10 research outputs found

    On graphs with representation number 3

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. A graph is word-representable if and only if it is kk-word-representable for some kk, that is, if there exists a word containing kk copies of each letter that represents the graph. Also, being kk-word-representable implies being (k+1)(k+1)-word-representable. The minimum kk such that a word-representable graph is kk-word-representable, is called graph's representation number. Graphs with representation number 1 are complete graphs, while graphs with representation number 2 are circle graphs. The only fact known before this paper on the class of graphs with representation number 3, denoted by R3\mathcal{R}_3, is that the Petersen graph and triangular prism belong to this class. In this paper, we show that any prism belongs to R3\mathcal{R}_3, and that two particular operations of extending graphs preserve the property of being in R3\mathcal{R}_3. Further, we show that R3\mathcal{R}_3 is not included in a class of cc-colorable graphs for a constant cc. To this end, we extend three known results related to operations on graphs. We also show that ladder graphs used in the study of prisms are 22-word-representable, and thus each ladder graph is a circle graph. Finally, we discuss kk-word-representing comparability graphs via consideration of crown graphs, where we state some problems for further research

    Semi-Transitive Orientations and Word-Representable Graphs

    Get PDF
    A graph G=(V,E)G=(V,E) is a \emph{word-representable graph} if there exists a word WW over the alphabet VV such that letters xx and yy alternate in WW if and only if (x,y)E(x,y)\in E for each xyx\neq y. In this paper we give an effective characterization of word-representable graphs in terms of orientations. Namely, we show that a graph is word-representable if and only if it admits a \emph{semi-transitive orientation} defined in the paper. This allows us to prove a number of results about word-representable graphs, in particular showing that the recognition problem is in NP, and that word-representable graphs include all 3-colorable graphs. We also explore bounds on the size of the word representing the graph. The representation number of GG is the minimum kk such that GG is a representable by a word, where each letter occurs kk times; such a kk exists for any word-representable graph. We show that the representation number of a word-representable graph on nn vertices is at most 2n2n, while there exist graphs for which it is n/2n/2.Comment: arXiv admin note: text overlap with arXiv:0810.031

    On word-representability of polyomino triangulations

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. Some graphs are word-representable, others are not. It is known that a graph is word-representable if and only if it accepts a so-called semi-transitive orientation. The main result of this paper is showing that a triangulation of any convex polyomino is word-representable if and only if it is 3-colorable. We demonstrate that this statement is not true for an arbitrary polyomino. We also show that the graph obtained by replacing each 44-cycle in a polyomino by the complete graph K4K_4 is word-representable. We employ semi-transitive orientations to obtain our results

    Minimum length word-representants of graph products

    Full text link
    A graph G=(V,E)G = (V, E) is said to be word-representable if a word ww can be formed using the letters of the alphabet VV such that for every pair of vertices xx and yy, xyExy \in E if and only if xx and yy alternate in ww. Gaetz and Ji have recently introduced the notion of minimum length word-representants for word-representable graphs. They have also determined the minimum possible length of the word-representants for certain classes of graphs, such as trees and cycles. It is know that Cartesian and Rooted products preserve word-representability. Moreover, Broere constructed a uniform word representing the Cartesian product of GG and KnK_n using occurrence based functions. In this paper, we study the minimum length of word-representants for Cartesian and Rooted products using morphism and occurrence based function, respectively. Also, we solve an open problem posed by Broere in his master thesis. This problem asks to construct a word for the Cartesian product of two arbitrary word-representable graphs.Comment: 14 pages, submitted to DA

    Графы, представимые в виде слов : обзор результатов

    Get PDF
    Letters x and y alternate in a word w if after deleting in w all letters but the copies of x and y we either obtain a word xyxy · · · (of even or odd length) or a word yxyx · · · (of even or odd length). A graph G = (V,E) is word-representable if and only if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if xy ∈ E. Word-representable graphs generalize several important classes of graphs such as circle graphs, 3-colorable graphs and comparability graphs. This paper is a comprehensive survey on the theory of word-representable graphs and it includes the most recent developments in the area

    Representing Graphs via Pattern Avoiding Words

    Get PDF
    The notion of a word-representable graph has been studied in a series of papers in the literature. A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if xyxy is an edge in EE. If V={1,,n}V =\{1, \ldots, n\}, this is equivalent to saying that GG is word-representable if for all x,y{1,,n}x,y \in \{1, \ldots, n\}, xyExy \in E if and only if the subword w{x,y}w_{\{x,y\}} of ww consisting of all occurrences of xx or yy in ww has no consecutive occurrence of the pattern 11. In this paper, we introduce the study of uu-representable graphs for any word u{1,2}u \in \{1,2\}^*. A graph GG is uu-representable if and only if there is a labeled version of GG, G=({1,,n},E)G=(\{1, \ldots, n\}, E), and a word w{1,,n}w \in \{1, \ldots, n\}^* such that for all x,y{1,,n}x,y \in \{1, \ldots, n\}, xyExy \in E if and only if w{x,y}w_{\{x,y\}} has no consecutive occurrence of the pattern uu. Thus, word-representable graphs are just 1111-representable graphs. We show that for any k3k \geq 3, every finite graph GG is 1k1^k-representable. This contrasts with the fact that not all graphs are 11-representable graphs. The main focus of the paper is the study of 1212-representable graphs. In particular, we classify the 1212-representable trees. We show that any 1212-representable graph is a comparability graph and the class of 1212-representable graphs include the classes of co-interval graphs and permutation graphs. We also state a number of facts on 1212-representation of induced subgraphs of a grid graph

    A comprehensive introduction to the theory of word-representable graphs

    Get PDF
    Letters x and y alternate in a word w if after deleting in w all letters but the copies of x and y we either obtain a word xyxy⋯ (of even or odd length) or a word yxyx⋯  (of even or odd length). A graph G=(V,E) is word-representable if and only if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if xy ∈ E.   Word-representable graphs generalize several important classes of graphs such as circle graphs, 3-colorable graphs and comparability graphs. This paper offers a comprehensive introduction to the theory of word-representable graphs including the most recent developments in the area

    On the representation number of a crown graph

    Get PDF
    A graph G = (V,E) is word-representable if there exists a word ω over the alphabet V such that letters x and y alternate in ω if and only if xy is an edge in E . It is known (Kitaev and Pyatkin, 2008) that any word-representable graph G is k-word-representable for some k, that is, there exists a word ω representing G such that each letter occurs exactly k times in ω. The minimum such k is called G’s representation number. A crown graph (also known as a cocktail party graph) Hn,n is a graph obtained from the complete bipartite graph Kn,n by removing a perfect matching. In this paper, we show that for n≥ 5,Hn,n ’s representation number is [n / 2]. This result not only provides a complete solution to the open Problem 7.4.2 in Kitaev and Lozin (2015), but also gives a negative answer to the question raised in Problem 7.2.7 in Kitaev and Lozin (2015) on 3-word-representability of bipartite graphs. As a byproduct, we obtain a new example of a graph class with a high representation number

    Solving computational problems in the theory of word-representable graphs

    Get PDF
    A simple graph G = (V, E) is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w iff xy ∈ E. Word-representable graphs generalize several important classes of graphs. A graph is word-representable if it admits a semi-transitive orientation. We use semi-transitive orientations to enumerate connected non-word-representable graphs up to the size of 11 vertices, which led to a correction of a published result. Obtaining the enumeration results took 3 CPU years of computation. Also, a graph is word-representable if it is k-representable for some k, that is, if it can be represented using k copies of each letter. The minimum such k for a given graph is called graph's representation number. Our computational results in this paper not only include distribution of k-representable graphs on at most 9 vertices, but also have relevance to a known conjecture on these graphs. In particular, we find a new graph on 9 vertices with high representation number. Also, we prove that a certain graph has highest representation number among all comparability graphs on odd number of vertices. Finally, we introduce the notion of a k-semi-transitive orientation refining the notion of a semi-transitive orientation, and show computationally that the refinement is not equivalent to the original definition, unlike the equivalence of k-representability and word-representability.Publisher PDFPeer reviewe
    corecore