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Modal inclusion logic is modal logic extended with inclusion atoms. It is the modal variant of first-
order inclusion logic, which was introduced by Galliani (2012). Inclusion logic is a main variant
of dependence logic (Väänänen 2007). Dependence logic and its variants adopt team semantics,
introduced by Hodges (1997). Under team semantics, a modal (inclusion) logic formula is evaluated
in a set of states, called a team. The inclusion atom is a type of dependency atom, which describes
that the possible values a sequence of formulas can obtain are values of another sequence of formulas.
In this thesis, we introduce a sound and complete natural deduction system for modal inclusion
logic, which is currently missing in the literature.

The thesis consists of an introductory part, in which we recall the definitions and basic properties
of modal logic and modal inclusion logic, followed by two main parts. The first part concerns the
expressive power of modal inclusion logic. We review the result of Hella and Stumpf (2015) that
modal inclusion logic is expressively complete: A class of Kripke models with teams is closed under
unions, closed under k-bisimulation for some natural number k, and has the empty team property
if and only if the class can be defined with a modal inclusion logic formula. Through the expressive
completeness proof, we obtain characteristic formulas for classes with these three properties. This
also provides a normal form for formulas in MIL. The proof of this result is due to Hella and
Stumpf, and we suggest a simplification to the normal form by making it similar to the normal
form introduced by Kontinen et al. (2014).

In the second part, we introduce a sound and complete natural deduction proof system for modal
inclusion logic. Our proof system builds on the proof systems defined for modal dependence logic
and propositional inclusion logic by Yang (2017, 2022). We show the completeness theorem using
the normal form of modal inclusion logic.
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Chapter 1

Introduction

In this thesis, we axiomatize modal inclusion logic, which is the extension of modal logic
with the inclusion atom and based on team semantics. The inclusion atom lets us make
statements such as: There is a store in town that sells flowers but not food. In this
example, all stores in town are collected in a team T , and the statement can be formalized
as T |= ⊤⊥ ⊆ ’flowers’’food’.

First-order team semantics was introduced by Hodges in [19, 20], and team semantics
for modal logic was introduced by Väänänen in [26]. For modal logics, a team is a set
of states from the Kripke model. Formulas are then evaluated in a team, as opposed
to a single state. Under team semantics, extending a logic with certain dependency
atoms becomes interesting, first done by Väänänen with the dependence atom [25]. Other
variants were later introduced, such as the independence atom, introduced by Grädel and
Väänänen in [14], and the inclusion atom, introduced by Galliani in [10], where Galliani
adapted the inclusion dependencies from database theory, presented in, e.g., [4], to the
team semantics setting. First-order inclusion logic was shown in [11] to be equivalent to
positive greatest fixed point logic, and thus captures the complexity class P over finite
ordered structures. In the case of modal inclusion logic (MIL), modal logic is extended
with the inclusion atom. For modal logic formulas α1, . . . , αn, β1, . . . , βn, the semantics of
the inclusion atom is as follows: A team satisfies the inclusion atom α1 . . . αn ⊆ β1 . . . βn,
if all values the tuple α1 . . . αn can obtain in the team can also be realized for the tuple
β1 . . . βn somewhere in the team.

Two closure properties that are of particular interest when examining a team-based
logic are the downwards closure property and the union closure property. A logic has the
downwards closure property if whenever a formula in the logic is satisfied by a team T ,
it is also satisfied by any subteam T ′ ⊆ T . A logic is closed under unions if any number
of teams individually satisfy a formula in the logic, then their union satisfy the formula.
The usual modal logic (with team semantics) enjoyes both properties, but because of
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the added inclusion atom, MIL does not have the downwards closure property. Still,
MIL has the union closure property, which places it in a collection of team-based union
closed logics that have just recently received more attention in the literature (see, e.g.,
[2, 18, 30, 11, 13, 28, 21, 15, 16]). In this thesis, we contribute to the literature on team-
based union closed modal logics by introducing a sound and complete natural deduction
proof system for MIL.

In addition to being closed under unions, MIL has two more important properties: It
is invariant under bisimulation, and has the empty team property. A logic has the empty
team property if all formulas are satisfied by the empty team, and a logic is invariant under
bisimulation if Kripke models with teams that are bisimilar satisfy the same formulas.

We review the proof of Hella and Stumpf in [18] that modal inclusion logic is expres-
sively complete: A class of Kripke models with teams is closed under unions, invariant
under k-bisimulation for some natural number k, and has the empty team property if
and only if the class can be defined with an MIL-formula. Through the expressive com-
pleteness proof, we obtain characteristic formulas for classes with these three properties.
This also yields a normal form for formulas of MIL: Each MIL-formula is equivalent
to a formula in this normal form. Additionally, we suggest a simplification to the normal
form presented in [18], by simplifying the inclusion atom part, similar to the normal form
introduced by Kontinen et al. for modal team logic in [22].

For the usual modal logics, a Hilbert-style proof system is often used when axioma-
tizing the logics [29]. Since MIL does not have an implication, we instead use a natural
deduction proof system. Our proof system for MIL builds on the proof systems defined
for modal logic and propositional inclusion logic by Yang [29, 30].

To show compactness of MIL, we use the fact that modal team logic is compact, as
shown by Lück in [23]. The completeness theorem is proved using compactness and the
normal form.

The structure of the thesis is as follows. In Chapter 2, we define modal inclusion
logic and recall its basic properties. In Chapter 3, we show that modal inclusion logic
is expressively complete, and obtain the normal form for the logic. In Chapter 4, we
introduce the natural deduction proof system for modal inclusion logic and show that it
is sound and complete. We conclude the thesis and discuss future work in Chapter 5.
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Chapter 2

Preliminaries

In this chapter, we define modal logic and modal inclusion logic with team semantics, and
recall some basic properties of the two logics. The chapter is divided into two sections. The
first section recalls the syntax and team semantics of the two logics, and the second section
recalls their basic properties. In particular, the usual modal logic (with team semantics)
has the flatness property, and modal inclusion logic has the empty team property and is
closed under unions.

2.1 Syntax and team semantics
In this section we present the syntax and semantics for the usual modal logic, as well
as the team semantics for modal logic. We will call formulas of the usual modal logic
classical formulas. We then extend modal logic to modal inclusion logic, and present its
team semantics.

Definition 2.1. Let Φ be a set of propositional symbols. The syntax for modal logic
ML(Φ) is given by:

α := p | ⊥ | ¬α | (α ∨ α) | (α ∧ α) | ♢α | □α,

where p ∈ Φ.

A Kripke model K = (W,R, V ) consists of a set W of states (also known in the
literature as possible worlds or nodes), an accessibility relation R ⊆ W×W and a valuation
function V : Φ → P(W ), where Φ is a set of propositional symbols.

4



Definition 2.2. The Kripke semantics for ML are given by the following clauses:

K,w |= p ⇐⇒ w ∈ V (p).
K, w |= ⊥ never holds.
K,w |= ¬α ⇐⇒ K,w ̸|= α.

K,w |= α ∨ β ⇐⇒ K,w |= α or K,w |= β.

K,w |= α ∧ β ⇐⇒ K,w |= α and K,w |= β.

K,w |= ♢α ⇐⇒ K, v |= α for some v such that wRv.
K,w |= □α ⇐⇒ K, v |= α for all v such that wRv.

We also define the atom top by ⊤ := ¬⊥, for which K,w |= ⊤ always holds.
Next we recall some definitions regarding teams.

Definition 2.3. Let K = (W,R, V ) be a Kripke model.

(i) T is a team of K if T ⊆ W .

(ii) Let T be a team of K. The image of T is R[T ] = {v ∈ W | ∃w ∈ T : wRv} and the
preimage of T is R−1[T ] = {w ∈ W | ∃v ∈ T : wRv}.

(iii) Let T and S be teams of K. We write TRS if S ⊆ R[T ] and T ⊆ R−1[S].

In other words, TRS if and only if every state in S is accessible (by the relation R)
from a state in T , and every state in T has an accessible state in S. We say that such a
team S is a successor team of T .

Example 2.4. We give an example of a Kripke model with a team. Let Φ = {p, q} and
let K = (W,R, V ) be a Kripke model with W = {w1, w2, w3}, R = {(w1, w1), (w2, w3)},
V (p) = {w1} and V (q) = {w3}. Let T = {w1, w1}. See the picture below.

p

w1 w2

q

w3

T

W
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Example 2.5. We give an example of a Kripke model with a team T that has a successor
team. Let Φ = ∅, and let K = (W,R, V ) be a Kripke model with W = {w1, w2, w3, w4},
R = {(w1, w3), (w1, w4), (w2, w4)}, and V is the empty function. Let T = {w1, w2}, and
let S = {w4}, as illustrated in the picture below. Then S ⊆ R[T ], and T ⊆ R−1[S], hence
TRS.

w1

w2

w3

w4

T R[T ]

S

Let us next recall the team semantics for ML. We will see in Proposition 2.10 that
the team semantics is a natural generalization of the usual semantics for ML.

Definition 2.6. The team semantics for ML are given by the following clauses:

K,T |= p ⇐⇒ T ⊆ V (p).
K, T |= ⊥ ⇐⇒ T = ∅.
K, T |= ¬α ⇐⇒ K,w ̸|= α for all w ∈ T.

K, T |= α ∨ β ⇐⇒ K,T1 |= α and K,T2 |= β for some T1, T2 ⊆ T

such that T1 ∪ T2 = T.

K, T |= α ∧ β ⇐⇒ K,T |= α and K,T |= β.

K, T |= ♢α ⇐⇒ K,S |= α for some S such that TRS.
K, T |= □α ⇐⇒ K,R[T ] |= α.

Next, we extend modal logic to modal inclusion logic by adding the inclusion atom.
We use α and β to denote classical formulas.

Definition 2.7. Let Φ be a set of propositional symbols. The syntax for modal inclusion
logic MIL(Φ) is given by:

ϕ := p | ⊥ | ¬α | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ♢ϕ | □ϕ | α1 . . . αn ⊆ β1 . . . βn,

where p ∈ Φ, α ∈ ML and αi, βi ∈ ML for all i = 1, . . . , n.
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Note that we do not allow nested inclusion atoms. For example, for propositional
symbols p and q, p ⊆ (p ⊆ q) is not a formula of MIL. To avoid ambiguities in the
interpretation of formulas with inclusion atoms, always interpret the classical formulas in
the sequences of the inclusion atom to be as short as possible. For instance, the formula
q ∧ p ⊆ q has the subformula p ⊆ q.

To define the semantics for MIL we simply add a semantic clause for inclusion atoms
to the semantics for ML.

Definition 2.8. The semantics for MIL are defined by the semantics of ML together
with the following clause:

K,T |= α1 . . . αn ⊆ β1 . . . βn ⇐⇒ ∀w ∈ T ∃v ∈ T such that (K,w |= αi ⇐⇒ K, v |= βi)
for all i = 1, . . . , n.

The satisfaction of the inclusion atom by a team can be understood as follows: Any
combination of values that can be achieved in a state of the team for the formulas on the
left, can also be achieved in some state in the team for the formulas on the right. Next
we give an example of the inclusion atom.

Example 2.9. Let Φ = {p, q, r, s} and let K = (W,R, V ) be a Kripke model such that
W = {u, v, w}, R = ∅, V (p) = ∅, V (q) = {u, v}, V (r) = {v}, and V (s) = {v, w}. Let
T = W . The table below illustrates the team T in the evident way. Clearly, the sequence
pq has in the team two different values ⊥⊤ and ⊥⊥, which are both values for rs in the
team. Thus, we have K,T |= pq ⊆ rs. On the other hand, the sequence rs has the value
⊤⊤, which is not a value for pq, hence K,T ̸|= rs ⊆ pq.

p q r s
u ⊥ ⊤ ⊥ ⊥
v ⊥ ⊤ ⊤ ⊤
w ⊥ ⊥ ⊥ ⊤

We say that ϕ and ψ are semantically equivalent, denoted by ϕ ≡ ψ, if ϕ |= ψ and
ψ |= ϕ.

When the Kripke model is clear from the context, we sometimes suppress mention of
it and write T |= ϕ.

2.2 Properties of ML and MIL
In this section, we recall the basic properties of ML and MIL: ML has the flatness
property, and MIL is closed under unions and has the empty team property. We provide
detailed proofs for these properties (see also [18]).
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First, we show that every formula α in ML is flat, i.e., a pair of a Kripke model with
a team (K,T ) satisfies α if and only if (K, {w}) satisfies α for every state w ∈ T . We also
show the further property that for all ML-formulas α, K,T |= α if and only if K,w |= α
for all w ∈ T . This shows the way in which MIL extends classical modal logic, and is
why we call ML-formulas classical.

If all formulas in L have a property, we say that L itself has the property. Thus we
show that ML is flat.

Proposition 2.10. Let K be a Kripke model, T a team of K, and α an ML(Φ)-formula.
Then

K,T |= α ⇐⇒ K,w |= α for every w ∈ T

⇐⇒ K, {w} |= α for every w ∈ T.

Proof. It clearly suffices to show the first equivalence, which we do by induction on the
complexity of the formula α ∈ ML(Φ).

· Let α = p, where p ∈ Φ. Then T |= p if and only if T ⊆ V (p), which is the case if
and only if w ∈ V (p) for all w ∈ T , i.e., w |= p for all w ∈ T .

· Let α = ⊥. Then T |= ⊥ if and only T = ∅, which is the case if and only if w |= ⊥
for all w ∈ T .

· Let α = ¬β, where β ∈ ML(Φ). By definition, T |= ¬β if and only if w ̸|= β for all
w ∈ T , which is equivalent to w |= ¬β for all w ∈ T .

· Let α = β1 ∨ β2. Suppose that T |= β1 ∨ β2. Then T1 |= β1 and T2 |= β2 for some
T1, T2 ⊆ T such that T1 ∪ T2 = T . By the induction hypothesis, w |= β1 for all
w ∈ T1 and w |= β2 for all w ∈ T2. For any w ∈ T , it is in T1 or T2, so w |= β1 ∨ β2
for all w ∈ T .
For the other direction, assume that w |= β1 ∨ β2 for all w ∈ T . Let T1 = {w ∈ T |
w |= β1} and T2 = {w ∈ T | w |= β2}. Clearly T1, T2 ⊆ T and T1 ∪ T2 = T . By the
induction hypothesis, T1 |= β1 and T2 |= β2. Hence T |= β1 ∨ β2.

· Let α = β1 ∧ β2. Then,

T |= β1 ∧ β2 ⇐⇒ T |= β1 and T |= β2

⇐⇒ ∀w ∈ T : w |= β1 and w |= β2 (by induction hypothesis)
⇐⇒ ∀w ∈ T : w |= β1 ∧ β2.
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· Let α = ♢β. Suppose that T |= ♢β. Then S |= β for some S such that TRS. By
the induction hypothesis, v |= β for all v ∈ S. Since S is such that TRS, for each
w ∈ T , there is a v ∈ S such that wRv and v |= β, i.e., w |= ♢β for all w ∈ T .
For the other direction, assume that w |= ♢β for all w ∈ T . Then for all w ∈ T
there is a v such that wRv and v |= β. Let S = {v | v |= β and ∃w ∈ T s.t. wRv},
then T ⊆ R−1[S] and by the definition of S, S ⊆ R[T ]. Then S is such that TRS,
and by the induction hypothesis S |= β. Hence T |= ♢β.

· Let α = □β. Then,

T |= □β ⇐⇒ R[T ] |= β

⇐⇒ ∀v ∈ R[T ] : v |= β (by induction hypothesis)
⇐⇒ ∀w ∈ T : v |= β whenever wRv
⇐⇒ ∀w ∈ T : w |= □β.

Since a singleton team satisfies a ML-formula if and only if the state in the team
satisfies the formula, we will write K,w |= α instead of K, {w} |= α also in the team
semantics setting.

Corollary 2.11. Let Γ ∪ {α} consist of ML-formulas, then

Γ |= α (over teams) ⇐⇒ Γ |= α (over states).

Proof. Suppose that Γ |= α (over teams) and let w |= γ for all γ ∈ Γ. By Proposition 2.10
it follows that {w} |= γ for all γ ∈ Γ. By the assumption we now have that {w} |= α,
from which it follows by Proposition 2.10 that w |= α.

For the other direction, suppose that Γ |= α (over states) and let T |= γ for all γ ∈ Γ.
By Proposition 2.10 we have that w |= γ for all γ ∈ Γ and for all w ∈ T . By assumption
it follows that w |= α for all w ∈ T , from which it follows by Proposition 2.10 that
T |= α.

Let L be a logic and let α ∈ L. We say that α

· is downwards closed, if K,T |= α implies that K,T ′ |= α for all T ′ ⊆ T ,

· is closed under unions, if K,Ti |= α for all i in a nonempty index set I, implies that
K,

⋃
i∈I Ti |= α. In other words, a formula is closed under unions if any number of

teams individually satisfying a formula implies that their union satisfies the formula.
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· has the empty team property, if K, ∅ |= α.

Next we show that the flatness property is equivalent to the combination of the down-
wards closure property, union closure property and the empty team property.

Proposition 2.12. Let L be a logic. A formula α ∈ L has the flatness property if and
only if the formula α

(i) is downwards closed,

(ii) is union closed, and

(iii) has the empty team property.

Proof. Let α ∈ L and let T be team of a Kripke model K. First, suppose that α has the
flatness property. We show that the three properties hold.

(i) Suppose that T |= α. By flatness {w} |= α for all w ∈ T . Let T ′ ⊆ T . Then for
any w ∈ T ′, w is also in T , so {w} |= α for all w ∈ T ′. We use flatness again to
conclude T ′ |= α.

(ii) Suppose that Ti |= α for all i ∈ I, where I is nonempty. Let T = ⋃
i∈I Ti, and let

w ∈ T . Then w is in Ti for some i ∈ I, so by flatness {w} |= α. We use flatness
again to conclude that T |= α.

(iii) The statement {w} |= α for all w ∈ ∅ is vacuously true. By flatness we conclude
∅ |= α.

For the other direction, suppose that α is downwards closed, union closed, and has
the empty team property. If T = ∅, then the left-hand side of the flatness definition is
satisfied by the empty team property, and the right-hand side is vacuously true. Suppose
that T ̸= ∅. If T |= α, then by the downwards closure property it follows that {w} |= α
for all w ∈ T . Conversely, if {w} |= α for all w ∈ T , it follows by the union closure
property that T |= α.

Consequently, a logic L has the flatness property if and only if the logic is downwards
closed, union closed, and has the empty team property.

Corollary 2.13. ML has the downwards closure, union closure and the empty team
property.

Proof. Follows from Proposition 2.10 and Proposition 2.12.
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Next we show that MIL also has the union closure property and the empty team
property. On the other hand, due to the addition of inclusion atoms, MIL does not have
the downwards closure property.

Proposition 2.14. MIL is union closed, i.e., for each ϕ ∈ MIL(Φ), and nonempty
index set I,

if K,Ti |= ϕ for all i ∈ I, then K,T |= ϕ,

where T = ⋃
i∈I Ti.

Proof. We do the proof by structural induction on ϕ ∈ MIL(Φ). Let T = ⋃
i∈I Ti.

· If ϕ = p, ϕ = ⊥ or ϕ = ¬α, then ϕ ∈ ML, hence ϕ is union closed by Corollary
2.13.

· Let ϕ = ψ1 ∨ ψ2, and suppose that Ti |= ψ1 ∨ ψ2 for all i ∈ I. Then for each i ∈ I,
Ti1 |= ψ1 and Ti2 |= ψ2 for some Ti1 , Ti2 ⊆ Ti such that Ti1 ∪ Ti2 = Ti. By the
induction hypothesis ⋃

i∈I Ti1 |= ψ1 and ⋃
i∈I Ti2 |= ψ2. Now ⋃

i∈I Ti1 ,
⋃

i∈I Ti2 ⊆ T
and ⋃

i∈I Ti1 ∪ ⋃
i∈I Ti2 = T . So T |= ψ1 ∨ ψ2.

· Let ϕ = ψ1 ∧ ψ2, and suppose that Ti |= ψ1 ∧ ψ2 for all i ∈ I. Then Ti |= ψ1 and
Ti |= ψ2, for all i ∈ I. By the induction hypothesis, T |= ψ1 and T |= ψ2, hence
T |= ψ1 ∧ ψ2.

· Let ϕ = ♢ψ, and suppose that Ti |= ♢ψ for all i ∈ I. Then for each i ∈ I, there is a
team such that Si |= ψ and TRSi. By the induction hypothesis, ⋃

i∈I Si |= ψ. Also,⋃
i∈I Si ⊆ R[T ] and T ⊆ R−1[⋃i∈I Si], hence TR⋃

i∈I Si. So T |= ♢ψ.

· Let ϕ = □ψ, and suppose that Ti |= □ψ for all i ∈ I. Then for each i ∈ I, R[Ti] |= ψ.
By the induction hypothesis, ⋃

i∈I R[Ti] |= ψ. Since ⋃
i∈I R[Ti] = R[⋃i∈I Ti], it follows

that T |= □ϕ.

· Let ϕ = α1 . . . αn ⊆ β1 . . . βn, and suppose that Ti |= ϕ for all i ∈ I. Let w ∈ T .
Then w ∈ Ti for some i ∈ I, so there is a v ∈ Ti ⊆ T , such that w |= αk ⇐⇒ v |= βk

for all k = 1, . . . , n. So T |= ϕ holds.

Proposition 2.15. MIL has the empty team property, i.e.,

K, ∅ |= ϕ for all ϕ ∈ MIL(Φ).

Proof. The proof is by structural induction on ϕ ∈ MIL(Φ).
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· If ϕ = p, ϕ = ⊥ or ϕ = ¬α, then ϕ ∈ ML, hence ϕ has the empty team property
by Corollary 2.13.

· Let ϕ = ψ1 ∨ ψ2. By the induction hypothesis, ∅ |= ψ1 and ∅ |= ψ2. Clearly ∅ ⊆ ∅
and ∅ ∪ ∅ = ∅. Hence ∅ |= ψ1 ∨ ψ2.

· Let ϕ = ψ1 ∧ ψ2. By the induction hypothesis, ∅ |= ψ1 and ∅ |= ψ2, so ∅ |= ψ1 ∧ ψ2.

· Let ϕ = ♢ψ. T |= ♢ψ. By the induction hypothesis, ∅ |= ψ. Clearly ∅R∅, so
∅ |= ♢ψ.

· Let ϕ = □ψ. Clearly R[∅] = ∅, so by the induction hypothesis R[∅] |= ψ, hence
∅ |= □ψ.

· Let ϕ = α1 . . . αn ⊆ β1 . . . βn. For the empty team, the semantic clause for the
inclusion atom is vacuously true. Hence ∅ |= ϕ.

Example 2.16. We illustrate that MIL is not closed downwards in the following ex-
ample. Let Φ = {p, q} and let K = (W,R, V ) be a Kripke model with W = {w1, w2},
R = ∅, V (p) = {w1} and V (q) = {w2}. Let T = W (see the picture below). Clearly, for
all w ∈ T there is a v ∈ T such that w |= p ⇐⇒ v |= q, so T |= p ⊆ q. But for {w1} ⊆ T ,
there is no v ∈ {w1} such that w1 |= p ⇐⇒ v |= q. Hence {w1} ̸|= p ⊆ q.

p

w1

q

w2

T

Since MIL is not downwards closed, it follows from Proposition 2.12 that MIL does
not have the flatness property.

We also show that MIL does not admit the uniform substitution property. A logic
L admits the uniform substitution property if for all formulas ϕ1, ϕ2, ψ ∈ L,

ϕ1 |= ϕ2 ⇐⇒ ϕ1(ψ/p) |= ϕ2(ψ/p),

where, ϕi(ψ/p) is obtained by substituting all instances of p in ϕi with ψ, for i ∈ {1, 2}.

Proposition 2.17. MIL does not admit the uniform substitution property.
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Proof. Let p, q and r be propositional symbols. Clearly (p ∨ q) ∧ r |= (p ∧ r) ∨ (q ∧ r)
holds. But when we substitute p ⊆ q for r on both sides, we get (p ∨ q) ∧ p ⊆ q |=
(p ∧ p ⊆ q) ∨ (q ∧ p ⊆ q), which does not hold. For a counterexample to the entailment,
see Example 2.16. Clearly T |= (p ∨ q) ∧ p ⊆ q, but there are no subteams T1, T2 ⊆ T
such that T1 ∪ T2 = T with T1 |= p ∧ p ⊆ q and T2 |= q ∧ p ⊆ q.
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Chapter 3

Expressive completeness and normal
form

In this chapter we recall the definitions of Hintikka formulas and k-bisimulation, with the
goal of showing that MIL is expressively complete. As a consequence, we obtain the
normal form for formulas in MIL. The chapter is divided into three sections. In the first
section, we recall the definitions of Hintikka formulas and k-bisimulation for both states
and teams, and show that modal inclusion logic is invariant under bisimulation. In the
second section, we prove that MIL is expressively complete, and obtain the normal form
for the logic. In the third section, we revisit inclusion atoms. We show that an arbitrary
inclusion atom can be reduced to a formula with inclusion atoms only of the type ⊤ ⊆ α.
The results included in this chapter are either standard (see, e.g., [12, 3]) or due to [18].

3.1 Hintikka formulas and k-bisimulation
In this section we present Hintikka formulas, and k-bisimulation both for states and teams.
We show that the following are equivalent for the Kripke models with states (K,w) and
(K ′, w′):

· (K,w) are (K ′, w′) are k-bisimilar.

· (K,w) and (K ′, w′) cannot be distinguished by a formula with less than k+1 nested
modal operators.

· (K,w) satisfies the k-th Hintikka formula of (K ′, w′).

Thus Hintikka formulas capture (state) k-bisimulation. We conclude the section by prov-
ing the bisimulation invariance theorem for MIL.
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Definition 3.1. Let Φ be a finite set of propositional symbols and K a Kripke model
over Φ. If w ∈ W , then (K,w) is called a pointed Φ-model. Similarly, a Φ-model with a
team is a pair (K,T ), where T is a team of K.

Next we define (state) k-bisimulation, which is a relation between two pointed Φ-
models that is satisfied if the models are similar, in the sense that their states satisfy the
same propositional symbols and have similar accessibility relations up to degree k.

Definition 3.2. The k-bisimulation relation between the pointed Φ-models (K,w) and
(K ′, w′), written as K,w -k K

′, w′, is defined recursively by:

(i) K,w -0 K
′, w′ if and only if the equivalence K,w |= p ⇐⇒ K ′, w′ |= p holds for

all p ∈ Φ.

(ii) K,w -k+1 K ′, w′ if and only if K,w -0 K ′, w′ and the following conditions are
satisfied (see also Figure 3.1):

(Forth condition) For every state v of K with wRv there is a state v′ of K ′ with
w′Rv′ such that K, v -k K

′, v′.
(Back condition) For every state v′ of K ′ with w′Rv′ there is a state v of K with

wRv such that K, v -k K
′, v′.

w

v

u

w′

v′

u′

0

k − 1

k − 2

K K ′

Figure 3.1: State k-bisimulation illustrated. The figure illustrates K,w -k K
′, w′. The

lowest zigzag line represent zero-bisimulation, the second lowest represents
k − 1-bisimulation, followed by k − 2-bisimulation etc.

We write K,w ̸-k K
′, w′ if (K,w) and (K ′, w′) are not k-bisimilar. Clearly, the k-

bisimulation relation is symmetrical, reflexive and transitive, and is thus an equivalence
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relation. It also follows from the definition of k-bisimulation that if two pointed Φ-models
are k-bisimilar, then they are also n-bisimilar for all n ≤ k.

Lemma 3.3. Let (K,w) and (K ′, w′) be pointed Φ-models and let k ∈ N. If K,w -k

K ′, w′, then K,w -n K
′, w′ for all n ≤ k.

Proof. For each k ∈ N, when n = k the result is trivial. It suffices to show that K,w -k

K ′, w′ implies K,w -k−1 K
′, w′ by induction on k ≥ 1. For the basic case k = 1, we have

that K,w -1 K
′, w′ implies K,w -0 K

′, w′ by the definition of k-bisimulation.
Suppose that k ≥ 1 and K,w -k K ′, w′. We show the forth condition of k − 1-

bisimulation: For every state v of K with wRv, there exists a state v′ of K ′ with w′Rv′

such that K, v -k−2 K
′, v′. By the assumption K,w -k K

′, w′, we have that for every
state v of K with wRv there exists a state v′ of K ′ with w′Rv′ such that K, v -k−1 K

′, v′.
By the induction hypothesis, K, v -k−1 K

′, v′ implies that K, v -k−2 K
′, v′. The back

condition is proved similarly. We conclude K,w -k−1 K
′, w′.

The modal depth of an MIL-formula describes the number of nested modal operators
within the formula.

Definition 3.4. The modal depth of a formula ϕ ∈ MIL(Φ), md(ϕ), is defined by the
following clauses:

md(p) = md(⊥) = 0,
md(¬α) = md(α),

md(ψ1 ∨ ψ2) = md(ψ1 ∧ ψ2) = max{md(ψ1),md(ψ2)},
md(♢ψ) = md(□ψ) = md(ψ) + 1, and

md(α1 . . . αn ⊆ β1 . . . βn) = max{md(α1), . . .md(αn),md(β1) . . .md(βn)}.

The modal depth of an ML-formula is defined by Definition 3.4 restricted to ML-
formulas. We say that two pointed Φ-models are k-equivalent if they satisfy the same
ML-formulas up to modal depth k.

Definition 3.5. The models (K,w) and (K ′, w′) are k-equivalent, written as K,w ≡k

K ′, w′, if for every α ∈ ML(Φ) with md(α) ≤ k,

K,w |= α ⇐⇒ K ′, w′ |= α.

For an index set I = {1, . . . , n}, we write ∨
i∈I ϕi as an abbreviation of the formula

(ϕ1 ∨ · · · ∨ ϕn) and define ∨
i∈∅ ϕi = ∨ ∅ = ⊥. Similarly, we abbreviate (ϕ1 ∧ · · · ∧ ϕn) as∧

i∈I ϕi and define ∧
i∈∅ ϕi = ∧ ∅ = ¬⊥.

Next we give the definition of Hintikka formulas.
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Definition 3.6. Assume that Φ is a finite set of propositional symbols. Let k ∈ N and
let (K,w) be a pointed Φ-model. The k:th Hintikka formula χk

K,w of (K,w) is defined
recursively by:

χ0
K,w := ∧{p | p ∈ Φ and w ∈ V (p)} ∧ ∧{¬p | p ∈ Φ and w ̸∈ V (p)}

χk+1
K,w := χk

K,w ∧ ∧
v∈R[w] ♢χ

k
K,v ∧ □

∨
v∈R[w] χ

k
K,v.

It is clear from the definition of Hintikka formulas that a k:th Hintikka formula has
modal depth at most k. Another direct consequence of the definition is that there are
only finitely many non-equivalent k:th Hintikka formulas for a finite set of propositional
symbols.

Corollary 3.7. Let Φ be a finite set of propositional symbols. Then there are only finitely
many non-equivalent k:th Hintikka formulas over Φ-models.

Proof. Let the size of Φ be n. We prove the claim by induction on k. A 0:th Hintikka
formula is a conjunction between propositional symbols, negated or not, from a finite set
Φ. So there are 2n non-equivalent 0:th Hintikka formulas. Suppose that there are m ∈ N
many k:th Hintikka formulas. By the definition of a (k+ 1):th Hintikka formula, we have
at most m · 2m · 2m many non-equivalent options, which again is finite.

For any pointed Φ-model (K,w) and k ∈ N, the Hintikka formula χk
K,w characterises

(K,w) up to k-equivalence. In addition, Hintikka formulas also capture k-bisimulation.

Theorem 3.8. Let Φ be a finite set of propositional symbols and let k ∈ N. For pointed
Φ-models (K,w) and (K ′, w′), we have that:

K,w ≡k K
′, w′ ⇐⇒ K,w -k K

′, w′ ⇐⇒ K ′, w′ |= χk
K,w.

To prove Theorem 3.8, we use k-bisimulation games. The definition of k-bisimulation
games and the proof of Theorem 3.8 is due to [12].

Let (K,w) and (K ′, w′) be pointed Φ-models. A bisimulation game is played by two
players that we call I (challenger) and II (defender). The game starts at the initial
configuration (K,w;K ′, w′), we say that at this stage there is one pebble placed on the
state w in K and one pebble placed on the state w′ in K ′. Each round consists of player
I moving one pebble in one of the models from its current state to an accessible state in
that model. Then player II acts similarly in the other model.

Player I loses if none of the current states has an accessible state. Player II loses if
they cannot move the pebble, or if the new configuration (K, v;K ′, v′) is such that it is
not the case that K, v |= p ⇐⇒ K ′, v′ |= p for all p ∈ Φ.
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We say that player II has a winning stategy in the k-bisimulation game, if from the ini-
tial configuration (K,w;K ′, w′), player II can respond without losing for k-many rounds,
no matter what moves player I makes.

We make the connection between k-bisimulation and the k-bisimulation game through
the following observations:

· The back condition of k-bisimulation is satisfied if and only if player II can respond
in the model K to player I’s move without losing.

· The forth condition of k-bisimulation is satisfied if and only if player II can respond
in the model K ′ to player I’s move without losing.

· Zero-bisimulation corresponds to player II not having lost already at the initial
configuration.

This motivates the following equivalence: Let k ∈ N. The pointed Φ-models (K,w)
and (K ′, w′) are k-bisimilar if and only if player II has a winning strategy in the k-
bisimulation game with the initial configuration (K,w;K ′, w′). This equivalence together
with the Lemmas 3.9, 3.10 and 3.11, prove Theorem 3.8.

Lemma 3.9. Let Φ be a finite set of propositional symbols and let k ∈ N. If player II
has a winning strategy in the k-round bisimulation game G with the initial configuration
(K,w;K ′, w′), then K,w ≡k K

′, w′.

Proof. Suppose that (K,w) and (K ′, w′) are not k-equivalent. Then there is a formula
α ∈ ML(Φ) with modal depth n ≤ k such that w |= α and w′ |= ¬α. We prove
by induction on the modal depth of α that II does not have a winning strategy in the
k-bisimulation game G.

Let n = 0, then (K,w) and (K ′, w′) do not agree on some p ∈ Φ, hence II loses.
Suppose that md(α) = n + 1, w |= α and w′ |= ¬α. Without loss of generality, we can
assume that the models (K,w) and (K ′, w′) do not agree on some diamond-formula. In
other words, there exists a formula β ∈ ML(Φ) with modal depth n+1 such that w |= ♢β
and w′ |= ¬♢β. Now player I can move the pebble in the model K to some accessible
state u such that u |= β, and player II must respond in K ′ and move the pebble to some
u′, lest player II loses immediately. The current state becomes (K, u;K ′, u′), with u |= β
and u′ |= ¬β. Since the modal depth of β is n, we can apply the induction hypothesis
and conclude that II loses.

Lemma 3.10. Let k ∈ N. If K,w ≡k K
′, w′ then K ′, w′ |= χk

K,w.

Proof. It is easy to see that K,w |= χk
K,w and that the modal depth of χk

K,w is less than
or equal to k. Therefore the assumption K,w ≡k K

′, w′ implies that K ′, w′ |= χk
K,w.
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Lemma 3.11. Let k ∈ N. If K ′, w′ |= χk
K,w then player II has a winning strategy in the

k-round bisimulation game G with the initial configuration (K,w;K ′, w′).

Proof. The proof is done by induction on k ∈ N. Suppose that w′ |= χ0
K,w, then it is clear

that player II has not lost already at the initial configuration.
Suppose that w′ |= χk

K,w implies that player II has a winning strategy for k rounds.
Let us show that player II has a winning move at round k+ 1. We recall that the formula
χk+1

K,w is defined as
χk+1

K,w := χk
K,w ∧

∧
v∈R[w]

♢χk
K,v ∧ □

∨
v∈R[w]

χk
K,v.

Suppose that w′ |= χk+1
K,w. Then w′ |= ∧

v∈R[w] ♢χ
k
K,v, so for any accessible state v of w

in K that player I moves to, we have that w′ |= ♢χk
K,v. So there is some accessible state

v′ to w′ in K ′ such that v′ |= χk
K,v, which guarantees a winning strategy for II by the

induction hypothesis.
Also, w′ |= □

∨
v∈R[w] χ

k
K,v. So for any accessible state v′ of w′ in K ′ that player I

moves to, v′ |= χk
K,v holds for some accessible v of w in K, which guarantees a winning

strategy for II by the induction hypothesis.

Now we define k-bisimulation also in the team setting. The definition and remaining
results in this subsection are due to [18]. The definition of team k-bisimulation was first
introduced in [17], as a natural extension of state k-bisimulation.

We denote by CT(Φ) the class of all Φ-models with teams.

Definition 3.12. Let (K,T ), (K ′, T ′) ∈ CT(Φ) and k ∈ N. (K,T ) and (K ′, T ′) are (team)
k-bisimilar, written as K,T -k K

′, T ′, if the following back and forth conditions hold:

(Fk) For every w ∈ T there exists a w′ ∈ T ′ such that K,w -k K
′, w′.

(Bk) For every w′ ∈ T ′ there exists a w ∈ T such that K,w -k K
′, w′.

We write K,T ̸-k K
′, T ′ if (K,T ) and (K ′, T ′) are not k-bisimilar. We say that (K,T )

and (K ′, T ′) are (team) bisimilar, written as K,T - K ′, T ′, if K,T -k K
′, T ′ for all k ∈ N.

Next we give an example of team k-bisimulation.
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w

v v′

w′

u′

T T ′

Figure 3.2: Team k-bisimulation illustrated. The figure illustrates K,T -k K
′, T ′, and

the zigzag lines represent state k-bisimulation.

Example 3.13. Let K = (W,R, V ) and K ′ = (W ′, R′, V ′) be Kripke models with W =
{w, v}, W ′ = {w′, v′, u′}, R = {(w, v), (v, v)} and R′ = {(w′, v′), (v′, u′)}. Further, let
Φ be a set of propositional symbols, and let V and V ′ be such that K, v -0 K

′, v′, and
K, v -0 K

′, u′, illustrated by the zigzag lines in the figure below. Let T = {w, v} and
T ′ = {w′, v′}. Now K, v -1 K

′, v′, and K,w -1 K
′, w′, hence K,T -1 K

′, T ′.

w

v v′

w′

u′

K K ′

T T ′

Similarly to the case of state k-bisimulation, if two Φ-models with teams are k-
bisimilar, then they are also n-bisimilar for all n ≤ k.

Lemma 3.14. Let (K,T ), (K ′, T ′) ∈ CT(Φ) and k ∈ N. If K,T -k K
′, T ′, then K,T -n

K ′, T ′ for all n ≤ k.

Proof. For each k ∈ N, when n = k the result is trivial. It suffices to show that K,T -k

K ′, T ′ implies K,T -k−1 K
′, T ′ for all k ≥ 1.

Suppose that K,T -k K
′, T ′. Then for every w ∈ T there exists a w′ ∈ T such that

K,w -k K
′, w′, and for every w′ ∈ T there exists a w ∈ T such that K,w -k K

′, w′.
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By Lemma 3.3, K,w -k K
′, w′ implies K,w -k−1 K

′, w′. Therefore, by the definition of
team k-bisimulation we conclude K,T -k−1 K

′, T ′.

The results in the next lemma are also consequences of the definition of team k-
bisimulation.

Lemma 3.15. Let (K,T ), (K ′, T ′) ∈ CT(Φ) be such that K,T -k+1 K
′, T ′ and let k ∈ N.

Then

(i) For every S such that TRS, there is a S ′ such that T ′R′S ′ and K,S -k K
′, S ′.

(ii) K,R[T ] -k K
′, R′[T ′].

(iii) For all T1, T2 ⊆ T such that T1 ∪T2 = T there are T ′
1, T

′
2 ⊆ T ′ such that T ′

1 ∪T ′
2 = T ′

and K,Ti -k+1 K
′, T ′

i for i ∈ {1, 2}.

Proof. Let (K,T ), (K ′, T ′) and k be as in the lemma.

(i) Let S be such that TRS. Define S ′ by

S ′ = {v′ ∈ R′[T ′] | ∃v ∈ S : K, v -k K
′, v′}.

Let us first prove that S ′ satisfies T ′R′S ′. By the definition of S ′, it is clear that for
all v′ ∈ S ′ there is a w′ ∈ T ′ such that w′R′v′.
Let w′ ∈ T ′. We want to show that there is a v′ ∈ S ′ such that w′R′v′. Since
K,T -k+1 K

′, T ′, there is a w ∈ T such that K,w -k+1 K
′, w′. Also, since TRS,

there is a v ∈ S such that wRv. So by the definition of k-bisimulation, there is a
v ∈ R′[w′] such that K, v -k K

′, v′. It follows that v′ ∈ S ′. Thus T ′R′S ′.
By the definition of S ′, for all v′ ∈ S ′ there is a v ∈ S such that K, v -k K

′, v′. So
the back condition holds. We now prove that the forth condition holds. Let v ∈ S,
then there is some w ∈ T such that wRv. By K,T -k+1 K

′, T ′, there is a w′ ∈ T ′

such that K,w -k+1 K
′, w′. By the definition of k-bisimulation, there is a v′ ∈ K ′

such that w′R′v′ and K, v -k K
′, v′. Clearly v′ ∈ S ′. Hence for all v ∈ S there is a

v′ ∈ S ′ such that K, v -k K
′, v′. We conclude that K,S -k K

′, S ′.

(ii) The assumption K,T -k+1 K
′, T ′ implies that for all w ∈ T there exists a w′ ∈ T ′

such that K,w -k+1 K
′, w′. So for all v ∈ R[T ] there exists a v′ ∈ R′[T ′] such

that K, v -k K
′, v′. Hence the forth condition is met, the back condition is proved

similarly.
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(iii) Let T1, T2 ⊆ T be such that T1 ∪ T2 = T . Define T ′
i = {w′ ∈ T ′ | ∃w ∈

Ti such that K,w -k+1 K
′, w′}, for i ∈ {1, 2}. Clearly, T ′

1, T
′
2 ⊆ T ′. Let w′ ∈ T ′.

Since K,T -k+1 K
′, T ′, there exists a w ∈ T such that K,w -k+1 K

′, w′. And
w ∈ Ti for some i ∈ {1, 2}, so w′ ∈ T ′

i for some i ∈ {1, 2}, i.e., w′ ∈ T ′
1 ∪ T ′

2. Hence
T ′

1 ∪ T ′
2 = T ′.

Let i ∈ {1, 2}. It is immediate by the definition of T ′
i that for all w′ ∈ T ′

i there
exists a w ∈ Ti such that K,w -k+1 K

′, w′, so the back condition of k-bisimulation
holds.
Let w ∈ Ti, then w ∈ T . By the assumption K,T -k+1 K

′, T ′, there is a w′ ∈ T ′

such that K,w -k+1 K
′, w′. By the definition of Ti, it follows that w′ ∈ T ′

i . Hence
the forth condition of k-bisimulation holds. We conclude that K,Ti -k+1 K

′, T ′
i .

Definition 3.16. Two pairs (K,T ), (K ′, T ′) ∈ CT(Φ) are k-equivalent, written as K,T ≡k

K ′, T ′, if for every ϕ ∈ MIL(Φ) with md(ϕ) ≤ k,

K,T |= ϕ ⇐⇒ K ′, T ′ |= ϕ.

Furthermore, (K,T ) and (K ′, T ′) are equivalent, written as K,T ≡ K ′, T ′, if K,T ≡k

K ′, T ′ for all k ∈ N.

Next we show the bisimulation invariance theorem for MIL: if two models with teams
are (team) bisimilar, then they are equivalent.

Theorem 3.17 (Bisimulation invariance theorem). Let (K,T ), (K ′, T ′) ∈ CT(Φ) and
k ∈ N. If K,T -k K ′, T ′, then K,T ≡k K ′, T ′. Therefore, if K,T - K ′, T ′, then
K,T ≡ K ′, T ′.

Proof. Let ϕ ∈ MIL(Φ). It suffices to show that if K,T -k K
′, T ′, where k = md(ϕ),

then K,T |= ϕ if and only if K ′, T ′ |= ϕ. The proof is done by structural induction on ϕ.

· Let ϕ = p, where p ∈ Φ. Assume that T |= p and K,T -k K ′, T ′, where k =
md(ϕ) = 0. By definition w |= p for all w ∈ T . And by the definition of k-
bisimulation, for all w′ ∈ T ′ there exists a w ∈ T such that K,w -0 K

′, w′. So
w′ |= p for all w′ ∈ T ′. Now T ′ |= ϕ follows by definition.

· Let ϕ = ⊥ and assume that T |= ⊥ and K,T -k K
′, T ′, where k = md(ϕ) = 0.

Then T = ∅ and by k-bisimulation it follows that T ′ = ∅. Hence K ′, T ′ |= ⊥.
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· Let ϕ = ¬α, where α ∈ ML(Φ). Assume that T |= ¬α and K,T -k K
′, T ′, where

k = md(ϕ). Then w ̸|= α for all w ∈ T , and for each w′ ∈ T ′ there exists a w ∈ T
such that K,w -k K

′, w′. By Theorem 3.8, K,w ≡k K
′, w′, and since md(α) ≤ k,

it follows that for all w′ ∈ T ′, w′ ̸|= α, i.e., T ′ |= ϕ.

· Let ϕ = ψ1 ∨ ψ2. Assume that T |= ϕ and K,T -k K
′, T ′, where k = md(ϕ). Then

K,T1 |= ψ1 and K,T2 |= ψ2 for some T1, T2 ⊆ T such that T1 ∪ T2 = T . Let m =
md(ψ1) and n = md(ψ2). By Lemma 3.15 (iii), there are subteams T ′

1, T
′
2 ⊆ T ′ such

that T ′
1 ∪ T ′

2 = T ′ and K,Ti -k K
′, T ′

i for i ∈ {1, 2}. Since m,n ≤ k, by Lemma
3.14 K,T1 -m K ′, T ′

1 and K,T2 -n K
′, T ′

2. By the induction hypothesis, T ′
1 |= ψ1

and T ′
2 |= ψ2, so T ′ |= ϕ.

· Let ϕ = ψ1 ∧ ψ2. Assume that T |= ϕ and K,T -k K
′, T ′, where k = md(ϕ). Then

T |= ψ1 and T |= ψ2. Let m = md(ψ) and n = md(ψ2). Now m,n ≤ k, so by
Lemma 3.14, K,T -m K ′, T ′ and K,T -n K ′, T ′. By the induction hypothesis,
T ′ |= ψ1 and T ′ |= ψ2, hence T ′ |= ϕ.

· Let ϕ = ♢ψ. Assume that T |= ♢ψ and K,T -k K
′, T ′, where k = md(ϕ). Then

S |= ψ for some S such that TRS. By Lemma 3.15 (i), there is a S ′ such that T ′R′S ′

and K,S -k−1 K
′, S ′. Since md(ψ) = k − 1, the induction hypothesis implies that

S ′ |= ψ, so T ′ |= ϕ

· Let ϕ = □ψ. Assume that T |= □ψ and K,T -k K
′, T ′, where k = md(ϕ). Then

R[T ] |= ψ. By Lemma 3.15 (ii) it follows that K,R[T ] -k−1 K ′, R′[T ′]. Since
md(ψ) = k − 1, the induction hypothesis implies that R′[T ′] |= ψ, so R′[T ′] |= ϕ.

· Let ϕ = α1 . . . αn ⊆ β1 . . . βn, and suppose that T |= ϕ and K,T -k K
′, T ′, where

k = md(ϕ). Let w′ ∈ T ′. By the definition of k-bisimulation, there exists a w ∈ T
such that K,w -k K ′, w′. Since md(αi) ≤ k, by Theorem 3.8 it follows that
w′ |= αi ⇐⇒ w |= αi for all i = 1, . . . , n. By assumption, there exists a v0 ∈ T
such that w |= αi ⇐⇒ v0 |= βi. Again, by the definition of k-bisimulation, there
exists a v′ ∈ T ′ such that K, v0 -k K

′, v′ for all i = 1, . . . , n. Since md(βi) ≤ k, by
Theorem 3.8 it follows that v0 |= βi ⇐⇒ v′ |= βi for all i = 1, . . . , n. The state
w′ ∈ T ′ was arbitrary, so we conclude that for all w′ ∈ T ′ there exists a v′ ∈ T ′ such
that w′ |= αi ⇐⇒ v′ |= βi for all i = 1, . . . , n. So T ′ |= ϕ.

Therefore T |= ϕ implies T ′ |= ϕ. The other direction is symmetrical.
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3.2 Expressive completeness and normal form
In this section we prove that MIL is expressively complete for classes (of Kripke models
with teams) that are closed under unions, invariant under k-bisimulation for some k, and
have the empty team property. Through the expressive completeness proof we obtain a
normal form for the logic. We review the expressive completeness proof provided in [18],
and suggest a simplification to the normal form in line with the normal forms presented
in [22]. We also show that MIL is compact.

A class K ⊆ CT(Φ) is said to be invariant under k-bisimulation, if (K,T ) ∈ K and
K,T -k K

′, T ′ imply that (K ′, T ′) ∈ K. We say that K is closed under unions if (K,Ti) ∈
K for all i in some nonempty index set I implies that (K,⋃i∈I Ti) ∈ K. We say that K

has the empty team property if (K, ∅) ∈ K.
For each formula ϕ in a logic L, let ∥ϕ∥ ⊆ CT(Φ) be the class defined by ϕ, i.e.,

∥ϕ∥ := {(K,T ) ∈ CT(Φ) | K,T |= ϕ}.

Corollary 3.18. Let Φ be a set of propositional symbols and let ϕ ∈ MIL(Φ). Then
there exists a k ∈ N such that the class ∥ϕ∥ is invariant under k-bisimulation.

Proof. By Theorem 3.17, it follows immediately that a class ∥ϕ∥, where ϕ ∈ MIL(Φ), is
invariant under k-bisimulation with k = md(ϕ).

Lemma 3.19. Let Φ be a set of propositional symbols and let ϕ ∈ MIL(Φ). Then the
class ∥ϕ∥ is closed under unions and has the empty team property.

Proof. Let ϕ ∈ MIL(Φ) and let (K,Ti) ∈ ∥ϕ∥ for all i in some nonempty index set
I. Then Ti |= ϕ for all i ∈ I. By Proposition 2.14, ⋃

i∈I Ti |= ϕ so (K,⋃i∈I Ti) ∈ ∥ϕ∥.
Therefore the class is closed under unions.

By Proposition 2.15, ∅ |= ϕ, so (K, ∅) ∈ ∥ϕ∥. Hence ∥ϕ∥ has the empty team property.

Now we know that every MIL-definable class has the empty team property, is closed
under unions and invariant under k-bisimulation for some k. We will show in Theorem
3.23 that if a class has these three properties, then it is definable by an MIL-formula.
This would mean that any formula with these three properties can be defined with a
formula in MIL, i.e., MIL is expressively complete.

First we aim to define characteristic formulas for teams. We begin by proving that
there are MIL-formulas that define the back and forth conditions of (team) k-bisimulation
(Definition 3.12). The result is due to [18]. By simplifying the formula that defines the
forth condition in Lemma 3.20, we suggest a simplification of the inclusion atom part of
the characteristic formulas for teams given in [18], similar to the normal forms presented
in [22].
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We show that the forth condition (Fk) in Definition 3.12 can be defined by an ML-
formula. We handle the case of empty teams in Lemma 3.22.

Lemma 3.20. Let Φ be a finite set of propositional symbols and k ∈ N. Let (K,T ) ∈
CT(Φ) and assume that T ̸= ∅, then there is a formula ζk

K,T ∈ ML(Φ) such that for any
(K ′, T ′) ∈ CT(Φ) with T ′ ̸= ∅,

K ′, T ′ |= ζk
K,T ⇐⇒ for all w ∈ T there is a w′ ∈ T ′ such that K ′, w′ -k K,w.

Proof. Define for each k ∈ N and (K,T ) ∈ CT(Φ) with T ̸= ∅:

ζk
K,T =

∧
w∈T

(⊤ ⊆ χk
K,w).

We note that since there are only a finite number of non-equivalent k:th Hintikka-formulas,
we can assume the conjunction ∧

w∈T (⊤ ⊆ χk
K,w) to be finite, thus ζk

K,T is a formula.
Assume that T ′ ̸= ∅. Then we have the following equivalences:

T ′ |=
∧

w∈T

(⊤ ⊆ χk
K,w)

⇐⇒ ∀w ∈ T : T ′ |= ⊤ ⊆ χk
K,w

⇐⇒ ∀w ∈ T ∀v′ ∈ T ′ ∃w′ ∈ T ′ : v′ |= ⊤ ⇐⇒ w′ |= χk
K,w

⇐⇒ ∀w ∈ T ∃w′ ∈ T ′ : w′ |= χk
K,w (Since T ′ ̸= ∅)

⇐⇒ ∀w ∈ T ∃w′ ∈ T ′ : K ′, w′ -k K,w. (By Theorem 3.8)

Next we show that the back condition (Bk) in Definition 3.12 can be defined by an
ML-formula.

Lemma 3.21. Let Φ be a finite set of propositional symbols and k ∈ N. Let (K,T ) ∈
CT(Φ) be such that T ̸= ∅, then there is a formula ηk

K,T ∈ ML(Φ) such that for any
(K ′, T ′) ∈ CT(Φ) with T ′ ̸= ∅,

K ′, T ′ |= ηk
K,T ⇐⇒ for all w′ ∈ T ′ there is a w ∈ T such that K,w -k K

′, w′.

Proof. Define for each k ∈ N and (K,T ) ∈ CT(Φ) with T ̸= ∅:

ηk
K,T =

∨
w∈T

χk
K,w.

We note that since there are only a finite number of non-equivalent k:th Hintikka-formulas,
we can assume the disjunction ∨

w∈T χ
k
K,w to be finite, thus ηk

K,T is a formula.
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Assume that T and T ′ are both nonempty, and let T ′ |= ηk
K,T . Then, for each w ∈ T ,

there exists a subteam T ′
w ⊆ T ′ such that T ′ = ⋃

w∈T T
′
w and T ′

w |= χk
K,w. Let w′ ∈ T ′.

Now w′ is in T ′
w for some w in T , and then by flatness w′ |= χk

K,w, which by Theorem 3.8
implies that K,w -k K

′, w′.
For the other direction, assume that for all w′ ∈ T ′ there exists a w ∈ T such that

K,w -k K
′, w′. For each w ∈ T , define

T ′
w = {w′ ∈ T ′ | K ′, w′ -k K,w}.

Let w ∈ T . In the case that w does not have a k-bisimilar state in T ′, it follows that
T ′

w = ∅, which by the empty team property implies that T ′
w |= χk

K,w. When T ′
w ̸= ∅,

flatness and Theorem 3.8 imply that T ′
w |= χk

K,w. So ⋃
w∈T T

′
w |= ∨

w∈T χ
k
K,w. It remains

to show that T ′ = ⋃
w∈T T

′
w. Clearly ⋃

w∈T T
′
w ⊆ T ′. We show that T ′ ⊆ ⋃

w∈T T
′
w. Let

w′ ∈ T ′, by assumption there exists a w ∈ T such that K,w -k K
′, w′, so w′ ∈ T ′

w. Hence
w′ ∈ ⋃

w∈T T
′
w. We conclude that T ′ |= ∨

w∈T χ
k
K,w.

We now combine the previous two lemmas to obtain characteristic formulas for teams.

Lemma 3.22. Let Φ be a finite set of propositional symbols and k ∈ N. Let (K,T ) ∈
CT(Φ), then there is a formula θk

K,T ∈ MIL(Φ) such that for any (K ′, T ′) ∈ CT(Φ),

K ′, T ′ |= θk
K,T ⇐⇒ K,T -k K

′, T ′ or T ′ = ∅.

Proof. Define for each k ∈ N and (K,T ) ∈ CT(Φ) with T ̸= ∅:

θk
K,T = ηk

K,T ∧ ζk
K,T ,

where ηk
K,T and ζk

K,T are as in Lemma 3.20 and Lemma 3.21, and for T = ∅ define:

θk
K,T =

∨
∅ ∧

∧
∅.

If T = ∅, then K,T -k K
′, T ′ holds only when T ′ = ∅. Note that θk

K,∅ = ∨ ∅∧∧ ∅ ≡ ⊥.
Thus T ′ |= θk

K,T if and only if T ′ = ∅.
If T ′ = ∅, then the equivalence follows by the empty team property. Otherwise, if

T ′ is not empty, then T ′ |= ηk
K,T ∧ ζk

K,T if and only if the back condition (Bk) and forth
condition (Fk) in Definition 3.12 hold (by Lemma 3.20 and Lemma 3.21), which is the
case if and only if K,T -k K

′, T ′.

We call the characteristic formulas for teams obtained in Lemma 3.22 team-
characteristic formulas. We recall that for a finite set Φ of propositional symbols, there
are only a finite number of non-equivalent k:th Hintikka formulas. Therefore clearly there
are only a finite number of non-equivalent k:th team-characteristic formulas.

Finally, we show that MIL is expressively complete.
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Theorem 3.23. Let Φ be a finite set of propositional symbols and let C ⊆ CT(Φ). The
class C is definable in MIL if and only if it has the empty team property, is closed under
unions, and invariant under k-bisimulation for some k ∈ N.

Proof. Suppose that C is definable in MIL, then by Corollary 3.18, C is invariant under
k-bisimulation for some k ∈ N. By Lemma 3.19, C is closed under unions and has the
empty team property.

Suppose that C has the empty team property, is closed under unions, and invariant
under k-bisimulation for some k ∈ N. Let ϕ′ be the formula∨

(K,T )∈C

θk
K,T ,

where θk
K,T is defined as in Lemma 3.22. Let us prove that ϕ′ defines the class C. Suppose

that (K,T ) ∈ C. Clearly K,T -k K,T , so by Lemma 3.22 T |= θk
T , hence T |= ϕ′.

Suppose that T ′ |= ϕ′. Then there are subsets T ′
T ⊆ T ′ such that T ′ = ⋃

(K,T )∈C T
′
T and

T ′
T |= θk

T . By Lemma 3.22 it follows that either K,T -k K
′, T ′

T or T ′
T = ∅. If T ′

T = ∅, then
by the empty team property (K ′, T ′

T ) ∈ C. If K,T -k K
′, T ′

T , then since C is invariant
under k-bisimulation, (K ′, T ′

T ) ∈ C follows. So (K ′, T ′
T ) ∈ C and since C is closed under

unions, we conclude that (K ′, T ′) ∈ C.

It follows from Theorem 3.23 that any MIL-formula is equivalent to a formula of the
form

(NF)
∨

(K,T )∈C

θk
K,T =

∨
(K,T )∈C

(
∨

w∈T

χk
K,w ∧

∧
w∈T

(⊤ ⊆ χk
K,w)).

We say that formulas in this form are in the normal form.

Corollary 3.24. Let ϕ be an MIL-formula. Then there is a formula ϕ′ of the same form
as in (NF) that is equivalent to ϕ. We say that ϕ′ is the normal form of ϕ.

Proof. Let ϕ ∈ MIL(Φ). By Theorem 3.23 the MIL-definable class ∥ϕ∥ is invariant
under k-bisimulation for some k = md(ϕ), closed under unions, and has the empty team
property. By the proof of Theorem 3.23, the class is definable by a formula ϕ′ of the form
(NF). Thus, ϕ ≡ ϕ′.

Hereafter, whenever the Kripke model is clear from the context, we write Hintikka
formulas and team-characteristic formulas without it.

We briefly mention another consequence of the expressive completeness of MIL:
MIL admits uniform interpolation.

It was proved in [7] that any expressively complete team-based propositional or modal
logic admits uniform interpolation. It then follows from Theorem 3.23 that MIL admits
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uniform interpolation. We refer the reader to [7] for the detailed proof and more discussion
about the notion of uniform interpolation.

Definition 3.25. Let ϕ1 and ϕ2 be formulas in a logic L(Φ) such that ϕ1 |= ϕ2. Then ψ
is an interpolant of ϕ1 and ϕ2, if ϕ1 |= ψ, ψ |= ϕ2, and ψ is constructed from the common
propositional symbols of ϕ1 and ϕ2.

An interpolant ψ is a uniform interpolant if it does not depend on the formula ϕ2. We
say that a logic admits uniform interpolation if we can find a uniform interpolant for all
ψ ∈ L, assuming certain conditions.

Corollary 3.26. MIL admits uniform interpolation.

Proof. By [7] and Theorem 3.23.

We end this subsection by proving compactness for MIL, using compactness of the
expressively stronger logic modal team logic MT L. We adopt the definition of MT L
from [22].

Definition 3.27. Let Φ be a set of propositional symbols. The syntax for modal team
logic MT L(Φ) is given by:

α := p | ¬p | ∼α | (α ∨ α) | (α ∧ α) | ♢α | □α,

where p ∈ Φ.
The obtain the semantics for MT L, simply extend the semantics for ML with the

following clause:
K,T |= ∼α ⇐⇒ K,T ̸|= α.

We recall that a logic L is compact if Γ ∪ {ϕ} is a (possibly infinite) set of L-formulas,
and Γ |= ϕ, then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= ϕ. A proof system for a
logic L is strongly complete if whenever Γ ∪ {ϕ} is a (possibly infinite) set of L-formulas:
If Γ |= ϕ, then Γ ⊢ ϕ. A system is sound if Γ ⊢ ϕ implies Γ |= ϕ.

It is shown in [22] that modal team logic MT L is expressively complete for the class of
all team properties invariant under k-bisimulation for some k. Thus MT L is expressively
stronger than MIL. In [23, 24] it is shown that MT L has a proof system that is strongly
complete, from which it follows that the logic is compact.

Proposition 3.28. Let L be a logic that has a strongly complete proof system. Then L
is compact.

Proof. Let Γ ∪ {ϕ} be an infinite set of L-formulas, and let Γ |= ϕ. Then by strong
completeness Γ ⊢ ϕ. Since all derivations are finite, there is a finite subset Γ0 ⊆ Γ such
that Γ0 ⊢ ϕ, which implies Γ0 |= ϕ by soundness. Hence L is compact.
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As an instance of the previous proposition, MT L is compact. We can conclude that
MIL is compact.

Lemma 3.29 (Compactness). For any set of MIL formulas Γ ∪ {ϕ} such that Γ |= ϕ,
there is a finite subset Γ0 ⊆ Γ such that Γ0 |= ϕ.

Proof. Suppose that Γ |= ϕ. MT L is expressively stronger than MIL, so for any formula
ψ ∈ MIL there is a formula ψ′ ∈ MT L such that ψ ≡ ψ′. Let ϕ′ ∈ MT L be such that
ϕ′ ≡ ϕ. Define Γ′ = {ψ′ ∈ MT L | ψ ∈ Γ and ψ ≡ ψ′}, then Γ′ |= ϕ′. Since MT L is
compact, there is a finite subset Γ′

0 ⊆ Γ′ such that Γ′
0 |= ϕ′. Now Γ0 = {ψ ∈ MIL | ψ′ ∈

Γ′
0 and ψ′ ≡ ψ} is a finite set such that Γ0 |= ϕ.

3.3 Inclusion atoms revisited
In this section we examine the inclusion atom closer. In particular, we show that an
arbitrary inclusion atom is equivalent to a formula in which all non-classical subformulas
are of the form ⊤ ⊆ α. In fact, by extending ML with only top inclusion atoms we attain
the same expressive power as MIL. We will use this idea in the completeness proof. The
results in this section are essentially due to [30].

We call inclusion atoms with only ⊥ and ⊤ on the left-hand side of the inclusion
symbol primitive inclusion atoms. In particular, if there are only top formulas on the
left-hand side of the inclusion symbol, we call it a top inclusion atom. It follows by the
semantics of the inclusion atom that primitive inclusion atoms are upwards closed, i.e.,
for x ∈ {⊤,⊥}, whenever a nonempty team T is such that T |= x ⊆ α, then T ′ |= x ⊆ α
for all T ′ ⊇ T .

Let us define some notation regarding inclusion atoms. Let x ∈ {⊤,⊥} and define
α⊤ = α and α⊥ = ¬α. For a sequence a = ⟨α1, . . . , αn⟩ and x = ⟨x1, . . . , xn⟩ we abbreviate
αx1

1 ∧· · ·∧αxn
n by ax, where x is a sequence of ⊤ and ⊥ formulas. Let |a| denote the length

of the sequence a.
First, we show a useful semantic fact about inclusion atoms: A primitive inclusion

atom x ⊆ a is satisfied by a nonempty team if and only if the team has a witness to the
conjunction ax.

Lemma 3.30. Let (K,T ) ∈ CT(Φ), and let T be nonempty. Then K,T |= x ⊆ a if and
only if there exists a v ∈ T such that K, v |= ax. In particular, K,T |= ⊤ ⊆ α if and only
if there exists a v ∈ T such that K, v |= α.

Proof. Suppose that T ̸= ∅ and that T |= x ⊆ a. Let w ∈ T , then there is a v ∈ T such
that w |= xi ⇐⇒ v |= αi for all i = 1, . . . , n. Let i ∈ {1, . . . , n}. If xi = ⊤, then w |= xi,
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so v |= αi. Hence v |= α⊤
i . If xi = ⊥, then w ̸|= xi, so v ̸|= αi. Hence v |= α⊥

i . So for all
i = 1, . . . , n, v |= αxi

i . We conclude v |= ax.
For the other direction, assume that there is a v ∈ T such that v |= ax. Then v |= αxi

i

for all i = 1, . . . , n. Let i ∈ {1, . . . , n} and let w ∈ T . If xi = ⊤, then v |= αxi
i = αi, hence

w |= xi ⇐⇒ v |= αi holds. If xi = ⊥, then v |= αxi
i = ¬αi, so w ̸|= xi and v ̸|= αi, hence

w |= xi ⇐⇒ v |= αi follows. Thus T |= x ⊆ a.

The next lemma allows us to reduce an arbitrary inclusion atom to a formula in which
all non-classical subformulas are primitive inclusion atoms.

For sequences a = ⟨α1 . . . αn⟩ and b = ⟨β1 . . . βn⟩, we write w |= a ⇐⇒ v |= b instead
of w |= αi ⇐⇒ v |= βi for all i ∈ {1, . . . , n}.

Lemma 3.31. Let a, b be sequences of ML-formulas, and let x be a sequence of ⊤ and
⊥ formulas. Then ∧

x∈{⊤,⊥}|a|

(¬ax ∨ x ⊆ b) ≡ a ⊆ b.

Proof. For the left-to-right direction, suppose that T |= ¬ax ∨ x ⊆ b for all x ∈ {⊤,⊥}|a|.
We show that T |= a ⊆ b. If T = ∅, then the result follows by the empty team property.
Suppose that T ̸= ∅. Let w ∈ T and let x be such that w |= x ⇐⇒ w |= a, i.e.,
w |= ax. From T |= ¬ax ∨ x ⊆ b, it follows that there are subteams T1, T2 ⊆ T such that
T1 ∪T2 = T , T1 |= ¬ax and T2 |= x ⊆ b. Clearly w ̸∈ T1, so w ∈ T2, hence there is a v ∈ T2
such that w |= x ⇐⇒ v |= b. Therefore w |= a ⇐⇒ v |= b, thus T |= a ⊆ b.

For the right-to-left direction, suppose that T |= a ⊆ b and let x ∈ {⊤,⊥}|a|. We show
that T |= ¬ax ∨ x ⊆ b. If T = ∅, then the result follows by the empty team property.
Suppose that T ̸= ∅ and let n = |a|. Define the team

Tx = {w ∈ T | w |= αi ⇍⇒ w |= xi for some i ∈ {1, . . . , n}}.

We show that Tx |= ¬ax. Let w ∈ Tx. Then there is some i ∈ {1, . . . , n} such that
w |= αi ⇍⇒ w |= xi, hence w ̸|= αxi

i . It follows that w ̸|= ax = αx1
1 ∧ · · · ∧ αxn

n . Hence
Tx |= ¬ax.

If Tx = T , then T |= ¬ax so T |= ¬ax ∨ x ⊆ b. If T \ Tx ̸= ∅, then for any u ∈ T
and v picked from T \ Tx, we have that u |= x ⇐⇒ v |= x ⇐⇒ v |= a, where the first
equivalence is trivial and the second is by v ∈ T \ Tx. Since T |= a ⊆ b, there is a w ∈ T
such that u |= x ⇐⇒ v |= a ⇐⇒ w |= b. Now T |= x ⊆ b and T |= ¬ax ∨ x ⊆ b follows.
Since x was arbitrary we conclude T |= ¬ax ∨ x ⊆ b for all x ∈ {⊤,⊥}|a| as desired.

The arity of an inclusion atom is the number of formulas on either side of the inclusion
symbol. The next lemma allows us to further reduce a primitive inclusion atom to a
formula in which all non-classical subformulas are primitive inclusion atoms of arity one.
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Lemma 3.32. Let a, b be sequences of ML-formulas, and let x, y be sequences of ⊤ and
⊥ formulas. Then

xy ⊆ ab ≡ x ⊆ a ∧ ((y ⊆ b ∧ ax) ∨ ¬ax)

Proof. First, suppose that T |= xy ⊆ ab. We show that T |= x ⊆ a ∧ ((y ⊆ b ∧ ax) ∨ ¬ax).
If T = ∅ the result follows by the empty team property. Suppose that T ̸= ∅. Clearly
T |= x ⊆ a. Define a team

T ′ = {v ∈ T | v |= a ⇐⇒ v |= x},

and let S = T \ T ′. Now T ′ |= ax and S |= ¬ax. Let v ∈ T ′, then since T ′ ⊆ T and
T |= xy ⊆ ab, there is a u ∈ T such that v |= x ⇐⇒ u |= a and v |= y ⇐⇒ u |= b. Now
u |= a ⇐⇒ v |= x ⇐⇒ u |= x, hence u ∈ T ′. Therefore T ′ |= y ⊆ b. Since T ′ ∪ S = T ,
we conclude that T |= x ⊆ a ∧ ((y ⊆ b ∧ ax) ∨ ¬ax).

For the other direction, suppose that T |= x ⊆ a ∧ ((y ⊆ b ∧ ax) ∨ ¬ax). We show
that T |= xy ⊆ ab. If T = ∅ the result follows by the empty team property. Suppose
that T ̸= ∅ and let v ∈ T . Since T |= x ⊆ a, we have that there is a u ∈ T such
that u |= x ⇐⇒ v |= x ⇐⇒ u |= a, where the first equivalence is trivial. We note
that u |= ax. Also, there are subteams T1, T2 ⊆ T such that T1 ∪ T2 = T , T1 |= ¬ax

and T2 |= y ⊆ b ∧ ax. Now u ̸∈ T1, so u ∈ T2, and therefore T2 is nonempty. Then
there is a w ∈ T2 such that v |= y ⇐⇒ u |= y ⇐⇒ w |= b. Also T2 |= ax, so
v |= x ⇐⇒ w |= x ⇐⇒ w |= a. Therefore T |= xy ⊆ ab.

In addition, one can easily show that ⊥ ⊆ α ≡ ⊤ ⊆ ¬α. This means that we in fact
can reduce any inclusion atom to a formula in which all non-classical subformulas are
inclusion atoms of the form ⊤ ⊆ α. Indeed, the non-classical subformulas in the normal
form for MIL, contain this type of inclusion atoms only.

This observation motivates the definition of an operator ♢·, such that for any ML-
formula α, ⊤ ⊆ α ≡ ♢· α.

Definition 3.33. The semantics of the operator ♢· is defined by the following clause:

K,T |=♢· ϕ ⇐⇒ T = ∅ or there is a w ∈ T such that K, {w} |= ϕ.

Intuitively, the formula ♢· ϕ is true in a nonempty team T if the team T contains a
witness state for the formula ϕ. We may view the operator ♢· as a ”local diamond” as it
asks for a witness of the formula ϕ ”locally” from the team T itself, instead of from the
successor teams S satisfying TRS (as with the usual diamond ♢).

Let us now consider modal logic extended with the operator ♢·, denoted as ML(♢· ).
We just noted that any inclusion atom in MIL can be reduced to a formula which
contains only top inclusion atoms of arity one. Therefore any formula in MIL can be
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expressed by an equivalent ML(♢· )-formula. Conversely, it can easily be shown that for
each ML(♢· )-formula ϕ, the class ∥ϕ∥ is invariant under k-bisimulation for some k, is
closed under unions and has the empty team property, and therefore by Theorem 3.23 ϕ
can be expressed by an equivalent MIL-formula. Hence the expressive powers of the two
logics are equal.

Proposition 3.34. MIL is expressively equivalent to ML(♢· ).

We can further ask if the formula ♢· ϕ is uniformly definable in MIL, i.e., is there
an MIL-formula ψ(p) such that ♢· (ϕ) ≡ ψ(ϕ/p), where ψ(ϕ/p) refers to the formula
obtained by substituting each occurrence of p in ψ by ϕ. This is left for future work.
For more discussions on uniform definability of logical constants in the team semantics
setting, the reader is referred to [9, 5, 31, 6, 27].

Another related operator is the ”might” operator ∇ (also known in the literature as
the ”nonemptiness operator”) introduced in [18]. We recall the semantics for the operator
∇:

K,T |= ∇ϕ ⇐⇒ T = ∅, or there exists S ⊆ T such that S ̸= ∅ and K,S |= ϕ.

Clearly, ♢· ϕ |= ∇ϕ holds in general, and the other direction ∇ϕ |=♢· ϕ holds whenever
ϕ is downward closed. In particular, we have ♢· α ≡ ∇α for any ML-formula α. Thus,
⊤ ⊆ α ≡ ∇α as well.

It is shown in [18] that modal logic extended with ∇, ML(∇), is expressively equiva-
lent to MIL. Note that the normal form formula for ML(∇)-formulas obtained in [18]
is essentially the same as our normal form (NF) for MIL, but with ∇-modality formulas
replacing the top inclusion atoms.
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Chapter 4

Axiomatization

The goal of this chapter is to define a complete proof system for MIL. We divide the
chapter into two parts. In the first section, we define the proof system for MIL. We show
that all rules included in the system are sound. In the second section, we show that the
proof system is complete. One important part in the proof of the completeness theorem,
is to show that all MIL-formulas have a provably equivalent formula in the normal form.
Using the normal forms, we follow the same strategy for proving the completeness theorem
as in [30], which is a commonly-used strategy for proving completeness for propositional
and modal team-based logics.

4.1 Axioms and rules
Modal logics are typically axiomatized using a Hilbert-style system. However, since MIL
does not have an implication, we instead use a natural deduction system. This section is
divided into two parts, first we define a natural deduction proof system for MIL, then
we show that the proof system is sound.

4.1.1 Proof system
In this subsection we introduce all the axioms and rules that are included in our proof
system for MIL. We introduce the axioms and rules of the system in steps. We also
define some useful rules that are derivable in our system. Many of the rules are based on
[30] and some are from [29]. The rules that concern both modal operators and inclusion
atoms are new.

Derivations are denoted by D, with or without an index.
Table 4.1 includes rules concerning negation, disjunction and conjunction. MIL does

not admit uniform substitution (Proposition 2.17), so some rules, e.g., the negation rules
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¬I and RAA, are restricted to ML-formulas. The soundness of the disjunction elimination
rule requires that the undischarged assumptions in the subderivations are downward- and
union-closed, and have the empty team property, hence the restriction of the undischarged
assumptions in the subderivations to ML-formulas.

The rules in Table 4.1 can all be found in [30]. Furthermore, the rules in Table 4.1
restricted to ML-formulas form the standard system for classical propositional logic.

[α]
D0
⊥ ¬I(1)¬α

[¬α]
D0
⊥ RAA(1)α

D0
α

D1
¬α ¬E

ϕ

D
ϕ

∨I
ϕ ∨ ψ

D
ψ

∨I
ϕ ∨ ψ

D
ϕ ∨ ψ

[ϕ]
D0
χ

[ψ]
D1
χ ∨E(1)χ

D0
ϕ

D1
ψ

∧I
ϕ ∧ ψ

D
ϕ ∧ ψ

∧E
ϕ

D
ϕ ∧ ψ

∧E
ψ

(1) The undischarged assumptions in D0 and D1 are ML-formulas.

Table 4.1: Rules for disjunction, conjunction and negation.

We say that ϕ and ψ are provably equivalent, denoted by ϕ ⊣⊢ ψ, if ϕ ⊢ ψ and ψ ⊢ ϕ.
Next, we show some useful clauses using the rules in Table 4.1.

Proposition 4.1. Let Γ0 be a set of ML-formulas. The following clauses are derivable.

(i) If ϕ ⊢ χ, then ϕ ∧ ψ ⊢ χ ∧ ψ

(ii) If Γ0, ϕ ⊢ χ, then Γ0, ϕ ∨ ψ ⊢ χ ∨ ψ

(iii) ϕ ∧ ψ ⊣⊢ ψ ∧ ϕ

(iv) ϕ ∨ ψ ⊣⊢ ψ ∨ ϕ
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(v) (ϕ ∧ ψ) ∧ χ ⊣⊢ ϕ ∧ (ψ ∧ χ)

(vi) (ϕ ∨ ψ) ∨ χ ⊣⊢ ϕ ∨ (ψ ∨ χ)

(vii) ⊥ ⊢ ϕ.

(viii) If Γ0, ψ ⊢ ⊥, then Γ0, ψ ∨ ϕ ⊢ ϕ.

(ix) ⊢ ⊤.

Proof. Items (i)-(vi) are all derivable by the introduction and elimination rules for con-
junction and disjunction. For item (vii), we derive ⊥ ⊢ ϕ by ¬E and ¬I. For item (viii),
we assume that Γ0, ψ ⊢ ⊥, and use ∨E and item (vii) to derive Γ0, ψ ∨ ϕ ⊢ ϕ. Recalling
that ⊤ = ¬⊥, we see that item (ix) is an instance of the rule ¬I.

D
¬□α ♢□Inter
♢¬α

D
♢¬α

□♢Inter¬□α

[ϕ]
D0
ψ

D1
♢ϕ

♢Mon(1)
♢ψ

D
♢(ϕ ∨ ψ)

♢∨Distr
♢ϕ ∨ ♢ψ

[ϕ1] . . . [ϕn]
D0

. . . ... ...
ψ

D1
□ϕ1

. . .

. . .

Dn

□ϕn □Mon(1)
□ψ

(1) D0 has no undischarged assumptions.

Table 4.2: Rules for diamond and box.

Table 4.2 includes rules for diamond and box. All rules, except for ♢∨Distr, can be
found in [29]. In Proposition 4.8 we show that the rules in Table 4.1 and 4.2, exclud-
ing ♢∨Distr, completely axiomatize ML. Restricted to classical formulas, ♢∨Distr is
derivable.
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Next we define some clauses that are derivable by the rules in Table 4.1 and 4.2.

Proposition 4.2. The following clauses are derivable.

(i) ♢(ϕ ∧ ψ) ⊢ ♢ϕ ∧ ♢ψ.

(ii) ♢ϕ ∨ ♢ψ ⊣⊢ ♢(ϕ ∨ ψ).

(iii) □ϕ ∨ □ψ ⊢ □(ϕ ∨ ψ).

(iv) □ϕ ∧ □ψ ⊣⊢ □(ϕ ∧ ψ).

Proof. For item (i), we derive ♢(ϕ ∧ ψ) ⊢ ♢ϕ and ♢(ϕ ∧ ψ) ⊢ ♢ψ by ♢Mon. By ∧I we
conclude ♢(ϕ ∧ ψ) ⊢ ♢ϕ ∧ ♢ψ. The left-to-right direction of item (ii) is derivable by ∨E,
♢Mon and ∨I. The right-to-left direction is by ♢∨Distr. Item (iii) is derivable by ∨E,
□Mon and ∨I. The left-to-right direction of item (iv) is derivable by □Mon and ∧I, and
the right-to-left direction is derivable by □Mon, ∧E and ∧I.

We note that the opposite direction of items (i) and (iii) in Proposition 4.2 are not
sound. We observe that T |= ♢ϕ∧♢ψ implies that there are two (possibly different) teams
S1 and S2 such that TRS1 and TRS2, with S1 |= ϕ and S2 |= ψ. But T |= ♢(ϕ∧ψ) requires
that there exists a (single) team S such that TRS, that satisfies both ϕ and ψ. To see
that T |= □(ϕ∨ψ) does not imply T |= □ϕ∨□ψ, we give an example. Let Φ = {p, q} and
let K = (W,R, V ) be a Kripke model with W = {w1, w2, w3}, R = {(w1, w2), (w1, w3)},
V (p) = {w2}, and V (q) = {w3}. Let T = {w1} (see Figure 4.1 for a picture). Clearly
R[T ] |= p ∨ q, but there are no subsets T1, T2 ⊆ T such that T1 ∪ T2 = T with R[T1] |= p
and R[T2] |= q. Hence T |= □(p ∨ q) but T ̸|= □p ∨ □q.

w1

p

w2

q

w3

T R[T ]

Figure 4.1

Let us now introduce rules relating to the inclusion atom. Let a, b and c (with or
without indices) be sequences of ML-formulas, and let x and y be sequences consisting
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of the formulas ⊤ and ⊥. We recall that α⊤ = α and α⊥ = ¬α. We also recall that ax

abbreviates the formula αx1
1 ∧ · · · ∧ αxn

n for a = ⟨α1, . . . , αn⟩ and x = ⟨x1, . . . , xn⟩. Let |a|
denote the length of the sequence a.

D
⊤ . . .⊤ ⊆ αx1

1 . . . αxn
n ⊆⊥⊤Exc

x1 . . . xn ⊆ α1 . . . αn

⊆Ida ⊆ a

D
xy ⊆ ab ⊆Ctrx ⊆ a

D
a0a1 ⊆ b0b1 ⊆Wka0a0a1 ⊆ b0b0b1

D0
αx

D1
b ⊆ c ⊆Exp

xb ⊆ αc

D0
¬ax

D1
x ⊆ a ⊆¬E

ϕ

D∧
x∈{⊤,⊥}|a|(¬ax ∨ x ⊆ b)

⊆Exta ⊆ b

D
a ⊆ b ⊆Rdt¬ax ∨ x ⊆ b

D
(ϕ ∧ x ⊆ a) ∨ ψ

[ϕ] [x ⊆ a]
D0

. . . ... ...
χ

[ψ]

D1

χ

[ϕ ∨ ψ] [x ⊆ a]
D2

. . . ... ...
χ ∨⊆Eχ

D0
ϕ ∨ ψ

D1
x1 ⊆ a1

. . .

. . .
Dn

xn ⊆ an ⊆Distr((ϕ ∨ ax1
1 ∨ · · · ∨ axn

n ) ∧ x1 ⊆ a1 ∧ · · · ∧ xn ⊆ an) ∨ ψ

Table 4.3: Rules for inclusion.

All the rules from Table 4.3 are adapted from [30], except for the rule ⊆⊥⊤Exc. This
rule will be used to derive primitive inclusion atoms from formulas in the normal form,
which only contain top inclusion atoms. The other direction of ⊆⊥⊤Exc is also sound,
and we show that it is derivable in Proposition 4.22 (i). The rule ⊆¬E captures that
x ⊆ a ∧ ¬ax is a contradiction, since (for a nonempty team) x ⊆ a implies that ax is true
somewhere in the team (see Lemma 3.30), while ¬ax implies that ax is not true anywhere
in the team. The rules ⊆Ext, ⊆Rdt and ⊆Ctr let us reduce an arbitrary inclusion atom to
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an equivalent formula where all non-classical subformulas are primitive inclusion atoms.
The rule ∨⊆E captures the semantic fact that if a nonempty team satisfies the formula

(ϕ ∧ x ⊆ a) ∨ ψ, then either the whole team satisfies either of the disjuncts, or there
are nonempty subteams that satisfy each disjunct. If the left disjunct is satisfied by a
nonempty subteam, since primitive inclusion atoms are upwards closed, it follows that
the inclusion atom is true in the whole team. The opposite direction of the previously
mentioned semantic fact is not sound. This is because (ϕ∨ ψ) ∧ x ⊆ a ̸|= (ϕ∧ x ⊆ a) ∨ ψ,
which we show with an example. Let Φ = {p, q} and let K = (W,R, V ) be a Kripke
model with W = {w1, w2}, R = ∅, V (p) = {w1}, V (q) = {w2}. Let T = W (see Figure
4.2 for a picture). Clearly T |= (p ∨ q) ∧ ⊤ ⊆ q, but T ̸|= (p ∧ ⊤ ⊆ q) ∨ q. However,
(ϕ ∨ ψ) ∧ x ⊆ a |= ((ϕ ∨ ax) ∧ x ⊆ a) ∨ ψ holds, which is an instance of the rule ⊆Distr.

p

w1

q

w2

T

Figure 4.2

It is shown in [4] that the implication problem of inclusion dependencies is completely
axiomatizable by the rule ⊆Id together with the rules ⊆Trs and ⊆Proj:

D0
a ⊆ b

D1
b ⊆ c ⊆Trsa ⊆ c

D
α1 . . . αn ⊆ β1 . . . βn ⊆Proj,
αi1 . . . αim ⊆ βi1 . . . βim

where i1, . . . , im are distinct indices from {1, . . . , n}. We show in Proposition 4.3 that the
rule ⊆Trs is derivable from the rules in Tables 4.1 and 4.3, and in Proposition 4.22 (iii)
that the rule ⊆Proj is derivable in our system.

Next we show that some clauses regarding inclusion atoms are derivable. In particular,
the transitivity rule for inclusion atoms from [30] is derivable. Let ⊤n be a sequence of
length n consisting of top atoms.

Proposition 4.3. The following clauses are derivable.

(i) α1, . . . , αn ⊢ ⊤n ⊆ α1 . . . αn.

(ii) If αi ⊢ βi, then ⊤n ⊆ α1 . . . αn ⊢ ⊤n ⊆ α1 . . . βi . . . αn, where i ∈ {1, . . . , n}.

(iii) a ⊆ b, b ⊆ c ⊢ a ⊆ c.
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Proof. (i) Derivable by ⊆Id, ⊆Exp and ⊆Ctr.

(ii) By classical rules, we derive ⊢ ¬(α1 ∧· · ·∧αn)∨(α1 ∧· · ·∧αn). From the assumption
αi ⊢ βi together with Proposition 4.1 (i), item (i) and ⊆Id we have that α1∧· · ·∧αn ⊢
α1 ∧ · · · ∧ βi ∧ · · · ∧αn ⊢ (⊤n ⊆ α1 . . . βi . . . αn) ∧ ⊤. By Proposition 4.1 (ii) we have
that ¬(α1 ∧· · ·∧αn)∨(α1 ∧· · ·∧αn) ⊢ ¬(α1 ∧· · ·∧αn)∨((⊤n ⊆ α1 . . . βi . . . αn)∧⊤).
By ∨⊆E, it suffices to show that

(a) ⊤n ⊆ α1 . . . αn,¬(α1 ∧ · · · ∧ αn) ⊢ ⊤n ⊆ α1 . . . βi . . . αn,
(b) ⊤n ⊆ α1 . . . αn,⊤,⊤n ⊆ α1 . . . βi . . . αn ⊢ ⊤n ⊆ α1 . . . βi . . . αn,
(c) ⊤n ⊆ α1 . . . αn,¬(α1∧· · ·∧αn)∨⊤,⊤n ⊆ α1 . . . βi . . . αn ⊢ ⊤n ⊆ α1 . . . βi . . . αn.

Condition (a) follows from ⊆¬E, and conditions (b) and (c) are trivial.

(iii) By ⊆Ext, we need to derive ¬ax ∨ x ⊆ c for all x ∈ {⊤,⊥}|a|. First, we derive
a ⊆ b ⊢ ¬ax ∨ x ⊆ b and b ⊆ c ⊢ ¬bx ∨ x ⊆ c by ⊆Rdt. We have that ¬ax ∨ x ⊆
b ⊢ ¬ax ∨ (⊤ ∧ x ⊆ b) and ¬bx ∨ x ⊆ c ⊢ ¬bx ∨ (⊤ ∧ x ⊆ c), so by ∨⊆E it suffices to
show that

(a) ¬bx ∨ (⊤ ∧ x ⊆ c),¬ax ⊢ ¬ax ∨ x ⊆ c
(b) ¬bx ∨ (⊤ ∧ x ⊆ c), x ⊆ b ⊢ ¬ax ∨ x ⊆ c,

since it would imply

¬bx ∨ (⊤ ∧ x ⊆ c),⊤, x ⊆ b ⊢ ¬ax ∨ x ⊆ c, (b)
¬bx ∨ (⊤ ∧ x ⊆ c),¬ax ⊢ ¬ax ∨ x ⊆ c, (a)
¬bx ∨ (⊤ ∧ x ⊆ c),⊤ ∨ ¬ax, x ⊆ b ⊢ ¬ax ∨ x ⊆ c. (b)

Condition (a) follows by ∨I. By the rule ∨⊆E, condition (b) reduces to showing the
following clauses.

x ⊆ b, x ⊆ c,⊤ ⊢ ¬ax ∨ x ⊆ c, (∨I)
x ⊆ b,¬bx ⊢ ¬ax ∨ x ⊆ c, (⊆¬ E)
x ⊆ b, x ⊆ c,⊤ ∨ ¬bx ⊢ ¬ax ∨ x ⊆ c. (∨I)
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D
♢(x ⊆ a)

♢⊆Distr⊤ ⊆ ♢ax

D0
♢ϕ

D1∧
i∈I(xi ⊆ ♢αi) ⊆♢Distr

♢((ϕ ∨ ∨
i∈I α

xi
i ) ∧ ∧

i∈I(xi ⊆ αi))

D0
⊤ ⊆ ♢β

D1

□(x ⊆ a)
□♢⊆Exc⊤ ⊆ ♢ax

D
⊤ ⊆ ♢ax

♢□⊆Exc
□(x ⊆ a)

D
□((ϕ ∧ x ⊆ a) ∨ ψ)

[□ϕ] [⊤ ⊆ ♢ax]
D0

. . . ... ...
χ

[□ψ]

D1

χ

[□(ϕ ∨ ψ)] [⊤ ⊆ ♢ax]
D2

. . . ... ...
χ

□∨⊆Eχ

Table 4.4: Rules for modal operators and inclusion.

The rule ♢⊆Distr allows us to distribute diamond over the inclusion atom. The con-
verse direction of the rule ♢⊆Distr is not sound, which we illustrate with an example. Let
Φ = {p} and let K = (W,R, V ) be a Kripke model with W = {w1, w2, w3}, R = {(w2, w3)}
and V (p) = {w3}. Let T = {w1, w2}. Clearly, T |= ⊤ ⊆ ♢p. But there is no successor
team S ⊆ R[T ] such that TRS, so T ̸|= ♢(⊤ ⊆ p). See Figure 4.3 for a picture of the
example.

w2

w1

p

w3

T R[T ]

Figure 4.3

Instead, we add the rule ⊆♢Distr, which then allows us to derive the opposite direction
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of ♢⊆Distr, with any diamond formula as an additional assumption:

♢ϕ,⊤ ⊆ ♢ax ⊢ ♢((ϕ ∨ (ax)⊤) ∧ ⊤ ⊆ ax) (⊆♢ Distr)
⊢ ♢(⊤ ⊆ ax). (♢Mon,∧E)

The rule ♢□⊆Exc allows us to derive a box formula from a top inclusion formula with
a diamond formula on the right. The opposite direction of the rule ♢□⊆Exc is not sound.
Let Φ = ∅ and let K = (W,R, V ) be a Kripke model with W = {u}, V = ∅ and R = ∅.
Let T = {u}. Now T is a nonempty team such that R[T ] = ∅. Let α ∈ MIL. By
the empty team property, T |= □(⊤ ⊆ α). But T ̸|= ⊤ ⊆ ♢α, since u has no accessible
state. Adding the formula ⊤ ⊆ ♢β as an assumption for this direction (forming the rule
□♢⊆Exc) guarantees that whenever a nonempty team satisfies the box formula, R[T ] is
nonempty as well.

The rule □∨⊆E is similar to ∨⊆E in Table 4.3, but applies to box formulas.

Proposition 4.4. The following clause about diamond and inclusion holds:

♢
∨
i∈I

αi ∧
∧
i∈I

(⊤ ⊆ ♢αi) ⊣⊢ ♢(
∨
i∈I

αi ∧
∧
i∈I

(⊤ ⊆ αi)).

Proof. We make the derivations.

(⊢)

♢
∨
i∈I

αi,
∧
i∈I

(⊤ ⊆ ♢αi) ⊢ ♢((
∨
i∈I

αi ∨
∨
i∈I

αi) ∧
∧
i∈I

(⊤ ⊆ αi)) (⊆♢ Distr)

⊢ ♢(
∨
i∈I

αi ∧
∧
i∈I

(⊤ ⊆ αi)). (♢Mon)

(⊣)

♢(
∨
i∈I

αi ∧
∧
i∈I

(⊤ ⊆ αi) ⊢ ♢
∨
i∈I

αi ∧
∧
i∈I

♢(⊤ ⊆ αi) (Prop. 4.2 (i))

⊢ ♢
∨
i∈I

αi ∧
∧
i∈I

(⊤ ⊆ ♢αi). (♢⊆Distr)

Definition 4.5. The proof system for MIL consists of all axioms and rules presented in
Tables 4.1-4.4.
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4.1.2 Soundness
This subsection is dedicated to proving that our proof system for MIL is sound, i.e., that
for a set Γ of MIL-formulas, we can only derive Γ ⊢ ϕ when Γ |= ϕ. As a consequence
we get that our system for MIL has a subsystem that, restricted to classical formulas,
is complete.

Theorem 4.6 (Soundness). Let Γ∪{ϕ} be a set of MIL-formulas. If Γ ⊢ ϕ, then Γ |= ϕ.

Proof. All rules in Table 4.1 and Table 4.2 have straightforward soundness proofs. Based
on Lemma 3.31 and Lemma 3.32, we have that the following rules in Table 4.3 are sound:
⊆Ext, ⊆Rdt and ⊆Ctr. The more involved soundness proofs for the rules in Table 4.3
and Table 4.4 are shown next.

(⊆Distr) Suppose that T |= xi ⊆ ai for all i = 1, . . . , n and T |= ϕ ∨ ψ. We want to
show T |= ((ϕ∨ax1

1 ∨· · ·∨axn
n )∧x1 ⊆ a1 ∧· · ·∧xn ⊆ an)∨ψ. If T = ∅ then the result

follows by the empty team property. Suppose that T ̸= ∅ then there are subteams
T1, T2 ⊆ T such that T1 ∪ T2 = T and T1 |= ϕ and T2 |= ψ. Since T |= xi ⊆ ai

for all i = 1, . . . , n, it follows from Lemma 3.30 that for every i = 1, . . . , n there
is a vi ∈ T such that vi |= axi

i . Consider the team T ′
1 = {v1, . . . , vn} ∪ T1, clearly

T ′
1 |= ϕ∨ ax1

1 ∨ · · · ∨ axn
n and T ′

1 |= x1 ⊆ a1 ∧ · · · ∧ xn ⊆ an. Since T ′
1 ∪ T2 = T , we get

that T |= ((ϕ ∨ ax1
1 ∨ · · · ∨ axn

n ) ∧ x1 ⊆ a1 ∧ · · · ∧ xn ⊆ an) ∨ ψ, as desired.

(♢⊆Distr) Suppose that T |= ♢(x ⊆ a), then there is a successor team S such that
TRS and S |= x ⊆ a. We show that T |= ⊤ ⊆ ♢ax. If T = ∅, then the result
follows by the empty team property. Suppose that T ̸= ∅. Then S is nonempty, so
by Lemma 3.30 there is some v ∈ S such that v |= ax. Since v ∈ S and TRS, it
follows that there is some w ∈ T such that wRv. Now w |= ♢ax, so T |= ⊤ ⊆ ♢ax.

(⊆♢Distr) We show that ♢ϕ ∧ ∧
i∈I(xi ⊆ ♢ai) |= ♢((ϕ ∨ ∨

i∈I α
xi
i ) ∧ ∧

i∈I(xi ⊆ αi)).
If the index set I is empty, then the assumption and conclusion are semantically
equivalent. Suppose that I is nonempty and that T |= ♢ϕ ∧ ∧

i∈I(xi ⊆ ♢ai). Then
there is a team S such that TRS and S |= ϕ. If T = ∅, then the result follows by the
empty team property. Suppose that T ̸= ∅. By the assumption T |= ∧

i∈I(xi ⊆ ♢αi),
it follows that for each i ∈ I, T |= xi ⊆ ♢αi. If xi = ⊤, then it follows that there is
some v ∈ R[T ] such that v |= αi. If xi = ⊥, then by Lemma 3.30 there is some state
wi ∈ T such that wi |= ¬♢αi, i.e., wi |= □¬αi. By TRS there is a state v ∈ R[T ]
such that wiRv, and since wi |= □¬αi, we have that v |= ¬αi. Therefore, for each
i ∈ I there is some v ∈ R[T ] such that v |= αxi

i .
Define a team

S ′ = S ∪ {v ∈ R[T ] | v |= αxi
i for some i ∈ I}.
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Clearly S ′ |= ϕ∨ ∨
i∈I α

xi
i . Also S ′ |= ∧

i∈I(xi ⊆ αi). Therefore S ′ |= (ϕ∨ ∨
i∈I α

xi
i ) ∧∧

i∈I(xi ⊆ αi). Since S ⊆ S ′ ⊆ R[T ] and TRS, we have that TRS ′, so T |=
♢((ϕ ∨ ∨

i∈I α
xi
i ) ∧ ∧

i∈I(xi ⊆ αi)).

(□♢⊆Exc) Suppose that T |= ⊤ ⊆ ♢β and that T |= □(x ⊆ a). We show that
T |= ⊤ ⊆ ♢ax. If T = ∅, then the rule is sound by the empty team property.
Let T ̸= ∅, then there is a w ∈ T with wRv and v |= β. So R[T ] ̸= ∅. Now
∅ ̸= R[T ] |= x ⊆ a, and by Lemma 3.30 there is some v′ ∈ R[T ] such that v′ |= ax.
Then there is some w′ ∈ T such that w′Rv′ and w′ |= ♢ax. Therefore T |= ⊤ ⊆ ♢ax.

(♢□⊆Exc) Let T |= ⊤ ⊆ ♢ax. We show that T |= □(x ⊆ a). If T = ∅, then soundness
follows from the empty team property. Suppose that T is nonempty, then by Lemma
3.30 there is a w ∈ T such that w |= ♢ax. It follows that there is a v ∈ R[T ] such
that wRv and v |= ax, from which R[T ] |= x ⊆ a follows by Lemma 3.30. Hence
T |= □(x ⊆ a).

(□∨⊆E) Finally, we show that the rule □∨⊆E is sound. The soundness for ∨⊆E in
Table 4.3 can be shown in a similar way.
Let Γ consist of MIL-formulas. Suppose that Γ,□ϕ,⊤ ⊆ ♢ax |= χ and Γ,□ψ |= χ,
as well as Γ,□(ϕ∨ψ),⊤ ⊆ ♢ax |= χ. Let T |= □((ϕ∧ x ⊆ a) ∨ψ) and T |= γ for all
γ ∈ Γ. Then R[T ] |= (ϕ ∧ x ⊆ a) ∨ ψ, so there are subsets T1, T2 ⊆ R[T ] such that
T1 ∪ T2 = R[T ] and T1 |= ϕ ∧ x ⊆ a and T2 |= ψ. We show that T |= χ.

We have three cases, either T1 = ∅, T2 = ∅ or both T1 or T2 are nonempty.
If T1 = ∅, then T2 = R[T ]. Now R[T ] |= ψ, so T |= □ψ. We assumed that
Γ,□ψ |= χ, thus T |= χ follows.
If T2 = ∅, then T1 = R[T ] so R[T ] |= ϕ ∧ x ⊆ a. Clearly T |= □ϕ. Also
T |= □(x ⊆ a). First, let us assume that R[T ] is nonempty, then by Lemma 3.30
there is a v ∈ R[T ] such that v |= ax, from which it follows that T |= ⊤ ⊆ ♢ax.
Since we assumed that Γ,□ϕ,⊤ ⊆ ♢ax |= χ, it follows that T |= χ. If R[T ]
is empty, then by the empty team property, R[T ] |= ψ, hence T |= □ψ. We
assumed that Γ,□ψ |= χ, so we conclude T |= χ.
If both T1 and T2 are nonempty, then from T1 |= x ⊆ a and Lemma 3.30
it follows that there is some v ∈ T1 such that v |= ax. Therefore there is a
w ∈ T with wRv such that w |= ♢ax. By definition T |= ⊤ ⊆ ♢ax. Clearly
T1 ∪ T2 |= ϕ ∨ ψ, i.e., R[T ] |= ϕ ∨ ψ, so T |= □(ϕ ∨ ψ). We assumed that
Γ,□(ϕ ∨ ψ),⊤ ⊆ ♢ax |= χ, thus T |= χ.
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4.1.3 Properties of the proof system restricted to ML-formulas
In this subsection, we show that the proof system for MIL restricted to classical formulas
is complete: For any set of ML-formulas Γ ∪α, if Γ |= α then Γ ⊢ α. This shows that the
proof system for MIL is a conservative extension of the classical proof system for ML.

First, we recall the definition of the Hilbert-style system K, which is complete for the
class of all Kripke frames under the usual single-state semantics (see, e.g., [3]).

Definition 4.7. The Hilbert-style system of classical modal logic K consists of the axioms
1-3 and the rules 4-6.

1. All axioms of propositional logic.

2. K: □(α → β) → (□α → □β).

3. Dual: ♢α ↔ ¬□¬α.

4. Modus Ponens: α, α → β/β.

5. Necessitation: α/□α.

6. Uniform Substitution: α/α(β/p).

Restricted to classical formulas, the rules in Table 4.1, together with the rules ♢□Inter,
□♢Inter, ♢Mon and □Mon from Table 4.2, form a complete proof system for ML. We
also call this subsystem ML. It is shown in [29] that the natural deduction proof system
ML simulates the Hilbert-style system K.

Proposition 4.8. Let the proof system ML consist of all rules from Table 4.1 and the
rules ♢□Inter, □♢Inter, ♢Mon and □Mon from Table 4.2. Let Γ∪{α} consist of classical
formulas. Then

Γ ⊢K α ⇐⇒ Γ ⊢ML α.

Proof. For the left-to-right direction, we prove that the rules and axioms of K are derivable
in the system ML. Restricted to classical formulas, the modus ponens rule, interpreted
as α,¬α∨β ⊢ β, and the uniform substitution rule are easily derivable. The necessitation
rule is derivable by □Mon.

The propositional axioms of K are derivable by the rules in Table 4.1. We show that
the axioms of K with modalities also are derivable. An equivalent version of the K axiom
is □(α ∧ β) ⊣⊢ □α ∧ □β, which is derivable by □Mon. The inter-definabilty of □ and ♢,
♢α ⊣⊢ ¬□¬α, is a special case of ♢□Inter, □♢Inter and ♢Mon.

For the right-to-left direction, we assume that Γ ⊢ML α. By Theorem 4.6, ML is
sound. Thus Γ |= α (over teams), from which it follows by Corollary 2.11, that Γ |= α (over
states). Since the system K is complete for single state ML, we conclude Γ ⊢K α.

Next we show a result about the relationship between team semantics, single-state
semantics and derivations using the systems ML and MIL over classical formulas. We
obtain the result using soundness of our system for MIL and the fact that it has a
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subsystem ML that is complete with respect to classical formulas, as seen in Proposition
4.8.

Lemma 4.9. Let Γ ∪ {α} be a set of ML-formulas. Then

Γ |= α (over teams) ⇐⇒ Γ |= α (over states) ⇐⇒ Γ ⊢ML α ⇐⇒ Γ ⊢MIL α.

Proof. The first equivalence is due to Corollary 2.11. The second equivalence is due to
soundness and completeness of the system K, together with Proposition 4.8. The left-to-
right direction of the last equivalence is due to the fact that all rules from the complete
proof system for ML are included in the system for MIL. The right-to-left direction of
the last equivalence is due to the following implications:

Γ ⊢MIL α =⇒ Γ |= α (over teams) (Soundness of MIL)
=⇒ Γ |= α (over states) (Proposition 2.11)
=⇒ Γ ⊢K α (Completeness of K)
=⇒ Γ ⊢ML α. (Proposition 4.8)

As a consequence of the previous lemma, we get the following result: If two pointed
Φ-models are k-bisimilar, then their respective Hintikka formulas are provably equivalent.

Lemma 4.10. Let Φ be a set of propositional symbols and let (K,w) and (M,u) be pointed
Φ-models. Then

K,w -k M,u =⇒ χk
K,w ≡ χk

M,u =⇒ χk
K,w ⊣⊢ χk

M,u.

Proof. The first implication is by Theorem 3.8, the second by Lemma 4.9.

4.2 Completeness
In this section, we prove that the proof system for MIL is complete. Together with
the fact that the proof system for MIL is sound, we can then conclude that we have
axiomatized the logic. The results in this section are essentially due to [30].

In the first subsection we prove some technical lemmas that will be used in the com-
pleteness proof. We also give the proof of the completeness theorem, using compactness
of MIL and assuming the provable equivalence of the normal form. We dedicate the
second subsection to the proof of the provable equivalence of the normal form.
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4.2.1 Completeness theorem
The main result of this subsection is the proof of the completeness theorem. We first
prove three lemmas that will be used in the proof of the completeness theorem, and claim
that the provable equivalence of the normal form holds. We postpone the proof of the
provable equivalence of the normal form.

In both Lemma 4.16 and the completeness theorem, we will make use of disjoint unions
over Kripke models with teams. We therefore recall isomorphism for Kripke models, to
then define the disjoint union over Kripke models (with teams).

Definition 4.11. Let Φ be a set of propositional symbols and let K and K ′ be Kripke
models. Then K and K ′ are isomorphic if there is a bijection f : K → K ′ such that:

(i) For each p ∈ Φ and w ∈ K: w ∈ V (p) if and only if f(w) ∈ V ′(p).

(ii) For all w, v ∈ K: wRv if and only if f(w)R′f(v).

We say that Kripke models Ki with domains Wi, i ∈ I for some index set I, are
pairwise disjoint if Wi and Wj are disjoint for any i ̸= j, where i, j ∈ I.

Next we define the disjoint union over Kripke models, in which we first take isomorphic
copies of the models such that the copies are pairwise disjoint, and then we take the union
over the isomorphic copies.

Definition 4.12. The disjoint union of the Kripke models Ki, where i ∈ I for some index
set I, is the Kripke model ⊎

i∈I Ki = (⊎
i∈I W

i, R, V ), where ⊎
i∈I Wi = ⋃

i∈I(Wi × {i}),
(w0, i0)R(w1, i1) iff i0 = i1 = i and w0Riw1, and V (p) = ⊎

i∈I Vi(p) = ⋃
i∈I(Vi(p) × {i}).

The disjoint union for Φ-models with teams ⊎
i∈I(Ki, Ti) is defined by ⊎

i∈I(Ki, Ti) =
(⊎

i∈I Ki,
⊎

i∈I Ti), where ⊎
i∈I Ti = ⋃

i∈I(Ti × {i}).
Let us now prove three lemmas that will be used explicitly in the proof of the com-

pleteness theorem. We recall that θk
T = ∨

w∈T χ
k
w ∧ ∧

w∈T (⊤ ⊆ χk
w) is the form of

the team characteristic formulas obtained in Lemma 3.22. The first result, Lemma
4.13, captures that the semantic entailment between two formulas in the normal form,∨

(K,T )∈C θ
k
T |= ∨

(M,S)∈D θ
k
S, holds if and only if every team in C is k-bisimilar to the disjoint

union over a subcollection from D. This lemma is the last semantic property we need for
the completeness proof.

Lemma 4.13. Let C and D be finite sets of Φ-models with nonempty teams. Then∨
(K,T )∈C θ

k
K,T |= ∨

(M,S)∈D θ
k
M,S if and only if for all (K ′, T ′) ∈ C, there is a subclass

DT ⊆ D such that K ′, T ′ -k
⊎
DT .
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Proof. We first prove the left-to-right direction. Let (K ′, T ′) ∈ C. Clearly T ′ |= θk
T ′ .

By the empty team property, T ′ |= ∨
(K,T )∈C θ

k
T , which by assumption implies that T ′ |=∨

(M,S)∈D θ
k
S. Then for each (M,S) ∈ D, there are subteams T ′

S ⊆ T ′ such that ⋃
(M,S)∈D T

′
S

= T ′ and T ′
S |= θk

S. By Lemma 3.22, either K ′, T ′
S -k M,S or T ′

S = ∅.
Let us define a subclass DT ⊆ D by

DT = {(M,S) ∈ D | K ′, T ′
S -k M,S}.

We note that if T ′
S = ∅, then T ′

S ̸∈ DT since otherwise K ′, ∅ -k M,S, where S ̸= ∅. Now
(K ′, T ′) = (K ′,

⋃
(M,S)∈D T

′
S) = (K ′,

⋃
(M,S)∈DT

T ′
S). Also,

K ′,
⋃

(M,S)∈DT

T ′
S -k

⊎
(M,S)∈DT

(K ′, T ′
S) -k

⊎
(M,S)∈DT

(M,S).

We conclude that K ′, T ′ -k
⊎
DT .

For the right-to-left direction, let (K ′ T ′) ∈ C be such that T ′ |= ∨
(K,T )∈C θ

k
T . We

want to show that T ′ |= ∨
(M,S)∈D θ

k
S. By assumption, there is a subclass DT ⊆ D such

that K ′, T ′ -k
⊎
DT . By Lemma 3.15 (iii), there are subteams T ′

S ⊆ T ′, such that⋃
(M,S)∈DT

T ′
S = T ′ and K ′, T ′

S -k M,S. By Lemma 3.22, T ′
S |= θk

S. So T ′ |= ∨
(M,S)∈DT

θk
S.

By the empty team property we conclude that T ′ |= ∨
(M,S)∈D θ

k
S.

As previously mentioned, the next two lemmas will be used in the completeness the-
orem. Furthermore, they will also be used in Lemma 4.16. In particular, Lemma 4.14 is
a derivability result that corresponds to the semantic result of Lemma 3.22: that team-
characteristic formulas capture team k-bisimulation.

Lemma 4.14. If K,T -k M,S, then θk
K,T ⊣⊢ θk

M,S.

Proof. Suppose that K,T -k M,S. Then either both teams T and S are empty or both
are nonempty. If T = S = ∅, then θk

T = ⊥∧⊤ = θk
S. Suppose that T and S are nonempty.

We have that θk
T ⊢ ∨

w∈T χ
k
w by ∧E. By Lemma 4.10 and ∨I, we derive for each w′ ∈ T :

χk
w′ ⊢ χk

v ⊢ ∨
u∈S χ

k
u, for some v ∈ S such that K,w′ -k M, v. We then use ∨E to conclude∨

w∈T χ
k
w ⊢ ∨

u∈S χ
k
u.

We index the elements of S with an index set I. Let ui ∈ S, where i ∈ I. By k-
bisimulation, there is a wi ∈ T such that K,wi -k M,ui, which by Lemma 4.10 implies
χk

wi
⊢ χk

ui
. By ∧E and Proposition 4.3 (ii) we derive: θk

T ⊢ ⊤ ⊆ χk
wi

⊢ ⊤ ⊆ χk
ui

. Since ui

was arbitrary, this holds for all u ∈ S, and we conclude by ∧I that θk
T ⊢ ∧

u∈S(⊤ ⊆ χk
u).

Finally, we use conjuction introduction to conclude θk
T ⊢ ∨

u∈S χ
k
u ∧ ∧

u∈S(⊤ ⊆ χu).
The other direction is symmetrical.

The next lemma shows that the team-characteristic formula for the disjoint union of
D, entails the disjunction of team-characteristic formulas for the teams in D, with the
latter formula being in the normal form.
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Lemma 4.15. θk⊎
D

⊢ ∨
(M,S)∈D θ

k
M,S.

Proof. If D is empty, then θk⊎
D

= ∨ ∅ ∧ ∧ ∅ ⊣⊢ ⊥ and we use Proposition 4.1 (vii) to
derive ⊥ ⊢ ∨

(M,S)∈D θ
k
S. Suppose that D is nonempty. Since D is finite, we can index the

members by some finite index set I such that (Mi, Si) ∈ D for all i ∈ I. Since a state
and its disjoint copy are k-bisimilar, it follows by Lemma 4.10 that their corresponding
Hintikka formulas are equivalent. By Proposition 4.1 (i), (ii) and Proposition 4.3 (ii), we
have that

θk⊎
D =

∨
(M,w)∈

⊎
D

χk
w ∧

∧
(M,w)∈

⊎
D

(⊤ ⊆ χk
w) ⊣⊢

∨
(Mi,Si)∈D

∨
w∈Si

χk
w ∧

∧
(Mi,Si)∈D

∧
w∈Si

(⊤ ⊆ χk
w).

First we prove the following claim: For any MIL-formula ψ and ML-formulas αi,
with i ∈ I, we can derive:

(4.1)
∨
i∈I

αi ∨ ψ,
∧
i∈I

(⊤ ⊆ αi) ⊢ (
∨
i∈I

αi ∧
∧
i∈I

(⊤ ⊆ αi)) ∨ ψ.

By ⊆Distr we derive ∨
i∈I αi ∨ ψ,

∧
i∈I(⊤ ⊆ αi) ⊢ ((∨

i∈I αi ∨ ∨
i∈I αi) ∧ ∧

i∈I(⊤ ⊆ αi)) ∨ ψ.
We derive (∨

i∈I αi ∨ ∨
i∈I αi) ∧ ∧

i∈I(⊤ ⊆ αi) ⊢ ∨
i∈I αi ∧ ∧

i∈I(⊤ ⊆ αi) by ∧E, ∨E and ∧I,
thus ((∨

i∈I αi ∨ ∨
i∈I αi) ∧ ∧

i∈I(⊤ ⊆ αi)) ∨ ψ ⊢ (∨
i∈I αi ∧ ∧

i∈I(⊤ ⊆ αi)) ∨ ψ follows by
Proposition 4.1 (ii).

For the sake of readability, let I = {1, . . . , n} and define ηi = ∨
w∈Si

χk
w and ζi =∧

w∈Si
(⊤ ⊆ χk

w). Now we derive

(η1 ∨ η2 ∨ · · · ∨ ηn), ζ1 ⊢ (η1 ∨ (η2 ∨ · · · ∨ ηn)) ∧ ζ1 (Prop. 4.1 (vi))
⊢ (η1 ∧ ζ1) ∨ (η2 ∨ · · · ∨ ηn). ((4.1))

We continue with the same method

(η1 ∧ ζ1) ∨ (η2 ∨ · · · ∨ ηn), ζ2 ⊢ (η2 ∨ ((η1 ∨ ζ1) ∨ · · · ∨ ηn)) ∧ ζ2

⊢ (η2 ∧ ζ2) ∨ (η1 ∧ ζ1) ∨ (η3 ∨ · · · ∨ ηn),

until we have the derivation

(η1 ∨ η2 ∨ · · · ∨ ηn), ζ1, . . . , ζn ⊢ (ηn ∧ ζn) ∨ · · · ∨ (η1 ∧ ζ1)
⊢ (

∨
w∈S1

χk
w ∧

∧
w∈S1

(⊤ ⊆ χk
w)) ∨ · · · ∨ (

∨
w∈Sn

χk
w ∧

∧
w∈Sn

(⊤ ⊆ χk
w)).
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A central lemma in proving the completeness theorem is the provable equivalence
of the normal form. The proof is involved, thus we postpone the proof until the next
subsection.

Lemma 4.16 (Provable equivalence of the normal form). Let Φ be a finite set of proposi-
tional symbols. For any formula ϕ in MIL(Φ): ϕ ⊣⊢ ϕ′, where ϕ′ is in the normal form
as in (NF).

Using Lemma 4.16 and Lemma 3.29, we can show the completeness theorem for our
system: Anything that is sound, is derivable.

Theorem 4.17 (Completeness). Let Φ be a finite set of propositional symbols. If Γ ∪ {ϕ}
is a set of MIL(Φ) formulas and Γ |= ψ, then Γ ⊢ ψ.

Proof. Suppose that Γ |= ψ. Since MIL is compact, there is a finite subset Γ0 ⊆ Γ such
that Γ0 |= ψ. Now the conjunction ϕ = ∧

γ∈Γ0 γ is a formula in MIL. It suffices to show
that ϕ ⊢ ψ.

By Lemma 4.16, there are MIL-formulas ∨
(K,T )∈C θ

k
T and ∨

(M,S)∈D θ
k
S such that

ϕ ⊣⊢
∨

(K,T )∈C

θk
T and ψ ⊣⊢

∨
(M,S)∈D

θk
S.

By the soundness theorem it follows that

ϕ ≡
∨

(K,T )∈C

θk
T and ψ ≡

∨
(M,S)∈D

θk
S.

Thus ∨
(K,T )∈C θ

k
T |= ∨

(M,S)∈D θ
k
S. If C = ∅, then ∨

(K,T )∈C θ
k
T is the empty disjunction and

we use Proposition 4.1 (vii) to derive ψ. Suppose that C ̸= ∅ and let (K,T ) ∈ C. By
Lemma 4.13 there is a subclass DT ⊆ D such that K,T -k

⊎
DT . By Lemma 4.14,

Lemma 4.15 and ∨I
θk

T ⊢ θk⊎
DT

⊢
∨

(M,S)∈DT

θk
S ⊢

∨
(M,S)∈D

θk
S.

By ∨E we get that ∨
(K,T )∈C θ

k
K,T ⊢ ∨

(M,S)∈D θ
k
S, and conclude that ϕ ⊢ ψ.

Together with the soundness theorem, the previous result implies that Γ |= ψ if and
only if Γ ⊢ ψ. Thus the strongly complete axiomatization of MIL is realized.
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4.2.2 Provable equivalence of the normal form
All results in this subsection are technical properties of MIL and applications of its proof
system, which will be used to show main result of this subsection, the proof of Lemma
4.16: provable equivalence of the normal form, which proves that for every MIL-formula
ϕ, there is an MIL-formula ϕ′ in the normal form, such that ϕ ⊣⊢ ϕ′. The result is
proved by induction on the complexity of MIL-formulas.

First we show that if two pointed Φ-models are not k-bisimilar, then their respective
Hintikka formulas prove a contradiction.

Lemma 4.18. Let Φ be a set of propositional symbols and let (K,w) and (M,u) be pointed
Φ-models. If K,w ̸-k M,u, then χk

K,w, χ
k
M,u ⊢ ⊥.

Proof. Suppose for a contradiction that χk
w, χ

k
u ̸⊢ ⊥. Since χk

w and χk
u are MIL-formulas,

it follows from Lemma 4.9 that there is some Kripke model K ′ with a nonempty team
T such that K ′, T |= χk

w and K ′, T |= χk
u. By flatness K ′, v |= χk

w and K ′, v |= χk
u for

all v ∈ T , from which it follows by Theorem 3.8 that K,w -k K
′, v -k M,u, which is a

contradiction. We conclude χk
w, χ

k
u ⊢ ⊥.

We build on the previous result to show the comparable result for Φ-models with teams:
If two Φ-models with teams are not k-bisimilar, then their respective team-characteristic
formulas prove a contradiction. This result will be used to prove the induction case for
conjunction formulas in Lemma 4.16.

Lemma 4.19. If K,T ̸-k M,S, then θk
K,T , θ

k
M,S ⊢ ⊥.

Proof. Without loss of generality we can assume that the state that does not have a k-
bisimilar counterpart is in the team T , i.e., there is some w ∈ T such that K,w ̸-k M,u
for all u ∈ S. By Lemma 4.18 we have that χk

w, χ
k
u ⊢ ⊥, from which, together with

disjunction elimination, it follows that ∨
u∈S χ

k
u, χ

k
w ⊢ ⊥. By ¬I we derive ∨

u∈S χ
k
u ⊢ ¬χk

w.
By ∧E we now have that θk

S ⊢ ∨
u∈S χ

k
u ⊢ ¬χk

w. We also derive θk
T ⊢ ⊤ ⊆ χk

w with ∧E.
Finally, we use ⊆¬E to derive ⊤ ⊆ χk

w,¬χk
w ⊢ ⊥.

Next we show that the rule ∨⊆E can be generalized to allow for a conjunction of
inclusion atoms instead of just one. We can then generalize the application of the rule
further, to allow multiple disjunctions. This result will be used to prove the induction
cases for both conjunction and inclusion formulas in Lemma 4.16.

Lemma 4.20. Let Γ consist of MIL-formulas.

(i) If the following three conditions are met

(a) Γ, ψ ⊢ χ
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(b) Γ, ϕ, x1 ⊆ a1, . . . , xk ⊆ ak ⊢ χ

(c) Γ, ϕ ∨ ψ, x1 ⊆ a1, . . . , xk ⊆ ak ⊢ χ,

then Γ, (ϕ ∧ x1 ⊆ a1 ∧ · · · ∧ xk ⊆ ak) ∨ ψ ⊢ χ.

(ii) Let I be a nonempty finite index set. For each i ∈ I, let ιi be a conjunction of
finitely many primitive inclusion atoms. If for every nonempty index set J ⊆ I

(4.2) Γ,
∨
j∈J

ϕj,
∧
j∈J

ιj ⊢ χ,

then Γ,∨i∈I(ϕi ∧ ιi) ⊢ χ.

Proof. (i) To use the rule ∨⊆E to conclude Γ, (ϕ ∧ x1 ⊆ a1 ∧ · · · ∧ xk ⊆ ak) ∨ ψ ⊢ χ, we
need to show

(1) Γ, ψ ⊢ χ

(2) Γ, ϕ ∧ x2 ⊆ a2 ∧ · · · ∧ xk ⊆ ak, x1 ⊆ a1 ⊢ χ

(3) Γ, (ϕ ∧ x2 ⊆ a2 ∧ · · · ∧ xk ⊆ ak) ∨ ψ, x1 ⊆ a1 ⊢ χ,

where the first two conditions follow from the assumptions (a) and (b) respectively.
The last condition holds by ∨⊆E if

(1) Γ, ψ ⊢ χ

(2) Γ, ϕ ∧ x3 ⊆ a3 ∧ · · · ∧ xk ⊆ ak, x1 ⊆ a1, x2 ⊆ a2 ⊢ χ

(3) Γ, (ϕ ∧ x3 ⊆ a3 ∧ · · · ∧ xk ⊆ ak) ∨ ψ, x1 ⊆ a1, x2 ⊆ a2 ⊢ χ,

where again the first two conditions follow from the assumptions (a) and (b). We
continue reducing the problem using ∨⊆E until the third condition is of the form

(3) Γ, ϕ ∨ ψ, x1 ⊆ a1, . . . , xk ⊆ ak ⊢ χ,

which follows from assumption (c).

(ii) Suppose that (4.2) holds for all nonempty index sets J ⊆ I. First we prove the
following claim: For all disjoint sets K,L ⊆ I, where K ̸= ∅,

Γ,
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl),
∧

k∈K

ιk ⊢ χ.

We prove the claim by induction on L. If L = ∅ then ∨
k∈K ϕk ∨ ∨

l∈L(ϕl ∧ ιl) =∨
k∈K ϕk ∨ ⊥ ⊢ ∨

k∈K ϕk by Proposition 4.1 (viii) and Γ,∨k∈K ϕk,
∧

k∈K ιk ⊢ χ by
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assumption (4.2). Suppose that the claim holds for L and consider L ∪ {0}, with
0 ̸∈ L. We show that

Γ,
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl) ∨ (ϕ0 ∧ ι0),
∧

k∈K

ιk ⊢ χ.

We notice that the formula on the left is in the right form to use (i), with ∧
k∈K ιk ∈ Γ,

ϕ := ϕ0, ψ := ∨
k∈K ϕk ∨ ∨

l∈L(ϕl ∧ ιl) and ι0 is a conjunction of a finite number of
primitive inclusion atoms. We also have that

(1) Γ,
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl),
∧

k∈K

ιk ⊢ χ (IH)

(2) Γ, ϕ0, ι0,
∧

k∈K

ιk ⊢ χ ((4.2))

(3) Γ, ϕ0 ∨
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl), ι0,
∧

k∈K

ιk

⊢ Γ ∧ (
∨

k∈K∪{0}
ϕk ∨

∨
l∈L

(ϕl ∧ ιl)) ∧
∧

k∈K∪{0}
ιk ⊢ χ, (IH)

so the claim follows by (i).
Now we prove that Γ,∨i∈I(ϕi ∧ ιi) ⊢ χ by induction on the size of I. If |I| = 1, then
the result is immediate by (4.2). Suppose that (ii) holds for I. Consider I ∪ {0},
with 0 ̸∈ I. Our desired formula is in the right form to use (i), with ϕ := ϕ0,
ψ := ∨

i∈I(ϕi ∧ ιi) and ι0 is a conjunction of a finite number of primitive inclusion
atoms. We have the following

(1) Γ,
∨
i∈I

(ϕi ∧ ιi) ⊢ χ (IH)

(2) Γ, ϕ0, ι0 ⊢ χ ((4.2), I = {0})
(3) Γ, ϕ0 ∨

∨
i∈I

(ϕi ∧ ιi), ι0 ⊢ χ (By claim)

hence Γ,∨i∈I(ϕi ∧ ιi) ∨ (ϕ0 ∧ ι0) ⊢ χ follows by (i).

We show a similar application for the rule □∨⊆E, that will be used to prove the
induction case for box formulas in Lemma 4.16.

Lemma 4.21. Let Γ consist of MIL-formulas.

(i) If the following three conditions are met

(a) Γ,□ψ ⊢ χ
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(b) Γ,□ϕ,⊤ ⊆ ♢ax1
1 , . . . ,⊤ ⊆ ♢axk

k ⊢ χ

(c) Γ,□(ϕ ∨ ψ),⊤ ⊆ ♢ax1
1 , . . . ,⊤ ⊆ ♢axk

k ⊢ χ,

then Γ,□((ϕ ∧ x1 ⊆ a1 ∧ · · · ∧ xk ⊆ ak) ∨ ψ) ⊢ χ.

(ii) Let I be a finite index set. For each i ∈ I, let ιi be a conjunction of finitely many
primitive inclusion atoms. For ιi = ∧

k∈Ki
(xk ⊆ ak), define ι♢i = ∧

k∈Ki
(⊤ ⊆ ♢axk

k ).
If for every index set J ⊆ I

(4.3) Γ,□
∨
j∈J

ϕj,
∧
j∈J

ι♢j ⊢ χ,

then Γ,□∨
i∈I(ϕi ∧ ιi) ⊢ χ.

Proof. (i) To use the rule □∨⊆E to conclude Γ,□((ϕ∧x1 ⊆ a1 ∧· · ·∧xk ⊆ ak)∨ψ) ⊢ χ,
it is sufficient to show

(1) Γ,□ψ ⊢ χ

(2) Γ,□(ϕ ∧ x2 ⊆ a2 ∧ · · · ∧ xk ⊆ ak),⊤ ⊆ ♢ax1
1 ⊢ χ

(3) Γ,□((ϕ ∧ x2 ⊆ a2 ∧ · · · ∧ xk ⊆ ak) ∨ ψ),⊤ ⊆ ♢ax1
1 ⊢ χ,

where the first condition follows from the assumption (a). To show that the second
condition holds, we derive

(2) Γ,□(ϕ ∧ x2 ⊆ a2 ∧ · · · ∧ xk ⊆ ak),⊤ ⊆ ♢ax1
1

⊢ Γ,□ϕ,□(x2 ⊆ a2), . . . ,□(xk ⊆ ak),⊤ ⊆ ♢ax1
1 (Prop. 4.2(iv))

⊢ Γ,□ϕ,⊤ ⊆ ♢ax2
2 , . . . ,⊤ ⊆ ♢axk

k ,⊤ ⊆ ♢ax1
1 (□♢⊆Exc)

⊢ χ. (b)

The third condition is derivable from the rule □∨⊆E if

(1) Γ,□ψ,⊤ ⊆ ♢ax1
1 ⊢ χ

(2) Γ,□(ϕ ∧ x3 ⊆ a3 ∧ · · · ∧ xk ⊆ ak),⊤ ⊆ ♢ax1
1 ,⊤ ⊆ ♢ax2

2 ⊢ χ

(3) Γ,□((ϕ ∧ x3 ⊆ a3 ∧ · · · ∧ xk ⊆ ak) ∨ ψ),⊤ ⊆ ♢ax1
1 ,⊤ ⊆ ♢ax2

2 ⊢ χ,

where again the first condition follows from the assumption (a) and the second con-
dition follows by the same argument as the previous second condition. We continue
in the same manner until the third condition is reduced to

(3) Γ,□(ϕ ∨ ψ),⊤ ⊆ ♢ax1
1 , ...,⊤ ⊆ ♢axk

k ⊢ χ,

which is satisfied due to assumption (c).
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(ii) Suppose that (4.3) holds for all index sets J ⊆ I. First we prove the following claim:
For all disjoint sets K,L ⊆ I,

Γ,□(
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl)),
∧

k∈K

ι♢k ⊢ χ.

We prove the claim by induction on L. If L = ∅ then □(∨
k∈K ϕk ∨ ∨

l∈L(ϕl ∧
ιl)) = □(∨

k∈K ϕk ∨ ⊥) ⊢ □
∨

k∈K ϕk by Proposition 4.1 (viii) and □Mon. And
Γ,□∨

k∈K ϕk,
∧

k∈K ι♢k ⊢ χ by assumption (4.3). Suppose that the claim holds for
L and consider L ∪ {0}, with 0 ̸∈ L. We show that

Γ,□(
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl) ∨ (ϕ0 ∧ ι0)),
∧

k∈K

ι♢k ⊢ χ.

We notice that the formula □(∨
k∈K ϕk ∨ ∨

l∈L(ϕl ∧ ιl) ∨ (ϕ0 ∧ ι0)) is in the right form
to use (i), with ∧

k∈K ι♢k ∈ Γ, ϕ := ϕ0, ψ := ∨
k∈K ϕk ∨ ∨

l∈L(ϕl ∧ ιl) and ι0 is a
conjunction of a finite number of primitive inclusion atoms. We also have that

(1) Γ,□(
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl)),
∧

k∈K

ι♢k ⊢ χ (IH)

(2) Γ,□ϕ0, ι♢0,
∧

k∈K

ι♢k ⊢ χ (4.3)

(3) Γ,□(ϕ0 ∨
∨

k∈K

ϕk ∨
∨
l∈L

(ϕl ∧ ιl)), ι♢0,
∧

k∈K

ι♢k

⊢ Γ,□((
∨

k∈K∪{0}
ϕk ∨

∨
l∈L

(ϕl ∧ ιl))),
∧

k∈K∪{0}
ι♢k ⊢ χ, (IH)

so the claim follows by (i).
Now we prove that Γ,□∨

i∈I(ϕi ∧ ιi) ⊢ χ by induction on the size of I. If |I| = 0,
then □

∨
i∈I(ϕi ∧ ιi) = □

∨ ∅, and Γ,□∨ ∅ ⊢ χ by (4.3). Suppose that (ii) holds for
I and consider I ∪ {0}, with 0 ̸∈ I. Our desired formula is in the right form to use
(i), where ϕ := ϕ0, ψ := ∨

i∈I(ϕi ∧ ιi) and ι0 is a conjunction of a finite number of
primitive inclusion atoms. The following criteria are met

(1) Γ,□
∨
i∈I

(ϕi ∧ ιi) ⊢ χ (IH)

(2) Γ,□ϕ0, ι♢0 ⊢ χ (4.3)
(3) Γ,□(ϕ0 ∨

∨
i∈I

(ϕi ∧ ιi)), ι♢0 ⊢ χ, (By claim)

so Γ,□(∨
i∈I(ϕi ∧ ιi) ∨ (ϕ0 ∧ ι0)) ⊢ χ follows by (i).
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We return to Lemma 4.16: provable equivalence of the normal form. We will use
the normal form for ML-formulas as presented in [12]: For all α ∈ ML, we have that
α ≡ ∨

(K,w)∈D χ
k
w (over states), with k = md(α) and D = {(K,w) | K,w |= α}. All the

cases except for the new cases of box and diamond are essentially due to or inspired by
[30].

Proof of Lemma 4.16. Let ϕ ∈ MIL(Φ). We prove the theorem by induction on ϕ.

· We show the cases for ML-formulas. If ϕ = ⊥, define ϕ′ = ⊥. Then ϕ ⊣⊢ ϕ′ is
trivial. We combine the cases for ϕ = p ∈ Φ and ϕ = ¬β, where β ∈ ML(Φ), then
in either case ϕ is a classical formula α. By the ML normal form we have that
α ≡ ∨

(K,w)∈D χ
k
w (over states), with k = md(α) and D = {(K,w) | K,w |= α}. It

then follows from Lemma 4.9 that

α ⊣⊢
∨

(K,w)∈D

χk
w.

We show that ∨
(K,w)∈D χ

k
w ⊣⊢ ∨

(K,w)∈D θ
k
{w}.

(⊢) By ∨E, it suffices to show for all (K,w) ∈ D that χk
w ⊢ ∨

(K,w)∈D(χk
w ∧⊤ ⊆ χk

w) =∨
(K,w)∈D θ

k
{w}. Let (K,w) ∈ D, then χk

w ⊢ χk
w ∧ ⊤ ⊆ χk

w ⊢ ∨
(K,w)∈D(χk

w ∧ ⊤ ⊆ χk
w)

by Proposition 4.3 (i) and ∨I.
(⊣) We show that for all (K,w) ∈ D: θk

{w} = χk
w ∧ ⊤ ⊆ χk

w ⊢ ∨
(K,w)∈D χ

k
w, then the

result follows by ∨E. Let (K,w) ∈ D, then χk
w ∧ ⊤ ⊆ χk

w ⊢ χk
w ⊢ ∨

(K,w)∈D χ
k
w follows

by ∧E and ∨I.

(IH) There are classes C,D ⊆ CT(Φ) such that

ψ1 ⊣⊢
∨

(K,T )∈C

θk
T and ψ2 ⊣⊢

∨
(M,S)∈D

θk
S.

· Let ϕ = ψ1 ∨ ψ2. By the induction hypothesis ψ1 ⊣⊢ ∨
(K,T )∈C θ

k
T and ψ2 ⊣⊢∨

(M,S)∈D θ
k
S. Define ϕ′ = ∨

(K,T )∈C θ
k
T ∨ ∨

(M,S)∈D θ
k
S. By the induction hypothesis

and Proposition 4.1 (ii), ψ1 ∨ ψ2 ⊣⊢ ∨
(K,T )∈C θ

k
T ∨ ∨

(M,S)∈D θ
k
S follows.

· Let ϕ = ψ1 ∧ ψ2. If, let us say, C is empty then ψ1 ⊣⊢ ∨
(K,T )∈C θ

k
T = ⊥. We can

define ϕ′ = ⊥. Now ϕ ⊣⊢ ϕ′ is trivial.
Suppose that C and D are nonempty. Define a set Y of Φ-models with teams by

Y = {
⊎

C′ | C′ ⊆ C and
⊎

C′ -k

⊎
D′, for some D′ ⊆ D}.

Let ϕ′ = ∨
X∈Y θ

k
X . We aim to show that ψ1 ∧ ψ2 ⊣⊢ ∨

X∈Y θ
k
X .
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(⊢) To show that ∨
(K,T )∈C

θk
T ,

∨
(M,S)∈D

θk
S ⊢

∨
X∈Y

θk
X

it suffices by Lemma 4.20 (ii) to show that∨
(K,T )∈C′

∨
w∈T

χk
w,

∧
(K,T )∈C′

∧
w∈T

(⊤ ⊆ χk
w),

∨
(M,S)∈D

θk
S ⊢

∨
X∈Y

θk
X ,

for all nonempty C′ ⊆ C. By the same lemma it suffices to show that we can derive∨
X∈Y θ

k
X from∨

(K,T )∈C′

∨
w∈T

χk
w,

∧
(K,T )∈C′

∧
w∈T

(⊤ ⊆ χk
w),

∨
(M,S)∈D′

∨
w∈S

χk
w,

∧
(M,S)∈D′

∧
w∈S

(⊤ ⊆ χk
w),

for all nonempty D′ ⊆ D. And that reduces to showing θ⊎
C, θ

⊎
D ⊢ ∨

X∈Y θ
k
X for all

nonempty C′ ⊆ C and D′ ⊆ D. Let C′ ⊆ C and D′ ⊆ D be nonempty.
If ⊎

C′ ̸-k
⊎
D′, then θ⊎

C′ , θ⊎
D′ ⊢ ⊥ ⊢ ∨

X∈Y θ
k
X by Lemma 4.19 and Proposition

4.1 (vii).
If ⊎

C′ -k
⊎
D′, then ⊎

C′ ∈ Y, hence θ⊎
C′ ⊢ ∨

X∈Y θ
k
X by disjunction introduction.

(⊣) We show that ∨
X∈Y θ

k
X ⊢ ψ1 ∧ ψ2. To use ∨E, it is sufficient to show that for

every X ∈ Y

θk
X ⊢

∨
(K,T )∈C′

θk
T ⊢

∨
(K,T )∈C

θk
T ⊢ ψ1 and θk

X ⊢
∨

(M,S)∈D′

θk
S ⊢

∨
(M,S)∈D

θk
S ⊢ ψ2.

Note that X is of the form ⊎
C′ for some C′ ⊆ C, hence Lemma 4.15 and Lemma

4.14 justify step one. The second step is by ∨I, and the last step follows from the
induction hypothesis. Therefore θk

X ⊢ ψ1 ∧ ψ2 by conjunction introduction. The
result then follows by disjunction elimination.

· Let ϕ = a ⊆ b, where a = α1 . . . αn and b = β1 . . . βn. By the rules ⊆Rdt and ⊆Ext
we derive

a ⊆ b ⊣⊢
∧

x∈{⊤,⊥}|a|

(¬ax ∨ x ⊆ b).

Assuming the induction cases for ML-formulas, conjunction and disjunction cases,
it suffices to show that each primitive inclusion atom is provably equivalent to a
formula in the normal form. We claim that x ⊆ b ⊣⊢ ∨

(K,T )∈Y θ
k
T , where the class Y

is defined by
Y = {(K,T ) | ∃w ∈ T such that w |= bx},
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and k = md(x ⊆ b) = md(bx).
We recall that for a finite set Φ of propositional symbols, there are only a finite
number of non-equivalent k:th team-characteristic formulas. Hence, we can assume
that the disjunction ∨

(K,T )∈Y θ
k
T is finite.

First we prove the following claim: If w |= α, then χk
w ⊢ α, where k ≥ md(α). To

prove the claim, it is enough to show that χk
w |= α, then the derivation χk

w ⊢ α
follows by Proposition 4.8. Let X |= χk

w, then u |= χk
w for all u ∈ X by flatness. By

Theorem 3.8 it follows that w ≡k u, so u |= α. Using flatness again, we conclude
X |= α.
(⊢) Let M be the collection of all Φ-models, then ⊢ ∨

(K,v)∈M χ
k
v follows from |=∨

(K,v)∈M χ
k
v and Lemma 4.9.

Also, χk
u ⊢ χk

u ∧ ⊤ ⊆ χk
u ⊢ ∨

(K,v)∈M(χk
v ∧ ⊤ ⊆ χk

v) by Proposition 4.3 (i) and ∨I.
To show ∨

(K,v)∈M(χk
v ∧ ⊤ ⊆ χk

v), x ⊆ b ⊢ ∨
T ∈Y θ

k
T , by Lemma 4.20 (ii) it suffices to

show that for all nonempty teams T ,∨
v∈T

χk
v ,

∧
v∈T

(⊤ ⊆ χk
v), x ⊆ b ⊢

∨
(K,T )∈Y

θk
T .

If (K,T ) ∈ Y the derivation follows from ∨I. If (K,T ) ̸∈ Y, then for any v ∈ T ,
v |= ¬bx. The formula ¬bx is a classical formula with modal depth at most k, hence
χk

v ⊢ ¬bx by the claim. So ∨
v∈T χ

k
v ⊢ ¬bx by ∨E. Using the rule ⊆¬E we derive

¬bx, x ⊆ b ⊢ ∨
(K,T )∈Y θ

k
T .

(⊣) For all (K,T ) ∈ Y we have that θk
T ⊢ ⊤ ⊆ χk

w ⊢ ⊤ ⊆ bx ⊢ x ⊆ b. The first step
is by ∧E. Since (K,T ) ∈ Y, we have that there is a w ∈ T such that w |= bx, from
which the second step follows by the claim and Proposition 4.3 (ii). The last step
is due to the following derivation.

⊤ ⊆ bx ⊢ ⊤|b| ⊆ bx . . . bx (⊆ Wk)
⊢ ⊤|b| ⊆ βx1

1 . . . βxn
n (Prop. 4.3(ii))

⊢ x1 . . . xn ⊆ β1 . . . βn. (⊆⊥⊤ Exc)

We conclude ∨
(K,T )∈Y θ

k
T ⊢ x ⊆ b by ∨E.

· Let ϕ = ♢ψ. By the induction hypothesis and ♢Mon, ♢ψ ⊣⊢ ♢
∨

(M,S)∈D θ
k
S. We

show that
♢ψ ⊣⊢

∨
(M,S)∈D

(♢
∨

w∈S

χk
w ∧

∧
w∈S

(⊤ ⊆ ♢χk
w)).

The result then follows by the induction cases for ML-formulas, conjunction and
disjunction.
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(⊢) We have ♢ψ ⊢ ♢
∨

(M,S)∈D θ
k
S ⊢ ∨

(M,S)∈D ♢θk
S by ♢Mon together with the induc-

tion hypothesis, and ♢∨Distr. For each S ′ ∈ D we have that

♢θk
S′ = ♢(

∨
w∈S′

χk
w ∧

∧
w∈S′

(⊤ ⊆ χk
w))

⊢ ♢
∨

w∈S′
χk

w ∧
∧

w∈S′
(⊤ ⊆ ♢χk

w) (Prop. 4.4)

⊢
∨

(M,S)∈D

(♢
∨

w∈S

χk
w ∧

∧
w∈S

(⊤ ⊆ ♢χk
w)). (∨I)

Hence by ∨E, we conclude ♢ψ ⊢ ∨
(M,S)∈D(♢∨

w∈S χ
k
w ∧ ∧

w∈S(⊤ ⊆ ♢χk
w)).

(⊣) For each S ′ ∈ D we have that

♢
∨

w∈S′
χk

w ∧
∧

w∈S′
(⊤ ⊆ ♢χk

w) ⊢ ♢(
∨

w∈S′
χk

w ∧
∧

w∈S′
(⊤ ⊆ χk

w)) (Prop. 4.4)

⊢
∨

(M,S)∈D

♢(
∨

w∈S

χk
w ∧

∧
w∈S

(⊤ ⊆ χk
w)) (∨I)

=
∨

(M,S)∈D

♢θk
S

⊢ ♢
∨

(M,S)∈D

θk
S (Prop. 4.2(ii))

⊢ ♢ψ (♢Mon, IH)

By ∨E we conclude ∨
(M,S)∈D(♢∨

w∈S χ
k
w ∧ ∧

w∈S(⊤ ⊆ ♢χk
w)) ⊢ ♢ψ.

· Let ϕ = □ψ. By the induction hypothesis and □Mon, we have that □ψ ⊣⊢
□

∨
(M,S)∈D θ

k
S. We show that

□
∨

(M,S)∈D

θk
S ⊣⊢

∨
D⊆C

(□
∨

(K,w)∈
⊎

D

χk
w ∧

∧
(K,w)∈

⊎
D

(⊤ ⊆ ♢χk
w)).

The result then follows by the induction cases for inclusion atoms, ML-formulas,
conjunction and disjunction.
(⊢) To make the derivation

□
∨

(K,T )∈C

(
∨

w∈T

χk
w ∧

∧
w∈T

(⊤ ⊆ χk
w)) ⊢

∨
D⊆C

(□
∨

(K,w)∈
⊎

D

χk
w ∧

∧
(K,w)∈

⊎
D

(⊤ ⊆ ♢χk
w)),

it suffices by Lemma 4.21 (ii) to show that for all D′ ⊆ C,

□
∨

(K,T )∈D′

∨
w∈T

χk
w,

∧
(K,T )∈D′

∧
w∈T

(⊤ ⊆ ♢χk
w) ⊢

∨
D⊆C

(□
∨

(K,w)∈
⊎

D

χk
w ∧

∧
(K,w)∈

⊎
D

(⊤ ⊆ ♢χk
w)),
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but this reduces to showing

□
∨

(K,w)∈
⊎

D′

χk
w,

∧
(K,w)∈

⊎
D′

(⊤ ⊆ ♢χk
w) ⊢

∨
D⊆C

(□
∨

(K,w)∈
⊎

D

χk
w ∧

∧
(K,w)∈

⊎
D

(⊤ ⊆ ♢χk
w)),

which holds by ∨I.
(⊣) We show that for any D ⊆ C,

□
∨

(K,w)∈
⊎

D

χk
w,

∧
(K,w)∈

⊎
D

(⊤ ⊆ ♢χk
w) ⊢ □

∨
(K,T )∈C

θk
T .

Then the desired result follows by ∨E. First we derive∧
(K,w)∈

⊎
D

(⊤ ⊆ ♢χk
w) ⊢

∧
(K,w)∈

⊎
D

□(⊤ ⊆ χk
w) (♢□⊆Exc)

⊢ □
∧

(K,w)∈
⊎

D

(⊤ ⊆ χk
w). (Prop. 4.2(iv))

Now we derive

□
∨

(K,w)∈
⊎

D

χk
w, □

∧
(K,w)∈

⊎
D

(⊤ ⊆ χk
w)

⊢ □(
∨

(K,w)∈
⊎

D

χk
w ∧

∧
(K,w)∈

⊎
D

(⊤ ⊆ χk
w)) (Prop. 4.2(iv))

= □θk⊎
D

⊢ □
∨

(K,T )∈C

θk
T . (□Mon)

To use □Mon in the last step we derive θk⊎
D

⊢ ∨
(K,T )∈D θ

k
T ⊢ ∨

(K,T )∈C θ
k
T by Lemma

4.15 and ∨I.

As a consequence of the proof of the induction case for inclusion atoms in the previous
lemma, equivalent inclusion atoms are easily shown to be provably equivalent.

Proposition 4.22. The following clauses regarding inclusion atoms are derivable.

(i) x1 . . . xn ⊆ α1 . . . αn ⊣⊢ ⊤ . . .⊤ ⊆ αx1
1 . . . αxn

n .

(ii) a0a1a2 ⊆ b0b1b2 ⊣⊢ a1a0a2 ⊆ b1b0b2.
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(iii) α1 . . . αn ⊆ β1 . . . βn ⊢ αi1 . . . αim ⊆ βi1 . . . βim, where i1, . . . , im are distinct indices
from {1, . . . , n}, i.e., the rule ⊆Proj is derivable.

Proof. (i) By the normal form for primitive inclusion atoms in the proof of Lemma
4.16, we have that

x1 . . . xn ⊆ α1 . . . αn ⊣⊢
∨

(K,T )∈Y

θk
T ⊣⊢ ⊤ . . .⊤ ⊆ αx1

1 . . . αxn
n ,

where the class Y is defined by

Y = {(K,T ) | ∃w ∈ T such that w |= αx1
1 ∧ · · · ∧ αxn

n }
= {(K,T ) | ∃w ∈ T such that w |= (αx1

1 )⊤ ∧ · · · ∧ (αxn
n )⊤},

and k = md(x1 . . . xn ⊆ α1 . . . αn) = md(⊤ . . .⊤ ⊆ αx1
1 . . . αxn

n ).

(ii) Using ⊆Rdt and ⊆Ext we derive

a0a1a2 ⊆ b0b1b2 ⊣⊢
∧

x∈{⊤,⊥}|a0a1a2|

(¬(a0a1a2)x ∨ x ⊆ b0b1b2)

⊣⊢
∧

x∈{⊤,⊥}|a0a1a2|

(¬(a0a1a2)x ∨
∨

(K,T )∈Y

θk
T )

⊣⊢
∧

x∈{⊤,⊥}|a1a0a2|

(¬(a1a0a2)x ∨
∨

(K,T )∈Y

θk
T )

⊣⊢
∧

x∈{⊤,⊥}|a1a0a2|

(¬(a1a0a2)x ∨ x ⊆ b1b0b2)

⊣⊢ a1a0a2 ⊆ b1b0b2,

where Y is defined by

Y = {(K,T ) | ∃w ∈ T such that w |= (b0b1b2)x}
= {(K,T ) | ∃w ∈ T such that w |= (b1b0b2)x},

and k = md(x ⊆ b0b1b2) = md(x ⊆ b1b0b2).

(iii) Derivable by item (ii) and ⊆Ctr.

Since we have proven that we have a complete proof system, let us demonstrate the
power of the system by deriving some other interesting sound entailments.

Example 4.23. (i) ♢(⊤ ⊆ α) ⊢ □(⊤ ⊆ α).
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(ii) If α ⊢ β1 and α ⊢ β2, then ⊤ ⊆ α ⊢ ⊤⊤ ⊆ β1β2.

Proof. (i) We derive ♢(⊤ ⊆ α) ⊢ ⊤ ⊆ ♢α ⊢ □(⊤ ⊆ α) by ♢⊆Distr and ♢□⊆Exc.

(ii) Suppose that α ⊢ β1 and α ⊢ β2.

⊤ ⊆ α ⊆Wk⊤⊤ ⊆ αα

[α]
β1 Prop. 4.3 (ii)⊤⊤ ⊆ β1α

[α]
β2 Prop. 4.3 (ii)⊤⊤ ⊆ β1β2
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Chapter 5

Conclusion and future work

In this thesis, we defined a complete proof system for MIL, which was previously missing
from the literature. We also reviewed the expressive completeness proof for MIL in [18],
and streamlined it by suggesting a simpler normal form for the logic. Next we suggest
some possible directions for future work.

In this thesis, we defined a natural deduction proof system for MIL. Since MIL is an
extension of modal logic, introducing a sequent calculus for the logic would be desirable,
and has been done for some other team logics (see [8]). Having a sequent calculus would
be beneficial for studying the proof-theoretic properties of MIL, such as cut-elimination
and structural completeness. A point of difficulty could be that MIL does not admit
uniform substitution, as seen in Proposition 2.17.

We observed that MIL does not admit the uniform substitution property, however,
it is possible that MIL is closed under flat substitution. That is, does it hold for all
formulas ϕ1, ϕ2 ∈ MIL, that ϕ1 |= ϕ2 ⇐⇒ ϕ1(α/p) |= ϕ2(α/p), where α is a flat
formula.

The main result of this thesis provides the axiomatization for one team-based modal
logic. There are other variants of team-based modal logics still without axiomatizations.
Two such examples are ML(♢· ), as defined in Definition 3.33, and MIL extended with
the global disjunction > (also known in the literature as intuitionistic disjunction, Boolean
disjunction or classical disjunction), whose semantics is defined as

K,T |= ψ1 > ψ2 ⇐⇒ K,T |= ψ1 or K,T |= ψ2.

To prove compactness of MIL, we used compactness of modal team logic. Instead,
one could attempt proving compactness directly, or possibly by translating MIL into
first-order inclusion logic, which is compact.

Naturally, one could investigate possible applications of MIL in other fields, such
as database theory and linguistics. A recent example of a connection between a union
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closed team-based modal logic and natural language is presented in [1]. In [1], modal logic
extended with the atom NE is used to model free-choice inferences in natural language,
where a team satisfies the NE atom if and only if the team is nonempty.
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