z]]] is the greatest fixpoint. µζ(X, x).φ means
the ζth approximant of µ(X, x), defined by

[[µζ(X, x).φ]] = [[φ(
⋃

ζ′<ζ

µζ′

(X, x).φ)]];

we may also write Xζ or φζ when convenient. ⊳

The following lemma records the usual basic properties (which have
to be checked again in this setting), and one new basic property, partic-
ular to the IF case.

Lemma 11.

1. The trump and cotrump components of [[µ(X, x).φ]] are well-dealt.

2. If Y is free in φ, then [[µ(X, x).φ]] is monotone in Y ; hence the
definition extends to further fixpoints in the usual way, as does
this lemma.
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3. µ and ν are dual: T is a trump for µ(X, x).φ(X) iff it is a cotrump
for ν(X, x).∼φ(∼X) (with the outer negation pushed in by duality).

Proof. (1) by induction on approximants; (2) as usual; (3) from
definitions.

A distinctive feature of the definition, compared to the normal LFP
definition, is the way that free variables are explicitly mentioned. Nor-
mally, one can fix values for the free variables, and then compute the
fixpoint, but because of independent quantification this is not possible
in the IF setting. For example, consider the formula fragment

∀z. . . . µ(X, x). . . . ∨ ∃y/{z}. X(y)

The independent choice of y means that the trumps for the fixpoint
depend on the possible deals for z, not just a single deal.

Another point is that the trump set of a least fixpoint is the union
of the trump sets of its approximants; but the interpretation of logical
disjunction is not union of trump sets, but union of trumps (applied
pointwise to the trump sets). Thus the usual view of a least fixpoint as
a transfinite disjunction is not valid in general. The following explains
why, despite this, the IF-LFP semantics is consistent with classical LFP
semantics.

Proposition 12. Call a set T of trumps or cotrumps full iff it is the
set of non-empty subsets of

⋃
T . Call a formula φ of IF-LFP classical

iff it is in IF-FOL+ and it contains no independent quantification (i.e.
all quantifiers are ∃x/∅ and ∀x/∅). Then

1. if φ is fixpoint free, then [[φ]]IF = (T, C) is full,
⋃

T = [[φ]]FO, and⋃
C = [[¬φ]]FO ;

2. if Tζ is a (transfinite) sequence of full well-dealt deal sets, then⋃
ζ Tζ and

⋂
ζ Tζ are full well-dealt sets;

3. hence (1) is true for any classical IF-LFP formula.

4 Examples of IF-LFP

IF logic is not entirely easy to understand and mu-calculi are also tra-
ditionally hard to understand, so we now consider some examples that
demonstrate interesting features of the combination. For convenience,
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we introduce the abbrevation φ ⇒ ψ for ψ ∨ ∼φ provided that φ is
atomic.

Let G = (V, E) be a directed graph. The usual LFP formula

R(y, z)
def
= (µ(X, x).z = x ∨ ∃w. E(x, w) ∧ X(w))(y)

asserts that the vertex z is reachable from y. Hence the formula

∀y. ∀z. R(y, z)

asserts that G is strongly connected. Now consider the IF-LFP formula

∀y. ∀z. (µ(X, x).z = x ∨ ∃w/{y, z}. E(x, w) ∧ X(w))(y).

At first sight, one might think this asserts not only that every z is reach-
able from every y, but that the path taken is independent of the choice
of y and z. This is true exactly if G has a directed Hamiltonian cycle, a
much harder property than being strongly connected.

Of course, the formula does not mean this, because the variable w
is fresh each time the fixpoint is unfolded. In the trump semantics, the
denotation of the fixpoint will include all the possible choice functions at
each step, and hence all possible combinations of choice functions. Thus
the formula reduces to strong connectivity.

It may be useful to look at the approximants of this formula in a
little more detail, to get some intuitions about the trump semantics.
Considering just

H
def
= (µ(X, x).z = x ∨ ∃w/{y, z}. E(x, w) ∧ X(w))[x, y, z],

we see that in computing each approximant, the calculation of
[[∃w/{y, z}. . . . ]] involves generating a trump for every possible value of a
choice function f : x �→ w. This is a feature of the original trump seman-
tics, and can be understood by viewing it as a second-order semantics:
just as the compositional Tarskian semantics of ∃x. φ(x) involves com-
puting all the witnesses for φ(x), so computing the trumps of ∃x/{y}. φ
involves computing all the Skolem functions; and unlike the first-order
case, it is necessary to work with functions (as IF can express existen-
tial second-order logic). Consequently, the nth approximant includes all
states such that x → f1(x) → f2f1(x) → . . . → fn . . . f1(x) = z for
any sequence of successor-choosing functions fi. Thus we see that the
cumulative effect is the same as for a normal ∃w, and the independent
choice has indeed not bought us anything.
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It is, however, possible2 to produce a slightly more involved formula
expressing the Hamiltonian cycle property in this inductively defined
way, by using the standard trick for expressing functions in Henkin quan-
tifier logics. We replace the formula H by

∀s. ∃t/{y, z}. E(s, t)∧ µ(X, x).x = z ∨ ∀u. ∃v/{x, y, z, s, t}.

(s = u ⇒ t = v) ∧ (x = u ⇒ X(v)).

This works because the actual function f selecting a successor for every
node is made outside the fixpoint by ∀s. ∃t/{y, z}. E(s, t) ∧ . . .; then
inside the fixpoint, a new choice function g is made so that X(g(x)),
and g is constrained to be the same as f by the clause (s = u ⇒ t =
v). (The reader who is not familiar with the IF/Henkin to existential
second-order translation might wish to ponder why ∀s. ∃t/{y, z}. E(s, t)∧
µ(X, x).x = z ∨ (x = s ⇒ X(t)) does not work.)

5 Complexity and expressive power of IF-

LFP

The above examples have shown IF-LFP being used to express relatively
simple NP properties. Since, as remarked, it is well known that Henkin
quantifiers and IF logic express just the NP properties (Henkin logic is
equi-expressive with Σ1

1 , and Σ1
1 captures NP on finite models), and since

it is also known [Gottlob 1997] that LFP plus Henkin quantifiers express
PNP, one might imagine that IF-LFP (which is not closed under classical
negation) also expresses only NP properties, or at worst some subset of
PNP. This is not the case; adding fixpoints to the IF formulation gives
a more significant increase in expressive power.

Firstly, we note that the approximant semantics of fixpoints gives the
usual behaviour in simple upper bounds:

Proposition 13. If φ(X)[x, z1, . . . , zm] is an IF-FOL+ formula, then in
a structure of size n, the approximants of µ(X, x).φ close after at most
2nm

steps. Hence in an IF-LFP formula with d alternating fixpoints and
m variables, 2dnm

evaluations of IF formulae are required. If the formula
size is l, this gives a total cost of 2dnm · l · 2nm(1+lg n) = l · 2nm(1+d+lg n).

2Since IF logic is equi-expressive with Henkin quantified logic, it is also equi-
expressive with existential second-order logic, and so can express ‘Hamiltonian cycle’
without using fixpoints. Thus we are not, in this example, adding technical expressive
power. However, the pure IF definition is quite complex, as it involves defining a
binary relation coded via functions; so we are adding expressive convenience.



136 J. C. Bradfield

Observe, however, that the contribution from fixpoint alternation is
small compared to the cost of computing independent existential quan-
tifiers.

Despite the relative weakness of adding fixpoints, they do in some
sense release the power of independent quantification. This is shown by
the following theorem.

Theorem 14. There is an IF-LFP sentence (with one least fixpoint)
which is EXPTIME-hard to evaluate.

Proof. We give a reduction from the EXPTIME-complete problem
of determining whether Player 1 has a winning strategy for the game of
generalized chess.

A structure for a generalized chess game between 1 and 2 of order n
comprises a board R with n2 (or any other fixed polynomial) squares r
and a set P of n (or any other fixed polynomial) pieces p. A position of
the game is a function π : P → R. There may be some relations on P
and R in the signature. The game is defined by three first-order formulae
with parameter π: a formula φI(π) true only of the initial position, a
formula φW (π) which is true if player 1 has won at π, and a formula
φM (π, i, p, r) which is true if moving piece p to square r is a legal move
for player i from position π. (Without loss of generality, we assume that
a move consists of moving exactly one piece. We also assume that φW

includes those positions where player 2 is due to move but cannot.)

Given a position π and a move p, r, the ‘next position’ formula
N(π, p, r, π′) is defined to be ∀p′. (p′ = p ∧ π′(p) = r) ∨ π′(p′) = π(p′) so
that π′ is the position resulting from the move.

The set X of winning positions (i.e. from which 1 can force a win)
for 1 can then be inductively defined by the type 3 functional

F (X, π) ⇔ Φ
def
=

φW (π) ∨ ((∀p, r. φM (π, 2, p, r) ⇒ ∃π′. N(π, p, r, π′) ∧ X(π′))

∧ (∃p, r. φM (π, 1, p, r) ∧ ∃π′. N(π, p, r, π′) ∧ X(π′))).

We now show how to express this inductive definition in IF-LFP. Part of
the coding is the well-known [Walkoe 1970, Enderton 1970] expression
of existential second-order logic in IF or Henkin logic, which we have
already seen in the Hamiltonian cycle example. The general technique is
thus: assume given an ESO formula ∃f. ψ. Let Q1(f(τ1)), . . . , Qn(f(τn))
be the instances in ψ of applications of f occurring in atoms Qi. Then
the translation is
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∀xf . ∃yf . ∀xf
1 . ∃yf

1 /{xf , yf}. . . .∀xf
n.

∃yf
n/{xf , xf

1 , . . . , xf
n−1, y

f , yf
1 , . . . , yf

n−1, }.
∧

i(x
f
i = xf ⇒ yf

i =

yf ) ∧ ψ̂,

where ψ̂ is obtained from ψ by replacing Qi(f(τi)) with xf
i = τi ⇒

Qi(y
f
i ).

The second part is passing a function through a fixpoint. This is
fairly simple to do: one just passes the domain and codomain as nor-
mal parameters, and relies on the quantification outside forcing them
to represent a function. In this case, the classical type 2 relation X(π)
is replaced by a binary IF type 1 relation Y (xπ , yπ), so that the classi-
cal ∃π. (µX.Φ)(π) becomes ∀xπ. ∃yπ. (µY.Φ̂)(xπ , yπ), where Φ̂ is obtained
from Φ by applying the ESO–IF translation using xπ, yπ for π (etc.) and
replacing X(π′) with Y (xπ′

, yπ′

).

We now show by an inductive argument on ζ that a function π satis-
fies (µζX.Φ)(π) iff the corresponding functional deal for xπ, yπ satisfies
(µζY.Φ̂)(xπ , yπ). The base case is trivial. Now suppose that the lemma
holds for all ζ′ < ζ. Then by definition of approximants there is π such
that (µζX.Φ)(π) iff there is π such that

φW (π) ∨ ((∀p, r. φM (π, 2, p, r) ⇒ ∃π′. N(π, p, r, π′) ∧ (
⋃

ζ′<ζ

Xζ′

)(π′))

∧(∃p, r. φM (π, 1, p, r) ∧ ∃π′. N(π, p, r, π′) ∧ (
⋃

ζ′<ζ

Xζ′

)(π′))).

If π satisfies φW then (xπ , yπ) satisfies φ̂W and conversely. If π satisfies
∀p, r. φM (π, 2, p, r) ⇒ ∃π′. N(π, p, r, π′)∧ (

⋃
ζ′<ζ Xζ′

)(π′), then for those
p, r such that φM (π, 2, p, r), there is (since N gives π′ as a function of
π, p, r) a unique π′ satisfying the consequent. By induction, the corre-
sponding functional deal for (xπ′

, yπ′

) satisfies (
⋃

ζ′<ζ Y )(xπ′

, yπ′

); and

thence ∀xπ′

. ∃yπ′

/ . . . . N̂(. . .)∧(
⋃

ζ′<ζ Y )(xπ′

, yπ′

) holds, and thence the
entire translation; and conversely. Similarly for the existential clause.

Finally, if we wish to determine whether the initial position is winning
for 1, we evaluate ∃π. φI(π) ∧ (µX.Φ)(π)

(We should note that we have extended the IF abbrevation φ ⇒ ψ to
the case where φ is classical, not just atomic. This is acceptable because
game negation coincides with classical negation for classical formulae.)
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The above argument was applied to the case of finite structures, but
there is nothing in it that depends on finiteness. We can therefore obtain
the following theorem, which refutes our conjecture in [Bradfield 2000]
that a fixpoint extension of IF would be within ∆1

2.

Theorem 15. Let F (X, α) be a positive Σ1
1 type 3 functional in the

language of arithmetic. Then a set of integers definable from the set of
reals inductively defined by F can be expressed in IF-LFP. It follows that
that IF-LFP (even with just one fixpoint) over the natural numbers can
express Σ1

2 properties.

Proof. F is defined by a Σ1
1 formula φ(X, α). Use the technique

of the previous proof to express ∃α. (µX.φ)(α) ∧ ψ(α, n), where ψ is
first-order. Cenzer [Cenzer 1976] showed that any Σ1

2 set of reals is the
closure of a Σ1

1 positive inductive definition over the reals. Since if α is
a Σ1

2 real, the set {α} is also Σ1
2 , we also have the stated consequence.

Cenzer’s results also allow us to obtain an improvement (for those
who don’t believe CH) on the closure ordinal for a single IF fixpoint
over ω. The usual cardinality argument for fixpoints tells us merely that
an IF fixpoint over ω must close by 2ℵ0 . The improvement is

Theorem 16. If φ(X) is an IF-FOL+ formula (i.e. with ∼ and ↓ applied
only to atoms), then µX.φ has closure ordinal ≤ ℵ1.

Proof. Seen as operations on ℘(2ω), the semantics of the IF boolean
operators and quantifiers are Σ1

1 . (This is not immediately apparent from
the definitions as presented above, but a small amount of rearrangement
reveals it.) Cenzer showed that the closure ordinal of a Σ1

1 monotone
inductive definition over the reals is ≤ ℵ1.

It remains to investigate lower bounds on the complexity of multiple
IF fixpoints. We remark only that the absence of classical negation
makes this less easy than it otherwise would be.

6 IF parity games

We briefly recall the game semantics of first-order logic and of IF logic.

Given a FO formula ψ (in positive form) and a structure A, a po-
sition is a subformula φ(�x) of ψ together with a deal for φ, that is, an
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assignment of values �v to its free variables �x. At a position (∀x. φ1, �v),
Abelard chooses a value v for x, and play moves to the position (φ1, �v ·v);
similarly Eloise moves at ∃x. φ. At (φ1 ∧ φ2, �v), Abelard chooses a con-
junct φi, and play moves to (φi(�x

′), �v′), where �x′, �v′ are �x,�v restricted
to the free variables of φi; and at (φ1 ∨ φ2, �v), Eloise similarly chooses
a disjunct. A play of the game terminates at (negated) atoms (P (�x), �v)
(resp. (¬P (�x), �v)), and is won by Eloise (resp. Abelard) iff P (�v) is true.
Then it is standard that M � φ exactly if Eloise has a winning strat-
egy in this game, where a strategy is a function from sequences of legal
positions to moves.

These games have perfect information; both players know everything
that has happened, and in particular when one player makes a choice,
they know the other player’s previous choices. Game semantics for IF
logic [Hintikka & Sandu 1996] use games of imperfect information: at
the position ∃x/W. φ, when Eloise chooses a value v for x, she does not
know what Abelard chose for the values of the independent variables W .
A uniform Eloise strategy for the game is one in which her choice of v is
indeed uniform in the values of W , and we say a formula is true if Eloise
has a uniform winning strategy.

Now recall that in a parity game the positions are assigned ranks
0, . . . , r, and if a run of the game is infinite, Eloise wins if the highest
rank appearing infinitely often is even. The model-checking game for
FOL extends to a model-checking game for LFP by assigning even ranks
to maximal fixpoints and odd to minimal, such that the rank of an inner
fixpoint is less than the rank of its enclosing fixpoints. Then the formula
is true iff Eloise has a winning strategy for the defined parity game.

Combining these two concepts, a general parity game of imperfect
information is given by a usual parity game together with imperfect
information requirements at each position, requiring a player to move
uniformly in some part of the game history. The winning runs are those
given by the usual parity winning conditions; a player wins the game if
she has winning strategy for the parity game that is uniform as required
by the imperfect information requirements.

In general, infinite imperfect information games are undecidable even
on finite structures, since they require players to keep arbitrary knowl-
edge (and lack of knowledge) of the history of the game. To obtain a
class of decidable imperfect parity games, we will first give a parity game
semantics for IF-LFP, and then define a class of imperfect parity games
characterized by IF-LFP.
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Definition 17. The model-checking game for an IF-LFP formula is
defined by adding the following clauses to the Hintikka–Sandu game for
IF. The moves are extended by the usual fixpoint unfolding rule: at a
position ((µ(X, x).φ)(t), �u), play moves to (φ, �uv), where v is the value
of t; at a position (X(t), �uv �w), where �u is the deal for the free variables
of X, v for x, and �w for the variables bound inside φ, play moves to
(φ, �uv′) where v′ is the value of t. Parities are assigned to positions in
the usual way, and the usual infinite parity winning condition is added.

The independence requirements are that at a quantifier ∃x/W. (and
dually), Eloise must choose x without knowing the values of the W vari-
ables and without knowing the values of any variables bound in some
currently enclosing fixpoint but chosen before the most recent unfolding
of that fixpoint. (In other words, she does not remember choices that
have gone out of scope and have no value in the current deal.)

Correspondingly, a uniform strategy in the parity game is a strategy
where the choice function is uniform in the independent variables and
the out-of-scope variables. ⊳

Theorem 18. If φ is an IF-LFP sentence, then Eloise has a uniform
winning strategy for the model-checking game if and only if {〈〉} is a
trump for φ. Moreover, the strategy can be history-free – that is, the
choice of move depends only on the current position in the game.

Proof. The argument relating parity conditions to alternating
fixpoints relates any set of monotone operators with fixpoints added, to
a parity game where moves correspond to operator application; not just
in the case of FOL or modal logic. If there is a trump for φ, and �u is in
the trump, then the trump gives Eloise a strategy to follow from (φ, �u)
up to the next fixpoint unfolding, and so on, ad infinitum for a greatest
fixpoint, or ad finem for a least fixpoint, according to the approximant
semantics – and this strategy is history-free, as it depends only on the
trump and the formula. Conversely, if Eloise has a uniform winning
strategy for (φ, �u), then the strategy choices in the initial portion of the
game tree up to the first fixpoint unfolding on each branch define trumps.
The details are as usual.

This game account of the IF-LFP semantics brings out the key factor,
which may have been less obvious in the trump semantics, that keeps
model-checking decidable. This is that passing through a fixpoint vari-
able throws away all information about choices made within the body of
the fixpoint, unless they are explicitly passed as parameters. Of course,
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this is also true in usual LFP, but in the IF case knowledge of previous
choices is explicitly part of the semantics.

This suggests the following definition:

Definition 19. An imperfect information parity game on a structure
A is finite-memory if each player is equipped with a finite memory in
which they can remember previous moves. A player’s choice at a move
is required to depend only on the current position and memory, with
additional imperfect information requirements imposed by the game on
the memory (i.e. a player may have to temporarily forget things).

A player wins the game if they have a uniform history-free winning
strategy. ⊳

The expected theorem is

Theorem 20. Given a finite-memory imperfect parity game on A, the
statement ‘Eloise wins the game’ is expressible by an IF-LFP formula
whose fixpoint alternation depth is the parity rank of the game.

Proof. The finite memory is modelled by parameters of fixpoints.
We will use fixpoints X which carry one parameter p for the position in
the game, and parameters mi for the memory ‘cells’. The inner loop of
an inductive definition of winning positions is the usual expression of ‘it
is Eloise’s move and there exists a move such that the next position is in
X , or it is Abelard’s move and all next moves are in X ’, as in the formula
we used earlier for generalized chess. The quantifiers are made explicitly
independent of the memory items required to be unknown (which may
require a case analysis of the moves of the game).

To deal with the parities, we use the first-order version of the usual
‘parity game formula’ from parity automata and modal mu-calculus (see
[Bradfield 1999] for a detailed explanation of the parity game formula):
for each rank j = 0, . . . , r, there is a fixpoint variable Xj . Then the
inner loop is enclosed by νX0.µX1. . . . µ/ν.Xr., and the formula X(p, �m),
where p and �m are the position and memory after the next move, is
conjoined with ∧

0≤j≤r(Rj ⇒ Xj(p, �m))

where Rj is the formula expressing that the next position has rank j.

The usual proof now applies to give the result.

Corollary 21. Finite-memory imperfect parity games on finite struc-
tures are decidable.
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We note that Schobbens [Schobbens 2004] has independently studied
ATL (Alternating Temporal Logic) with imperfect recall. ATL games
are a restricted instance of IF parity games, and the imperfect recall
is our finite memory. Schobbens goes into a more detailed analysis of
the differences of the complexities of ATL with or without imperfect
information and recall.

7 Application to IF modal mu-calculus.

Our original motivation for looking at fixpoint extensions of IF logic was
the desire to combine two threads of work. Firstly, modal mu-calculus
is a well studied and widely used temporal logic. Secondly, we have
argued in [Bradfield 2000] and [Bradfield & Fröschle 2002] that modal
versions of Henkin quantifiers and independence logics provide a natural
expression of some properties of concurrent systems. Given a concurrent
modal logic, it is natural to extend it to a concurrent temporal logic
by adding fixpoint operators. In [Bradfield 2000] we looked at modal
analogues of Henkin quantifiers acting on systems composed of several
concurrent components; since a single Henkin quantifier gives an oper-
ator on the powerset of states, there was no difficulty in adding such
modalities to mu-calculus. In [Bradfield & Fröschle 2002], we designed
a modal analogue of IF logic, defined on certain structures appropri-
ate for true concurrency. The full definition of the structures and the
logic is, for concurrency-theoretic technical reasons, somewhat long and
complex. We refer the reader to [Bradfield & Fröschle 2002] for full def-
initions; here we will give an overview of the logic.

IFML extends the syntax of usual modal logic as follows. Instead
of the simple ‘next step’ modality 〈a〉Φ, each modality carries a tag α,
and may be declared to be independent of previous tags β by the Hin-
tikka slash, giving a syntax 〈a〉α/βΦ. The intended interpretation is that
the choice of a action must be independent of the action chosen in the
modality tagged by β; for this to make sense, the action at β should be
concurrent (in the technical sense of event structures etc.) with the action
at α. The structures for this logic are not simple transition systems, but
transition systems with concurrency3, in which there is a concurrency
relation C between transitions, satisfying certain axioms so that concur-
rent actions are not causally dependent on one another: in particular,
if a and b are concurrent, and ab is a possible sequence, then so must

3These are normally called ‘transition systems with independence’, but that would
be confusing in the current context
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ba be. The semantics of IFML is then given in terms of runs (sequences
of states) of the system, directly via an imperfect information model-
checking game. We say that a run satisfies 〈a〉α/βΦ if Eloise can choose
an a transition and move to a position satisfying Φ, and can do so ‘uni-
formly’ in the previous transitions labelled by β. Here ‘uniformly’ means
that the choice of a transition is good also for all other runs in which the
β-labelled transitions bi are substituted by concurrent transitions b′i.

Remark 22. At this point, we should note that Tulenheimo in his doc-
toral dissertation [Tulenheimo 2004] has also defined and studied ‘inde-
pendence-friendly modal logic’. Tulenheimo’s definition of IFML differs
from ours – he sticks strictly to informational independence in strate-
gies, and uses ordinary Kripke structures as the structures for his logic.
This IFML turns out to be weaker than ours, and indeed first order ex-
pressible, whereas our IFML can express NP (and hence Σ1

1-hard) prop-
erties. Accordingly, Tulenheimo takes issue with the claim above from
[Bradfield & Fröschle 2002] that concurrency is ‘necessary’ for interpret-
ing an IFML. We must concede his point; but we believe the link between
concurrency and independence in our formulation is certainly of interest
for computer science, and arguably of interest to philosophical logicians.

The following remarks explain the concurrency-theoretic motivation
for defining IF-LFP. The theorems formalizing these remarks will be
presented in a more concurrency-theoretic forum.

Remark 23. The game semantics of IFML given in [Bradfield & Frösch-
le 2002] can be equivalently expressed by translating to IF as a meta-
language (modulo the introduction of some fairly messy defined functions
and relations on runs of the system) such that the main variable holding
the state ranges over runs (as in the game), and auxiliary variables range
over actions. Consequently, IFML has a trump semantics. The evalu-
ation of a formula on a finite system is decidable, since the maximum
length of runs that must be considered is bounded by the modal depth of
the formula.

Remark 24. We can define an IF modal mu-calculus by adding fixpoint
formulae of the form µ(X, χ).Φ and X(α), where the fixpoint variable
X has not only an implicit parameter for the current ‘state’, but also
explicit parameters χ for tags to be passed through the fixpoint.

This can be given a semantics via IF-LFP. However, since a ‘state’ in
the semantics is a run, not a system state, it is not obvious that decidabil-
ity of model-checking is maintained for IF mu-calculus. (We conjecture
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that it is, but some results from concurrency theory, such as the unde-
cidability of hereditary history-preserving bisimulation, give some cause
for doubt.)

The IF modal mu-calculus has a model-checking game that is an IF
version of the usual parity games for modal logic, as done above for IF-
LFP.

8 Conclusion

We have defined a suitable fixpoint extension of independence-friendly
logic, and established some results. We have related it to parity games
of imperfect information, and we have shown how it may be applied to
the construction of independence-friendly modal mu-calculi.

For IF-LFP itself, there are still many questions remaining. Chief
among these are better upper and lower bounds on the complexity of
model-checking (in the finite case) and descriptive complexity (in the
infinite case). We have shown that IF-LFP is more complex than we
surmised in earlier work, and it is not unlikely that it will turn out
to be much more complex. For the finite case, a forthcoming article
with Stephan Kreutzer will contain several results, including that model-
checking is at least EXPSPACE-hard.

Once these are resolved, the question also arises, as remarked by the
referee, of the complexity of IF modal mu-calculus. IFML itself is already
Σ1

1 ; we expect IF modal mu-calculus to have complexity similar to that
of IF-LFP. Clearly it also has the usual expressive power of temporal
logics over modal logics, in that it can describe infinite behaviours; but
how this combines with the Henkin quantification is unclear.


