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On graphs with representation number 3

Sergey Kitaev∗

October 13, 2014

Abstract

A graph G = (V,E) is word-representable if there exists a word w over the alphabet

V such that letters x and y alternate in w if and only if (x, y) is an edge in E. A graph

is word-representable if and only if it is k-word-representable for some k, that is, if there

exists a word containing k copies of each letter that represents the graph. Also, being k-

word-representable implies being (k+1)-word-representable. The minimum k such that a

word-representable graph is k-word-representable, is called graph’s representation number.

Graphs with representation number 1 are complete graphs, while graphs with repre-

sentation number 2 are circle graphs. The only fact known before this paper on the class

of graphs with representation number 3, denoted by R3, is that the Petersen graph and

triangular prism belong to this class. In this paper, we show that any prism belongs to R3,

and that two particular operations of extending graphs preserve the property of being in

R3. Further, we show that R3 is not included in a class of c-colorable graphs for a constant

c. To this end, we extend three known results related to operations on graphs.

We also show that ladder graphs used in the study of prisms are 2-word-representable,

and thus each ladder graph is a circle graph. Finally, we discuss k-word-representing com-

parability graphs via consideration of crown graphs, where we state some problems for

further research.

Keywords: word-representable graph, representation number, prism, ladder graph, circle

graph, crown graph, comparability graph

1 Introduction

A graph G = (V,E) is word-representable if there exists a word w over the alphabet V = V (G)
such that letters x and y alternate in w if and only if (x, y) is an edge in E = E(G). It
follows from definitions that word-representable graphs are a hereditary class of graphs. A
comprehensive introduction to the theory of word-representable graphs is given in [3].

A graph is word-representable if and only if it is k-word-representable for some k, that is, if
there exists a word containing k copies of each letter that represents the graph (see Theorem 3).
By Proposition 4, being k-word-representable implies being (k + 1)-word-representable. The

∗Department of Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glas-

gow, G1 1XH, United Kingdom. Email: sergey.kitaev@cis.strath.ac.uk.



minimum k such that a word-representable graph G is k-word-representable, is called graph’s
representation number. This number is denoted by R(G). Also, we let Rk denote the class of
graphs having representation number k.

R1 is easy to see to be the class of complete graphs (also known as cliques), while R2 is the
class of circle graphs (see Theorem 10). The only fact known before this paper on R3 was that
the Petersen graph (to the right in Figure 1) and the triangular prism (to the left in Figure 6)
belong to this class. Theorem 19 extends our knowledge on R3, in particular, showing that all
prisms belong to this class (also, see Theorem 18).

In Section 4 we revise connecting two word-representable graphs, say G1 and G2, by an edge
and gluing these graphs in a vertex, originally studied in [4]. One can use a graph orientation
argument involving Theorem 7, or results in [4], to show that the resulting graph G, in both
cases, is word-representable. However, these do not answer directly the following question: If G1

is k1-word-representable, G2 is k2-word-representable, and G is k-word-representable (such a k

must exist by Theorem 3) then what can be said about k? Theorem 22 answers the question.
Further, in Section 5 we revise replacing a vertex in a graph with a module, briefly considered

in [1]. Theorem 23 in that section is an extended version of an observation made in [1]. In
Section 6, providing two arguments based on Theorems 22 and 23, we show that R3 is not
included in a class of c-colorable graphs for a constant c.

In Section 7 we show that ladder graphs used in the study of prisms in [4] are 2-word-
representable, and thus each ladder graph is a circle graph. Finally, in Section 8 we discuss
k-word-representing comparability graphs via consideration of crown graphs, where we state
some problems for further research.

2 Preliminaries

Suppose that w is a word and x and y are two distinct letters in w. We say that x and y

alternate in w if after deleting in w all letters but the copies of x and y we either obtain a word
xyxy · · · (of even or odd length) or a word yxyx · · · (of even or odd length). If x and y do not
alternate in w, we say that these letters are non-alternating in w. For example, if w = 31341232
then the letters 1 and 3 are alternating in w because removing all other letters we obtain 31313,
while 3 and 4 are non-alternating because removing all other letters from w we have 3343.

A simple graph G = (V,E) is word-representable if there exists a word w over the alphabet
V such that letters x and y alternate in w if and only if (x, y) ∈ E for each x ̸= y. We
say that w represents G, and w is called a word-representant for G. The graphs in Figure 1
are word-representable. Indeed, for example, 1213423 is a word-representant for M , 1234 is a
word-representant for K4, and a word-representant for the Petersen graph is

1387296(10)7493541283(10)7685(10)194562.

In what follows, we will need the following two propositions that are easy to see from
definitions.

Proposition 1. ([4]) Let w = w1xw2xw3 be a word representing a graph G, where w1, w2 and
w3 are possibly empty words, and w2 contains no x. Let X be the set of all letters that appear
only once in w2. Then possible candidates for x to be adjacent to in G are the letters in X.
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Figure 1: Three word-representable graphs M (left), the complete graph K4 (middle), and the
Petersen graph (right).

Proposition 2. If w represents G, then the reverse r(w), which is writing the letters in w in
the reverse order, also represents G.

2.1 k-word-representable graphs

A word is k-uniform if each letter in it appears exactly k times. In particular, 1-uniform words
are permutations. A graph is k-word-representable if there exists a k-uniform word representing
it. We say that the word k-represents the graph.

The following theorem is of special importance in the theory of word-representable graphs.

Theorem 3. ([4]) A graph G is word-representable if and only if it is k-word-representable for
some k.

In what follows, we will also use the following two propositions.

Proposition 4. ([4]) A k-word-representable graph G is also (k + 1)-word-representable. In
particular, each word-representable graph has infinitely many word-representants representing
it since for every ℓ > k, a k-word-representable graph is also ℓ-word-representable.

Proposition 5. ([4]) Let w = uv be a k-uniform word representing a graph G, where u and v

are two, possibly empty, words. Then the word w′ = vu also represents G.

2.2 Permutationally representable graphs

A graph G with the vertex set V = {1, . . . , n} is permutationally representable if it can be
represented by a word of the form p1 · · · pk, where pi is a permutation of V for 1 ≤ i ≤ k. For
example, a complete graph Kn is permutationally representable for any n. Indeed, take any
permutation of {1, . . . , n} and repeat it as many times (maybe none) as desired. For another
example, the path 1− 2− 3 is also permutationally representable, and one such representation
is 213231, while some other such representations can be obtained from it by adjoining any
number of permutations 213 and 231 to it. If G can be represented permutationally involving
k permutations, we say that G is permutationally k-representable.

An orientation of graph’s edges is called transitive if having (directed) edges x → y and
y → z for some vertices x, y, z implies having the edge x → z. A graph is a comparability graph
if it accepts a transitive orientation.

Theorem 6. ([5]) A graph is permutationally representable if and only if it is a comparability
graph.
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Comparability graphs correspond to partially ordered sets (posets), and the question whether
such a graph can be permutationally k-represented is equivalent to the question whether the
respective poset can be represented as an intersection of k linear orders. The minimum such
k for a poset is called the poset dimension. We call k-comparability graphs those graphs that
correspond to posets having dimension k, that is, those graphs that are permutationally k-
representable but not permutationally (k − 1)-representable.

2.3 Semi-transitive orientations

A graph G = (V,E) is semi-transitive if it admits an acyclic orientation such that for any
directed path v1 → v2 → · · · → vk with vi ∈ V for all i, 1 ≤ i ≤ k, either

• there is no edge v1 → vk, or

• the edge v1 → vk is present and there are edges vi → vj for all 1 ≤ i < j ≤ k. That is, in
this case, the (acyclic) subgraph induced by the vertices v1, . . . , vk is transitive (with the
unique source v1 and the unique sink vk).

We call such an orientation semi-transitive orientation. For example, the orientation of the
graph in Figure 2 is semi-transitive, and thus the underlying (non-directed) graph is semi-
transitive.

2"

3"

1" 5" 6"

4"

Figure 2: An example of a semi-transitive orientation.

Clearly, all transitive (that is, comparability) graphs are semi-transitive, and thus semi-
transitive orientations are a generalization of transitive orientations.

1" 2" 3" 4" 5" 6"

Figure 3: An example of a shortcut.

Semi-transitive orientations are defined in [2] in terms of shortcuts as follows. A semi-cycle
is the directed acyclic graph obtained by reversing the direction of one edge of a directed cycle.
An acyclic digraph is a shortcut if it is induced by the vertices of a semi-cycle and contains
a pair of non-adjacent vertices. Thus, a digraph on the vertex set {v1, . . . , vk} is a shortcut if
it contains a directed path v1 → v2 → · · · → vk, the edge v1 → vk, and it is missing an edge
vi → vj for some 1 ≤ i < j ≤ k; in particular, we must have k ≥ 4, so that any shortcut is
on at least four vertices. See Figure 3 for an example of a shortcut (there, the edges 1 → 4,
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2 → 6, and 3 → 6 are missing). An orientation of a graph is semi-transitive, if it is acyclic
and contains no shortcuts. Clearly, this definition is just another way to introduce the notion
of semi-transitive orientations presented above.

The following theorem is a useful characterization of word-representable graphs that allows
answering questions on word-representability in terms of graph orientations.

Theorem 7. ([2]) A graph G is word-representable if and only if it is semi-transitive (that is,
it accepts a semi-transitive orientation).

A direct corollary to the last theorem is the following statement.

Theorem 8. ([2]) 3-colorable graphs are word-representable.

2.4 Graph’s representation number

The following statement is easy to see.

Theorem 9. A graph G is in R1 if and only if G = Kn, the complete graph on n vertices, for
some n.

We also have a characterization of graphs in R2. To state it we need the following definition:
A circle graph is an undirected graph whose vertices can be associated with chords of a circle
such that two vertices are adjacent if and only if the corresponding chords cross each other. See
Figure 4 for an example of a circle graph, where chord i is denoted by labelling its endpoints
by i.

4"

1"

2"

2"

3"

3"

5"

5"

1"

4"

1"

2"

4" 5"

3"

Figure 4: A circle graph on five vertices.

Theorem 10. ([2]) For a graph G different from a complete graph, G is in R2 if and only if
G is a circle graph.

The following proposition is not difficult to see from definitions, where recall that R(G)
denotes G’s representation number.

Proposition 11. If R(G) = k and G′ is an induced subgraph of G then R(G′) ≤ k.

Proof. Indeed, using the hereditary nature of word-representable graphs, if representing G′

would require more than k copies of each letter, then representing G would obviously require
more than k copies of each letter.
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K"3,3# H"3,3# G"3#

Figure 5: Graphs involved in defining the graph G3.

Theorem 12. ([2]) Each word-representable graph on n vertices is n-word-representable.

It turns out that there are graphs on n vertices with representation number of ⌊n
2
⌋, matching

the upper bound in Theorem 12 within a factor of 2. A crown graph Hk,k is a graph obtained
from the complete bipartite graph Kk,k by removing a perfect matching (see Figure 11 for
examples of crown graphs). Then Gk is the graph obtained from a crown graph Hk,k by adding
an all-adjacent vertex. See Figure 5 for graphs involved in defining G3, where note that all
choices in defining H3,3 lead to isomorphic graphs.

Theorem 13. ([2]) The graph Gk on 2k + 1 vertices belongs to Rk.

2.5 Two operations to extend a graph

The following theorem gives a useful tool to construct 3-word-representable graphs, that is,
graphs with representation number at most 3.

Theorem 14. ([4]) Let G = (V,E) be a 3-word-representable graph and x, y ∈ V . Denote by
H the graph obtained from G by adding to it a path of length at least 3 connecting x and y.
Then H is also 3-word-representable.

We also have the following proposition.

Proposition 15. Let G ∈ Rk, where k ≥ 2, and x ∈ V (G). Also, let G′ be the graph obtained
from G by adding an edge (x, y), where y ̸∈ V (G). Then G′ ∈ Rk.

Proof. Suppose that G is k-represented by a word w0xw1xw2 · · · xwk−1xwk, where for 0 ≤ i ≤ k,
wi is a word not containing x. Then it is not difficult to check that the word

w0yxyw1xw2yxw3yxw4 · · · yxwk−1yxwk

k-represents G′ (in particular, the vertex x is the only neighbor of y). Finally, if G′ could be
(k − 1)-represented by some word, we would remove from that word the letter y to obtain a
(k − 1)-representation of G, which is impossible. So, G′ ∈ Rk.

3 Prisms and R3

A prism Prn is a graph consisting of two cycles 12 · · ·n and 1′2′ · · ·n′, where n ≥ 3, connected
by the edges (i, i′) for i = 1, 2, . . . , n. In particular, the 3-dimensional cube is a prism. Examples
of prisms are given in Figure 6. The leftmost prism there is called the triangular prism. The
middle prism is the 3-dimensional cube.
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Figure 6: Examples of prisms.

Theorem 16. ([4]) Every prism Prn is 3-word-representable.

Theorem 17. ([4]) The triangular prism Pr3 is not 2-word-representable, and thus, by Theo-
rem 16, R(Pr3) = 3.

Our next theorem extends Theorem 17 by showing that any prism belongs to R3.

Theorem 18. For n ≥ 4, Prn is not 2-word-representable, and thus, by Theorem 16, R(Prn) = 3.

Proof. Suppose that Prn can be 2-represented by a word w for n ≥ 4. It is not difficult to
see that there must exist a letter x in w such that no letter occurs twice between the two
copies of x. By Proposition 1 and definition of Prn, there are exactly three letters between the
copies of x. By symmetry, without loss of generality we can assume that x = 1. Further, using
Propositions 2 and 5, we only need to consider two cases (the second one is unnecessary in the
case of n = 4 because of symmetry) where we took into account that the vertices 1′, 2 and n

form an independent set:

• w is of the form 11′2n1 · · ·n · · · 2 · · · 1′ · · · . Since (n, n′) ∈ E(Prn) and (1′, n′) ∈ E(Prn),
we can refine the structure of w as follows

w = 11′2n1 · · ·n′ · · ·n · · · 2 · · · 1′ · · ·n′ · · · .

However, 2 and n′ alternate in w contradicting to the fact that (2, n′) ̸∈ E(Prn).

• w is of the form 121′n1 · · ·n · · · 1′ · · · 2 · · · . In this case, we will refine the structure of w
in two different ways and then will merge these refinements:

– Since (2, 2′) ∈ E(Prn), (1
′, 2′) ∈ E(Prn) and (2′, n) ̸∈ E(Prn), w must be of the form

w = 121′n1 · · ·n · · · 2′ · · · 1′ · · · 2 · · · 2′ · · · .

– Since (n, n′) ∈ E(Prn), (1
′, n′) ∈ E(Prn) and (2, n′) ̸∈ E(Prn), w must be of the form

w = 121′n1 · · ·n′ · · ·n · · · 1′ · · ·n′ · · · 2 · · ·

Merging the refinements, we see that w must be of the form

w = 121′n1 · · ·n′ · · ·n · · · 2′ · · · 1′ · · ·n′ · · · 2 · · · 2′ · · · .

However, we see that the letters 2′ and n′ alternate in w contradicting to the fact that
(2′, n′) ̸∈ E(Prn).
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Applying Proposition 15 as many times as necessary, we see that if G ∈ R3 then a graph
obtained from G by attaching simple paths of any lengths to vertices in G belongs to R3; call
this way to extend graphs “operation 1”. Also, by Theorem 14, we can add simple paths of
length at least 3 connecting any pair of vertices in G ∈ R3 and still obtain a graph in R3 (if a
2-word-representable graph would be obtained, we would have a contradiction with G ∈ R3);
call this way to extend graphs “operation 2”. The only graphs in R3 known to us for the moment
are recorded in the following statement whose truth value follows from the considerations above.

Theorem 19. R3 contains the Petersen graph, prisms, and any other graph obtained from
these by applying operations 1 and 2 arbitrary number of times in any order.

4 Connecting two graphs by an edge and gluing two graphs

in a vertex

The operations of connecting two graphs, G1 and G2, by an edge and gluing these graphs in a
vertex are presented schematically in Figure 7. It follows directly from Theorem 7 that if both
G1 and G2 are word-representable then the resulting graphs will be word-representable too,
while if at least one of G1 or G2 is non-word-representable then the resulting graphs will be
non-word-representable. Indeed, if G1 and G2 are oriented semi-transitively, then orienting the
edge (x, y) in either direction will not give a chance for the resulting graph to have a shortcut
(defined in Subsection 2.3) thus resulting in a semi-transitively oriented graph; similarly, no
shortcut is possible when semi-transitively oriented G1 and G2 are glued in a vertex z.

x"
1"G"

2"G"

1"G" 2"G"
y"

z"1"G" 2"G"

Figure 7: Connecting graphs by an edge and gluing graphs in a vertex.

While the arguments above involving orientations answer the question on word-representability
of connecting graphs by an edge or gluing graphs in a vertex, they do not allow to answer the
following question: If G1 is k1-word-representable, G2 is k2-word-representable, and G is k-word-
representable (such a k must exist by Theorem 3) then what can be said about k? Theorem 22
below, that is based on Theorems 20 and 21, answers this question.

Theorem 20. ([4]) For k ≥ 2, let w1 and w2 be k-uniform words representing graphs G1 =
(V1, E1) and G2 = (V2, E2), respectively, where V1 and V2 are disjoint. Suppose that x ∈ V1 and
y ∈ V2. Let H1 be the graph (V1 ∪ V2, E1 ∪ E2 ∪ {(x, y)}). Then H1 is k-word-representable.

Theorem 21. ([4]) For k ≥ 2, let w1 and w2 be k-uniform words representing graphs G1 =
(V1, E1) and G2 = (V2, E2), respectively, where V1 and V2 are disjoint. Suppose that x ∈ V1

and y ∈ V2. Let H2 be the graph obtained from G1 and G2 by identifying x and y into a new
vertex z. Then H2 is k-word-representable.
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Theorem 22. Suppose that for graphs G1 = (V1, E1) and G2 = (V2, E2), R(G1) = k1 and
R(G2) = k2, x ∈ V1, y ∈ V2 and k = max(k1, k2). Also, let the graph G′ be obtained by
connecting G1 and G2 by the edge (x, y), and the graph G′′ be obtained from G1 and G2 by
identifying the vertices x and y into a single vertex z. The following holds.

1. If |V1| = |V2| = 1 then both G′ and G′′ are cliques and thus k1 = k2 = 1. In this case,
R(G′) = R(G′′) = 1.

2. If min(|V1|, |V2|) = 1 but max(|V1|, |V2|) > 1 then R(G′′) = k and R(G′) = max(k, 2).

3. If min(|V1|, |V2|) > 1 then R(G′) = R(G′′) = max(k, 2).

Proof. The first part of the statement is easy to see since both a single vertex (G′′) and the
one edge graph (G′) are 1-word-representable by Theorem 9.

For part 2, without loss of generality, |V1| = 1 (that is, V1 = {x}) and thus G′′ = G2 leading
to R(G′′) = k. On the other hand, G′ is not a clique and thus R(G′) ≥ 2. If k2 = 1 then G2 can
be represented by the permutation yy1 · · · y|V2|−1 for y, yi ∈ V2 and thus G′ can be represented
by xyxy1 · · · y|V2|−1yy1 · · · y|V2|−1 leading to R(G′) = 2. However, if k2 ≥ 2, so that k = k2, we
can take any k-word-representation of G2 and replace in it every other occurrence of the letter
y by xyx to obtain a k-word-representation of G′. Thus, R(G′) = k because if it would be less
than k, we would have R(G2) < k by Proposition 11, a contradiction.

For part 3, neither G′ nor G′′ is a clique and thus R(G′),R(G′′) ≥ 2. By Proposition 4, both
G1 and G2 are k-word-representable. If k ≥ 2 then by Theorems 20 and 21 both G′ and G′′

are k-word-representable leading to R(G′) = R(G′′) = k since if R(G′) < k or R(G′′) < k we
would obtain a contradiction either with R(G1) = k1 or with R(G2) = k2 by Proposition 11.
Finally, if k = 1 then G1 and G2 must be cliques that can be represented by permutations
x1 · · · x|V1|−1x and yy1 · · · y|V2|−1, respectively, for x, xi ∈ V1 and y, yi ∈ V2. Then the words

x1 · · · x|V1|−1xx1 · · · x|V1|−1yxy1 · · · y|V2|−1yy1 · · · y|V2|−1

and
x1 · · · x|V1|−1zx1 · · · x|V1|−1y1 · · · y|V2|−1zy1 · · · y|V2|−1

2-word-represent the graphs G′ and G′′, respectively, and thus R(G′) = R(G′′) = 2.

5 Replacing a vertex in a graph with a module

A subset X of the set of vertices V of a graph G is a module if all members of X have the same
set of neighbours among vertices not in X (that is, among vertices in V \ X). For example,
Figure 8 shows replacing the vertex 1 in the triangular prism by the module K3 formed by the
vertices a, b and c.

The following theorem is an extended version of an observation made in [1].

Theorem 23. Suppose that G is a word-representable graph and x ∈ V (G). Let G′ be obtained
from G by replacing x with a module M , where M is any comparability graph (in particular,
any clique). Then G′ is also word-representable. Moreover, if R(G) = k1 and R(M) = k2 then
R(G′) = k, where k = max{k1, k2}.
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Figure 8: Replacing a vertex by a module.

Proof. By Theorem 6, M can be represented by a word p1 · · · pk2 , where pi is a permutation
(of length equal to the number of vertices in M) for 1 ≤ i ≤ k2. If k2 < k, we can adjoin to
the representation of M any number of copies of permutations in the set Π = {p1, . . . , pk2} to
obtain a k-representation p = p1 · · · pk of M , where pi ∈ Π (indeed, no alternation properties
will be changed while adjoining such extra permutations).

Using Proposition 4, if necessary (in case when k1 < k), we can assume that G can be
k-represented by a word w = w0xw1xw2 · · · xwk for some words wi not containing x for all
0 ≤ i ≤ k. But then the word w′ = w0p1w1p2w2 · · · pkwk k-represents G′. Indeed, it is easy
to see that the pairs of letters in w′ from V (M) have the right alternation properties, as do
the pairs of letters from V (G) \ {x} in w′. On the other hand, it is not difficult to see that if
y ∈ V (M) and z ∈ V (G) \ {x} then (y, z) ∈ E(G′) if and only if (x, z) ∈ E(G).

If G′ would be (k − 1)-word-representable, we would either obtain a contradiction with
R(G) = k1 (after replacing each pi in w′ with x) or with R(M) = k2 (after removing all letters
in w′ that are not in M). Thus, R(G′) = k.

6 Graphs in R3 and c-colorable graphs

Theorems 9 and 10 show that there exists no constant c such that all 1- or 2-word-representable
graphs are c-colorable. Indeed, Kn is n-colorable, while circle graphs formed by Kn−1 and an
isolated vertex (which are not 1-word-representable) are (n− 1)-colorable. On the other hand,
known to us graphs requiring many copies of each letter to be represented, namely graphs
Gk from Theorem 13, are 3-colorable for any k ≥ 2 (because Gk is a bipartite graph with an
all-adjacent vertex). Thus, 3-word-representable graphs do not contain a class of c-colorable
graphs for some constant c ≥ 3 (this claim follows from the fact that Gk, being 3-colorable, is
not 3-word-representable for k ≥ 4).

A natural question to ask here is: Is R3 properly included in a class of c-colorable graphs
for a constant c? The following theorem shows that this is not the case.

Theorem 24. The class R3 is not included in a class of c-colorable graphs for some constant c.

Proof. Suppose that any graph in class R3 is c-colorable for some constant c. We can assume
that c ≥ 3 since G3 being 3-colorable belongs to R3 by Theorem 13. Consider the triangular
prism Pr3 to the left in Figure 8, which is also 3-colorable and, by Theorem 17, belongs to R3.
Replace the vertex 1 in Pr3 with a module Kc+1, the complete graph on c+1 vertices as shown
for the case of c = 2 in Figure 8. Denote the obtained graph by Pr′3. Since R(Kc+1) = 1, by
Theorem 23, Pr′3 ∈ R3. However, Pr′3 is not c-colorable since it contains a clique of size c + 1
(Pr′3 is (c+ 1)-colorable). We obtain a contradiction with our assumption.

10



We note that an alternative way to obtain a contradiction in the proof of Theorem 24 is
to consider the triangular prism Pr3 (which is in R3), the complete graph Kc+1 (which is in
R1), and either to connect these graphs by an edge, or glue these graphs in a vertex. Then by
Theorem 22, the obtained graph will be in R3, but it is (c+ 1)-colorable.

From considerations in this section it follows that, in particular, the classes R3 and 3-
colorable graphs (that are word-representable by Theorem 8) are not comparable in the sense
that none of these classes is included in the other one. However, this section does not answer
the following question.

Problem 1. Can each bipartite (that is, 2-colorable) graph be 3-word-represented? Namely,
does each bipartite graph belong to the union of the sets R1 ∪R2 ∪R3?

We suspect the answer to the question in Problem 1 to be negative. A good candidate for
a counterexample should be the crown graph Hk,k for k ≥ 5; see Section 8 and, in particular,
Problem 3.

7 Ladder graphs

The ladder graph Ln with 2n vertices and 3n− 2 edges is presented in Figure 9.

1" 2" 3" n"

1’" 2’" 3’" n’"

Figure 9: The ladder graph Ln.

It follows from the proof of Theorem 16 in [4] that Ln is 3-word-representable. In the
following theorem, we will show that Ln is actually 2-word-representable for n ≥ 2 (it is clearly
1-word-representable for n = 1).

Theorem 25. For n ≥ 2, R(Ln) = 2. Thus, by Theorem 10, any ladder graph is a circle graph.

Proof. We prove the statement by induction on n. L1 can be 2-represented by the word
w1 = 11′11′ that has the factor 1′1. Substituting the factor 1′1 in w1 by 2′1′22′12 and re-
versing the entire word, we obtain the word w2 = 1′212′21′2′1 that contains the factor 2′2. It
is straightforward to check that w2 represents L2 since one only needs to check the alternation
properties of the just added letters 2 and 2′.

More generally, given a 2-representation wi of Li containing the factor i′i, we substitute i′i

in wi by (i + 1)′i′(i + 1)(i + 1)′i(i + 1) and reverse the entire word to obtain the word wi+1

containing the factor (i+1)′(i+1). It is straightforward to check that wi+1 represents Li+1 since
the only thing that needs to be checked is the right alternation properties of the just added
letters i+ 1 and (i+ 1)′. We are done.

In Table 1, we record 2-representations of the ladder graph Ln for n = 1, . . . , 5. The factors
n′n are indicated in bold.
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n 2-representation of the ladder graph Ln

1 11′
11′

2 1′212′
21′2′1

3 12′1′323′
32′3′121′

4 1′213′2′434′
43′4′231′2′1

5 12′1′324′3′545′
54′5′342′3′121′

Table 1: 2-representation of the ladder graph Ln for n = 1, . . . , 5.

n" 1" 2"

n’" 1’" 2’"

Figure 10: The ladder graph on 6 vertices.

Of course, an alternative proof of Theorem 25 would be in representing vertices in Ln by
properly overlapping chords on a circle. However, we find our proof of that theorem a bit easier
to follow/record.

Remark 26. The thoughtful Reader would notice what seems to be an inconsistency: our
argument in the proof of Theorem 18 seems to show that the graph in Figure 10 is not 2-
word-representable, while by Theorem 25 we see that this graph is 2-word-representable by
n1′n′212′21′2′n1n′ (we renamed the labels in L3 respectively, and used the third line in Ta-
ble 1). The reason for possible confusion is that we used symmetry in the proof of Theorem 18
to assume that there are exactly three letters between the 1s; such an assumption cannot be
made while dealing with the graph in Figure 10 because 1 is an “internal” vertex there, while
there are “external” vertices as well, namely 2, 2′, n, n′.

8 Open problems

In Section 6, we have already stated an open problem, namely, Problem 1. In this section we
offer two more problems for further research.

Recall the definition of the crown graph Hk,k in Section 2.4 and see Figure 11 for a few small
such graphs. It is a well-known fact that the dimension of the poset corresponding to Hk,k is k for
k ≥ 2, and thus Hk,k is a k-comparability graph (it is permutationally k-representable but not
permutationally (k − 1)-representable). In [2], the following way to represent permutationally
Hk,k was suggested. Concatenate the permutation 12 · · · (k− 1)k′k(k− 1)′ · · · 2′1′ together with
all permutations obtained from this by simultaneous exchange of k and k′ with m and m′,
respectively, for m = 1, . . . , k − 1. See Table 2 for permutationally k-representation of Hk,k for
k = 1, 2, 3, 4, where the case k = 1 is not obtained using the general construction.

It is not difficult to see by induction on the number of vertices, that each tree is 2-word-
representable (just add a new leaf y to a vertex x in a tree T , and substitute an x in the
word representing T with yxy). Based on this, one can show that any cycle graph is 2-word-
representable (one first represents a path, which is a tree, and then adds one more edge by
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H"3,3#

1# 2# 3#

1’# 2’# 3’#

H"4,4#

1# 2# 3#

1’# 2’# 3’# 4’#

4#

H"2,2#

1# 2#

1’# 2’#

1#

1’#

H"1,1#

Figure 11: The crown graph Hk,k for k = 1, 2, 3, 4.

k permutationally k-representation of the crown graph Hk,k

1 11′1′1
2 12′21′21′12′

3 123′32′1′132′23′1′231′13′2′

4 1234′43′2′1′1243′34′2′1′1342′24′3′1′2341′14′3′2′

Table 2: Permutationally k-representation of the crown graph Hk,k for k = 1, 2, 3, 4.

swapping a certain pair of consecutive letters in the word representing the path). 2-representing
trees and cycles is discussed in detail in [3].

Consider the cycle graph C5 on five edges. C5 is in R2 (it is 2-word-representable, but not
1-word-representable), but it is not a comparability graph and thus, by Theorem 6, C5 is not
permutationally representable. On the other hand, the crown graphs H1,1 and H2,2, being 2-
comparability graphs, belong to R2. Also, H3,3, being a 3-comparability graph, belongs to R2,
since H3,3 is the cycle graph C6. Moreover, H4,4, being a 4-comparability graph, belongs to R3,
which follows from the fact that H4,4 is the prism Pr4 (the 3-dimensional cube) and Theorem 18
can be applied.

Crown graphs, being bipartite graphs, and thus comparability graphs, provide an interesting
case study of relations between k-comparability graphs and k-word-representable graphs. While
each k-comparability graph is necessarily k-word-representable, in some cases such a graph is
also (k− 1)-word-representable, and, in fact, it is in Rk−1 in the known to us situations. Thus,
it seems like giving up permutational representability, we should be able to come up with a
shorter representation of a given comparability graph. However, we do not know whether this
is essentially always the case (except for some particular cases like the graphs H1,1 and H2,2).
Thus we state the following open problem.

Problem 2. Characterize k-comparability graphs that belong to Rk−ℓ for a fixed ℓ. In particular,
characterize those k-comparability graphs that belong to Rk−1. Is the set of k-comparability
graphs that belong to Rk−ℓ (non-)empty for a fixed ℓ ≥ 2?

A step towards solving Problem 2 could be first understanding crown graphs and solving
the following problem.

Problem 3. Characterize those Hk,k that belong to Rk−ℓ for a fixed ℓ. In particular, characterize
those Hk,k that belong to Rk−1. Is the set of crown graphs Hk,k that belong to Rk−ℓ (non-)empty
for a fixed ℓ ≥ 2?

We suspect that each Hk,k belongs to Rk−1 for k ≥ 3. Even if we would manage to prove this
statement for a single k ≥ 5, we would answer at once (negatively) the question in Problem 1.
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A step towards solving Problem 3 can be the following observation: Take the concatenation
of the permutations representing Hk,k discussed above and remove the leftmost k − 1 letters
1, 2, . . . , k−1 and the rightmost k−1 letters 2′, 3′, . . . , k′. The remaining word will still represent
Hk,k, which is not difficult to see. One would then need to remove from the word two more
letters, one copy of k and one copy of 1′, then possibly do some rearrangements of the remaining
letters with a hope to obtain a word that would (k − 1)-word-represent Hk,k. For example, for
k = 3, we begin with the word representing H3,3 in Table 2, and remove its first two, and its
last two letters to obtain the following representation of H3,3:

3′32′1′132′23′1′231′1.

Now, remove the leftmost 3 and the leftmost 1′, make the last letter 1 to be the first letter 1
(that is, make the cyclic one-position shift to the right), and, finally, replace the six rightmost
letters in the obtained word by the word obtained by listing these letters in the reverse order
to obtain a 2-word-representation of H3,3 (this is the same representation as one would obtain
for the cycle C6 if to follow the strategy described in [3]): 13′2′132′1′321′3′2.

Unfortunately, similar steps do not work for 3-word-representing H4,4, and it is not so
clear which copies of unwanted letters 4 and 1′ one should remove before conducting further
rearrangements. In either case, even if one could demonstrate how to obtain a (k − 1)-word-
representation of Hk,k for some k ≥ 5, it is not so clear what generic argument would show that
no (k − 2)-word-representation exists, if this would be the case.
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