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Abstract

Letters x and y alternate in a word w if after deleting in w all letters
but the copies of x and y we either obtain a word xyxy · · · (of even
or odd length) or a word yxyx · · · (of even or odd length). A graph
G = (V,E) is word-representable if and only if there exists a word w
over the alphabet V such that letters x and y alternate in w if and
only if xy ∈ E.

Word-representable graphs generalize several important classes of
graphs such as circle graphs, 3-colorable graphs and comparability
graphs. This paper offers a comprehensive introduction to the theory
of word-representable graphs including the most recent developments
in the area.
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1 Introduction

The theory of word-representable graphs is a young but very promising
research area. It was introduced by the author in 2004 based on the
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joint research with Steven Seif [20] on the celebrated Perkins semi-
group, which has played a central role in semigroup theory since 1960,
particularly as a source of examples and counterexamples. However,
the first systematic study of word-representable graphs was not under-
taken until the appearance in 2008 of the paper [18] by the author and
Artem Pyatkin, which started the development of the theory. One of
the most significant contributors to the area is Magnús M. Halldórsson.

Up to date, nearly 20 papers have been written on the subject, and
the core of the book [17] by the author and Vadim Lozin is devoted to
the theory of word-representable graphs. It should also be mentioned
that the software produced by Marc Glen [7] is often of great help in
dealing with word-representation of graphs.

We refer the Reader to [17], where relevance of word-representable
graphs to various fields is explained, thus providing a motivation to
study the graphs. These fields are algebra, graph theory, computer
science, combinatorics on words, and scheduling. In particular, word-
representable graphs are important from graph-theoretical point of
view, since they generalize several fundamental classes of graphs (e.g.
circle graphs, 3-colorable graphs and comparability graphs).

A graph G = (V,E) is word-representable if and only if there exists
a word w over the alphabet V such that letters x and y, x ̸= y, alternate
in w if and only if xy ∈ E (see Section 2 for the definition of alternating
letters). Natural questions to ask about word-representable graphs are:

• Are all graphs word-representable?

• If not, how do we characterize word-representable graphs?

• How many word-representable graphs are there?

• What is graph’s representation number for a given graph? Es-
sentially, what is the minimal length of a word-representant?

• How hard is it to decide whether a graph is word-representable
or not? (complexity)

• Which graph operations preserve (non-)word-representability?

• Which graphs are word-representable in your favourite class of
graphs?

This paper offers a comprehensive introduction to the theory of
word-representable graphs. Even though the paper is based on the
book [17] following some of its structure, our exposition goes far beyond
book’s content and it reflects the most recent developments in the
area. Having said that, there is a relevant topic on a generalization of
the theory of word-representable graphs [12] that is discussed in [17,
Chapter 6], but we do not discuss it at all.

In this paper we do not include the majority of proofs due to space
limitations (while still giving some proofs, or ideas of proofs whenever
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possible). Also, all graphs we deal with are simple (no loops or multi-
ple edges are allowed), and unless otherwise specified, our graphs are
unoriented.

2 Word-Representable Graphs. The Ba-

sics

Suppose that w is a word over some alphabet and x and y are two
distinct letters in w. We say that x and y alternate in w if after
deleting in w all letters but the copies of x and y we either obtain a
word xyxy · · · (of even or odd length) or a word yxyx · · · (of even or
odd length). For example, in the word 23125413241362, the letters 2
and 3 alternate. So do the letters 5 and 6, while the letters 1 and 3 do
not alternate.

Definition 1. A graph G = (V,E) is word-representable if and only
if there exists a word w over the alphabet V such that letters x and y,
x ̸= y, alternate in w if and only if xy ∈ E. (By definition, w must
contain each letter in V .) We say that w represents G, and that w is
a word-representant.

Definition 1 works for both vertex-labeled and unlabeled graphs
because any labeling of a graph G is equivalent to any other labeling of
G with respect to word-representability (indeed, the letters of a word w
representing G can always be renamed). For example, the graph to the
left in Figure 1 is word-representable because its labeled version to the
right in Figure 1 can be represented by 1213423. For another example,
each complete graph Kn can be represented by any permutation π
of {1, 2, . . . , n}, or by π concatenated any number of times. Also,
the empty graph En (also known as edgeless graph, or null graph) on
vertices {1, 2, . . . , n} can be represented by 12 · · · (n−1)nn(n−1) · · · 21,
or by any other permutation concatenated with the same permutation
written in the reverse order.

3

2 4

1

Figure 1: An example of a word-representable graph

Remark 1. The class of word-representable graphs is hereditary. That
is, removing a vertex v in a word-representable graph G results in a
word-representable graph G′. Indeed, if w represents G then w with
v removed represents G′. This observation is crucial, e.g. in finding
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asymptotics for the number of word-representable graphs [4], which is
the only known enumerative result on word-representable graphs to be
stated next.

Theorem 2 ([4]). The number of non-isomorphic word-representable

graphs on n vertices is given by 2
n
2

3
+o(n2).

2.1 k-Representability and Graph’s Representation

Number

A word w is k-uniform if each letter in w occurs k times. For example,
243321442311 is a 3-uniform word, while 23154 is a 1-uniform word (a
permutation).

Definition 2. A graph G is k-word-representable, or k-representable
for brevity, if there exists a k-uniform word w representing it. We say
that w k-represents G.

The following result establishes equivalence of Definitions 1 and 2.

Theorem 3 ([18]). A graph is word-representable if and only if it is
k-representable for some k.

Proof. Clearly, k-representability implies word-representability. For
the other direction, we demonstrate on an example how to extend a
word-representant to a uniform word representing the same graph. We
refer to [18] for a precise description of the extending algorithm, and
an argument justifying it.

Consider the word w = 3412132154 representing a graph G on five
vertices. Ignore the letter 1 occurring the maximum number of times
(in general, there could be several such letters all of which need to be
ignored) and consider the initial permutation p(w) of w formed by the
remaining letters, that is, p(w) records the order of occurrences of the
leftmost copies of the letters. For our example, p(w) = 3425. Then the
word p(w)w = 34253412132154 also represents G, but it contains more
occurrences of the letters occurring not maximum number of time in
w. This process can be repeated a number of times until each letter
occurs the same number of times. In our example, we need to apply
the process one more time by appending 5, the initial permutation of
p(w)w, to the left of p(w)w to obtain a uniform representation of G:
534253412132154.

Following the same arguments as in Theorem 3, one can prove the
following result showing that there are infinitely many representations
for any word-representable graph.

Theorem 4 ([18]). If a graph is k-representable then it is also (k+1)-
representable.
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By Theorem 3, the following notion is well-defined.

Definition 3. Graph’s representation number is the least k such that
the graph is k-representable. For non-word-representable graphs (whose
existence will be discussed below), we let k = ∞. Also, we let R(G)
denote G’s representation number and Rk = {G : R(G) = k}.

Clearly, R1 = {G : G is a complete graph}. Next, we discuss R2.

2.2 Graphs with Representation Number 2

We begin with discussing five particular classes of graphs having repre-
sentation number 2, namely, empty graphs, trees, forests, cycle graphs
and ladder graphs. Then we state a result saying that graphs with
representation number 2 are exactly the class of circle graphs.

2.2.1 Empty Graphs

No empty graph En for n ≥ 2 can be represented by a single copy of
each letter, so R(En) ≥ 2. On the other hand, as discussed above, En

can be represented by concatenation of two permutations, and thus
R(En) = 2.

2.2.2 Trees and Forests

A simple inductive argument shows that any tree T can be represented
using two copies of each letter, and thus, if the number of vertices in
T is at least 3, R(T ) = 2. Indeed, as the base case we have the edge
labeled by 1 and 2 that can be 2-represented by 1212. Now, suppose
that any tree on at most n− 1 vertices can be 2-represented for n ≥ 3,
and consider a tree T with n vertices and with a leaf x connected to
a vertex y. Removing the leaf x, we obtain a tree T ′ that can be 2-
represented by a word w1yw2yw3 where w1, w2 and w3 are possibly
empty words not containing y. It is now easy to see that the word
w1yw2xyxw3 2-represents T (obtained from T ′ by inserting back the
leaf x). Note that the word w1xyxw2yw3 also represents T .

Representing each tree in a forest by using two letters (trees on one
vertex x and two vertices x and y can be represented by xx and xyxy,
respectively) and concatenating the obtained word-representants, we
see that for any forest F having at least two trees, R(F ) = 2. Indeed,
having two letters in a word-represent for each tree guarantees that no
pair of trees will be connected by an edge.

2.2.3 Cycle Graphs

Another class of 2-representable graphs is cycle graphs. Note that a
cyclic shift of a word-representant may not represent the same graph, as
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is the case with, say, the word 112. However, if a word-representant is
uniform, a cyclic shift does represent the same graph, which is recorded
in the following proposition.

Proposition 5 ([18]). Let w = uv be a k-uniform word representing
a graph G, where u and v are two, possibly empty, words. Then the
word w′ = vu also represents G.

Now, to represent a cycle graph Cn on n vertices, one can first rep-
resent the path graph Pn on n vertices using the technique to represent
trees, then make a 1-letter cyclic shift still representing Pn by Propo-
sition 5, and swap the first two letters. This idea is demonstrated for
the graph in Figure 2 as follows. The steps in representing the path
graph P6 obtained by removing the edge 16 from C6 are

1212 → 121323 → 12132434 → 1213243545 → 121324354656.

The 1-letter cyclic shift gives the word 612132435465 still representing
P6 by Proposition 5, and swapping the first two letters gives the sought
representation of C6: 162132435465.

1 2 3

456

Figure 2: Cycle graph C6

2.2.4 Ladder Graphs

The ladder graph Ln with 2n vertices, labeled 1, . . . , n, 1′, . . . , n′, and
3n − 2 edges is constructed following the pattern for n = 4 presented
in Figure 3. An inductive argument given in [15] shows that for n ≥ 2,
R(Ln) = 2. Table 1 gives 2-representations of Ln for n = 1, 2, 3, 4.

1 2 3

3
′

2
′

1
′

4

4
′

Figure 3: The ladder graph L4

2.2.5 Circle Graphs

A circle graph is the intersection graph of a set of chords of a circle.
That is, it is an unoriented graph whose vertices can be associated with
chords of a circle such that two vertices are adjacent if and only if the
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n 2-representation of the ladder graph Ln

1 11′11′

2 1′212′21′2′1

3 12′1′323′32′3′121′

4 1′213′2′434′43′4′231′2′1

Table 1: 2-representations of the ladder graph Ln for n = 1, 2, 3, 4

corresponding chords cross each other. See Figure 4 for an example of
a circle graph on four vertices and its associated chords.

The following theorem provides a complete characterization of R2.

3

1 2

4

3

2

1

4

4

3

1

2

Figure 4: A circle graph on four vertices and its associated chords

Theorem 6. We have

R2 = {G : G is a circle graph different from a complete graph}.

Proof. Given a circle graph G, consider its representation on a circle
by intersecting chords. Starting from any chord’s endpoint, go through
all the endpoints in clock-wise direction recording chords’ labels. The
obtained word w is 2-uniform and it has the property that a pair of
letter x and y alternate in w if and only if the pair of chords labeled by
x and y intersect, which happens if and only if the vertex x is connected
to the vertex y in G. For the graph in Figure 4, the chords’ labels can
be read starting from the lower 1 as 13441232, which is a 2-uniform
word representing the graph. Thus, G is a circle graph if and only if
G ∈ R2 with the only exception if G is a complete graph, in which
case G ∈ R1.

2.3 Graphs with Representation Number 3

Unlike the case of graphs with representation number 2, no charac-
terization of graphs with representation number 3 is know. However,
there is a number of interesting results on this class of graphs to be
discussed next.
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1

2

34

5

6

7

89

10

Figure 5: The Petersen graph

2.3.1 The Petersen Graph

In 2010, Alexander Konovalov and Steven Linton not only showed
that the Petersen graph in Figure 5 is not 2-representable, but also
provided two non-equivalent (up to renaming letters or a cyclic shift)
3-representations of it:

• 1387296(10)7493541283(10)7685(10)194562 and

• 134(10)58679(10)273412835(10)6819726495.

The fact that the Petersen graph does not belong to R2 is also
justified by the following theorem.

Theorem 7 ([9]). Petersen’s graph is not 2-representable.

Proof. Suppose that the graph is 2-representable and w is a 2-uniform
word representing it. Let x be a letter in w such that there is a minimal
number of letters between the two occurrences of x. Since Petersen’s
graph is regular of degree 3, it is not difficult to see that there must
be exactly three letters, which are all different, between the xs (having
more letters between xs would lead to having two equal letters there,
contradicting the choice of x).

By symmetry, we can assume that x = 1, and by Proposition 5 we
can assume that w starts with 1. So, the letters 2, 5 and 6 are between
the two 1s, and because of symmetry, the fact that Petersen’s graph
is edge-transitive (that is, each of its edges can be made “internal”),
and taking into account that the vertices 2, 5 and 6 are pairwise non-
adjacent, we can assume that w = 12561w16w25w32w4 where the wis
are some, possibly empty words for i ∈ {1, 2, 3, 4}. To alternate with
6 but not to alternate with 5, the letter 8 must occur in w1 and w2.
Also, to alternate with 2 but not to alternate with 5, the letter 3 must
occur in w3 and w4. But then 8833 is a subsequence in w, and thus 8
and 3 must be non-adjacent in the graph, a contradiction.
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Figure 6: Prisms Pr3 and Pr4

2.3.2 Prisms

A prism Prn is a graph consisting of two cycles 12 · · ·n and 1′2′ · · ·n′,
where n ≥ 3, connected by the edges ii′ for i = 1, . . . , n. In particular,
the 3-dimensional cube to the right in Figure 6 is the prism Pr4.

Theorem 8 ([18]). Every prism Prn is 3-representable.

The fact that the triangular prism Pr3 is not 2-representable was
shown in [18]. The following more general result holds.

Theorem 9 ([15]). None of prisms Prn is 2-representable.

Theorems 8 and 9 show that Prn ∈ R3 for any n ≥ 3.

2.3.3 Colorability of Graphs in R3

Theorem 13 below shows that R3 does not even include 2-colorable
graphs, and thus any class of c-colorable graphs for c ≥ 3. Indeed, any
c-colorable non-3-representable graph can be extended to a (c + 1)-
colorable graph by adding an apex (all-adjacent vertex), which is still
non-3-representable using the hereditary nature of word-representability
(see Remark 1).

A natural question to ask here is: Is R3 properly included in a class
of c-colorable graphs for a constant c? A simple argument of replacing
a vertex in the 3-representable triangular prism Pr3 by a complete
graph of certain size led to the following theorem.

Theorem 10 ([15]). The class R3 is not included in a class of c-
colorable graphs for some constant c.

2.3.4 Subdivisions of Graphs

The following theorem gives a useful tool for constructing 3-representable
graphs, that is, graphs with representation number at most 3.

Theorem 11 ([18]). Let G = (V,E) be a 3-representable graph and
x, y ∈ V . Denote by H the graph obtained from G by adding to it a path
of length at least 3 connecting x and y. Then H is also 3-representable.
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Definition 4. A subdivision of a graph G is a graph obtained from G
by replacing each edge xy in G by a simple path (that is, a path without
self-intersection) from x to y. A subdivision is called a k-subdivision
if each of these paths is of length at least k.

Definition 5. An edge contraction is an operation which removes an
edge from a graph while gluing the two vertices it used to connect. An
unoriented graph G is a minor of another unoriented graph H if a
graph isomorphic to G can be obtained from H by contracting some
edges, deleting some edges, and deleting some isolated vertices.

Theorem 12 ([18]). For every graph G there are infinitely many 3-
representable graphs H that contain G as a minor. Such a graph H
can be obtained from G by subdividing each edge into any number of,
but at least three edges.

Note that H in Theorem 12 does not have to be a k-subdivision for
some k, that it, edges of G can be subdivided into different number
(at least 3) of edges. In either case, the 3-subdivision of any graph G
is always 3-representable. Also, it follows from Theorem 11 and the
proof of Theorem 12 in [18] that a graph obtained from an edgeless
graph by inserting simple paths of length at least 3 between (some)
pairs of vertices of the graph is 3-representable.

Finally, note that subdividing each edge in any graph into exactly
two edges gives a bipartite graph, which is word-representable by The-
orem 15 (see the discussion in Section 2.4.1 on why a bipartite graph
is word-representable).

2.4 Graphs with High Representation Number

In Theorem 31 below we will see that the upper bound on a shortest
word-representant for a graph G on n vertices is essentially 2n2, that
is, one needs at most 2n copies of each letter to represent G. Next,
we consider two classes of graphs that require essentially n/2 copies of
each letter to be represented, and these are the longest known shortest
word-representants.

2.4.1 Crown Graphs

Definition 6. A crown graph (also known as a cocktail party graph)
Hn,n is obtained from the complete bipartite graph Kn,n by removing a
perfect matching. That is, Hn,n is obtained from Kn,n by removing n
edges such that each vertex was incident to exactly one removed edge.

See Figure 7 for examples of crown graphs.
By Theorem 15 below, Hn,n can be represented by a concatenation

of permutations, because Hn,n is a comparability graph defined in Sec-
tion 3 (to see this, just orient all edges from one part to the other).
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1

1′

H1,1

1

1′

2

2′

H2,2

1

1′

2

2′

3

3′
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Figure 7: Crown graphs

1

1′

2

2′

3

3′

xG3 =

Figure 8: Graph G3

In fact, Hn,n is known to require n permutations to be represented.
However, can we provide a shorter representation for Hn,n? It turns
out that we can, to be discussed next, but such representations are still
long (linear in n).

Note that H1,1 ∈ R2 by Section 2.2.1. Further, H2,2 ̸= K4, the
complete graph on 4 vertices, and thus H2,2 ∈ R2 because it can be
2-represented by 121′2′212′1′. Also, H3,3 = C6 ∈ R2 by Section 2.2.3.
Finally, H4,4 = Pr4 ∈ R3 by Section 2.3.2. The following theorem
gives the representation number R(Hn,n) in the remaining cases.

Theorem 13 ([6]). If n ≥ 5 then the representation number of Hn,n is
⌈n/2⌉ (that is, one needs ⌈n/2⌉ copies of each letter to represent Hn,n,
but not fewer).

2.4.2 Crown Graphs with an Apex

The graph Gn is obtained from a crown graph Hn,n by adding an apex
(all-adjacent vertex). See Figure 8 for the graph G3.

It turns out that Gn is the worst known word-representable graph
in the sense that it requires the maximum number of copies of each
letter to be represented, as recorded in the following theorem.

Theorem 14 ([18]). The representation number of Gn is ⌊n/2⌋.

It is unknown whether there exist graphs on n vertices with rep-
resentation number between ⌊n/2⌋ and essentially 2n (given by Theo-
rem 32).

12



x

H
G =

Figure 9: G is obtained from H by adding an apex

3 Permutationally Representable Graphs

and their Significance

An orientation of a graph is transitive if presence of edges u → v and
v → z implies presence of the edge u → z. An unoriented graph is
a comparability graph if it admits a transitive orientation. It is well
known [17, Section 3.5.1], and is not difficult to show that the smallest
non-comparability graph is the cycle graph C5.

Definition 7. A graph G = (V,E) is permutationally representable
if it can be represented by a word of the form p1 · · · pk where pi is a
permutation. We say that G is permutationally k-representable.

For example, the graph in Figure 1 is permutationally representable,
which is justified by the concatenation of two permutations 21342341.

The following theorem is an easy corollary of the fact that any
partially ordered set can be represented as intersection of linear orders.

Theorem 15 ([20]). A graph is permutationally representable if and
only if it is a comparability graph.

Next, consider a schematic representation of the graphG in Figure 9
obtained from a graph H by adding an all-adjacent vertex (apex). The
following theorem holds.

Theorem 16 ([18]). The graph G is word-representable if and only if
the graph H is permutationally representable.

A wheel graph Wn is the graph obtained from a cycle graph Cn by
adding an apex. It is easy to see that none of cycle graphs C2n+1, for
n ≥ 2, is a comparability graph, and thus none of wheel graphs W2n+1,
for n ≥ 2 is word-representable. In fact, W5 is the smallest example of
a non-word-representable graph (the only one on 6 vertices). Section 6
discusses other examples of non-word-representable graphs.

As a direct corollary to Theorem 16, we have the following impor-
tant result revealing the structure of neighbourhoods of vertices in a
word-representable graph.
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co-(T2)

Figure 10: Non-word-representable graphs in which each neighbourhood is
permutationally representable

Theorem 17 ([18]). If a graph G is word-representable then the neigh-
bourhood of each vertex in G is permutationally representable (is a
comparability graph by Theorem 15).

The converse to Theorem 17 is not true as demonstrated by the
counterexamples in Figure 10 taken from [9] and [4], respectively.

A clique in an unoriented graph is a subset of pairwise adjacent
vertices. A maximum clique is a clique of the maximum size. Given a
graph G, the Maximum Clique problem is to find a maximum clique in
G. It is well known that the Maximum Clique problem is NP-complete.
However, this problem is polynomially solvable for word-representable
graphs, which is a corollary of Theorem 17 and is discussed next.

Theorem 18 ([10, 11]). The Maximum Clique problem is polynomially
solvable on word-representable graphs.

Proof. Each neighbourhood of a word-representable graph G is a com-
parability graph by Theorem 17. It is known that the Maximum Clique
problem is solvable on comparability graphs in polynomial time. Thus
the problem is solvable on G in polynomial time, since any maximum
clique belongs to the neighbourhood of a vertex including the vertex
itself.

4 Graphs Representable by Pattern Avoid-

ing Words

It is a very popular area of research to study patterns in words and
permutations1. The book [14] provides a comprehensive introduction

1The patterns considered in this section are ordered, and their study comes from Al-
gebraic Combinatorics. There are a few results on word-representable graphs and (un-
ordered) patterns studied in Combinatorics on Words, namely on squares and cubes in
words, that are not presented in this paper, but can be found in [17, Section 7.1.3]. One
of the results says that for any word-representable graph, there exists a cube-free word
representing it.
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Figure 11: Relations between graph classes taken from [21]

to the field. A pattern is a word containing each letter in {1, 2, . . . , k}
at least once for some k. A pattern τ = τ1τ2 · · · τm occurs in a word
w = w1w2 · · ·wn if there exist 1 ≤ i1 < i2 < · · · < im ≤ n such that
τ1τ2 · · · τm is order-isomorphic to wi1wi2 · · ·wim . We say that w avoids
τ if w contains no occurrences of τ . For example, the word 42316
contains several occurrences of the pattern 213 (all ending with 6), e.g.
the subsequences 426, 416 and 316.

As a particular case of a more general program of research suggested
by the author during his plenary talk at the international Permutation
Patterns Conference at the East Tennessee State University, Johnson
City in 2014, one can consider the following direction (see [17, Section
7.8]). Given a set of words avoiding a pattern, or a set of patterns,
which class of graphs do these words represent?

As a trivial example, consider the class of graphs defined by words
avoiding the pattern 21. Clearly, any 21-avoiding word is of the form

w = 11 · · · 122 · · · 2 · · ·nn · · ·n.

If a letter x occurs at least twice in w then the respective vertex is iso-
lated. The letters occurring exactly once form a clique (are connected
to each other). Thus, 21-avoiding words describe graphs formed by a
clique and an independent set.

Two papers, [5] and [21], are dedicated to this research direction
and will be summarised in this section. So far, apart from Theorem 19
and Corollary 20 below, only 132-avoiding and 123-avoiding words were
studied from word-representability point of view. The results of these
studies are summarized in Figure 11, which is taken from [21]. In that
figure, and more generally in this section, we slightly abuse the notation
and call graphs representable by τ -avoiding words τ -representable.

We note that unlike the case of word-representability without ex-
tra restrictions, labeling of graphs does matter in the case of pattern
avoiding representations. For example, the 132-avoiding word 4321234
represents the graph to the left in Figure 12, while no 132-avoiding
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Figure 12: 132-representable (left) and non-132-representable (right) label-
ings of the same graph

word represents the other graph in that figure. Indeed, no two letters
out of 1, 2 and 3 can occur once in a word-representant or else the
respective vertices would not form an independent set. Say, w.l.o.g.
that 1 and 2 occur at least twice. But then we can find 1 and 2 on both
sides of an occurrence of the letter 4, and the patten 132 is inevitable.

The following theorem has a great potential to be applicable to the
study of τ -representable graphs for τ of length 4 or more.

Theorem 19 ([21]). Let G be a word-representable graph, which can
be represented by a word avoiding a pattern τ of length k + 1. Let x
be a vertex in G such that its degree d(x) ≥ k. Then, any word w
representing G that avoids τ must contain no more than k copies of x.

Proof. If there are at least k + 1 occurrences of x in w, we obtain a
factor (i.e. consecutive subword) xw1x · · ·wkx, where k neighbours of
x in G occur in each wi. But then w contains all patterns of length
k + 1, in particular, τ . Contradiction.

Corollary 20 ([21]). Let w be a word-representant for a graph which
avoids a pattern of length k + 1. If some vertex y adjacent to x has
degree at least k, then x occurs at most k + 1 times in w.

4.1 132-Representable Graphs

It was shown in [5] that the minimum (with respect to the number of
vertices) non-word-representable graph, the wheel graph W5, is actu-
ally a minimum non-132-representable graph (we do not know if there
exit other non-132-representable graphs on 6 vertices).

Theorem 21 ([5]). If a graph G is 132-representable, then there exists
a 132-avoiding word w representing G such that any letter in w occurs
at most twice.

Theorems 21 and 6 give the following result.

Theorem 22 ([5]). Every 132-representable graph is a circle graph.

Thus, by Theorems 6, 9 and 22, none of prisms Prn, n ≥ 3, is 132-
representable. A natural question is if there are circle graphs that are
not 132-representable.
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Theorem 23 ([21]). Not all circle graphs are 132-representable. E.g.
disjoint union of two complete graphs K4 is a circle graph, but it is not
132-representable.

Theorem 24 ([5]). Any tree is 132-representable.

Note that in the case of pattern avoiding representations of graphs,
Theorem 3 does not necessarily work, because extending a representa-
tion to a uniform representation may introduce an occurrences of the
pattern(s) in question. For example, while any complete graph Kn can
be represented by the 132-avoiding word n(n−1) · · · 1, it was shown in
[21] that for n ≥ 3 no 2-uniform 132-avoiding representation of Kn ex-
ists. In either case, [21] shows that any tree can actually be represented
by a 2-uniform word thus refining the statement of Theorem 24. For
another result on uniform 132-representation see Theorem 30 below.

Theorem 25 ([5]). Any cycle graph is 132-representable.

Proof. The cycle graph Cn labeled by 1, 2, . . . , n in clockwise direction
can be represented by the 132-avoiding word

(n− 1)n(n− 2)(n− 1)(n− 3)(n− 2) · · · 45342312.

Theorem 26 ([5]). For n ≥ 1, a complete graph Kn is 132-representable.
Moreover, for n ≥ 3, there are

2 + Cn−2 +

n
∑

i=0

Ci

different 132-representants for Kn, where Cn = 1
n+1

(

2n
n

)

is the n-th
Catalan number. Finally, K1 can be represented by a word of the form
11 · · · 1 and K2 by a word of the form 1212 · · · (of even or odd length)
or 2121 · · · (of even or odd length).

As a corollary to the proof of Theorem 26, [5] shows that for n ≥ 3,
the length of any 132-representant of Kn is either n, or n+1, or n+2,
or n+ 3.

4.2 123-Representable Graphs

An analogue of Theorem 22 holds for 123-representable graphs.

Theorem 27 ([21]). Any 123-representable graph is a circle graph.

Theorem 28 ([21]). Any cycle graph is 123-representable.
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Figure 13: Star graph K1,6

Proof. The cycle graph Cn labeled by 1, 2, . . . , n in clockwise direction
can be represented by the 123-avoiding word

n(n− 1)n(n− 2)(n− 1)(n− 3)(n− 1) · · · 23121.

Theorem 29 ([21]). The star graph K1,6 in Figure 13 is not 123-
representable.

It is easy to see that K1,6 is a circle graph, and thus not all circle
graphs are 123-representable by Theorem 29. Also, by Theorem 29,
not all trees are 123-representable.

Based on Theorems 23 and 29, it is easy to come up with a circle
graph on 14 vertices that is neither 123- nor 132-representable (see
[21]).

As opposed to the situation with 132-representation discussed in
Section 4.1, any complete graph Kn can be represented by the 123-
avoiding 2-uniform word n(n − 1) · · · 1n(n − 1) · · · 1 as observed in
[21]. Also, it was shown in [21] that any path graph Pn can be 123-
represented by a 2-uniform word. We conclude with a general type
theorem on uniform representation applicable to both 123- and 132-
representations.

Theorem 30 ([21]). Let a pattern τ ∈ {123, 132} and G1, G2, . . . , Gk

be τ -representable connected components of a graph G. Then G is τ -
representable if and only if at most one of the connected components
cannot be τ -represented by a 2-uniform word.

5 Semi-transitive Orientations as a Key Tool

in the Theory of Word-Representable Graphs

Recall the definition of a transitive orientation at the beginning of
Section 3.

A shortcut is an acyclic non-transitively oriented graph obtained
from a directed cycle graph forming a directed cycle on at least four
vertices by changing the orientation of one of the edges, and possibly
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by adding more directed edges connecting some of the vertices (while
keeping the graph be acyclic and non-transitive). Thus, any shortcut

• is acyclic (that it, there are no directed cycles);

• has at least 4 vertices;

• has exactly one source (the vertex with no edges coming in),
exactly one sink (the vertex with no edges coming out), and a
directed path from the source to the sink that goes through every
vertex in the graph;

• has an edge connecting the source to the sink that we refer to as
the shortcutting edge;

• is not transitive (that it, there exist vertices u, v and z such that
u → v and v → z are edges, but there is no edge u → z).

Definition 8. An orientation of a graph is semi-transitive if it is
acyclic and shortcut-free.

It is easy to see from definitions that any transitive orientation is
necessary semi-transitive. The converse is not true, e.g. the following
schematic semi-transitively oriented graph is not transitively oriented:

transitively oriented transitively oriented

Thus semi-transitive orientations generalize transitive orientations.
A way to check if a given oriented graph G is semi-transitively ori-

ented is as follows. First check that G is acyclic; if not, the orientation
is not semi-transitive. Next, for a directed edge from a vertex x to
a vertex y, consider each directed path P having at least three edges
without repeated vertices from x to y, and check that the subgraph
of G induced by P is transitive. If such non-transitive subgraph is
found, the orientation is not semi-transitive. This procedure needs to
be applied to each edge in G, and if no non-transitivity is discovered,
G’s orientation is semi-transitive.

As we will see in Theorem 31, finding a semi-transitive orientation is
equivalent to recognising whether a given graph is word-representable,
and this is an NP-hard problem (see Theorem 42). Thus, there is no
efficient way to construct a semi-transitive orientation in general, and
such a construction would rely on an exhaustive search orienting edges
one by one, and thus branching the process. Having said that, there are
several situations in which branching is not required. For example, the
orientation of the partially oriented triangle below can be completed
uniquely to avoid a cycle:

⇒
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⇒

⇒

⇒

Figure 14: Completing orientations of quadrilaterals

For another example, the branching process can normally be shorten
e.g. by completing the orientation of quadrilaterals as shown in Fig-
ure 14, which is unique to avoid cycles and shortcuts (the diagonal in
the last case may require branching).

The main characterization theorem to date for word-representable
graphs is the following result.

Theorem 31 ([11]). A graph G is word-representable if and only if G
admits a semi-transitive orientation.

Proof. The backwards direction is rather complicated and is omitted.
An algorithm was created in [11] to turn a semi-transitive orientation
of a graph into a word-representant.

The idea of the proof for the forward direction is as follows (see
[11] for details). Given a word, say, w = 2421341, orient the graph
represented by w by letting x → y be an edge if the leftmost x is to
the left of the leftmost y in w, to obtain a semi-transitive orientation:

1 3

4 2

Any complete graph is 1-representable. The algorithm in [11] to
turn semi-transitive orientations into word-representants gave the fol-
lowing result.

Theorem 32 ([11]). Each non-complete word-representable graph G
is 2(n− κ(G))- representable, where κ(G) is the size of the maximum
clique in G.
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As an immediate corollary of Theorem 32, we have that the recog-
nition problem of word-representability is in NP. Indeed, any word-
representant is of length at most O(n2), and we need O(n2) passes
through such a word to check alternation properties of all pairs of let-
ters. There is an alternative proof of this complexity observation by
Magnús M. Halldórsson in terms of semi-transitive orientations. In
presenting his proof, we follow [17, Remark 4.2.3].

Checking that a given directed graph G is acyclic is a polynomially
solvable problem. Indeed, it is well known that the entry (i, j) of the
kth power of the adjacency matrix of G records the number of walks
of length k in G from the vertex i to the vertex j. Thus, if G has n
vertices, then we need to make sure that the diagonal entries are all
0 in all powers, up to the nth power, of the adjacency matrix of G.
Therefore, it remains to show that it is polynomially solvable to check
that G is shortcut-free. Let u → v be an edge in G. Consider the
induced subgraph Hu→v consisting of vertices “in between” u and v,
that is, the vertex set of Hu→v is

{x | there exist directed paths from u to x and from x to v}.

It is not so difficult to prove that u → v is not a shortcut (that is, is
not a shortcutting edge) if and only if Hu→v is transitive. Now, we can
use the well known fact that finding out whether there exists a directed
path from one vertex to another in a directed graph is polynomially
solvable, and thus it is polynomially solvable to determine Hu→v (one
needs to go through n vertices and check the existence of two paths
for each vertex). Finally, checking transitivity is also polynomially
solvable, which is not difficult to see.

The following theorem shows that word-representable graphs gen-
eralize the class of 3-colorable graphs.

Theorem 33 ([11]). Any 3-colorable graph is word-representable.

Proof. Coloring a 3-colorable graph in three colors, say, colors 1, 2 and
3, and orienting the edges based on the colors of their endpoints as
1 → 2 → 3, we obtain a semi-transitive orientation. Indeed, obviously
there are no cycles, and because the longest directed path involves only
three vertices, there are no shortcuts. Theorem 31 can now be applied
to complete the proof.

Theorem 33 can be applied to see, for example, that the Petersen
graph is word-representable, which we already know from Section 2.3.1.
More corollaries to Theorem 33 can be found below.
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6 Non-word-representable Graphs

From the discussion in Section 3 we already know that the wheel
graphs W2n+1, for n ≥ 2, are not word-representable, and that W5

is the minimum (by the number of vertices) non-word-representable
graph. But then, taking into account the hereditary nature of word-
representability (see Remark 1), we have a family W of non-word-
representable graphs characterised by containment of W2n+1 (n ≥ 2)
as an induced subgraph.

Note that each graph in W necessarily contains a vertex of degree 5
or more, and also a triangle as an induced subgraph. Natural questions
are if there are non-word-representable graphs of maximum degree 4,
and also if there are triangle-free non-word-representable graphs. Both
questions were answered in affirmative. The graph to the right in
Figure 10, which was found in [4], addresses the first question, while the
second question is addressed by the following construction presented
in [10].

Let M be a 4-chromatic graph with girth at least 10 (such graphs
exist by a result of Paul Erdős; see [17, Section 4.4] for details). The
girth of a graph is the length of a shortest cycle contained in the graph.
If the graph does not contain any cycles (that is, it is an acyclic graph),
its girth is defined to be infinity. Now, for every path of length 3 in M
add to M an edge connecting path’s end vertices. Then the obtained
graph is triangle-free and non-word-representable [10].

6.1 Enumeration of Non-word-representable Graphs

According to experiments run by Herman Z.Q. Chen, there are 1, 25
and 929 non-isomorphic non-word-representable connected graphs on
six, seven and eight vertices, respectively. These numbers were con-
firmed and extended to 68,545 for nine vertices, and 4,880,093 for 10
vertices, using a constraint programming (CP)-based method by Özgür
Akgün, Ian Gent and Christopher Jefferson.

Figure 15 created by Chen presents the 25 non-isomorphic non-
word-representable graphs on seven vertices. Note that the only non-
word-representable graph on six vertices is the wheel W5. Further note
that the case of seven vertices gives just 10 minimal non-isomorphic
non-word-representable graphs, since 15 of the graphs in Figure 15
contain W5 as an induced subgraphs (these graphs are the first 11
graphs, plus the 15th, 16th, 18th and 19th graphs).

6.2 Non-word-representable Line Graphs

The line graph of a graph G = (V,E) is the graph with vertex set E in
which two vertices are adjacent if and only if the corresponding edges
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Figure 15: 25 non-isomorphic non-word-representable graphs on seven ver-
tices

K1,3 = C4 = P4 =

Figure 16: The claw graph K1,3, the cycle graph C4, and the path graph P4

of G share a vertex. The line graph of G is denoted L(G). Line graphs
give a tool to construct non-word-representable graphs as follows from
the theorems below.

Theorem 34 ([19]). Let n ≥ 4. For any wheel graph Wn, the line
graph L(Wn) is non-word-representable.

Theorem 35 ([19]). Let n ≥ 5. For any complete graph Kn, the line
graph L(Kn) is non-word-representable.

The following theorem is especially interesting as it shows how to
turn essentially any graph into non-word-representable graph.

Theorem 36 ([19]). If a connected graph G is not a path graph, a cycle
graph, or the claw graph K1,3, then the line graph Ln(G) obtained by
application of the procedure of taking the line graph to G n times, is
non-word-representable for n ≥ 4.
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7 Word-Representability and Operations

on Graphs

In this section we consider some of the most basic operations on graphs,
namely, taking the complement, edge subdivision, edge contraction,
connecting two graphs by an edge and gluing two graphs in a clique,
replacing a vertex with a module, Cartesian product, rooted product
and taking line graph.

We do not consider edge-addition/deletion trivially not preserv-
ing (non)-word-representability, although there are situations when
these operations may preserve word-representability. For example, it
is shown in [13] that edge-deletion preserves word-representability on
K4-free word-representable graphs.

Finally, we do not discuss the operations Y → ∆ (replacing an
induced subgraph K1,3, the claw, on vertices v0, v1, v2, v3, where v0 is
the apex, by the triangle on vertices v1, v2, v3 and removing v0) and
∆ → Y (removing the edges of a triangle on vertices v1, v2, v3 and
adding a vertex v0 connected to v1, v2, v3) recently studied in [13] in
the context of word-representability of graphs.

7.1 Taking the Complement

Starting with a word-representable graph and taking its complement,
we may either obtain a word-representable graph or not. Indeed, for
example, both any graph on at most five vertices and its complement
are word-representable. On the other hand, let G be the graph formed
by the 5-cycle (2,4,6,3,5) and an isolated vertex 1. The 5-cycle can be
represented by the word 2542643653 (see Section 2.2.3 for a technique
to represent cycle graphs) and thus the graph G can be represented
by the word 112542643653. However, taking the complement of G, we
obtain the wheel graph W5, which is not word-representable.

Similarly, starting with a non-word-representable graph and tak-
ing its complement, we can either obtain a word-representable graph
or not. Indeed, the complement of the non-word-representable wheel
W5 is word-representable, as is discussed above. On the other hand,
the graph G having two connected components, one W5 and the other
one the 5-cycle C5, is non-word-representable because of the induced
subgraph W5, while the complement of G also contains an induced sub-
graph W5 (formed by the vertices of C5 in G and any of the remaining
vertices) and thus is also non-word-representable.

7.2 Edge Subdivision and Edge Contraction

Subdivision of graphs (see Definition 4) is based on subdivision of indi-
vidual edges, and it is considered in Section 2.3.4 from 3-representability
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point of view.
If we change “3-representable” by “word-representable” in Theo-

rem 12 we would obtain a weaker, but clearly still true statement,
which is not hard to prove directly via semi-transitive orientations. In-
deed, each path of length at least 3 added instead of an edge e can
be oriented in a “blocking” way, so that there would be no directed
path between e’s endpoints. Thus, edge subdivision does not preserve
the property of being non-word-representable. The following theorem
shows that edge subdivision may be preserved on some subclasses of
word-representable graphs, but not on the others.

Theorem 37 ([13]). Edge subdivision preserves word-representability
on K4-free word-representable graphs, and it does not necessarily pre-
serve word-representability on K5-free word-representable graphs.

Recall the definition of edge contraction in Definition 5. By Theo-
rem 12, contracting an edge in a word-representable graph may result
in a non-word-representable graph, while in many cases, e.g. in the
case of path graphs, word-representability is preserved under this op-
eration.

On the other hand, when starting from a non-word-representable
graph, a graph obtained from it by edge contraction can also be either
word-representable or non-word-representable. For example, contract-
ing any edge incident with the bottommost vertex in the non-word-
representable graph to the right in Figure 10, we obtain a graph on six
vertices that is different from W5 and is thus word-representable. Fi-
nally, any non-word-representable graph can be glued in a vertex with
a path graph P (the resulting graph will be non-word-representable),
so that contracting any edge in the subgraph formed by P results in a
non-word-representable graph.

7.3 Connecting two Graphs by an Edge and Gluing

two Graphs in a Clique

In what follows, by gluing two graphs in a clique we mean the following
operation. Suppose a1, . . . , ak and b1, . . . , bk are cliques of size k in
graphs G1 and G2, respectively. Then gluing G1 and G2 in a clique
of size k means identifying each ai with one bj , for i, j ∈ {1, . . . , k} so
that the neighbourhood of the obtained vertex ci,j is the union of the
neighbourhoods of ai and bj .

By the hereditary nature of word-representability (see Remark 1),
if at least one of two graphs is non-word-representable, then gluing
the graphs in a clique, or connecting two graphs by an edge (with
the endpoints belonging to different graphs) will result in a non-word-
representable graph.
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On the other hand, suppose that graphs G1 and G2 are word-
representable. Then gluing the graphs in a vertex, or connecting the
graphs by an edge will result in a word-representable graph. The lat-
ter statement is easy to see using the notion of semi-transitive ori-
entation. Indeed, by Theorem 31 both G1 and G2 can be oriented
semi-transitively, and gluing the oriented graphs in a vertex, or con-
necting the graphs by an edge oriented arbitrarily, will not result in
any cycles or shortcuts created. In fact, it was shown in [15] that if
G1 is k1-representable (such a k1 must exist by Theorem 3) and G2 is
k2-representable, then essentially always the graph obtained either by
gluing G1 and G2 in a vertex or by connecting the graphs by an edge
is max(k1, k2)-representable.

Even though glueing two word-representable graphs in a vertex
(clique of size 1) always results in a word-representable graph, this is
not necessarily true for glueing graphs in an edge (clique of size 2) or
in a triangle (clique of size 3). We refer to [17, Section 5.4.3] for the
respective examples. Glueing two graphs in cliques of size 4 or more in
the context of word-representability remains an unexplored direction.

7.4 Replacing a Vertex with a Module

A subset X of the set of vertices V of a graph G is a module if all
members of X have the same set of neighbours among vertices not in
X (that is, among vertices in V \ X). For example, Figure 17 shows
replacement of the vertex 1 in the triangular prism by the module K3

formed by the vertices a, b and c. Thus, {a, b, c} is a module of the
graph on the right in Figure 17.

1"

2"

3"

1’"

2’"

3’"

2"

3"

1’"

2’"

3’"

a"

b"

c"

Figure 17: Replacing a vertex by a module

Theorem 38 ([15]). Suppose that G = (V,E) is a word-representable
graph and x ∈ V . Let G′ be obtained from G by replacing x with a
module M , where M is any comparability graph (in particular, any
clique). Then G′ is also word-representable. Moreover, if R(G) = k1
and R(M) = k2 then R(G′) = k, where k = max{k1, k2}.
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7.5 Cartesian Product of two Graphs

The Cartesian product G□H of graphs G = (V (G), E(G)) and H =
(V (H), E(H)) is a graph such that

• the vertex set of G□H is the Cartesian product V (G) × V (H);
and

• any two vertices (u, u′) and (v, v′) are adjacent in G□H if and
only if either

– u = v and u′ is adjacent to v′ in H, or

– u′ = v′ and u is adjacent to v in G.

See Figure 18 for an example of the Cartesian product of two
graphs.
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Figure 18: Cartesian product of two graphs

A proof of the following theorem was given by Bruce Sagan in 2014.
The proof relies on semi-transitive orientations and it can be found in
[17, Section 5.4.5].

Theorem 39 (Sagan). Let G and H be two word-representable graphs.
Then the Cartesian product G□H is also word-representable.

7.6 Rooted Product of Graphs

The rooted product of a graph G and a rooted graph H (i.e. one vertex
of H is distinguished), G ◦H, is defined as follows: take |V (G)| copies
of H, and for every vertex vi of G, identify vi with the root vertex of
the ith copy of H. See Figure 19 for an example of the rooted product
of two graphs.
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Figure 19: Rooted product of two graphs
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The next theorem is an analogue of Theorem 39 for the rooted
product of two graphs.

Theorem 40 ([17]). Let G and H be two word-representable graphs.
Then the rooted product G ◦H is also word-representable.

Proof. Identifying a vertex vi in G with the root vertex of the ith copy
of H in the definition of the rooted product gives a word-representable
graph by the discussion in Section 7.3. Thus, identifying the root
vertices, one by one, we will keep obtaining word-representable graphs,
which gives us at the end word-representability of G ◦H.

7.7 Taking the Line Graph Operation

Taking the line graph operation has already been considered in Sec-
tion 6.2. Based on the results presented in that section, we can see
that this operation can turn a word-representable graph into either
a word-representable graph or non-word-representable graph. Also,
there are examples of when the line graph of a non-word-representable
graph is non-word-representable. However, it remains an open problem
whether a non-word-representable graph can be turned into a word-
representable graph by applying the line graph operation.

8 Computational Complexity Results and

Word-Representability of Planar Graphs

In this section we will present known complexity results and also dis-
cuss word-representability of planar graphs.

8.1 A Summary of Known Complexity Results

Even though the Maximum Clique problem is polynomially solvable on
word-representable graphs (see Theorem 18), many classical optimiza-
tion problems are NP-hard on these graphs. The latter follows from
the problems being NP-hard on 3-colorable graphs and Theorem 33.

The justification of the known complexity results presented in Ta-
ble 2, as well as the definitions of the problems can be found in [17,
Section 4.2]. However, below we discuss a proof of the fact that recog-
nizing word-representability is an NP-complete problem. We refer to
[17, Section 4.2] for any missed references to the results we use.

Suppose that P is a poset and x and y are two of its elements. We
say that x covers y if x > y and there is no element z in P such that
x > z > y.

The cover graph GP of a poset P has P ’s elements as its vertices,
and {x, y} is an edge in GP if and only if either x covers y, or vice
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problem complexity

deciding whether a given graph is word-representable NP-complete

approximating the graph representation number NP-hard
within a factor of n1−ϵ for any ϵ > 0

Clique Covering NP-hard

deciding whether a given graph is k-word-representable NP-complete
for any fixed k, 3 ≤ k ≤ ⌈n/2⌉

Dominating Set NP-hard

Vertex Colouring NP-hard

Maximum Clique in P

Maximum Independent Set NP-hard

Table 2: Known complexities for problems on word-representable graphs

versa. The diagram of P , sometimes called a Hasse diagram or order
diagram, is a drawing of the cover graph of G in the plane with x being
higher than y whenever x covers y in P . The three-dimensional cube
in Figure 6 is an example of a cover graph.

Vincent Limouzy observed in 2014 that semi-transitive orientations
of triangle-free graphs are exactly the 2-good orientations considered
in [22] by Pretzel (we refer to that paper for the definition of a k-good
orientation). Thus, by Proposition 1 in [22] we have the following
reformulation of Pretzel’s result in our language.

Theorem 41 (Limouzy). The class of triangle-free word-representable
graphs is exactly the class of cover graphs of posets.

It was further observed by Limouzy, that it is an NP-complete
problem to recognize the class of cover graphs of posets. This im-
plies the following theorem, which is a key complexity result on word-
representable graphs.

Theorem 42 (Limouzy). It is an NP-complete problem to recognize
whether a given graph is word-representable.

8.2 Word-Representability of Planar Graphs

Recall that not all planar graphs are word-representable. Indeed, for
example, wheel graphs W2n+1, or graphs in Figure 10, are not word-
representable.

Theorem 43 ([10]). Triangle-free planar graphs are word-representable.

Proof. By Grötzch’s theorem [23], every triangle-free planar graph is
3-colorable, and Theorem 33 can be applied.
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Figure 20: A triangulation of a poyomino

It remains a challenging open problem to classify word-representable
planar graphs. Towards solving the problem, various triangulations
and certain subdivisions of planar graphs were considered to be dis-
cussed next. Key tools to study word-representability of planar graphs
are 3-colorability and semi-transitive orientations.

8.2.1 Word-Representability of Polyomino Triangula-
tions

A polyomino is a plane geometric figure formed by joining one or more
equal squares edge to edge. Letting corners of squares in a polyomino
be vertices, we can treat polyominoes as graphs. In particular, well
known grid graphs are obtained from polyominoes in this way. Of
particular interest to us are convex polyominoes. A polyomino is said
to be column convex if its intersection with any vertical line is convex
(in other words, each column has no holes). Similarly, a polyomino
is said to be row convex if its intersection with any horizontal line
is convex. A polyomino is said to be convex if it is row and column
convex.

When dealing with word-representability of triangulations of con-
vex polyominoes (such as in Figure 20), one should watch for odd wheel
graphs as induced subgraphs (such as the part of the graph in bold in
Figure 20). Absence of such subgraphs will imply 3-colorability and
thus word-representability, which is the basis of the proof of the fol-
lowing theorem.

Theorem 44 ([1]). A triangulation of a convex polyomino is word-
representable if and only if it is 3-colorable. There are non-3-colorable
word-representable non-convex polyomino triangulations.

The case of rectangular polyomino triangulations with a single
domino tile (such as in Figure 21) is considered in the next theorem.

Theorem 45 ([8]). A triangulation of a rectangular polyomino with a
single domino tile is word-representable if and only if it is 3-colorable.
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Figure 21: A triangulation of a rectangular polyomino with a single domino
tile

Figure 22: Grid-covered cylinder

8.2.2 Word-Representability of Near-Triangulations

A near-triangulation is a planar graph in which each inner bounded
face is a triangle (where the outer face may possibly not be a triangle).

The following theorem is a far-reaching generalization of Theo-
rems 44 and 45.

Theorem 46 ([6]). A K4-free near-triangulation is 3-colorable if and
only if it is word-representable.

Characterization of word-representable near-triangulations (contain-
ing K4) is still an open problem.

8.2.3 Triangulations of Grid-covered Cylinder Graphs

A grid-covered cylinder, GCC for brevity, is a 3-dimensional figure
formed by drawing vertical lines and horizontal circles on the surface
of a cylinder, each of which are parallel to the generating line and the
upper face of the cylinder, respectively. A GCC can be thought of as
the object obtained by gluing the left and right sides of a rectangular
grid. See the left picture in Figure 22 for a schematic way to draw a
GCC. The vertical lines and horizontal circles are called the grid lines.
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Figure 23: A triangulation of a GCCG

The part of a GCC between two consecutive vertical lines defines a
sector.

Any GCC defines a graph, called grid-covered cylinder graph, or
GCCG, whose set of vertices is given by intersection of the grid lines,
and whose edges are parts of grid lines between the respective ver-
tices. A typical triangulation of a GCCG is presented schematically in
Figure 23.

Word-representability of triangulations of any GCCG is completely
characterized by the following two theorems, which take into consider-
ation the number of sectors in a GCCG.

Theorem 47 ([3]). A triangulation of a GCCG with more than three
sectors is word-representable if and only if it contains no W5 or W7 as
an induced subgraph.

Theorem 48 ([3]). A triangulation of a GCCG with three sectors is
word-representable if and only if it contains no graph in Figure 24 as
an induced subgraph.

8.2.4 Subdivisions of Triangular Grid Graphs

The triangular tiling graph T∞ is the Archimedean tiling 36 (see Fig-
ure 25). By a triangular grid graph G we mean a graph obtained from
T∞ as follows. Specify a finite number of triangles, called cells, in
T∞. The edges of G are then all the edges surrounding the specified
cells, while the vertices of G are the endpoints of the edges (defined by
intersecting lines in T∞). We say that the specified cells, along with
any other cell whose all edges are from G, belong to G.

The operation of face subdivision of a cell is putting a new vertex
inside the cell and making it to be adjacent to every vertex of the cell.
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Figure 24: All minimal non-word-representable induced subgraphs in trian-
gulations of GCCG’s with three sectors

Figure 25: A fragment of the graph T∞

33



K4 A A′

Figure 26: Examples of face subdivisions: K4 is the face subdivision of a
cell, and A′ is a face subdivision of A
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Figure 27: Graphs H and K, where boundary edges are in bold

Equivalently, face subdivision of a cell is replacing the cell (which is
the complete graph K3) by a plane version of the complete graph K4.
A face subdivision of a set S of cells of a triangular grid graph G is
a graph obtained from G by subdividing each cell in S. The set S
of subdivided cells is called a subdivided set. For example, Figure 26
shows K4, the face subdivision of a cell, and A′, a face subdivision of
A.

If a face subdivision of G results in a word-representable graph,
then the face subdivision is called a word-representable face subdivision.
Also, we say that a word-representable face subdivision of a triangular
grid graph G is maximal if subdividing any other cell results in a non-
word-representable graph.

An edge of a triangular grid graph G shared with a cell in T∞ that
does not belong to G is called a boundary edge. A cell in G that is
incident to at least one boundary edge is called a boundary cell. A
non-boundary cell in G is called an interior cell. For example, the
boundary edges in the graphs H and K in Figure 27 are in bold.

A face subdivision of a triangular grid graph that involves face
subdivision of just boundary cells is called a boundary face subdivi-
sion. The following theorem was proved using the notion of a smart
orientation (see [2] for details).
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Figure 28: The graph A′′

Theorem 49 ([2]). A face subdivision of a triangular grid graph G is
word-representable if and only if it has no induced subgraph isomorphic
to A′′ in Figure 28, that is, G has no subdivided interior cell.

Theorem 49 can be applied to the two-dimensional Sierpiński gasket
graph SG(n) to find its maximum word-representable subdivision (see
[2] for details).

9 Directions for Further Research

In this section we list some of open problems and directions for fur-
ther research related to word-representable graphs. The first question
though the Reader should ask himself/herself is “Which graphs in their
favourite class of graphs are word-representable?”.

• Characterize (non-)word-representable planar graphs.

• Characterize word-representable near-triangulations (containing
K4).

• Describe graphs representable by words avoiding a pattern τ ,
where the notion of a “pattern” can be specified in any suitable
way, e.g. it could be a classical pattern, a vincular pattern, or a
bivincular pattern (see [14] for definitions).

• Is it true that out of all bipartite graphs on the same number of
vertices, crown graphs require the longest word-representants?

• Are there any graphs on n vertices whose representation requires
more than ⌊n/2⌋ copies of each letter?

• Is the line graph of a non-word-representable graph always non-
word-representable?

• Characterize word-representable graphs in terms of forbidden sub-
graphs.

• Translate a known to you problem on graphs to words repre-
senting these graphs (assuming such words exist), and find an
efficient algorithm to solve the obtained problem, and thus the
original problem.
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The last two problems are of fundamental importance.
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