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Chapter 1

Introduction

In this thesis, we axiomatize modal inclusion logic, which is the extension of modal logic
with the inclusion atom and based on team semantics. The inclusion atom lets us make
statements such as: There is a store in town that sells flowers but not food. In this
example, all stores in town are collected in a team T, and the statement can be formalized
as T' = TL C "flowers”food’.

First-order team semantics was introduced by Hodges in [19, 20], and team semantics
for modal logic was introduced by Vadnédnen in [26]. For modal logics, a team is a set
of states from the Kripke model. Formulas are then evaluated in a team, as opposed
to a single state. Under team semantics, extending a logic with certain dependency
atoms becomes interesting, first done by Vaananen with the dependence atom [25]. Other
variants were later introduced, such as the independence atom, introduced by Grédel and
Véaanénen in [14], and the inclusion atom, introduced by Galliani in [I0], where Galliani
adapted the inclusion dependencies from database theory, presented in, e.g., [4], to the
team semantics setting. First-order inclusion logic was shown in [I1] to be equivalent to
positive greatest fixed point logic, and thus captures the complexity class P over finite
ordered structures. In the case of modal inclusion logic (MZL), modal logic is extended
with the inclusion atom. For modal logic formulas ay, ..., a,, B, ..., Ba, the semantics of
the inclusion atom is as follows: A team satisfies the inclusion atom oy ...a, C S51...[0,,
if all values the tuple a; ..., can obtain in the team can also be realized for the tuple
b1 ... B, somewhere in the team.

Two closure properties that are of particular interest when examining a team-based
logic are the downwards closure property and the union closure property. A logic has the
downwards closure property if whenever a formula in the logic is satisfied by a team T,
it is also satisfied by any subteam 7" C T'. A logic is closed under unions if any number
of teams individually satisfy a formula in the logic, then their union satisfy the formula.
The usual modal logic (with team semantics) enjoyes both properties, but because of



the added inclusion atom, MZL does not have the downwards closure property. Still,
MZIL has the union closure property, which places it in a collection of team-based union
closed logics that have just recently received more attention in the literature (see, e.g.,
[2], 18, 130, 11, 13], 28, 211 [15, 16]). In this thesis, we contribute to the literature on team-
based union closed modal logics by introducing a sound and complete natural deduction
proof system for MZL.

In addition to being closed under unions, MZL has two more important properties: It
is invariant under bisimulation, and has the empty team property. A logic has the empty
team property if all formulas are satisfied by the empty team, and a logic is invariant under
bisimulation if Kripke models with teams that are bisimilar satisfy the same formulas.

We review the proof of Hella and Stumpf in [I8] that modal inclusion logic is expres-
sively complete: A class of Kripke models with teams is closed under unions, invariant
under k-bisimulation for some natural number £, and has the empty team property if
and only if the class can be defined with an MZL-formula. Through the expressive com-
pleteness proof, we obtain characteristic formulas for classes with these three properties.
This also yields a normal form for formulas of MZL: Each MZL-formula is equivalent
to a formula in this normal form. Additionally, we suggest a simplification to the normal
form presented in [I8], by simplifying the inclusion atom part, similar to the normal form
introduced by Kontinen et al. for modal team logic in [22].

For the usual modal logics, a Hilbert-style proof system is often used when axioma-
tizing the logics [29]. Since MZL does not have an implication, we instead use a natural
deduction proof system. Our proof system for MZL builds on the proof systems defined
for modal logic and propositional inclusion logic by Yang [29, [30].

To show compactness of MZL, we use the fact that modal team logic is compact, as
shown by Liick in [23]. The completeness theorem is proved using compactness and the
normal form.

The structure of the thesis is as follows. In Chapter 2, we define modal inclusion
logic and recall its basic properties. In Chapter 3, we show that modal inclusion logic
is expressively complete, and obtain the normal form for the logic. In Chapter 4, we
introduce the natural deduction proof system for modal inclusion logic and show that it
is sound and complete. We conclude the thesis and discuss future work in Chapter 5.



Chapter 2

Preliminaries

In this chapter, we define modal logic and modal inclusion logic with team semantics, and
recall some basic properties of the two logics. The chapter is divided into two sections. The
first section recalls the syntax and team semantics of the two logics, and the second section
recalls their basic properties. In particular, the usual modal logic (with team semantics)
has the flatness property, and modal inclusion logic has the empty team property and is
closed under unions.

2.1 Syntax and team semantics

In this section we present the syntax and semantics for the usual modal logic, as well
as the team semantics for modal logic. We will call formulas of the usual modal logic
classical formulas. We then extend modal logic to modal inclusion logic, and present its
team semantics.

Definition 2.1. Let ® be a set of propositional symbols. The syntax for modal logic
ML(D) is given by:

a=p|Ll]-a|l(aVa)l|(aha)]|da|a,

where p € P.

A Kripke model K = (W, R,V) consists of a set W of states (also known in the
literature as possible worlds or nodes), an accessibility relation R C W x W and a valuation
function V : & — P(W), where ® is a set of propositional symbols.



Definition 2.2. The Kripke semantics for ML are given by the following clauses:

KwEp < weV(p).
KuwkELl never holds.
KowkE-a < Kwla.
KwkEaVp < KwkEaor K,wkE p.
KwEaAf < KwkEaand K,w [ .
K,wE Qa <= K,v = « for some v such that wRwv.
K,wkEOa < K,v = a for all v such that wRv.

We also define the atom top by T := =L, for which K,w = T always holds.
Next we recall some definitions regarding teams.

Definition 2.3. Let K = (W, R, V) be a Kripke model.
(i) T is a team of K if T C W.

(ii) Let T be a team of K. The image of T is R[T] = {v € W | 3w € T : wRv} and the
preimage of T'is R™MT|={w e W |Jv e T : wRv}.

(iii) Let 7" and S be teams of K. We write TRS if S C R[T| and T C R![S].

In other words, TRS if and only if every state in S is accessible (by the relation R)
from a state in 7', and every state in T" has an accessible state in S. We say that such a
team S is a successor team of T.

Example 2.4. We give an example of a Kripke model with a team. Let & = {p, ¢} and
let K = (W,R,V) be a Kripke model with W = {w, wy, w3}, R = {(wy,wy), (wa, w3)},
V(p) = {w:1} and V(q) = {ws}. Let T' = {wy, w;}. See the picture below.

=
© G0




Example 2.5. We give an example of a Kripke model with a team 7" that has a successor
team. Let ® = (), and let K = (W, R, V) be a Kripke model with W = {wy, wo, w3, w4},
R = {(wy, ws3), (w1, wy), (we,wy)}, and V' is the empty function. Let T = {wy, wo}, and
let S = {w,}, as illustrated in the picture below. Then S C R[T], and T' C R~![S], hence
TRS.

T RI[T]

[ ) [ ]
wl\\ w3 g
Wy wa

Let us next recall the team semantics for ML. We will see in Proposition that
the team semantics is a natural generalization of the usual semantics for ML.

Definition 2.6. The team semantics for ML are given by the following clauses:

K TEp < TCV(p).

KTE1l < T=0.

K. TE-a < Kwlki aforallweT.
K. TEaVp < KT Eaand K,T; |  for some T}, T, C T

such that T U T, =1T.

K TEaNp < K, TEaand K,T | .

K, T = Qa <= K,S |= a for some S such that TRS.

K,TlOa < K,R[T|F a.

Next, we extend modal logic to modal inclusion logic by adding the inclusion atom.
We use o and  to denote classical formulas.

Definition 2.7. Let ® be a set of propositional symbols. The syntax for modal inclusion
logic MZL(®P) is given by:

¢:=p|lL|-al(@Ve)[(pAd)[0d|Td|ar...0n CBi... B,
where p € &, o € ML and o, 5; € ML foralli=1,...,n.



Note that we do not allow nested inclusion atoms. For example, for propositional
symbols p and ¢, p C (p C ¢q) is not a formula of MZL. To avoid ambiguities in the
interpretation of formulas with inclusion atoms, always interpret the classical formulas in
the sequences of the inclusion atom to be as short as possible. For instance, the formula
g A\ p C q has the subformula p C gq.

To define the semantics for MZL we simply add a semantic clause for inclusion atoms
to the semantics for ML.

Definition 2.8. The semantics for MZL are defined by the semantics of ML together
with the following clause:

KTEaoa...0p CH...0, <= VYweT JveT such that (K,w EF o <= K,vE[5)
foralli=1,...,n.

The satisfaction of the inclusion atom by a team can be understood as follows: Any
combination of values that can be achieved in a state of the team for the formulas on the
left, can also be achieved in some state in the team for the formulas on the right. Next
we give an example of the inclusion atom.

Example 2.9. Let & = {p,q,r, s} and let K = (W, R, V) be a Kripke model such that
W = {u,v,w}, R =0, V(p) = 0, V() = {u,0}, V(r) = {v}, and V(s) = {v,w}. Let
T = W. The table below illustrates the team T in the evident way. Clearly, the sequence
pq has in the team two different values L T and L1, which are both values for rs in the
team. Thus, we have K, T = pg C rs. On the other hand, the sequence rs has the value
TT, which is not a value for pg, hence K, T [~ rs C pq.

plqgl|r|s
w|L|T|L|L
v L] T | T T
w| L] L|L]|T

We say that ¢ and ¢ are semantically equivalent, denoted by ¢ = 1, if ¢ = ¥ and
V¢

When the Kripke model is clear from the context, we sometimes suppress mention of
it and write T = ¢.

2.2 Properties of ML and MZL

In this section, we recall the basic properties of ML and MZL: ML has the flatness
property, and MZL is closed under unions and has the empty team property. We provide
detailed proofs for these properties (see also [18]).
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First, we show that every formula o in ML is flat, i.e., a pair of a Kripke model with
a team (K, T) satisfies «v if and only if (K, {w}) satisfies « for every state w € T. We also
show the further property that for all ML-formulas a, K, T = « if and only if K, w E «
for all w € T. This shows the way in which MZL extends classical modal logic, and is
why we call M /L-formulas classical.

If all formulas in £ have a property, we say that L itself has the property. Thus we
show that ML is flat.

Proposition 2.10. Let K be a Kripke model, T a team of K, and o an ML(®P)-formula.
Then

K TEa < KuwkEaforeveryweT
— K, {w} = «a for every w € T.

Proof. 1t clearly suffices to show the first equivalence, which we do by induction on the
complexity of the formula a € ML(P).

- Let a = p, where p € ®. Then T = p if and only if T'C V(p), which is the case if
and only if w € V(p) for all w € T, i.e., w =p for all w € T.

+ Let « = L. Then T |= L if and only T = ), which is the case if and only if w = L
for all w e T

- Let a = =3, where € ML(®). By definition, T |= =4 if and only if w [~ 3 for all
w € T, which is equivalent to w = —f for all w € T.

- Let a = (1 V 5. Suppose that T |= 51 V B2. Then T | 51 and Ty |= 5 for some
T1,T, C T such that T3 UTy, = T. By the induction hypothesis, w | 3; for all
w € Ty and w = B for all w € Ty. For any w € T, it is in T} or Ty, so w | (1 V Pa
forallw e T.

For the other direction, assume that w |= 81V Gp for all w € T. Let T} = {w € T |
wkEpfiland Ty ={w e T | wl= po}. Clearly 71,75 C T and Ty UT, = T. By the
induction hypothesis, T} |= 81 and Ty |= [55. Hence T |= 51 V fs.

- Let a = 8y A B5. Then,

T)251A62<:>T):B1andT):62
— YweT: wkfand wl fy (by induction hypothesis)
<:>VU)€TU)):61/\BQ



- Let a = Of. Suppose that T |= O5. Then S |= 3 for some S such that TRS. By
the induction hypothesis, v |= [ for all v € S. Since S is such that T RS, for each
w € T, there is a v € S such that wRv and v |= 3, i.e., w = QS for all w € T.

For the other direction, assume that w = ¢ for all w € T. Then for all w € T
there is a v such that wRv and v = 5. Let S = {v | v = f and Jw € T s.t. wRv},
then T'C R™'[S] and by the definition of S, S C R[T]. Then S is such that TRS,
and by the induction hypothesis S |= 3. Hence T |= Of.

- Let a = 0pB. Then,

T8 <> RIT]E
— YWeRT]: vEpP (by induction hypothesis)
<= Yw € T : v = whenever wRv
— VweT: wk Db

O

Since a singleton team satisfies a M/L-formula if and only if the state in the team
satisfies the formula, we will write K,w | « instead of K,{w} | « also in the team
semantics setting.

Corollary 2.11. Let I'U{a} consist of ML-formulas, then
I' =« (over teams) <= T' = « (over states).

Proof. Suppose that I' = o (over teams) and let w |= 7 for all v € I'. By Proposition [2.10]
it follows that {w} = 7 for all v € I". By the assumption we now have that {w} = «,
from which it follows by Proposition that w = a.

For the other direction, suppose that I' = « (over states) and let 7' |= «y for all v € T.
By Proposition we have that w |= v for all v € I' and for all w € T. By assumption
it follows that w = « for all w € T, from which it follows by Proposition that
TE . O

Let £ be a logic and let @ € L. We say that «
- is downwards closed, if K,T | « implies that K,T" =« for all 7" C T,

- is closed under unions, if K,T; = « for all ¢ in a nonempty index set I, implies that
K,Uic; T; = a. In other words, a formula is closed under unions if any number of
teams individually satisfying a formula implies that their union satisfies the formula.



- has the empty team property, if K, | «.

Next we show that the flatness property is equivalent to the combination of the down-
wards closure property, union closure property and the empty team property.

Proposition 2.12. Let £ be a logic. A formula o € L has the flatness property if and
only if the formula o

(i) is downwards closed,
(ii) is union closed, and
(7ii) has the empty team property.

Proof. Let a € £ and let T be team of a Kripke model K. First, suppose that « has the
flatness property. We show that the three properties hold.

(i) Suppose that T' = . By flatness {w} |= « for all w € T. Let 7" C T. Then for
any w € T', w is also in T, so {w} = « for all w € T". We use flatness again to
conclude 7" = a.

(ii) Suppose that T; = « for all i € I, where I is nonempty. Let T' = U;¢; T, and let
w € T. Then w is in T; for some i € I, so by flatness {w} = a. We use flatness
again to conclude that 7' = «.

(iii) The statement {w} | « for all w € @ is vacuously true. By flatness we conclude

0 a.

For the other direction, suppose that « is downwards closed, union closed, and has
the empty team property. If "= (), then the left-hand side of the flatness definition is
satisfied by the empty team property, and the right-hand side is vacuously true. Suppose
that T # 0. If T = «, then by the downwards closure property it follows that {w} | «
for all w € T. Conversely, if {w} = « for all w € T, it follows by the union closure
property that T' = «. ]

Consequently, a logic £ has the flatness property if and only if the logic is downwards
closed, union closed, and has the empty team property.

Corollary 2.13. ML has the downwards closure, union closure and the empty team
property.

Proof. Follows from Proposition [2.10] and Proposition [2.12] O

10



Next we show that MZL also has the union closure property and the empty team
property. On the other hand, due to the addition of inclusion atoms, MZL does not have
the downwards closure property.

Proposition 2.14. MZL is union closed, i.e., for each ¢ € MZIL(P), and nonempty
index set 1,

if K, T,E=¢ forall i€l, then K, T ¢,
where T' = U;er T;
Proof. We do the proof by structural induction on ¢ € MZL(P). Let T' = U;e; T;

- If¢p=p, & =L or ¢ =, then p € ML, hence ¢ is union closed by Corollary
213

. Let ¢ =1V 2/12, and suppose that T; |= ¢ V 1), for all i € I. Then for each i € I,
. |E 1 and T}, | 1y for some T;,,T;, C T; such that T;; UT;, = T;. By the

1nduct10n hypothesw Uier T, E 1 and Uie; Ty, | ¥2. Now Uzel iy Uier T, €T
and Uzel 1UUZEI 2_T SOT)Zf/Jl\/%

- Let ¢ = 1 A1y, and suppose that T; = 11 A )y for all i € I. Then T; = 9, and
T; | 19, for all i € I. By the induction hypothesis, T' = ¥ and T | 1), hence

T = 1 Ay

- Let ¢ = Qv and suppose that T; = Ot for all i € I. Then for each i € I, there is a
team such that S; =1 and T'RS;. By the induction hypothesis, U;c; S; = 1. Also,
Uier Si € R[T]) and T' C R U, Si], hence TRU;¢; Si. So T | O

- Let ¢ = [, and suppose that T; = O for all i € I. Then for each i € I, R[T;] = .
By the induction hypothesis, U;c; R[T;] |= 1. Since User R[T;] = R|Uie; T3], it follows
that 7' = Oeg.

- Let ¢ = ay...a,, € By...0,, and suppose that T; = ¢ for all i € I. Let w € T.
Then w € T; for some i € I, sothereisav € T; C T, such that w = o <= v |= B
forall k=1,...,n. So T |= ¢ holds.

]

Proposition 2.15. MZL has the empty team property, i.e.,
K. 0kE=¢ foral ¢e MIL(D).

Proof. The proof is by structural induction on ¢ € MZL(P).

11



- Ifp=p, ¢ =1 or¢=-a, then p € ML, hence ¢ has the empty team property
by Corollary [2.13]

- Let ¢ = 1)1 V 1hy. By the induction hypothesis, § = 11 and 0 = 1by. Clearly ) C ()
and 0 U@ = (. Hence 0 = 11 V 1s.

- Let ¢ = 91 A 1by. By the induction hypothesis, ) = 11 and 0 = 19, s0 0 = 1 A 1)s.

- Let ¢ = Q. T = Q. By the induction hypothesis, ) = . Clearly OR{), so
0 Ov.

- Let ¢ = Ot. Clearly R[] = (), so by the induction hypothesis R[}] = 1, hence
0 = 0.

- Let ¢ = a1...a, € By...B,. For the empty team, the semantic clause for the
inclusion atom is vacuously true. Hence ) = ¢.

]

Example 2.16. We illustrate that MZL is not closed downwards in the following ex-
ample. Let & = {p,q} and let K = (W, R, V) be a Kripke model with W = {w;, ws},
R=0,V(p) ={w} and V(q) = {wy}. Let T = W (see the picture below). Clearly, for
all w € T thereisav € T suchthat w =p <= v ¢,80T = p C q. But for {w;} C T,
there is no v € {w;} such that wy Fp <= v = q. Hence {w,} £ p Cq.

©
)

Since MZL is not downwards closed, it follows from Proposition [2.12) that MZL does
not have the flatness property.

We also show that MZL does not admit the uniform substitution property. A logic
L admits the uniform substitution property if for all formulas ¢, ¢o, 9 € L,

1 ¢ = ¢1(¢/p) E d2(¥/p),
where, ¢;(1¢/p) is obtained by substituting all instances of p in ¢; with ¢, for i € {1,2}.

Proposition 2.17. MZL does not admit the uniform substitution property.

12



Proof. Let p,q and r be propositional symbols. Clearly (pV¢) Ar = (pAT)V (gAT)
holds. But when we substitute p C ¢ for r on both sides, we get (pV ¢) Ap C ¢ E
(pApCq)V(¢gApCq), which does not hold. For a counterexample to the entailment,
see Example . Clearly T' = (p V q¢) Ap C ¢, but there are no subteams 77,7, C T
such that T UTy, =T with Ty EpApCqgand To EqAp Cq. ]

13



Chapter 3

Expressive completeness and normal
form

In this chapter we recall the definitions of Hintikka formulas and k-bisimulation, with the
goal of showing that MZL is expressively complete. As a consequence, we obtain the
normal form for formulas in MZL. The chapter is divided into three sections. In the first
section, we recall the definitions of Hintikka formulas and k-bisimulation for both states
and teams, and show that modal inclusion logic is invariant under bisimulation. In the
second section, we prove that MZL is expressively complete, and obtain the normal form
for the logic. In the third section, we revisit inclusion atoms. We show that an arbitrary
inclusion atom can be reduced to a formula with inclusion atoms only of the type T C «.
The results included in this chapter are either standard (see, e.g., [12, B]) or due to [18].

3.1 Hintikka formulas and k-bisimulation

In this section we present Hintikka formulas, and k-bisimulation both for states and teams.
We show that the following are equivalent for the Kripke models with states (K, w) and
(K", w'):

- (K,w) are (K’,w') are k-bisimilar.

+ (K,w) and (K',w') cannot be distinguished by a formula with less than &+ 1 nested
modal operators.

- (K, w) satisfies the k-th Hintikka formula of (K’ w’).

Thus Hintikka formulas capture (state) k-bisimulation. We conclude the section by prov-
ing the bisimulation invariance theorem for MZL.

14



Definition 3.1. Let ® be a finite set of propositional symbols and K a Kripke model
over ®. If w € W, then (K, w) is called a pointed ®-model. Similarly, a ®-model with a
team is a pair (K,7T), where T is a team of K.

Next we define (state) k-bisimulation, which is a relation between two pointed ®-
models that is satisfied if the models are similar, in the sense that their states satisfy the
same propositional symbols and have similar accessibility relations up to degree k.

Definition 3.2. The k-bisimulation relation between the pointed ®-models (K, w) and
(K',w'), written as K,w €, K’ v, is defined recursively by:

(i) K,w 29 K',w" if and only if the equivalence K,w = p <= K’ v’ |= p holds for
all p € ®.

(ii) K,w 24, K' o' if and only if K,w £y K’,w' and the following conditions are
satisfied (see also Figure [3.1)):

(Forth condition) For every state v of K with wRv there is a state v’ of K’ with
w’'Rv’ such that K,v <, K',v.

(Back condition) For every state v' of K’ with w’'Rv’ there is a state v of K with
wRv such that K,v <, K',v'.

K K’
U ONNANNANANANN~® 1/
L1 ]

v TWWWT v
w °WV\6VVW. W'

Figure 3.1: State k-bisimulation illustrated. The figure illustrates K, w <, K’ w'. The
lowest zigzag line represent zero-bisimulation, the second lowest represents
k — 1-bisimulation, followed by k — 2-bisimulation etc.

We write K, w %, K',w' if (K,w) and (K’ ,w') are not k-bisimilar. Clearly, the k-
bisimulation relation is symmetrical, reflexive and transitive, and is thus an equivalence
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relation. It also follows from the definition of k-bisimulation that if two pointed ®-models
are k-bisimilar, then they are also n-bisimilar for all n < k.

Lemma 3.3. Let (K,w) and (K',w") be pointed ®-models and let k € N. If K, w <
K',w', then K,w <, K' v for alln <k.

Proof. For each k € N, when n = k the result is trivial. It suffices to show that K, w <y
K',w' implies K, w <,_; K',w' by induction on k > 1. For the basic case k = 1, we have
that K, w <, K’',w' implies K, w <y K’',w’ by the definition of k-bisimulation.

Suppose that & > 1 and K,w <5 K’',w’. We show the forth condition of k& — 1-
bisimulation: For every state v of K with wRuv, there exists a state v' of K’ with w'Rv’
such that K,v €,_5 K',v'. By the assumption K,w <, K’ ,w', we have that for every
state v of K with wRv there exists a state v’ of K’ with w’Rv’ such that K,v €,_; K',v'.
By the induction hypothesis, K,v <;,_; K’ v’ implies that K,v <,_o K’,v'. The back
condition is proved similarly. We conclude K, w <,_1 K, w'. ]

The modal depth of an MZL-formula describes the number of nested modal operators
within the formula.

Definition 3.4. The modal depth of a formula ¢ € MZL(®P), md(¢), is defined by the
following clauses:

The modal depth of an M/L-formula is defined by Definition [3.4] restricted to ML-
formulas. We say that two pointed ®-models are k-equivalent if they satisfy the same
M L-formulas up to modal depth k.

Definition 3.5. The models (K, w) and (K’,w') are k-equivalent, written as K, w =
K’ ', if for every @ € ML(®) with md(a) <k,

KwEa <<= K\ wEa

For an index set I = {1,...,n}, we write \,;c; ¢; as an abbreviation of the formula
(1 V-V ¢,) and define V,ep ¢y = VO = L. Similarly, we abbreviate (¢ A -+ A ¢,) as
/\iGI gzﬁz and define /\ZE@ gzﬁz = /\@ =-l.

Next we give the definition of Hintikka formulas.
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Definition 3.6. Assume that ® is a finite set of propositional symbols. Let £ € N and
let (K, w) be a pointed ®-model. The k:th Hintikka formula x% , of (K, w) is defined
recursively by:

Xkw =Mplpe®andwe V(p)} AN{-p|pe ®and w ¢ V(p)}

X][c(_;}) = X]IC(,w A /\UER['UJ] <>X]I€(,v Ay vveR[w] XIIC(,'U'

It is clear from the definition of Hintikka formulas that a k:th Hintikka formula has
modal depth at most k. Another direct consequence of the definition is that there are
only finitely many non-equivalent k:th Hintikka formulas for a finite set of propositional
symbols.

Corollary 3.7. Let ® be a finite set of propositional symbols. Then there are only finitely
many non-equivalent k:th Hintikka formulas over ®-models.

Proof. Let the size of ® be n. We prove the claim by induction on k. A 0:th Hintikka
formula is a conjunction between propositional symbols, negated or not, from a finite set
®. So there are 2" non-equivalent 0:th Hintikka formulas. Suppose that there are m € N
many k:th Hintikka formulas. By the definition of a (k + 1):th Hintikka formula, we have
at most m - 2™ - 2™ many non-equivalent options, which again is finite. ]

For any pointed ®-model (K, w) and k € N, the Hintikka formula X’;(,w characterises
(K, w) up to k-equivalence. In addition, Hintikka formulas also capture k-bisimulation.

Theorem 3.8. Let ® be a finite set of propositional symbols and let k € N. For pointed
d-models (K, w) and (K',w'), we have that:

Kw=, K'w < Kwe, K v < K v E x5k,

To prove Theorem 3.8 we use k-bisimulation games. The definition of k-bisimulation
games and the proof of Theorem [3.8)is due to [12].

Let (K,w) and (K’,w’) be pointed ®-models. A bisimulation game is played by two
players that we call T (challenger) and II (defender). The game starts at the initial
configuration (K, w; K’ w'), we say that at this stage there is one pebble placed on the
state w in K and one pebble placed on the state w’ in K’. Each round consists of player
I moving one pebble in one of the models from its current state to an accessible state in
that model. Then player II acts similarly in the other model.

Player I loses if none of the current states has an accessible state. Player II loses if
they cannot move the pebble, or if the new configuration (K, v; K’,v’) is such that it is
not the case that K,v E=p < K',v' | p for all p € ®.
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We say that player II has a winning stategy in the k-bisimulation game, if from the ini-
tial configuration (K, w; K',w’), player II can respond without losing for k-many rounds,
no matter what moves player I makes.

We make the connection between k-bisimulation and the k-bisimulation game through
the following observations:

- The back condition of k-bisimulation is satisfied if and only if player II can respond
in the model K to player I’s move without losing.

- The forth condition of k-bisimulation is satisfied if and only if player II can respond
in the model K’ to player I's move without losing.

- Zero-bisimulation corresponds to player II not having lost already at the initial
configuration.

This motivates the following equivalence: Let k& € N. The pointed ®-models (K, w)
and (K',w') are k-bisimilar if and only if player II has a winning strategy in the k-
bisimulation game with the initial configuration (K, w; K’,w"). This equivalence together

with the Lemmas [3.9] and [3.11] prove Theorem [3.8]

Lemma 3.9. Let ® be a finite set of propositional symbols and let k € N. If player II
has a winning strategy in the k-round bisimulation game G with the initial configuration
(K, w; K',w'"), then K,w =, K',w'.

Proof. Suppose that (K,w) and (K’ ,w') are not k-equivalent. Then there is a formula
a € ML(P) with modal depth n < k such that w E o and v’ = —a. We prove
by induction on the modal depth of « that II does not have a winning strategy in the
k-bisimulation game G.

Let n = 0, then (K,w) and (K’ ,w’) do not agree on some p € &, hence II loses.
Suppose that md(a) = n+ 1, w E o and v’ | —a. Without loss of generality, we can
assume that the models (K, w) and (K’,w’) do not agree on some diamond-formula. In
other words, there exists a formula § € ML(®) with modal depth n+1 such that w | ¢
and w' | —=0p. Now player I can move the pebble in the model K to some accessible
state u such that u = 3, and player II must respond in K’ and move the pebble to some
o', lest player II loses immediately. The current state becomes (K, u; K', '), with u |=
and u' | —f. Since the modal depth of 5 is n, we can apply the induction hypothesis
and conclude that II loses. ]

Lemma 3.10. Let k € N. If K,w = K',w' then K',w' = X .

Proof. Tt is easy to see that K,w |= xJ,, and that the modal depth of x% , is less than
or equal to k. Therefore the assumption K, w =, K’,w' implies that K’ v’ | X%w. O
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Lemma 3.11. Let k € N. If K’ v |= X’;(,w then player II has a winning strategy in the
k-round bisimulation game G with the initial configuration (K,w; K',w'").

Proof. The proof is done by induction on k£ € N. Suppose that w' = X(}{’w, then it is clear
that player II has not lost already at the initial configuration.

Suppose that w' = Xl;(,w implies that player II has a winning strategy for k rounds.
Let us show that player II has a winning move at round &k + 1. We recall that the formula

Y5+l is defined as

Xidw = Xicw N\ OXico DV Xy
vER[W] vER[w]

Suppose that w' = Xy, Then w' |= Ay Oxk ., 50 for any accessible state v of w

in K that player I moves to, we have that w' = Ox’fm. So there is some accessible state
v to w’ in K’ such that v' |= X’;(ﬂ/’ which guarantees a winning strategy for II by the
induction hypothesis.

Also, w' = OVeru X’;@. So for any accessible state v’ of w’ in K’ that player I
moves to, v’ = X’;@ holds for some accessible v of w in K, which guarantees a winning
strategy for II by the induction hypothesis. ]

Now we define k-bisimulation also in the team setting. The definition and remaining
results in this subsection are due to [I8]. The definition of team k-bisimulation was first
introduced in [I7], as a natural extension of state k-bisimulation.

We denote by CT(P) the class of all ®-models with teams.

Definition 3.12. Let (K, T),(K',T") € CT(®) and k € N. (K,T') and (K’,T") are (team)
k-bisimilar, written as K,T <, K',T’, if the following back and forth conditions hold:

(Fi) For every w € T there exists a w’ € T” such that K,w <, K',w'.
(By) For every w' € T there exists a w € T such that K, w <, K’ w'.

We write K, T 4 K',T"if (K,T) and (K’,T") are not k-bisimilar. We say that (K, T)
and (K',T") are (team) bisimilar, written as K, T < K',T" if K,T <, K',T" for all k € N.
Next we give an example of team k-bisimulation.
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Figure 3.2: Team k-bisimulation illustrated. The figure illustrates K,T <, K',T’, and
the zigzag lines represent state k-bisimulation.

Example 3.13. Let K = (W, R,V) and K' = (W', R', V") be Kripke models with W =
{w,v}, W = {w' v '}, R = {(w,v),(v,v)} and R = {(v', ), (v',u)}. Further, let
® be a set of propositional symbols, and let V' and V' be such that K,v £y K’,v', and
K,v 29 K' 4/, illustrated by the zigzag lines in the figure below. Let T = {w,v} and
T = {w',v'}. Now K,v ey K' v/, and K,w <7 K',w, hence K, T <, K',T".

K K’

IS

\/\/\/\[
U%’\/\/\/\/\/\/‘

C\

T/

~
o——0——>0

g

Similarly to the case of state k-bisimulation, if two ®-models with teams are k-
bisimilar, then they are also n-bisimilar for all n < k.

Lemma 3.14. Let (K, T),(K',T") € CT(®) and k e N. If K,T < K',T', then K,T <,
K',T' for alln < k.

Proof. For each k € N, when n = k the result is trivial. It suffices to show that K, T <
K',T" implies K,T <;,_ K',T' for all k > 1.

Suppose that K, T <, K',T7’. Then for every w € T there exists a w’ € T such that
K,w <, K',w', and for every w’ € T there exists a w € T such that K, w <, K’ w'.
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By Lemma [3.3] K,w <) K',w' implies K,w <;_; K’',w'. Therefore, by the definition of
team k-bisimulation we conclude K, T <, K',T". ]

The results in the next lemma are also consequences of the definition of team k-
bisimulation.

Lemma 3.15. Let (K,T),(K',T") € CT(®) be such that K,T <y K',T" and let k € N.
Then

(i) For every S such that TRS, there is a S’ such that T'R'S" and K, S < K', 5.
(ii) K,R[T] =, K', R'|T").

i) For all Ty, Ty C T such that Ty UTy =T there are T}, T, CT" such that T UT, =T’
1l = 1Yo
and K, T; 2,1 K',T] forie {1,2}.

Proof. Let (K,T),(K’,T") and k be as in the lemma.
(i) Let S be such that TRS. Define S’ by
S'={eR[T|FveS:Kve, K}

Let us first prove that S’ satisfies T"R'S’. By the definition of S’, it is clear that for
all v € S’ there is a w’ € T” such that w' R'v'.

Let w' € T'. We want to show that there is a v € S’ such that w'R'v'. Since
K, T <1 K', T, there is a w € T such that K, w <, K',w'. Also, since TRS,
there is a v € S such that wRv. So by the definition of k-bisimulation, there is a
v € R'[w'] such that K,v <, K’ v'. It follows that v" € S”. Thus T'R'S".

By the definition of S’, for all v" € S’ there is a v € S such that K,v £, K',v'. So
the back condition holds. We now prove that the forth condition holds. Let v € S,
then there is some w € T such that wRv. By K, T <, K',T’, there is a w' € T’
such that K, w <1 K',w’. By the definition of k-bisimulation, there is a v' € K’
such that w'R'v" and K,v 2, K',v'. Clearly v' € S’. Hence for all v € S there is a
v' € 5§ such that K,v £, K’ v'. We conclude that K, S <, K', S,

(ii) The assumption K,T <4, K',T" implies that for all w € T there exists a w’ € T"
such that K,w <, K',w'. So for all v € R[T] there exists a v' € R'[T’] such
that K,v <5 K’ ,v'. Hence the forth condition is met, the back condition is proved
similarly.
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(iii) Let 71,75 € T be such that 7y U Ty = T. Define T} = {w’ € 7" | Jw €
T; such that K, w 24,1 K',w'}, for i € {1,2}. Clearly, T{,Ty C T". Let w' € T".
Since K,T <, K',T', there exists a w € T such that K,w £,,; K’ w'. And
w € T; for some ¢ € {1,2}, so w' € T} for some i € {1,2}, i.e., w € T} UT,. Hence
TIUT, =T
Let ¢ € {1,2}. It is immediate by the definition of 77 that for all w’ € T} there
exists a w € T; such that K,w ;.1 K',w’, so the back condition of k-bisimulation
holds.

Let w € T;, then w € T. By the assumption K,T <4, K',T’, there is a w' € T"
such that K, w <4, K',w'. By the definition of T}, it follows that w’ € T/. Hence
the forth condition of k-bisimulation holds. We conclude that K, T; <, K',T}.

]

Definition 3.16. Two pairs (K, T), (K',T") € CT(®) are k-equivalent, written as K,T =
K',T', if for every ¢ € MZL(P) with md(¢) < k,

KTkE¢ — K.,T = ¢

Furthermore, (K,T) and (K',T") are equivalent, written as K,T = K',T', if K,T =
K', T for all k € N.

Next we show the bisimulation invariance theorem for MZL: if two models with teams
are (team) bisimilar, then they are equivalent.

Theorem 3.17 (Bisimulation invariance theorem). Let (K,T),(K',T") € CT(®) and
ke N If KT <, K'\T', then K,T =, K',T'. Therefore, if K, T < K',T', then
K.T=K.T.

Proof. Let ¢ € MZL(P). It suffices to show that if K,T <, K',T', where k = md(¢),
then K,T |= ¢ if and only if K',T" = ¢. The proof is done by structural induction on ¢.

- Let ¢ = p, where p € ®. Assume that T = p and K,T <4 K',T', where k =
md(¢) = 0. By definition w = p for all w € T. And by the definition of k-
bisimulation, for all w’ € T" there exists a w € T such that K,w £y K',w'. So
w' = p for all w’ € T'. Now T" |= ¢ follows by definition.

- Let ¢ = L and assume that T = | and K, T <, K',T", where k = md(¢) = 0.
Then T' = () and by k-bisimulation it follows that 7" = (). Hence K',T" |= L.
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- Let ¢ = —a, where & € ML(®P). Assume that T | -« and K, T <, K',T', where
k = md(¢). Then w [~ « for all w € T, and for each w' € T there exists a w € T
such that K,w <, K',w'. By Theorem , K,w =, K',w', and since md(«a) < k,
it follows that for all w’ € T', w' £ a, ie., T' = ¢.

- Let ¢ = 11 V 1by. Assume that T' = ¢ and K, T <, K',T', where k = md(¢). Then
K, T\ E ¢y and K, Ty | 9y for some 11,7y, C T such that Ty UT, = T. Let m =
md(¢) and n = md(v). By Lemma (iii), there are subteams 77,75 C T" such
that 7Y UTy = T" and K, T; < K',T] for i € {1,2}. Since m,n < k, by Lemma
K, Ty 2, K' T and K, T, <, K' T;. By the induction hypothesis, 7] &=
and Ty = 19, so T' = ¢.

- Let ¢ = 11 A by, Assume that T = ¢ and K, T < K',T', where k = md(¢). Then
T ¢ and T | 1y, Let m = md(¢)) and n = md(¢z). Now m,n < k, so by
Lemma K, T <, K' T and K,T <, K',T'. By the induction hypothesis,
T" =y and T" |= 19, hence T" = ¢.

- Let ¢ = Q1. Assume that T = Oy and K, T <, K',T', where k = md(¢). Then
S = 1 for some S such that TRS. By Lemma[3.15] (i), there is a S such that T"R'S’
and K, S <1 K', 5. Since md(y)) = k — 1, the induction hypothesis implies that
S'EY,s0T" ¢

- Let ¢ = . Assume that T = Oy and K, T <, K',T', where k = md(¢). Then
R[T] | +. By Lemma [3.15 (ii) it follows that K, R[T| <,y K’, R'[T"]. Since
md(¢) = k — 1, the induction hypothesis implies that R'[T"] |= ¢, so R'[T"] = ¢.

- Let ¢ =ay...a0, € B1...0,, and suppose that T' = ¢ and K, T <, K',T’, where
k = md(¢). Let w' € T". By the definition of k-bisimulation, there exists a w € T'
such that K,w <, K’ w'. Since md(«;) < k, by Theorem it follows that
wE o <= wlkE q foralli =1,... n By assumption, there exists a vy € T
such that w = a; <= vy | §;. Again, by the definition of k-bisimulation, there
exists a v' € T" such that K,vy 2, K',v' for all i =1,...,n. Since md(5;) < k, by
Theorem it follows that v = 3; <= o' | f; for all i = 1,...,n. The state
w' € T' was arbitrary, so we conclude that for all w’ € T” there exists a v' € T" such
that w' Fa; <= v Epfiforalli=1,...,n. SoT' = ¢.

Therefore T' = ¢ implies 7" |= ¢. The other direction is symmetrical. ]

23



3.2 Expressive completeness and normal form

In this section we prove that MZL is expressively complete for classes (of Kripke models
with teams) that are closed under unions, invariant under k-bisimulation for some k, and
have the empty team property. Through the expressive completeness proof we obtain a
normal form for the logic. We review the expressive completeness proof provided in [I8],
and suggest a simplification to the normal form in line with the normal forms presented
n [22]. We also show that MZL is compact.

A class X C CT(®) is said to be invariant under k-bisimulation, if (K,7T) € X and
K, T < K',T" imply that (K',T") € K. We say that X is closed under unions if (K, T;) €
XK for all ¢ in some nonempty index set I implies that (K, U;c; T;) € K. We say that K
has the empty team property if (K, ) € X.

For each formula ¢ in a logic L, let ||¢|| € CT(P) be the class defined by ¢, i.e.,

o]l :={(K,T) € €T(®) | K, T = ¢}.

Corollary 3.18. Let ® be a set of propositional symbols and let ¢ € MIL(P). Then
there exists a k € N such that the class ||¢|| is invariant under k-bisimulation.

Proof. By Theorem [3.17} it follows immediately that a class ||¢||, where ¢ € MZL(P), is
invariant under k-bisimulation with & = md(¢). O

Lemma 3.19. Let ® be a set of propositional symbols and let ¢ € MZIL(P). Then the
class ||@|| is closed under unions and has the empty team property.

Proof. Let ¢ € MZIL(®) and let (K,T;) € ||¢|| for all ¢ in some nonempty index set

I. Then T; |= ¢ for all ¢ € I. By Proposition [2.14] U;c; T = ¢ so (K,Uie; i) € |9l
Therefore the class is closed under unions.

By Proposition[2.15] § = ¢, so (K, 0) € ||¢||. Hence ||¢|| has the empty team property.

[

Now we know that every MZL-definable class has the empty team property, is closed
under unions and invariant under k-bisimulation for some k. We will show in Theorem
that if a class has these three properties, then it is definable by an MZ/L-formula.
This would mean that any formula with these three properties can be defined with a
formula in MZL, i.e., MZL is expressively complete.

First we aim to define characteristic formulas for teams. We begin by proving that
there are MZL-formulas that define the back and forth conditions of (team) k-bisimulation
(Definition [3.12). The result is due to [I8]. By simplifying the formula that defines the
forth condition in Lemma [3.20] we suggest a simplification of the inclusion atom part of
the characteristic formulas for teams given in [I8], similar to the normal forms presented
in [22].
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We show that the forth condition (Fj) in Definition can be defined by an ML-

formula. We handle the case of empty teams in Lemma [3.22]

Lemma 3.20. Let ® be a finite set of propositional symbols and k € N. Let (K,T) €
CT(®) and assume that T # 0, then there is a formula Cj;p € ML(®) such that for any
(K',T") € CT(®) with T" # 0,

K'\T'k (e < forallw €T thereis aw' € T' such that K',w' <), K, w.

Proof. Define for each k € N and (K, T) € CT(®) with T # {:
CGer = N (T € Xicw)-
weT

We note that since there are only a finite number of non-equivalent &:th Hintikka-formulas,
we can assume the conjunction A,cr(T C X]IC{,w) to be finite, thus C}%T is a formula.
Assume that 7" # (). Then we have the following equivalences:

T = A (T C Xk

weT
= VweT:T'ETC Xk

S VweTWeT I eT WV ET < v E Xk,
= YweT I eT v E k., (Since T" # ()
— VYweT W el : K' v e, K w. (By Theorem [3.8))

[

Next we show that the back condition (Bj) in Definition can be defined by an
M L-formula.

Lemma 3.21. Let ® be a finite set of propositional symbols and k € N. Let (K,T) €
CT(®) be such that T # 0, then there is a formula nj., € ML(®) such that for any
(K',T") € CT(®) with T" # 0,

K T E nlng < forallw €T there is a w € T such that K,w <, K',w'.

Proof. Define for each k € N and (K,T) € CT(®) with T # 0

koo k
NrkT = \/ XK w:
weT

We note that since there are only a finite number of non-equivalent k:th Hintikka-formulas,
we can assume the disjunction V,er Xl;(,w to be finite, thus n’;QT is a formula.
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Assume that T and T are both nonempty, and let 7" |= 7]’;(7T. Then, for each w € T,
there exists a subteam T, C T" such that T" = U,er Ty, and T, = x . Let w’ € T".
Now w' is in T}, for some w in T, and then by flatness w’ = X’I}w, which by Theorem
implies that K, w <, K',w'.

For the other direction, assume that for all w’ € T” there exists a w € T such that
K,w e, K',w'. For each w € T, define

T, ={w eT | K' v e K,w}.

Let w € T. In the case that w does not have a k-bisimilar state in 7", it follows that
T), = 0, which by the empty team property implies that T, | x%,. When T} # 0,
flatness and Theorem (3.8 imply that T7, = X - S0 Uwer Ty = Vuwer Xicw- It remains
to show that 7" = U,er 1), Clearly Uyer Th, € 1. We show that 7" C U,er 15, Let
w' € T', by assumption there exists a w € T such that K,w <, K',w’, sow’ € T),. Hence
w' € Uyer T,,- We conclude that 7" = Ve X - O

We now combine the previous two lemmas to obtain characteristic formulas for teams.

Lemma 3.22. Let ® be a finite set of propositional symbols and k € N. Let (K,T) €
CT(®), then there is a formula 0f , € MIL(®) such that for any (K',T") € CT(®),

K' T'=bi, < KT=, KT orT =0.
Proof. Define for each k € N and (K,T) € CT(®) with T # (:

kE _ k k
QK,T = Ngr N CK,Ta

where n’qu and ¢ ?{,T are as in Lemma and Lemma , and for T' = () define:

Ocr=\V0OAND.

If T'= (), then K,T <, K',T' holds only when T" = (). Note that 8}y = VOAAD = L.
Thus 7" = 0% if and only if 7" = 0.

If 7" = (), then the equivalence follows by the empty team property. Otherwise, if
T' is not empty, then 7" |= nj o A Cf p if and only if the back condition (By) and forth
condition (Fj) in Definition hold (by Lemma and Lemma [3.21]), which is the
case if and only if K, T <, K',T". ]

We call the characteristic formulas for teams obtained in Lemma [3.22] team-
characteristic formulas. We recall that for a finite set ® of propositional symbols, there
are only a finite number of non-equivalent k:th Hintikka formulas. Therefore clearly there
are only a finite number of non-equivalent k:th team-characteristic formulas.

Finally, we show that MZL is expressively complete.
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Theorem 3.23. Let ® be a finite set of propositional symbols and let € C CT(P). The
class C is definable in MZL if and only if it has the empty team property, is closed under
unions, and invariant under k-bisimulation for some k € N.

Proof. Suppose that C is definable in MZL, then by Corollary C is invariant under
k-bisimulation for some k£ € N. By Lemma [3.19] € is closed under unions and has the
empty team property.

Suppose that € has the empty team property, is closed under unions, and invariant
under k-bisimulation for some k& € N. Let ¢’ be the formula

\/ 0};(,T7

(K, T)eC

where Q%T is defined as in Lemma @ Let us prove that ¢ defines the class C. Suppose
that (K,T) € C. Clearly K,T <, K, T, so by Lemma T = 0% hence T |= ¢'.
Suppose that 7" |= ¢'. Then there are subsets T, € T" such that 7" = Uk 7)ee Tr and
Ty k= 0%. By Lemma[3.22]it follows that either K, T &, K', Ty or Ty = . If Ty = (), then
by the empty team property (K',T}) € C. If K,T <, K' T}, then since € is invariant
under k-bisimulation, (K’,T7}) € € follows. So (K',T}) € € and since € is closed under
unions, we conclude that (K’,T") € C. O

It follows from Theorem [3.23] that any MZL-formula is equivalent to a formula of the
form

(NF) Vo oOkr= NV (V XkwN AT S Xicw))-

(K T)ee (K,T)e€ weT weT
We say that formulas in this form are in the normal form.

Corollary 3.24. Let ¢ be an MZIL-formula. Then there is a formula ¢' of the same form
as in that is equivalent to ¢. We say that ¢’ is the normal form of ¢.

Proof. Let ¢ € MZL(P). By Theorem the MZL-definable class ||¢]| is invariant
under k-bisimulation for some k = md(¢), closed under unions, and has the empty team
property. By the proof of Theorem [3.23] the class is definable by a formula ¢’ of the form

. Thus, ¢ = ¢'. [

Hereafter, whenever the Kripke model is clear from the context, we write Hintikka
formulas and team-characteristic formulas without it.

We briefly mention another consequence of the expressive completeness of MZL:
MZIL admits uniform interpolation.

It was proved in [7] that any expressively complete team-based propositional or modal
logic admits uniform interpolation. It then follows from Theorem that MZL admits
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uniform interpolation. We refer the reader to [7] for the detailed proof and more discussion
about the notion of uniform interpolation.

Definition 3.25. Let ¢; and ¢, be formulas in a logic £(®) such that ¢; = ¢o. Then ¢
is an interpolant of ¢1 and ¢o, if @1 = ¥, ¥ | ¢, and ¥ is constructed from the common
propositional symbols of ¢; and ¢,.

An interpolant 1 is a uniform interpolant if it does not depend on the formula ¢o. We
say that a logic admits uniform interpolation if we can find a uniform interpolant for all
¥ € L, assuming certain conditions.

Corollary 3.26. MZL admits uniform interpolation.
Proof. By [7] and Theorem [3.23 O

We end this subsection by proving compactness for MZL, using compactness of the
expressively stronger logic modal team logic MT L. We adopt the definition of MTL
from [22].

Definition 3.27. Let ® be a set of propositional symbols. The syntax for modal team
logic MTL(®) is given by:

a:=pl-pl[~af(aVa)|(ara)|a|Dea,

where p € ®.
The obtain the semantics for MT L, simply extend the semantics for ML with the
following clause:
K, TE~a < K, T}

We recall that a logic £ is compact if ['U{¢} is a (possibly infinite) set of L-formulas,
and I' = ¢, then there is a finite subset I'y C I such that I'y = ¢. A proof system for a
logic £ is strongly complete if whenever I'U {¢} is a (possibly infinite) set of £-formulas:
If T | ¢, then ' - ¢. A system is sound if I' - ¢ implies T" = ¢.

It is shown in [22] that modal team logic MT L is expressively complete for the class of
all team properties invariant under k-bisimulation for some k. Thus MT L is expressively
stronger than MZL. In 23] 24] it is shown that M7 L has a proof system that is strongly
complete, from which it follows that the logic is compact.

Proposition 3.28. Let L be a logic that has a strongly complete proof system. Then L
18 compact.

Proof. Let T' U {¢} be an infinite set of L-formulas, and let I" = ¢. Then by strong
completeness I' = ¢. Since all derivations are finite, there is a finite subset I'y C I' such
that I'g F ¢, which implies I'g = ¢ by soundness. Hence £ is compact. [
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As an instance of the previous proposition, MT L is compact. We can conclude that
MZIL is compact.

Lemma 3.29 (Compactness). For any set of MZL formulas I' U{¢} such that T' |= ¢,
there is a finite subset Tg C T such that Ty = ¢.

Proof. Suppose that I' = ¢. MT L is expressively stronger than MZL, so for any formula
Y € MIL there is a formula ¢’ € MT L such that ¢ = '. Let ¢’ € MT L be such that
¢ = ¢. Define IV = {)) € MTL | € T and ¢p = '}, then I" = ¢'. Since MTL is
compact, there is a finite subset Iy C I such that I'jy | ¢'. Now I'y = {p € MZL | ¢’ €
[, and ¢' = 4} is a finite set such that 'y = ¢. O

3.3 Inclusion atoms revisited

In this section we examine the inclusion atom closer. In particular, we show that an
arbitrary inclusion atom is equivalent to a formula in which all non-classical subformulas
are of the form T C «. In fact, by extending ML with only top inclusion atoms we attain
the same expressive power as MZL. We will use this idea in the completeness proof. The
results in this section are essentially due to [30].

We call inclusion atoms with only L and T on the left-hand side of the inclusion
symbol primitive inclusion atoms. In particular, if there are only top formulas on the
left-hand side of the inclusion symbol, we call it a top inclusion atom. It follows by the
semantics of the inclusion atom that primitive inclusion atoms are upwards closed, i.e.,
for x € {T, L}, whenever a nonempty team 7T is such that 7' |= 2 C o, then T" =z C «
forall 7" D T.

Let us define some notation regarding inclusion atoms. Let z € {T, L} and define
a' = aand at = —a. For asequence a = (ay,...,qa,) and x = (z1,...,1,) we abbreviate
ai* A+ Ao by a*, where x is a sequence of T and L formulas. Let |a|] denote the length
of the sequence a.

First, we show a useful semantic fact about inclusion atoms: A primitive inclusion
atom x C a is satisfied by a nonempty team if and only if the team has a witness to the
conjunction a*.

Lemma 3.30. Let (K,T) € CT(®), and let T be nonempty. Then K,T |=x C a if and
only if there exists a v € T such that K,v |= a*. In particular, K,T =T C « if and only
if there exists a v € T such that K,v = a.

Proof. Suppose that T # () and that T = x C a. Let w € T, then there is a v € T such
that w Fx; <= viEaq;foralli=1,...,n. Leti € {1,...,n}. If x; =T, then w | x;,
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sov = a;. Hence v = o . If oy = L, then w [~ x;, so v [~ ;. Hence v = ait. So for all
i=1,...,n,v [ a. We conclude v |= a~.

For the other direction, assume that there is a v € T" such that v = a*. Then v = aj*
foralli=1,...,n. Leti € {1,...,n} andlet w € T. If x; = T, then v |= ] = o, hence
wkEr; <= v q; holds. If x; = L, then v = o = —ay, so w [~ x; and v - a4, hence
wEr; <= v q; follows. Thus T |=x C a. O

The next lemma allows us to reduce an arbitrary inclusion atom to a formula in which
all non-classical subformulas are primitive inclusion atoms.

For sequences a = (ay ... a,) and b = (51 ... 3,), we write w | a <= v |= b instead
ofwkEa < vEp forallie{l,...,n}.

Lemma 3.31. Let a,b be sequences of ML-formulas, and let x be a sequence of T and
L formulas. Then
A\ (ma*vxCb)=aCh.
x€{T, L}l

Proof. For the left-to-right direction, suppose that 7' = —a*V x C b for all x € {T, L}2I.
We show that 7' =a C b. If T'= (), then the result follows by the empty team property.
Suppose that " # (). Let w € T and let x be such that w | x <= w [ a, ie,
w = a*. From T = —a* V x C b, it follows that there are subteams 77,7, C T such that
TYUTy, =T, T) = —-a“and Ty = x C b. Clearly w € T}, so w € Ty, hence there is a v € Ty
such that w = x <= v |=b. Therefore w =a <= v b, thus T =a Ch.

For the right-to-left direction, suppose that 7' }= a C b and let x € {T, L}2l. We show
that T = —a*Vx C b. If T = (), then the result follows by the empty team property.
Suppose that T'# () and let n = |a|. Define the team

Iiy={weT|wkE o <= wkEa forsomeic{1,...,n}}.

We show that T, = —a*. Let w € Ty. Then there is some ¢ € {1,...,n} such that
wE a; <= wE x;, hence w = of. It follows that w & a* = ai' A--- A aZr. Hence
T, E —a~.

IfT,=T,then T = —a*so T | —a*Vx Cb. If T\T, # 0, then for any u € T
and v picked from 7"\ T}, we have that u = x <= v |=x <= v [= a, where the first
equivalence is trivial and the second is by v € T'\ Ty. Since T' |=a C b, there isa w € T
such that u =x <= vilEa <= wEb NowT ExCband T = —a* VvV x C b follows.
Since x was arbitrary we conclude 7' = =a* vV x C b for all x € {T, L}l as desired. O

The arity of an inclusion atom is the number of formulas on either side of the inclusion
symbol. The next lemma allows us to further reduce a primitive inclusion atom to a
formula in which all non-classical subformulas are primitive inclusion atoms of arity one.
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Lemma 3.32. Let a,b be sequences of ML-formulas, and let x,y be sequences of T and
L formulas. Then
xy Cab=xCaA((yCbAa¥)Vv-a¥)

Proof. First, suppose that T' = xy C ab. We show that T =x CaA ((y € bAa*) VvV —a).
If T = () the result follows by the empty team property. Suppose that T # (). Clearly
T = x C a. Define a team

T'={veT|vEa < vEx},

and let S =T\ T'. Now T" = a* and S | —a*. Let v € T", then since 7" C T and
T = xy C ab, thereisau € T such that v EFx < uwlFaandvfEy <= ulEb. Now
ulFa < vEx <= ul=x, hence u € T'. Therefore T" =y Cb. Since T"US =T,
we conclude that T'=x C a A ((y C b Aa¥) Vv —a¥).

For the other direction, suppose that 7' = x C a A ((y € b A a*) vV —a*). We show
that T = xy C ab. If T = () the result follows by the empty team property. Suppose
that T # 0 and let v € T. Since T x C a, we have that there is a u € T such
that u = x <= v = x <= u [= a, where the first equivalence is trivial. We note
that u = a*. Also, there are subteams 77,7, C T such that Ty UTy, = T, T} | —a®
and Ty, Ey C bAa*. Now u & T, so u € Ty, and therefore Ty is nonempty. Then
there isa w € To such that v Fy < ulEy <= w kb Also Ty | a% so
vVEX <= wkEx <= w [ a. Therefore T |= xy C ab. O

In addition, one can easily show that L C o« = T C —«. This means that we in fact
can reduce any inclusion atom to a formula in which all non-classical subformulas are
inclusion atoms of the form T C «. Indeed, the non-classical subformulas in the normal
form for MZL, contain this type of inclusion atoms only.

This observation motivates the definition of an operator ¢, such that for any ML-
formula a, T C a = ¢a.

Definition 3.33. The semantics of the operator ¢ is defined by the following clause:
K, TEOd < T =0 or there is a w € T such that K, {w} | ¢.

Intuitively, the formula ¢ ¢ is true in a nonempty team 7' if the team T contains a
witness state for the formula ¢. We may view the operator ¢ as a "local diamond” as it
asks for a witness of the formula ¢ "locally” from the team T itself, instead of from the
successor teams S satisfying T'RS (as with the usual diamond ¢).

Let us now consider modal logic extended with the operator ¢, denoted as ML(®).
We just noted that any inclusion atom in MZL can be reduced to a formula which
contains only top inclusion atoms of arity one. Therefore any formula in MZL can be
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expressed by an equivalent ML(®)-formula. Conversely, it can easily be shown that for
each ML(®)-formula ¢, the class ||¢|| is invariant under k-bisimulation for some k, is
closed under unions and has the empty team property, and therefore by Theorem )
can be expressed by an equivalent MZ/L-formula. Hence the expressive powers of the two
logics are equal.

Proposition 3.34. MZL is expressively equivalent to ML(®).

We can further ask if the formula ¢ ¢ is uniformly definable in MZL, i.e., is there
an MZL-formula ¢ (p) such that ¢ (¢) = 1(¢/p), where 1)(¢/p) refers to the formula
obtained by substituting each occurrence of p in ¢ by ¢. This is left for future work.
For more discussions on uniform definability of logical constants in the team semantics
setting, the reader is referred to [9, B, BT [6l, 27].

Another related operator is the "might” operator V (also known in the literature as
the "nonemptiness operator”) introduced in [I8]. We recall the semantics for the operator

V:
K, TEV¢ <= T =0, or there exists S C T such that S # () and K, S | ¢.

Clearly, ® ¢ = V¢ holds in general, and the other direction V¢ =& ¢ holds whenever
¢ is downward closed. In particular, we have & a = Va for any ML-formula «. Thus,
T Ca=Va as well.

It is shown in [I8] that modal logic extended with V, ML(V), is expressively equiva-
lent to MZL. Note that the normal form formula for ML(V)-formulas obtained in [18]
is essentially the same as our normal form for MZL, but with V-modality formulas
replacing the top inclusion atoms.
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Chapter 4

Axiomatization

The goal of this chapter is to define a complete proof system for MZL. We divide the
chapter into two parts. In the first section, we define the proof system for MZL. We show
that all rules included in the system are sound. In the second section, we show that the
proof system is complete. One important part in the proof of the completeness theorem,
is to show that all MZL-formulas have a provably equivalent formula in the normal form.
Using the normal forms, we follow the same strategy for proving the completeness theorem
as in [30], which is a commonly-used strategy for proving completeness for propositional
and modal team-based logics.

4.1 Axioms and rules

Modal logics are typically axiomatized using a Hilbert-style system. However, since MZL
does not have an implication, we instead use a natural deduction system. This section is
divided into two parts, first we define a natural deduction proof system for MZL, then
we show that the proof system is sound.

4.1.1 Proof system

In this subsection we introduce all the axioms and rules that are included in our proof
system for MZL. We introduce the axioms and rules of the system in steps. We also
define some useful rules that are derivable in our system. Many of the rules are based on
[30] and some are from [29]. The rules that concern both modal operators and inclusion
atoms are new.

Derivations are denoted by D, with or without an index.

Table includes rules concerning negation, disjunction and conjunction. MZL does
not admit uniform substitution (Proposition , so some rules, e.g., the negation rules
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—Iand RAA are restricted to M L-formulas. The soundness of the disjunction elimination
rule requires that the undischarged assumptions in the subderivations are downward- and
union-closed, and have the empty team property, hence the restriction of the undischarged
assumptions in the subderivations to M L-formulas.

The rules in Table [4.1] can all be found in [30]. Furthermore, the rules in Table
restricted to M L-formulas form the standard system for classical propositional logic.

o - -
J_O LO ; ¢ —F
D D o] [¥]
1 LAY ve oD
oV Y oVY 0VY X X ygg
Dy Dy D D
¢ Y ¢NY PNY
NE NE
NP A ) (G
(1) The undischarged assumptions in Dy and D; are M L-formulas.

Table 4.1: Rules for disjunction, conjunction and negation.

We say that ¢ and ¢ are provably equivalent, denoted by ¢ 4 v, it ¢ - ¢ and ¢ - ¢.
Next, we show some useful clauses using the rules in Table [4.1]

Proposition 4.1. Let T'y be a set of ML-formulas. The following clauses are derivable.

(i) If o & X, then g N = X N

(ii) If To,d F x, then To, ¢ Vo F x Vb
(iii) o A A=Y A

() oV APV o
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(v) (PAY)AX =G A (P AX)

(vi) (@VY)Vx -9V (¥ VX)
(vii) L+ ¢.
(viii) If Do, L, then To, ¢ V ¢ - ¢.
(iz) - T.

Proof. Ttems (i)-(vi) are all derivable by the introduction and elimination rules for con-
junction and disjunction. For item (vii), we derive L ¢ by —E and —I. For item (viii),
we assume that I'g,¢ F L, and use VE and item (vii) to derive I'g,% V ¢ F ¢. Recalling

that T = =1, we see that item (ix) is an instance of the rule —I. O
D D
o O«
<>_|O[ ODIntel" —|Da Dolnter
8, :
o 00 V1)
—~ o~ OVDist
Y9 Monw 06V oy VDSt
O
(o] o 9]
Dy
R D, D,
Y Ooy ... Doy
O LIMon(1)
(1) Dy has no undischarged assumptions.

Table 4.2: Rules for diamond and box.

Table includes rules for diamond and box. All rules, except for ¢\VDistr, can be
found in [29]. In Proposition we show that the rules in Table and [1.2] exclud-
ing QVDistr, completely axiomatize ML. Restricted to classical formulas, ¢VDistr is
derivable.
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Next we define some clauses that are derivable by the rules in Table 4.1 and [£.2]
Proposition 4.2. The following clauses are derivable.
(i) Q@A) OP A QY.
(i) OV O A= O(o V ).
(7ii) Op Vv Oy = O(o V).
(iv) Op ATy == O(p A ).

Proof. For item (i), we derive O(¢p A ¢)) F Op and (¢ A ) E O by OMon. By Al we
conclude ¢(p A1) F Op A Q1. The left-to-right direction of item (ii) is derivable by VE,
OMon and VI. The right-to-left direction is by ¢VDistr. Item (iii) is derivable by VE,
[OMon and VI. The left-to-right direction of item (iv) is derivable by COMon and AI, and
the right-to-left direction is derivable by OOMon, AE and Al [

We note that the opposite direction of items (i) and (iii) in Proposition are not
sound. We observe that T' = 0o A Q1) implies that there are two (possibly different) teams
Sy and S5 such that TRS; and T RSs, with S1 = ¢ and Sy = 9. But T' = O(¢pAY) requires
that there exists a (single) team S such that TRS, that satisfies both ¢ and . To see
that T = (¢ V1) does not imply T' = ¢ V), we give an example. Let ® = {p, ¢} and
let K = (W,R,V) be a Kripke model with W = {wy, wy, w3}, R = {(wy,ws), (wy,ws)},
V(p) = {ws}, and V(q) = {w3}. Let T = {w;} (see Figure for a picture). Clearly
R[T] = pV g, but there are no subsets 77,7, C T such that Ty UTy, = T with R[T}]| = p
and R[Ty] = q. Hence T' = 0(p V q) but T }= Op v Og.

T R[T

Oq—T®

w1 \\ (@;2)

ws

Figure 4.1

Let us now introduce rules relating to the inclusion atom. Let a, b and c (with or
without indices) be sequences of M/L-formulas, and let x and y be sequences consisting
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of the formulas T and L. We recall that o' = o and a* = —«a. We also recall that a*

abbreviates the formula af* A --- A a® for a = (aq,...,a,) and x = (z1,...,2,). Let |a
denote the length of the sequence a.
D
T TCal ey aca =1
T1...2, Cap...0p =LThXC
D D
xy C ab apa1 € bgby
_— -
x C a CCtr apaga; C bobobl SWk
DO Dl -DO Dl
o’ bCc —a* xCa
zb C ac CExp ) C-E
D D
/\XE{T L}|a|(—|ax V X g b) aChb
b — C
aChb CExt = vx Cp =hdt
0]  xCSa] [¥] [ovy]  [xCa
D D
0 D, 2
D
-
(0AxCa)Vy X X Xy g
X =
DO Dl Dn
- -
fbv v xata Xn = an CDistr
((pvay'v---var)Ax; Cag A Ax, Ca,) Ve

Table 4.3: Rules for inclusion.

All the rules from Table are adapted from [30], except for the rule C | rExc. This
rule will be used to derive primitive inclusion atoms from formulas in the normal form,
which only contain top inclusion atoms. The other direction of C,tExc is also sound,
and we show that it is derivable in Proposition m (i). The rule C_E captures that
x C a A —a* is a contradiction, since (for a nonempty team) x C a implies that a* is true
somewhere in the team (see Lemma , while —a* implies that a* is not true anywhere
in the team. The rules CExt, CRdt and CCtr let us reduce an arbitrary inclusion atom to
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an equivalent formula where all non-classical subformulas are primitive inclusion atoms.
The rule Vc E captures the semantic fact that if a nonempty team satisfies the formula
(¢ A x C a) V1, then either the whole team satisfies either of the disjuncts, or there
are nonempty subteams that satisfy each disjunct. If the left disjunct is satisfied by a
nonempty subteam, since primitive inclusion atoms are upwards closed, it follows that
the inclusion atom is true in the whole team. The opposite direction of the previously
mentioned semantic fact is not sound. This is because (¢ Vp) Ax Ca e (¢ Ax C a) Vi,
which we show with an example. Let ® = {p,¢} and let K = (W, R,V) be a Kripke
model with W = {wy,ws}, R =0, V(p) = {w1}, V(¢) = {ws}. Let T = W (see Figure
for a picture). Clearly T' = (pV @) AT C g, but T = (p AT C q) Vq. However,
(VYY) Ax Cal=((¢Va*) Ax Ca) Ve holds, which is an instance of the rule CDistr.

T

P @

Figure 4.2

It is shown in [4] that the implication problem of inclusion dependencies is completely
axiomatizable by the rule CId together with the rules CTrs and CProj:

Dy D, D
aChb bgcCTrS ap...a, CB1... By
aCc - ail...aimgﬁil...ﬂim

where iy, ..., i, are distinct indices from {1,...,n}. We show in Proposition @ that the
rule CTrs is derivable from the rules in Tables and [4.3] and in Proposition [4.22] (iii)
that the rule CProj is derivable in our system.

Next we show that some clauses regarding inclusion atoms are derivable. In particular,
the transitivity rule for inclusion atoms from [30] is derivable. Let T" be a sequence of
length n consisting of top atoms.

CProj,

Proposition 4.3. The following clauses are derivable.
(i) ary...,on =T Cay...ap.
(W) If a; &= Bi, then T" Cay...ay E T" Caq...0;...ap, wherei € {1,... n}.

(iii) aCbbCckaCec.
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Proof. (i) Derivable by CId, CExp and CCtr.

(i)

(iii)

By classical rules, we derive - = (a1 A+ - Aay) V(g A+ - - Aay,). From the assumption
a; = B; together with Proposition[d.1] (i), item (i) and CId we have that aq A - -Aa, b
ag A ABiNANa, E(T"Cay...0i...an) AT, By Proposition(ii) we have
that = (a1 A+ Aay) V(g A Aay) E=(ag A ANag)VI(TP Cag ... By oan)AT).
By VcE, it suffices to show that

(@) T"Cag...ap, (a1 A ANa,)) ET"Cay...0...ap,

(b) T"Cag...apn, T, T"Cag...0i...an bt T"Cay...0i...anp,

(¢) T"Coaq...apn, (1A AN, )VT, T" Cag...0i...an b T"Cay...0...ap.

Condition (a) follows from C_E, and conditions (b) and (c) are trivial.

By CExt, we need to derive =a* vV x C ¢ for all x € {T, L}l First, we derive
aCbF-2a*VxCbandbCchk —b*VxCcby CRdt. We have that —=a* vV x C
bt —=a*V (T Ax Cb)and -b*Vx Cct =b*V (T Ax Cc),soby VcE it suffices to
show that

(a) 7b*V (T Ax Cc),ma"F -a*VxCc

(b) =b*V (T AxCc),x CbF —=a*VvxCec,

since it would imply

—b*V(TAxCc), T,xCbkF=a*VxCc, (b)
=b*V (T Ax Cc),ma"F -a"Vx Cec, (a)
—b*V(TAxCc), TV-a“,xCbF-a*VvxCec (b)

Condition (a) follows by VI. By the rule VcE, condition (b) reduces to showing the
following clauses.

xChxCc TE=-aVxCec, (VI)
x C b,—b*F —=2*Vx Cc, (C.E)
xChbxCc TV-bF-a"vxCec. (V1)
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D Dy D,

O(x € a) - Od Nier(zi C Q) )
T Coa JP OBV Vier o) A Aver(m C o)) =00
Da D, D
TCOB O(kxCa) T C Qo
T C Oa* Hockxc O(x C a) OHcExc

O¢] [TCoa] [0y  [Oleve)] [T <o
D() D2
D e Dy s
O((p Ax Ca) V) X X X Oy E
X c

Table 4.4: Rules for modal operators and inclusion.

The rule ¢cDistr allows us to distribute diamond over the inclusion atom. The con-
verse direction of the rule {cDistr is not sound, which we illustrate with an example. Let
¢ = {p}andlet K = (W, R, V) be a Kripke model with W = {wy, wq, w3}, R = {(ws, ws3)}
and V(p) = {ws}. Let T' = {wy,we}. Clearly, T =T C Op. But there is no successor
team S C R[T] such that TRS, so T' = O(T C p). See Figure for a picture of the

example.

T R[T]
QLY

O

%)

Figure 4.3

Instead, we add the rule CyDistr, which then allows us to derive the opposite direction
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of QcDistr, with any diamond formula as an additional assumption:

0, T COa*F O((pV () )AT C a) (Cy Distr)
FO(T Ca"). (OMon, \E)

The rule OUcExc allows us to derive a box formula from a top inclusion formula with
a diamond formula on the right. The opposite direction of the rule {LcExc is not sound.
Let ® = () and let K = (W, R,V) be a Kripke model with W = {u}, V = () and R = 0.
Let T = {u}. Now T is a nonempty team such that R[T] = 0. Let a« € MZL. By
the empty team property, T = O(T C «). But T £ T C Q«, since u has no accessible
state. Adding the formula T C {3 as an assumption for this direction (forming the rule
O0cExc) guarantees that whenever a nonempty team satisfies the box formula, R[T] is
nonempty as well.

The rule [VcE is similar to VcE in Table but applies to box formulas.

Proposition 4.4. The following clause about diamond and inclusion holds:

OV ai A A(T COay) 4= 0\ as A N(T C ).

ier el ier il
Proof. We make the derivations.
()
OV ai, A(T € 0ai) FO((V i VvV a) NA(T Caw)) (S Distr)

i€l el i€l i€l iel
+ <>(\/ a; A /\(T C o). (OMon)
iel iel

<>(\/ a; N /\(T Ca)FO \/ o; A /\ O(T C o) (Prop. 4.2] (i))

il il icl icl
FO \/ a; N\ /\(T C Q). (OcDistr)
icl icl

]

Definition 4.5. The proof system for MZL consists of all axioms and rules presented in

Tables {.T1H4.4]
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4.1.2 Soundness

This subsection is dedicated to proving that our proof system for MZL is sound, i.e., that
for a set I' of MZL-formulas, we can only derive I' - ¢ when I = ¢. As a consequence
we get that our system for MZL has a subsystem that, restricted to classical formulas,
is complete.

Theorem 4.6 (Soundness). Let TU{¢} be a set of MZL-formulas. IfT'+ ¢, then T |= ¢.

Proof. All rules in Table and Table have straightforward soundness proofs. Based
on Lemma [3.31] and Lemma [3.32], we have that the following rules in Table are sound:
CExt, CRdt and CCtr. The more involved soundness proofs for the rules in Table
and Table [£4] are shown next.

(CDistr) Suppose that T = x; C a; foralli =1,...,nand T |= ¢ V ¢. We want to
show T = ((pVai' V---Var)Ax; CaiA---Ax, C a,) V. If T = () then the result
follows by the empty team property. Suppose that T # () then there are subteams
T1,T, C T such that Ty UTy, = T and 77 | ¢ and Ty |= . Since T' | x; C a;
for all i = 1,...,n, it follows from Lemma [3.30] that for every ¢ = 1,...,n there
is a v; € T such that v; = a}*. Consider the team T = {vq,...,v,} U T}, clearly
TiEovayt Vv---varand T Ex; Caj A--- Ax, Ca,. Since Ty UT, =T, we get
that T = ((pval' V---Var)Axg Ca;A---Ax, Ca,) V1, as desired.

(OcDistr) Suppose that T = O(x C a), then there is a successor team S such that
TRS and S | x C a. We show that T = T C Qa*. If T = (), then the result
follows by the empty team property. Suppose that 7' # (). Then S is nonempty, so
by Lemma there is some v € S such that v = a*. Since v € S and TRS, it
follows that there is some w € T such that wRv. Now w |= Qa*, so T' = T C {a*.

(CoDistr) We show that Q¢ A Ajcr(x; C Oa;) = O((@ V Vier &) A Nier(zi C ).
If the index set I is empty, then the assumption and conclusion are semantically
equivalent. Suppose that I is nonempty and that 7' = Q¢ A Ajer(x; C OQa;). Then
there is a team S such that TRS and S |= ¢. If T = (), then the result follows by the
empty team property. Suppose that T # (). By the assumption T' = A;cr(2; C Oay),
it follows that for each i € I, T |= x; C Qay. If &; = T, then it follows that there is
some v € R[T| such that v = ;. If z; = L, then by Lemma [3.30] there is some state
w; € T such that w; = —0aqy, i.e., w; E O-q;. By TRS there is a state v € R[T]
such that w; Rv, and since w; = O-a;, we have that v = —;. Therefore, for each
i € I there is some v € R[T] such that v = o}".

Define a team
S"'=SU{veR[T] v af for some i€ I}.
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Clearly S" = ¢V Vierai'. Also S" = Aies(zi € ;). Therefore 8" = (¢ V Vier o) A
Nier(z; € ;). Since S C 8" C R[T] and TRS, we have that TRS’, so T |
OV Vier i") A Nier(zi € ).

(O0cExc) Suppose that T = T C Of and that T = O(x € a). We show that
T E T C ¢a*. If T = (), then the rule is sound by the empty team property.
Let T # 0, then there is a w € T with wRv and v |= 5. So R[T]| # (. Now
() # R[T] = x C a, and by Lemma there is some v" € R[T] such that ¢" |= a*.
Then there is some w’ € T such that w'Rv" and w’ = ¢a*. Therefore T =T C {a*.

(OOcExc) Let T = T C ¢a*. We show that T = 0O(x C a). If T = (), then soundness
follows from the empty team property. Suppose that 7" is nonempty, then by Lemma
there is a w € T such that w |= ¢a*. It follows that there is a v € R[T] such
that wRv and v | a*, from which R[T] = x C a follows by Lemma [3.30 Hence
T EOKxC a).

(OVcE) Finally, we show that the rule OVcE is sound. The soundness for VcE in
Table [£.3] can be shown in a similar way.

Let T" consist of MZL-formulas. Suppose that I', J¢, T C ¢a* = y and I', Oy = y;,
aswellas ', (¢ V), T COa* = x. Let T =EO((pAx Ca)Ve) and T = v for all
v €. Then R[T] = (¢ Ax C a) V4, so there are subsets 77,7, C R[T] such that
TiUT,=R[T)and T1 = ¢ Ax C aand Ty = 9. We show that T |= .

We have three cases, either T} = (), T, = () or both 77 or T, are nonempty.
If Ty = 0, then Ty = R[T]. Now R[T] = ¢, so T |= Oy. We assumed that
IOy = x, thus T' = x follows.

If Ty = 0, then 71 = R[T] so R[T] &= ¢ Ax C a. Clearly T = O¢. Also
T |=O(x C a). First, let us assume that R[T'] is nonempty, then by Lemma3.30]
there is a v € R[T] such that v = a*, from which it follows that T = T C {a*.
Since we assumed that I',Jp, T C ¢a* = y, it follows that T = x. If R[T]
is empty, then by the empty team property, R[T] = v, hence T' = Cip. We
assumed that I', ¢ |= x, so we conclude T' = .

If both 7} and T are nonempty, then from 77 = x C a and Lemma m
it follows that there is some v € T such that v |= a*. Therefore there is a
w € T with wRv such that w | ¢a*. By definition 7' = T C ¢a*. Clearly
TWUTy, E oV, ie, RT] E ¢V, soT | O(p V). We assumed that
L,O@VY), T Coa* =y, thus T = x.

]
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4.1.3 Properties of the proof system restricted to M /L-formulas

In this subsection, we show that the proof system for MZL restricted to classical formulas
is complete: For any set of ML-formulas I'Uq, if I = o then I' = a. This shows that the
proof system for MZL is a conservative extension of the classical proof system for ML.

First, we recall the definition of the Hilbert-style system K, which is complete for the
class of all Kripke frames under the usual single-state semantics (see, e.g., [3]).

Definition 4.7. The Hilbert-style system of classical modal logic K consists of the axioms
1-3 and the rules 4-6.

1. All axioms of propositional logic. 4. Modus Ponens: a,a — /0.
2. K O(a — p) = (Oa — 0O5). 5. Necessitation: a/Ca.
3. Dual: Qo +» =O-a. 6. Uniform Substitution: a/a(5/p).

Restricted to classical formulas, the rules in Table[d.1], together with the rules OOlInter,
O0Inter, OMon and [OMon from Table [4.2] form a complete proof system for ML. We
also call this subsystem ML. It is shown in [29] that the natural deduction proof system
ML simulates the Hilbert-style system K.

Proposition 4.8. Let the proof system ML consist of all rules from Table and the
rules QU Inter, IO Inter, $ Mon and ODMon from Table . Let TU{a} consist of classical
formulas. Then

'rga <= T |_ME Q.

Proof. For the left-to-right direction, we prove that the rules and axioms of K are derivable
in the system ML. Restricted to classical formulas, the modus ponens rule, interpreted
as a, ~aV 3 F [, and the uniform substitution rule are easily derivable. The necessitation
rule is derivable by [LIMon.

The propositional axioms of K are derivable by the rules in Table We show that
the axioms of K with modalities also are derivable. An equivalent version of the K axiom
is J(a A ) 4 Oa A O, which is derivable by OMon. The inter-definabilty of O and ¢,
Qa 1+ —O=-a, is a special case of QUInter, JOInter and $Mon.

For the right-to-left direction, we assume that I' Fz a. By Theorem {.6] ML is
sound. Thus I' = « (over teams), from which it follows by Corollary[2.11] that I' = « (over
states). Since the system K is complete for single state ML, we conclude I' g a. ]

Next we show a result about the relationship between team semantics, single-state
semantics and derivations using the systems ML and MZL over classical formulas. We
obtain the result using soundness of our system for MZL and the fact that it has a
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subsystem ML that is complete with respect to classical formulas, as seen in Proposition

(4.8
Lemma 4.9. Let I'U{a} be a set of ML-formulas. Then
I' = a (over teams) <= T' |= « (over states) <= T'Fpe a0 <= T Fyze o

Proof. The first equivalence is due to Corollary 2.11] The second equivalence is due to
soundness and completeness of the system K, together with Proposition The left-to-
right direction of the last equivalence is due to the fact that all rules from the complete
proof system for ML are included in the system for MZL. The right-to-left direction of
the last equivalence is due to the following implications:

I'Fymze o = I'Ea  (over teams) (Soundness of MZL)
= ' =a (over states) (Proposition [2.11])
= 'tk o (Completeness of K)
=— 'k (Proposition [4.8))

]

As a consequence of the previous lemma, we get the following result: If two pointed
®-models are k-bisimilar, then their respective Hintikka formulas are provably equivalent.

Lemma 4.10. Let ® be a set of propositional symbols and let (K, w) and (M, ) be pointed
®-models. Then

k _ .k k k
Kowey Miu = Xk = Xvw = Xikw & Xiw

Proof. The first implication is by Theorem the second by Lemma [£.9 O

4.2 Completeness

In this section, we prove that the proof system for MZL is complete. Together with
the fact that the proof system for MZL is sound, we can then conclude that we have
axiomatized the logic. The results in this section are essentially due to [30].

In the first subsection we prove some technical lemmas that will be used in the com-
pleteness proof. We also give the proof of the completeness theorem, using compactness
of MZL and assuming the provable equivalence of the normal form. We dedicate the
second subsection to the proof of the provable equivalence of the normal form.
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4.2.1 Completeness theorem

The main result of this subsection is the proof of the completeness theorem. We first
prove three lemmas that will be used in the proof of the completeness theorem, and claim
that the provable equivalence of the normal form holds. We postpone the proof of the
provable equivalence of the normal form.

In both Lemmal[4.16 and the completeness theorem, we will make use of disjoint unions
over Kripke models with teams. We therefore recall isomorphism for Kripke models, to
then define the disjoint union over Kripke models (with teams).

Definition 4.11. Let ® be a set of propositional symbols and let K and K’ be Kripke
models. Then K and K’ are isomorphic if there is a bijection f : K — K’ such that:

(i) For each p € ® and w € K: w € V(p) if and only if f(w) € V'(p).
(ii) For all w,v € K: wRv if and only if f(w)R'f(v).

We say that Kripke models K; with domains W;, ¢ € I for some index set I, are
pairwise disjoint it W; and W; are disjoint for any i # j, where 4, j € I.

Next we define the disjoint union over Kripke models, in which we first take isomorphic
copies of the models such that the copies are pairwise disjoint, and then we take the union
over the isomorphic copies.

Definition 4.12. The disjoint union of the Kripke models K;, where ¢ € I for some index
set I, is the Kripke model W;c; K; = (W;e; W' R, V), where W;c; Wi = Ui (Wi x {i}),
(wo, 1) R(w1,11) iff i = i1 = i and woR;wq, and V(p) = Wi Vi(p) = Uier (Vi(p) x {i}).

The disjoint union for ®-models with teams W;c;(K;, T;) is defined by W;c;(K;, T;) =
(Wier Ko, Wier Ti), where Wic; Ti = U (T; % {i}).

Let us now prove three lemmas that will be used explicitly in the proof of the com-
pleteness theorem. We recall that 6% = V,cr X5 A Aper(T € xF) is the form of
the team characteristic formulas obtained in Lemma [3.22 The first result, Lemma
4.13] captures that the semantic entailment between two formulas in the normal form,
V(k,r)ece 0k = Vm,8)e 0% holds if and only if every team in € is k-bisimilar to the disjoint
union over a subcollection from D. This lemma is the last semantic property we need for
the completeness proof.

Lemma 4.13. Let C and D be finite sets of ®-models with nonempty teams. Then
V(k,)ee 9’;(7T F Varsen 9%4,5 if and only if for all (K',T") € C, there is a subclass
Dr C D such that K',T" <1, | Dr.
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Proof. We first prove the left-to-right direction. Let (K’,T') € €. Clearly T" |= 6%,.
By the empty team property, T’ = V(k1)ee 0%, which by assumption implies that 7" |=
Vu,s)ep 05. Then for each (M, S) € D, there are subteams T C T" such that Uy g)en T6
=T" and T} |= 0%. By Lemma [3.22] either K’, T% =, M, S or T, = 0.

Let us define a subclass Dy C D by

Dy = {(M,S) € D | K', T} =), M, S}.

We note that if T4 = ), then T & Dy since otherwise K, () 2, M, S, where S # (). Now
(K,, T/) = (K/, U(M,S)ei) Té«) = (K/, U(M,S)GQJT Tév) AISO,

K/, U Té = L‘lj (K/,Té«) =2 H‘J (M, S)
(M,S)eDr (M,S)eDr (M,S)eDr
We conclude that K',T" < t) Dp.

For the right-to-left direction, let (K'T") € € be such that T |= V(g r)ce 0. We
want to show that 7" = V(u g)en 0%. By assumption, there is a subclass Dy C D such
that K',T" <, WDr. By Lemma m (iii), there are subteams 7¢ C 71", such that
Unrsyeny Ts = T and K, Tg < M, S. By Lemma [3.22] T4 k= 0%. So T' |= V (u,s)en, 05-
By the empty team property we conclude that 7" =V sy o%. ]

As previously mentioned, the next two lemmas will be used in the completeness the-
orem. Furthermore, they will also be used in Lemma [£.16, In particular, Lemma is
a derivability result that corresponds to the semantic result of Lemma [3.22} that team-
characteristic formulas capture team k-bisimulation.

Lemma 4.14. If K. T <, M, S, then 0} ; 4 0}, 5.

Proof. Suppose that K, T <, M,S. Then either both teams T" and S are empty or both
are nonempty. If T'= S = (), then % = L AT = 0%. Suppose that T and S are nonempty.
We have that 6% - \/,,cr x* by AE. By Lemma and VI, we derive for each w' € T
XE E P Ves X%, for some v € S such that K, w' €5, M,v. We then use VE to conclude
Vwer XZ F Vues XZ-

We index the elements of S with an index set I. Let u; € S, where i € I. By k-
bisimulation, there is a w; € T such that K, w; £, M, u;, which by Lemma {4.10| implies
X% F x% . By AE and Proposition (ii) we derive: 0F = T C xE F T C x% . Since u;
was arbitrary, this holds for all u € S, and we conclude by Al that 0% F A,cq(T C x5).

Finally, we use conjuction introduction to conclude 6% + V,cs X% A Aues(T C xu)-
The other direction is symmetrical. [

The next lemma shows that the team-characteristic formula for the disjoint union of
D, entails the disjunction of team-characteristic formulas for the teams in D, with the
latter formula being in the normal form.
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Lemma 4.15. 6@® FVrsyen s

Proof. If D is empty, then 6, = VO AAD ~ L and we use Proposition (vii) to

derive L = Vs 9)en 0%. Suppose that D is nonempty. Since D is finite, we can index the
members by some finite index set I such that (M;,S;) € D for all i € I. Since a state
and its disjoint copy are k-bisimilar, it follows by Lemma that their corresponding

Hintikka formulas are equivalent. By Proposition (i), (ii) and Proposition (i), we
have that

o=V XA A (TS 4+ Vo Ve A ATCK).

(M,w)eld D (M,w)el D (M;,S;)€D wesS; (M;,S;)€D wesS;

First we prove the following claim: For any MZ/L-formula ¢ and ML-formulas «;,
with ¢ € I, we can derive:

il icl icl icl
By CDistr we derive V;cr a; VU, Nier(T C i) F ((Vier @ V Vier i) A Nier(T C o)) V4.
We derive (V,er @i V Vier i) A Nier(T C ;) B Vier @i A Nier(T € o) by AE, VE and Al
thus ((Vier @i V Vier @) A Nicr(T C )) Vo = (Vier ai A Nier(T C ) V 9 follows by
Proposition (ii).
For the sake of readability, let I = {1,...,n} and define 7; = Veg, X5 and ¢; =
Awes,(T € x¥). Now we derive

(MmVmV-- V), G (mV V- Vo)A NG (Prop. [4.1] (vi))
FMmAG)V (V- V). ((4.1))

We continue with the same method

(MAC)V (m2V - Vn.),F eV ((mVEGQ)V-Vn.))AG
FMeAGQ)V(MAG)Y M3V V),

until we have the derivation

(771\/772\/"'\/7771)»@,-'-7@“(UnACn)V"'\/(mAQ)
OV oxa A ATexa) VvV xon A(TSx).

wEST wEST wWE Sy wWE Sy
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A central lemma in proving the completeness theorem is the provable equivalence
of the normal form. The proof is involved, thus we postpone the proof until the next
subsection.

Lemma 4.16 (Provable equivalence of the normal form). Let ® be a finite set of proposi-
tional symbols. For any formula ¢ in MIZL(P): ¢ = ¢', where ¢ is in the normal form

as in .

Using Lemma and Lemma [3.29] we can show the completeness theorem for our
system: Anything that is sound, is derivable.

Theorem 4.17 (Completeness). Let ® be a finite set of propositional symbols. If T U{¢}
is a set of MZIZL(®) formulas and T =1, then T+ ).

Proof. Suppose that ' = 1. Since MZL is compact, there is a finite subset I'y C I" such
that I'g |= +. Now the conjunction ¢ = A cr, 7 is a formula in MZL. It suffices to show
that ¢ = .

By Lemma m, there are MZL-formulas V g e 0% and Vu,s)e 0% such that

o= \/ Ofandy - \/ 6L

(K, T)ee (M,S)eD

By the soundness theorem it follows that

o= \/ OGhandy= \/ 0%

(K,T)e€ (M,S)eD

we use Proposition (vii) to derive 1. Suppose that C # () and let (K,T) € C. By
Lemma there is a subclass Dy C D such that K,T <, W Dr. By Lemma [1.14]
Lemma 4.15] and VI

Thus V (k 7)ece 0% = viM’S)EQ 0%, 1f € = (), then Vik1ee 0% is the empty disjunction and

A VAR S VAR
(M,S)eDr (M,S)eD

By VE we get that V x pee HIf(’T = Vs)en 0%, and conclude that ¢ F 1. O

Together with the soundness theorem, the previous result implies that I' |= ¢ if and
only if I' = . Thus the strongly complete axiomatization of MZL is realized.
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4.2.2 Provable equivalence of the normal form

All results in this subsection are technical properties of MZL and applications of its proof
system, which will be used to show main result of this subsection, the proof of Lemma
[4.16} provable equivalence of the normal form, which proves that for every MZL-formula
¢, there is an MZ/L-formula ¢’ in the normal form, such that ¢ -+ ¢’. The result is
proved by induction on the complexity of MZL-formulas.

First we show that if two pointed ®-models are not k-bisimilar, then their respective
Hintikka formulas prove a contradiction.

Lemma 4.18. Let ® be a set of propositional symbols and let (K, w) and (M,w) be pointed
®-models. If K,w %, M, u, then X .. X, F L.

Proof. Suppose for a contradiction that x*  x* I 1. Since x* and x* are MZL-formulas,
it follows from Lemma that there is some Kripke model K’ with a nonempty team
T such that K/, T |= x* and K',T = x*. By flatness K',v = x* and K',v = x* for
all v € T, from which it follows by Theorem that K, w <3, K',v €, M, u, which is a
contradiction. We conclude x* %+ L. [

We build on the previous result to show the comparable result for ®-models with teams:
If two $-models with teams are not k-bisimilar, then their respective team-characteristic
formulas prove a contradiction. This result will be used to prove the induction case for
conjunction formulas in Lemma [4.16]

Lemma 4.19. If K, T %, M, S, then 0} .04, g+ L.

Proof. Without loss of generality we can assume that the state that does not have a k-
bisimilar counterpart is in the team 7', i.e., there is some w € T such that K, w ¢, M, u
for all w € S. By Lemma we have that x* x* F L, from which, together with
disjunction elimination, it follows that \/,ecs X%, x% F L. By —I we derive V,cq X* = —x%.
By AE we now have that 6% - V,cq X* B —x%. We also derive 65 = T C x* with AE.
Finally, we use C_E to derive T C x* —x* F L. O]

Next we show that the rule VcE can be generalized to allow for a conjunction of
inclusion atoms instead of just one. We can then generalize the application of the rule
further, to allow multiple disjunctions. This result will be used to prove the induction
cases for both conjunction and inclusion formulas in Lemma [£.16]

Lemma 4.20. Let I' consist of MZL-formulas.

(i) If the following three conditions are met
(a) T,Yp = x
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(b) F7¢7xlga17"'7xkgak'_x
(c) T,oVh,x; Cay,...,xp Cabx,
then T') (0 Axg Cag A Axp Cag) Vo x.

(ii) Let I be a nonempty finite index set. For each i € I, let 1; be a conjunction of
finitely many primitive inclusion atoms. If for every nonempty index set J C I

(4.2) L\ o, N\ ik x,

jeJ  jeJ
then T, Vier (i A 1) F x.

Proof. (i) To use the rule VcE to conclude I', (0 Ax; Caj A+~ Axx Cag) Vo F x, we
need to show

(1) T,kx
(2) TyopAxaCagA---Axp Cag,xg Cap by
(3) F,(¢/\x2gag/\---/\xkgak)vw,xlQall—x,

where the first two conditions follow from the assumptions (a) and (b) respectively.
The last condition holds by VcE if

(1) T,wkx
(2) TyoAx3CagA--Axp Cag,xg Cag,xe Cagky
(3) T,(pAx3sCazA---Axpg Cag) Vi,x; Capxe Cagh x,

where again the first two conditions follow from the assumptions (a) and (b). We
continue reducing the problem using VcE until the third condition is of the form

(3) ToVi,xi Capyeenyxp Caghkx,
which follows from assumption (c).

(ii) Suppose that (4.2) holds for all nonempty index sets J C I. First we prove the
following claim: For all disjoint sets K, L C I, where K # (),

L\ oV (i Au), N\ whx.

keK leL keK

We prove the claim by induction on L. If L = () then Vjcx & V Vier(dr A 1) =
Viex &k V L F Vierx ¢r by Proposition (viii) and T, Viex Ok, Aker te = x by
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assumption (4.2). Suppose that the claim holds for L and consider L U {0}, with
0 ¢ L. We show that

L, eV N (deAu)V(doAw), N\ wb x
keK lel keK
We notice that the formula on the left is in the right form to use (i), with Ayex tx € T,
¢ = ¢o, ¥ = Vyierx Ok V Vier (& A ) and ¢ is a conjunction of a finite number of
primitive inclusion atoms. We also have that

1) T,V ouVVieiAu), \ wkx (IH)
keK leL keK
(2> F? ¢07 Lo, /\ Lk - X ((42))
keK

(3) T,o0V \ oV V(dAu) o, )\

keK leL keK
"F/\( \/ gbk\/\/(gbl/\u))/\ /\ Lk}_X7 (IH)

ke KU{0} leL ke KUu{0}

so the claim follows by (i).

Now we prove that I', \V;c;(é: A ;) F x by induction on the size of I. If |I| = 1, then
the result is immediate by (4.2). Suppose that (ii) holds for I. Consider I U {0},
with 0 € I. Our desired formula is in the right form to use (i), with ¢ := ¢,
¥ := Vier(d; A 1) and 1 is a conjunction of a finite number of primitive inclusion
atoms. We have the following

(1) F7V(¢iALi) - x (IH)
(2) T do 0k x ((4.2),1 ={0})
(3) T,goV \/(@ Ati),to = x (By claim)

hence I', Ve (i A ti) V (o A o) = x follows by (i).
[

We show a similar application for the rule OVcE, that will be used to prove the
induction case for box formulas in Lemma [4.16l

Lemma 4.21. Let I' consist of MZL-formulas.

(i) If the following three conditions are met
(a) T,0Y = x
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(b) T,0¢, T COat,..., T COayr Fx
(¢) T,0(¢ V), T COalt,..., T COa* Fx,
then T,O0((6 Axy Cay A+ Axi Cag) V) Fx.
(ii) Let I be a finite index set. For each i € I, let 1; be a conjunction of finitely many

primitive inclusion atoms. For v; = Npeg, (X C ax), define to; = Aer, (T C Oagt).
If for every index set J C I

(43) F, |:| \/ qu, /\ L<>j l_ X,
jeJ  jed
th@n F, |:| Vie[(?bi AN Li) l_ X-
Proof. (i) To use the rule OVcE to conclude I', (¢ Ax; C ag A---Axg C ag) V) F x,
it is sufficient to show
(1) IOy Ex
(2) T ,O(@AxaCagA---Axp Cag), T COat kx
(3) IOW(PAx2 CagA---Axi Cag) V), T CQat k- x,
where the first condition follows from the assumption (a). To show that the second
condition holds, we derive
(2) T,O@Axe CagA---Axp Cag), T COatt
F I, 00, 0(xe C ag),...,0(xx Cag), T C Oatt (Prop. [4.2fiv))
FT,00, T CQax,..., T COay, T C Qay! (O0c Exc)
Fx. (0)
The third condition is derivable from the rule OVcE if
(1) IO, T Coal' k- x
(2) T,0(pAx3CagA---Axx Cag), T COa, T C Qayzk y
(3) I,O(pAx3CagA---AxgCag) V), T COayt, T C Oay2t vy,
where again the first condition follows from the assumption (a) and the second con-

dition follows by the same argument as the previous second condition. We continue
in the same manner until the third condition is reduced to

(3) T,O(@VY), TCoal,.. T COaf Fx,

which is satisfied due to assumption (c).
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(ii) Suppose that (4.3) holds for all index sets J C I. First we prove the following claim:
For all disjoint sets K, L C I,

L0V eV (@ Aw), N\ wrb x
keK leL keK
We prove the claim by induction on L. If L = 0 then O(Vycx & V Vier(dr A
1)) = OViex &x V L) F OViex ¢ by Proposition (viii) and OMon. And

[ O Viex Ok Aser Lok E X by assumption (4.3). Suppose that the claim holds for
L and consider L U {0}, with 0 ¢ L. We show that

F,D(\/ ¢k\/ \/<¢ZALI>V<¢OALO)>7 /\ LOk}_X'
keK leL keK
We notice that the formula O(Vycx ér V Vier (01 A )V (éo Atg)) is in the right form

to use (i), with Apcxtor € T, ¢ = ¢o, ¥ = Vierx &k V Vier(d1 A 1) and ¢ is a
conjunction of a finite number of primitive inclusion atoms. We also have that

(1) 0,00V oV V(oAw), N\ tort x (IH)
keK leL keK
(2) T,06%, 00, N tor F x (4.3)
keK
(3) T,0(oV \V ¢V V(o Aw)) oo, N\ tor
keK leL keK
I_Falj(( \/ Qbk;\/ \/(le/\Ll))), /\ Lok I_X7 (IH)
ke KU{0} leL ke KU{0}

so the claim follows by (i).

Now we prove that I', 0 V,c;(¢; A ¢;) F x by induction on the size of I. If |I| = 0,
then O V,cr(¢s A ;) =0V 0, and T,0V 0 F x by (4.3). Suppose that (ii) holds for
I and consider I U {0}, with 0 ¢ I. Our desired formula is in the right form to use
(i), where ¢ := ¢g, ¥ := V;cr(é: A ;) and ¢ is a conjunction of a finite number of
primitive inclusion atoms. The following criteria are met

(1) FaDV(GﬁiALi)'_X (1H)
(2) I, Odo, o0 - x (4.3)
(3) I',0(¢oV \/(¢z A i), too B X, (By claim)

so I' O(Vier(és A i) V (@0 A o)) = x follows by (i).
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We return to Lemma [£.16} provable equivalence of the normal form. We will use
the normal form for ML-formulas as presented in [12]: For all & € ML, we have that
o = V(g uwen Xb (over states), with k£ = md(a) and D = {(K,w) | K,w = a}. All the
cases except for the new cases of box and diamond are essentially due to or inspired by
[30].

Proof of Lemma[{.10. Let ¢ € MZL(P). We prove the theorem by induction on ¢.

- We show the cases for ML-formulas. If ¢ = 1, define ¢’ = L. Then ¢ -+ ¢’ is
trivial. We combine the cases for ¢ = p € ® and ¢ = =, where § € ML(P), then
in either case ¢ is a classical formula «. By the ML normal form we have that
o = V(g wen Xh (over states), with k = md(a) and D = {(K,w) | K,w = a}. It
then follows from Lemma [4.9] that

a0\ xE.

(K,w)eD

We show that Vg .)en Xt I Vi wen elfw}'

(F) By VE, it suffices to show for all (K, w) € D that x5 = V(xwen(XEAT C xE) =
V(K,w)ED el{cw} Let (Kaw) € ®a then Xfu = Xfu AT g Xflfu - \/(K,w)eﬂ(leu AT g X]'fu)
by Proposition (i) and VI.

(4) We show that for all (K,w) € D: Glfw} =X AT S X5 FVigwen x5, then the

result follows by VE. Let (K,w) € D, then x* AT C x* % F V(K w)ed X% follows
by AE and VI.

(IH) There are classes €, D C CT(P) such that

YA/ 05 and ¢\ 6L
(K, T)eC (M,S)eD

+ Let ¢ = 1 V ¢o. By the induction hypothesis ¢1 == V(g r)ce 0% and vy -
Vu,s)en 0%. Define ¢/ = V(kr)ee % v V(u,s)ep 0%. By the induction hypothesis
and Proposition (i), Y1 V Y2 A Vigryce 0F V V(ars)en 0 follows.

« Let ¢ = 1 A iy, If, let us say, C is empty then ¢y = Vg pyee 0 = L. We can
define ¢’ = L. Now ¢ —F ¢’ is trivial.

Suppose that € and D are nonempty. Define a set Y of ®-models with teams by
Y={He' | CCand Y€ =4 HD', for some D' C D}.

Let ¢ = Vxey 0%. We aim to show that 11 Aty A Vyxey 0%.
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(F) To show that

V 0%, \ oir\ ok

(KT)ee  (M,S)eD Xey
it suffices by Lemma [4.20] (ii) to show that

Vo Voo, A ATexw), Voosk V ok,

(K,T)eC’ weT (K,T)eC’ weT (M,S)eD Xey

for all nonempty € C €. By the same lemma it suffices to show that we can derive
Vxey 0% from

Vi Vo A ATSx), Vo Vo A ATSx),

(K,T)eC weT (K,T)eC weT (M,S)eD’ wesS (M,S)eD’ wes

for all nonempty D’ C D. And that reduces to showing Oye Oy - Vxey 6% for all
nonempty ¢’ C € and D' C D. Let ¢ C € and D’ C D be nonempty.

If W€ #x WD, then Oye,Oyo F L = Vxey 0% by Lemma and Proposition
(vii).
If Y& <, D, then Y€ €Y, hence 9L+J e P Vxey 6% by disjunction introduction.

() We show that Vxey 0% 11 A 1hs. To use VE, it is sufficient to show that for
every X € 'Y

o= \/ ok \/ ity and 0% \/ OEF O\ OiF .
(K, T)ec’ (K, T)eC (M,S)eD’ (M,S)eD
Note that X is of the form € for some € C €, hence Lemma and Lemma
justify step one. The second step is by VI, and the last step follows from the
induction hypothesis. Therefore 6% F 11 A 1y by conjunction introduction. The
result then follows by disjunction elimination.

- Let p=aC b, wherea=a;...a, and b= (3;...[3,. By the rules CRdt and CExt
we derive

aCb+4 A (ma*VvxCh).
xe{T, L}l

Assuming the induction cases for M L-formulas, conjunction and disjunction cases,
it suffices to show that each primitive inclusion atom is provably equivalent to a
formula in the normal form. We claim that x C b - Vikmey 0%, where the class Y
is defined by

Y={(K,T)|Jw € T such that w = b*},
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and k = md(x C b) = md(b¥).

We recall that for a finite set ® of propositional symbols, there are only a finite
number of non-equivalent k:th team-characteristic formulas. Hence, we can assume
that the disjunction Vx 1)ey 0% is finite.

First we prove the following claim: If w = «, then x* F a, where & > md(«a). To

prove the claim, it is enough to show that x* |= «, then the derivation x* F «

follows by Proposition [4.8] Let X |= x*, then u |= x* for all u € X by flatness. By
Theorem it follows that w = u, so u = «. Using flatness again, we conclude
X E a.
(F) Let M be the collection of all ®-models, then b V(x ,yene X5 follows from =
V(r.wpene X and Lemma
Also, XEF XEAT CxEEVikwen(Xh AT C xF) by Proposition (i) and VI.
To show V(x myenc(Xs A T € x5),x C b Vyey 05, by Lemma @ (i) it suffices to
show that for all nonempty teams 7T,

Vo, A(TExy)xSbh Vo oy

veT veT (K, T)€eY
If (K,T) € Y the derivation follows from VI. If (K,T) ¢ Y, then for any v € T,
v = —=b*. The formula —b* is a classical formula with modal depth at most &, hence
x® F =b* by the claim. So V,cr X* F —b* by VE. Using the rule C_E we derive
—b*,x € b F Vg ey 0F-
() For all (K,T) € Y we have that 0% = T C x* = T C b*F x C b. The first step
is by AE. Since (K,T) € Y, we have that there is a w € T such that w |= b*, from

which the second step follows by the claim and Proposition (ii). The last step
is due to the following derivation.

T Cb Tk Cpb*. .. b (C Wk)
- Tl C gL e (Prop. [4.3((i4))
l—xlxngﬁlﬁn (gJ_TE.’EC)

We conclude V k 1yey 0% = x C b by VE.

- Let ¢ = O¢. By the induction hypothesis and OMon, ¢ 4 OV (s 51en 0% We
show that

v\ OV xbA A(TCOox)).

(M,8)eD  weS weS

The result then follows by the induction cases for M /L-formulas, conjunction and
disjunction.
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(F) We have 01 F O Viars)en 0% F Vus)en 005 by OMon together with the induc-
tion hypothesis, and ¢\VDistr. For each S’ € D we have that

00k =0(\/ xEA AN (TCxh)

wes' wes'
FO OV XA A (T CSOx) (Prop.
wes' wes'
oV OV A AT COoxE). (VI)
(M,8)eD  weS weS

Hence by VE, we conclude O =V (y1.5)e0 (0 Vies X5 A Awes(T S OxE)).
(H) For each S" € D we have that

OV XuA AN (TCSOXE)EOCV Xon A (TCSxE) (Prop. [i4)
wes’! weS’ weS’ weS’

oV OV xe A AT X)) (VI)
(M,8)eD  weS wesS

VAR
(M,S)eD

Fo o\ 08 (Prop. [4.2(i1))

(M,S)eD
F Oy (OMon, I[H)

By VE we conclude V .5y (O Vies Xo A Awes(T S Ox5)) F Ov.

- Let ¢ = [y. By the induction hypothesis and [OMon, we have that [y -+
OV(u,s)en 0%. We show that

OV 4 \VO V XA A (TCOoE).

(M,S)eD DCC  (Kw)eldD (Kw)ely D

The result then follows by the induction cases for inclusion atoms, M L-formulas,
conjunction and disjunction.

(F) To make the derivation

OV (VarATSa)- VO Vo oxesr A (TSow),

(K, T)eC weT weT DCe  (Kw)ely D (Kw)eldD

it suffices by Lemma [4.21] (ii) to show that for all D’ C C,

OV V. A ATCHOFENVO Vo oxan A (TSOox),

(K,T)eD’ weT (K,T)eD’ weT DCe  (Kuw)elyD (Kw)ely D
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but this reduces to showing

OV xi A Tcodr-ErVO Vo xin A (TCOoxm),

(Kw)ely D’ (Kw)eld D! DCe  (Kuw)elyD (Kw)ely D
which holds by VI.
(4) We show that for any D C C,

O V X A (TcCoxihrOo VV o5

(Kw)ely D (Kw)ely D (KT)ec

Then the desired result follows by VE. First we derive

A (TSOowF A O(TSxp) (O0c Exc)
(Kw)elg D (Kw)ely D
FO A (T Sxw) (Prop. [.2{(iv))
(Kw)ely D

Now we derive

OV X O A (TcSxy)

(Kw)ely D (Kw)ely D
FOC Vo oA A (TSxh)  (Prop. f2(iv))
(Kw)elyD (Kw)ely D
= Dby
FO 65 (OMon)
(K,T)ee

To use [DMon in the last step we derive 9@® Vg men 0% - V(km)ee 6% by Lemma
[4.15 and VI.

]

As a consequence of the proof of the induction case for inclusion atoms in the previous
lemma, equivalent inclusion atoms are easily shown to be provably equivalent.

Proposition 4.22. The following clauses regarding inclusion atoms are derivable.
(i) x1...2,, Cay ..., I T...T Caf'...a*.

(27,) dpadidr g b0b1b2 =+ didpar g blbobg.
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(iii) c1...00 C By B by .oocu,, C Biy ... 0i,, where iy, ... iy are distinct indices
from {1,... ,n}, i.e., the rule CProj is derivable.

Proof. (i) By the normal form for primitive inclusion atoms in the proof of Lemma
4.16|, we have that

T1...25 C ... 1 \/ 9:]}—|I—T...T§a“i“...aﬁ",
(K, T)eY

where the class Y is defined by

Y={(K,T)| 3w e T such that w = aj* A--- Aaj"}
= {(K,T) | 3w € T such that w = (a®)" A--- A ()},

and k =md(z;...2, Cay...0p) =md(T... T Caf*...af).

(ii) Using CRdt and CExt we derive

dpdiar g b0b1b2 =+ /\ (_\(aoalaz)x V X Q boblbz)
xe{T,L}202122]

-+ /\ (—(agazan)* Vv \/ 0%)

xe{T,L}l202122] (K, 7)€Y
=+~ /\ (—|(a1a0a2)x V \/ 0172)
xe{T,L}212022] (K, T)eY

=+ /\ ("(alaoag)x Vx C blbobg)

Xe{T,J_}\aﬁoazl
=+ didpadr Q blbobz,

where Y is defined by

Y ={(K,T) | Jw € T such that w = (bgb1by)*}
= {(K, T) | Jw € T such that w ): (b1b0b2)x}

)

and k = Hld(X g boblbz) = Hld(X g blbobz).

(iii) Derivable by item (ii) and CCtr.
[

Since we have proven that we have a complete proof system, let us demonstrate the
power of the system by deriving some other interesting sound entailments.

Example 4.23. (i) O(T Ca) FO(T C a).
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(ii) f akF Gy and ak By, then T Cak TT C 516s.
Proof. (i) We derive (T Ca) - T C Qa k- O(T C «) by OcDistr and OO Exc.

(ii) Suppose that a - ) and a - fs.

TCa [
c C
T _7(36‘? ch b Prop. [4.3] (ii) do]
=4 2 Prop. (ii)
TT C B
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Chapter 5

Conclusion and future work

In this thesis, we defined a complete proof system for MZL, which was previously missing
from the literature. We also reviewed the expressive completeness proof for MZL in [1§],
and streamlined it by suggesting a simpler normal form for the logic. Next we suggest
some possible directions for future work.

In this thesis, we defined a natural deduction proof system for MZL. Since MZL is an
extension of modal logic, introducing a sequent calculus for the logic would be desirable,
and has been done for some other team logics (see [8]). Having a sequent calculus would
be beneficial for studying the proof-theoretic properties of MZL, such as cut-elimination
and structural completeness. A point of difficulty could be that MZL does not admit
uniform substitution, as seen in Proposition 2.17]

We observed that MZL does not admit the uniform substitution property, however,
it is possible that MZL is closed under flat substitution. That is, does it hold for all
formulas ¢1,¢, € MIL, that ¢ = ¢ = ¢1(a/p) | ¢2(a/p), where a is a flat
formula.

The main result of this thesis provides the axiomatization for one team-based modal
logic. There are other variants of team-based modal logics still without axiomatizations.
Two such examples are ML(®), as defined in Definition and MZL extended with
the global disjunction @ (also known in the literature as intuitionistic disjunction, Boolean
disjunction or classical disjunction), whose semantics is defined as

K,T):wl@l/é <~ K,T’lel or K,T’:¢2

To prove compactness of MZL, we used compactness of modal team logic. Instead,
one could attempt proving compactness directly, or possibly by translating MZL into
first-order inclusion logic, which is compact.

Naturally, one could investigate possible applications of MZL in other fields, such
as database theory and linguistics. A recent example of a connection between a union
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closed team-based modal logic and natural language is presented in [I]. In [I], modal logic
extended with the atom NE is used to model free-choice inferences in natural language,
where a team satisfies the NE atom if and only if the team is nonempty.
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