6 research outputs found

    Вычисление эффективного коэффициента теплопроводности сверхрешетки на основе кинетического уравнения Больцмана с использованием первопринципных расчетов

    Get PDF
    In this work, we calculate the effective thermal conductivity coefficient for a binary semiconductor heterostructure using the GaAs/AlAs superlattice as an example. Different periods of layers and different ambient temperatures are considered. At the scale under consideration, the use of models based on the Fourier law is very limited, since they do not take into account the quantum-mechanical properties of materials, which gives a strong discrepancy with experimental data. On the other hand, the use of molecular dynamics methods allows us to obtain accurate solutions, but they are significantly more demanding on computing resources and also require solving a non-trivial problem of potential selection. When considering nanostructures, good results were shown by methods based on the solution of the Boltzmann transport equation for phonons; they allow one to obtain a fairly accurate solution, while having less computational complexity than molecular dynamics methods. To calculate the thermal conductivity coefficient, a modal suppression model is used that approximates the solution of the Boltzmann transport equation for phonons. The dispersion parameters and phonon scattering parameters are obtained from first-principle calculations. The work takes into account 2-phonon (associated with isotopic disorder and barriers) and 3-phonon scattering processes. To increase the accuracy of calculations, the non-digital profile of the distribution of materials among the layers of the superlattice is taken into account. The obtained results are compared with experimental data showing good agreement.В работе проводится вычисление эффективного коэффициента теплопроводности для бинарной полупроводниковой гетероструктуры на примере сверхрешетки GaAs/AlAs для различных периодов слоев и при различных температурах окружающей среды. На рассматриваемых масштабах использование моделей, основанных на законе Фурье, сильно ограничено, т. к. они не учитывают квантовомеханические свойства материалов, что дает сильное расхождение с экспериментальными данными. С другой стороны, использование методов молекулярной динамики позволяет получить точные решения, но они существенно более требовательны к вычислительным ресурсам и требуют решение нетривиальной задачи подбора потенциала. При рассмотрении наноструктур хорошие результаты показали методы, основанные на решении кинетического уравнения Больцмана для фононов, они позволяют получить достаточно точное решение, при этом обладая меньшей вычислительной сложностью, чем методы молекулярной динамики. Для расчета коэффициента теплопроводности в работе используется модель модального подавления, аппроксимирующая решение кинетического уравнения Больцмана для фононов. Дисперсионные параметры и параметры рассеяния фононов получены из первопринципных расчетов. В работе учитываются двух фононные, связанные с изотопичеким беспорядком и барьерные, и трех фононные процессы рассеяния. Для повышения точности вычислений, в работе учитывается неоднородность распределения материалов по слоям сверхрешетки. Проведено сравнение полученных результатов с экспериментальными данными, продемонстрировано хорошее соответствие

    Deep Radial-Basis Value Functions for Continuous Control

    Full text link
    A core operation in reinforcement learning (RL) is finding an action that is optimal with respect to a learned value function. This operation is often challenging when the learned value function takes continuous actions as input. We introduce deep radial-basis value functions (RBVFs): value functions learned using a deep network with a radial-basis function (RBF) output layer. We show that the maximum action-value with respect to a deep RBVF can be approximated easily and accurately. Moreover, deep RBVFs can represent any true value function owing to their support for universal function approximation. We extend the standard DQN algorithm to continuous control by endowing the agent with a deep RBVF. We show that the resultant agent, called RBF-DQN, significantly outperforms value-function-only baselines, and is competitive with state-of-the-art actor-critic algorithms.Comment: In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI
    corecore