1,551 research outputs found

    On Generalized Processor Sharing With Regulated Multimedia Traffic Flows

    Full text link

    Dynamic Traffic Scheduling and Resource Reservation Algorithms for Output-Buffered Switches

    Get PDF
    Scheduling algorithms implemented in Internet switches have been dominated by the best-effort and guaranteed service models. Each of these models encompasses the extreme ends of the correlation spectrum between service guarantees and resource utilisation. Recent advancements in adaptive applications have motivated active research in predictive service models and dynamic resource reservation algorithms. The OCcuPancy_Adjusting (OCP_A) is a scheduling algorithm focused on the design of the above-mentioned research areas. Previously, this algorithm has been analysed for a unified resource reservation and scheduling algorithm while implementing a tail discarding strategy. However, the differentiated services provided by the OCP _A algorithm can be further enhanced. In this dissertation, four new algorithms are proposed. Three are extensions of the OCP _A. The fourth algorithm is an enhanced version of the Virtual Clock (VC) algorithm, denoted as ACcelErated (ACE) scheduler. The first algorithm is a priority scheduling algorithm (i.e. known as the M-Tier algorithm) incorporated with a multitier dynamic resource reservation algorithm. Periodical resource reallocations are implemented. Thus. enabling each tier's resource utilisation to converge to its desired Quality of Service (QoS) operating point. In addition. the algorithm integrates a cross-sharing concept of unused resources between the various hierarchical levels to exemplify the respective QoS sensitivity. In the second algorithm. a control parameter is integrated into the M-Tier algorithm to ensure reduction of delay segregation effects towards packet loss sensitive traffic. The third algorithm, introduces a delay approximation algorithm to justify packet admission. The fourth algorithm enhances the VC scheduling algorithm. This is performed via the incorporation of dynamic features in the computation of the VC scheduling tag. Subsequently, the delay bound limitation of the parameter is eliminated

    Preserving conformance for GCRA regulated flows

    Get PDF
    Traffic policing/shaping has been employed at the edge of networks to ensure proper provisioning of network resources and Quality of Service (QoS) guarantees. As shown in this thesis, however, network flows that have been regulated at the network edge based on traffic descriptors, e.g., GCRA, may still become non-conforming in the network core, depending on the packet scheduling algorithm used. Two supplemental schemes to scheduling algorithms are proposed and analyzed in this thesis to ensure conformance for GCRA regulated flows. The first scheme is to add an additional traffic regulator to shape the traffic more aggressively than required constraints before entering the scheduler. The second scheme explicitly computes the eligible departure time for the next packet of each flow in the scheduler. Performance achievable by both schemes, in terms of the percent non-conforming packets and the average delay, are investigated via simulation, when implemented for the First Come First Serve (FCFS) and the Weighted Fair Queuing (WFQ) schedulers

    Scheduling algorithms in broadband wireless networks

    Get PDF
    Scheduling algorithms that support quality of service (QoS) differentiation and guarantees for wireless data networks are crucial to the development of broadband wireless networks. Wireless communication poses special problems that do not exist in wireline networks, such as time-varying channel capacity and location-dependent errors. Although many mature scheduling algorithms are available for wireline networks, they are not directly applicable in wireless networks because of these special problems. This paper provides a comprehensive and in-depth survey on recent research in wireless scheduling. The problems and difficulties in wireless scheduling are discussed. Various representative algorithms are examined. Their themes of thoughts and pros and cons are compared and analyzed. At the end of the paper, some open questions and future research directions are addressed.published_or_final_versio

    Capacity Requirements of Traffic Handling Schemes in Multi-Service Networks

    Get PDF
    Cataloged from PDF version of article.This paper deals with the impact of traffic handling mechanisms on capacity for different network architectures. Three traffic handling models are considered: per-flow, class-based and best-effort (BE). These models can be used to meet service guarantees, the major differences being in their complexity of implementations and in the quantity of network resources that must be provided. In this study, the performance is fixed and the required capacity determined for various combinations of traffic handling architectures for edge-core networks. This study provides a comparison of different QoS architectures. One key result of this work is that on the basis of capacity requirements, there is no significant difference between semi-aggregate traffic handling and per-flow traffic handling. However, best-effort handling requires significantly more capacity as compared to the other methods. (C) 2004 Elsevier B.V. All rights reserve

    Using network calculus to optimize the AFDX network

    Get PDF
    This paper presents quantitative results we obtained when optimizing the setting of priorities of the AFDX traffic flows, with the objective to obtain tighter latency and queue-size deterministic bounds (those bounds are calculated by our Network Calculus tool). We first point out the fact that setting randomly the priorities gives worse bounds than using no priorities, and we then show experiments on the basis of classic optimization techniques such as a descent method and a tentative AlphaBetaassisted brute-force approach: both of them haven’t brought significantly better results. We finally present experiments based on genetic algorithms, and we show how driving these algorithms in an adequate way has allowed us to deliver a full range of priority configurations that bring tighter bounds and allow the network traffic designer to trade off average gains of 40% on all the latency bounds against focused improvement on the largest queue-size bound (up to a 30% reduction)

    The VPQ scheduler in access point for VoIP over WLAN

    Get PDF
    The Voice over Internet Protocol (VoIP) application has observed the fastest growth in the world of telecommunication.VoIP is seen as a short-term and long-trem transmission for voice and audio traffic. Meanwhile, VoIP is moving on Wireless Local Area Networks (WLANs) based on IEEE 802.11 standards.Currently, there are many packet scheduling algorithms for real-time transmission over network.Unfortunately, the current scheduling will not be able to handle the VoIP packets with the proper manner and they have some drawbacks over real-time applications.The objective of this research is to propose a new Voice Priority Queue (VPQ) packet scheduling and algorithm to ensure more throughput, fairness and efficient packet scheduling for VoIP performance of queues and traffics.A new scheduler flexible which is capable of satisfying the VoIP traffic flows.Experimental topologies on NS-2 network simulator were analyzed for voice traffic. Preliminary results show that this can achieve maximum and more accurate VoIP quality throughput and fairness index in access point for VoIP over WLANs.We verified and validated VPQ an extensive experimental simulation study under various traffic flows over WLANs

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support
    corecore