20 research outputs found

    Mining Label Distribution Drift in Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation targets to transfer task knowledge from labeled source domain to related yet unlabeled target domain, and is catching extensive interests from academic and industrial areas. Although tremendous efforts along this direction have been made to minimize the domain divergence, unfortunately, most of existing methods only manage part of the picture by aligning feature representations from different domains. Beyond the discrepancy in feature space, the gap between known source label and unknown target label distribution, recognized as label distribution drift, is another crucial factor raising domain divergence, and has not been paid enough attention and well explored. From this point, in this paper, we first experimentally reveal how label distribution drift brings negative effects on current domain adaptation methods. Next, we propose Label distribution Matching Domain Adversarial Network (LMDAN) to handle data distribution shift and label distribution drift jointly. In LMDAN, label distribution drift problem is addressed by the proposed source samples weighting strategy, which select samples to contribute to positive adaptation and avoid negative effects brought by the mismatched in label distribution. Finally, different from general domain adaptation experiments, we modify domain adaptation datasets to create the considerable label distribution drift between source and target domain. Numerical results and empirical model analysis show that LMDAN delivers superior performance compared to other state-of-the-art domain adaptation methods under such scenarios

    3D Printed Brain-Controlled Robot-Arm Prosthetic via Embedded Deep Learning From sEMG Sensors

    Get PDF
    In this paper, we present our work on developing robot arm prosthetic via deep learning. Our work proposes to use transfer learning techniques applied to the Google Inception model to retrain the final layer for surface electromyography (sEMG) classification. Data have been collected using the Thalmic Labs Myo Armband and used to generate graph images comprised of 8 subplots per image containing sEMG data captured from 40 data points per sensor, corresponding to the array of 8 sEMG sensors in the armband. Data captured were then classified into four categories (Fist, Thumbs Up, Open Hand, Rest) via using a deep learning model, Inception-v3, with transfer learning to train the model for accurate prediction of each on real-time input of new data. This trained model was then downloaded to the ARM processor based embedding system to enable the brain-controlled robot-arm prosthetic manufactured from our 3D printer. Testing of the functionality of the method, a robotic arm was produced using a 3D printer and off-the-shelf hardware to control it. SSH communication protocols are employed to execute python files hosted on an embedded Raspberry Pi with ARM processors to trigger movement on the robot arm of the predicted gesture

    Towards All-around Knowledge Transferring: Learning From Task-irrelevant Labels

    Full text link
    Deep neural models have hitherto achieved significant performances on numerous classification tasks, but meanwhile require sufficient manually annotated data. Since it is extremely time-consuming and expensive to annotate adequate data for each classification task, learning an empirically effective model with generalization on small dataset has received increased attention. Existing efforts mainly focus on transferring task-relevant knowledge from other similar data to tackle the issue. These approaches have yielded remarkable improvements, yet neglecting the fact that the task-irrelevant features could bring out massive negative transfer effects. To date, no large-scale studies have been performed to investigate the impact of task-irrelevant features, let alone the utilization of this kind of features. In this paper, we firstly propose Task-Irrelevant Transfer Learning (TIRTL) to exploit task-irrelevant features, which mainly are extracted from task-irrelevant labels. Particularly, we suppress the expression of task-irrelevant information and facilitate the learning process of classification. We also provide a theoretical explanation of our method. In addition, TIRTL does not conflict with those that have previously exploited task-relevant knowledge and can be well combined to enable the simultaneous utilization of task-relevant and task-irrelevant features for the first time. In order to verify the effectiveness of our theory and method, we conduct extensive experiments on facial expression recognition and digit recognition tasks. Our source code will be also available in the future for reproducibility

    A Survey on Negative Transfer

    Full text link
    Transfer learning (TL) tries to utilize data or knowledge from one or more source domains to facilitate the learning in a target domain. It is particularly useful when the target domain has few or no labeled data, due to annotation expense, privacy concerns, etc. Unfortunately, the effectiveness of TL is not always guaranteed. Negative transfer (NT), i.e., the source domain data/knowledge cause reduced learning performance in the target domain, has been a long-standing and challenging problem in TL. Various approaches to handle NT have been proposed in the literature. However, this filed lacks a systematic survey on the formalization of NT, their factors and the algorithms that handle NT. This paper proposes to fill this gap. First, the definition of negative transfer is considered and a taxonomy of the factors are discussed. Then, near fifty representative approaches for handling NT are categorized and reviewed, from four perspectives: secure transfer, domain similarity estimation, distant transfer and negative transfer mitigation. NT in related fields, e.g., multi-task learning, lifelong learning, and adversarial attacks are also discussed

    Foundations of population-based SHM, part III : heterogeneous populations – mapping and transfer

    Get PDF
    This is the third and final paper in a series laying foundations for a theory/methodology of Population-Based Structural Health Monitoring (PBSHM). PBSHM involves utilising knowledge from one set of structures in a population and applying it to a different set, such that predictions about the health states of each member in the population can be performed and improved. Central ideas behind PBSHM are those of knowledge transfer and mapping. In the context of PBSHM, knowledge transfer involves using information from a source domain structure, where labels are known for given feature sets, and mapping these onto the unlabelled feature space of a different, target domain structure. This mapping means a classifier trained on the transformed source domain data will generalise to the unlabelled target domain data; i.e. a classifier built on one structure will generalise to another, making Structural Heath Monitoring (SHM) cost-effective and applicable to a wide range of challenging industrial scenarios. This process of mapping features and labels across source and target domains is defined here via domain adaptation, a subcategory of transfer learning. A mathematical underpinning for when domain adaptation is possible in a structural dynamics context is provided, with reference to topology within a graphical representation of structures. Subsequently, a novel procedure for performing domain adaptation on topologically different structures is outlined
    corecore