10 research outputs found

    On Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations: On Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations

    Get PDF
    We are interested in a nonlinear filtering problem motivated by an information-based approach for modelling the dynamic evolution of a portfolio of credit risky securities. We solve this problem by `change of measure method\\\'' and show the existence of the density of the unnormalized conditional distribution which is a solution to the Zakai equation. Zakai equation is a linear SPDE which, in general, cannot be solved analytically. We apply Galerkin method to solve it numerically and show the convergence of Galerkin approximation in mean square. Lastly, we design an adaptive Galerkin filter with a basis of Hermite polynomials and we present numerical examples to illustrate the effectiveness of the proposed method. The work is closely related to the paper Frey and Schmidt (2010)

    Nonparametric Uncertainty Quantification for Stochastic Gradient Flows

    Full text link
    This paper presents a nonparametric statistical modeling method for quantifying uncertainty in stochastic gradient systems with isotropic diffusion. The central idea is to apply the diffusion maps algorithm to a training data set to produce a stochastic matrix whose generator is a discrete approximation to the backward Kolmogorov operator of the underlying dynamics. The eigenvectors of this stochastic matrix, which we will refer to as the diffusion coordinates, are discrete approximations to the eigenfunctions of the Kolmogorov operator and form an orthonormal basis for functions defined on the data set. Using this basis, we consider the projection of three uncertainty quantification (UQ) problems (prediction, filtering, and response) into the diffusion coordinates. In these coordinates, the nonlinear prediction and response problems reduce to solving systems of infinite-dimensional linear ordinary differential equations. Similarly, the continuous-time nonlinear filtering problem reduces to solving a system of infinite-dimensional linear stochastic differential equations. Solving the UQ problems then reduces to solving the corresponding truncated linear systems in finitely many diffusion coordinates. By solving these systems we give a model-free algorithm for UQ on gradient flow systems with isotropic diffusion. We numerically verify these algorithms on a 1-dimensional linear gradient flow system where the analytic solutions of the UQ problems are known. We also apply the algorithm to a chaotically forced nonlinear gradient flow system which is known to be well approximated as a stochastically forced gradient flow.Comment: Find the associated videos at: http://personal.psu.edu/thb11

    The Zakai equation of nonlinear filtering for jump-diffusion observation: existence and uniqueness

    Full text link
    This paper is concerned with the nonlinear filtering problem for a general Markovian partially observed system (X,Y), whose dynamics is modeled by correlated jump-diffusions having common jump times. At any time t, the sigma-algebra generated by the observation process Y provides all the available information about the signal X. The central goal of stochastic filtering is to characterize the filter which is the conditional distribution of X, given the observed data. It has been proved in Ceci-Colaneri (2012) that the filter is the unique probability measure-valued process satisfying a nonlinear stochastic equation, the so-called Kushner-Stratonovich equation (KS-equation). In this paper the aim is to describe the filter in terms of the unnormalized filter, which is solution to a linear stochastic differential equation, called the Zakai equation. We prove equivalence between strong uniqueness for the solution to the Kushner Stratonovich equation and strong uniqueness for the solution to the Zakai one and, as a consequence, we deduce pathwise uniqueness for the solutions to the Zakai equation by applying the Filtered Martingale Problem approach (Kurtz-Ocone (1988), Kurtz-Nappo (2011), Ceci-Colaneri (2012)). To conclude, we discuss some particular cases.Comment: 29 page

    On Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations: On Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations

    No full text
    We are interested in a nonlinear filtering problem motivated by an information-based approach for modelling the dynamic evolution of a portfolio of credit risky securities. We solve this problem by `change of measure method\\\'' and show the existence of the density of the unnormalized conditional distribution which is a solution to the Zakai equation. Zakai equation is a linear SPDE which, in general, cannot be solved analytically. We apply Galerkin method to solve it numerically and show the convergence of Galerkin approximation in mean square. Lastly, we design an adaptive Galerkin filter with a basis of Hermite polynomials and we present numerical examples to illustrate the effectiveness of the proposed method. The work is closely related to the paper Frey and Schmidt (2010)

    On Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations: On Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations

    Get PDF
    We are interested in a nonlinear filtering problem motivated by an information-based approach for modelling the dynamic evolution of a portfolio of credit risky securities. We solve this problem by `change of measure method\\\'' and show the existence of the density of the unnormalized conditional distribution which is a solution to the Zakai equation. Zakai equation is a linear SPDE which, in general, cannot be solved analytically. We apply Galerkin method to solve it numerically and show the convergence of Galerkin approximation in mean square. Lastly, we design an adaptive Galerkin filter with a basis of Hermite polynomials and we present numerical examples to illustrate the effectiveness of the proposed method. The work is closely related to the paper Frey and Schmidt (2010)
    corecore