15,673 research outputs found

    Validated force-based modeling of pedestrian dynamics

    Get PDF
    This dissertation investigates force-based modeling of pedestrian dynamics. Having the quantitative validation of mathematical models in focus principle questions will be addressed throughout this work: Is it manageable to describe pedestrian dynamics solely with the equations of motion derived from the Newtonian dynamics? On the road to giving answers to this question we investigate the consequences and side-effects of completing a force-based model with additional rules and imposing restrictions on the state variables. Another important issue is the representation of modeled pedestrians. Does the geometrical shape of a two dimensional projection of the human body matter when modeling pedestrian movement? If yes which form is most suitable? This point is investigated in the second part while introducing a new force-based model. Moreover, we highlight a frequently underestimated aspect in force-based modeling which is to what extent the steering of pedestrians influences their dynamics? In the third part we introduce four possible strategies to define the desired direction of each pedestrian when moving in a facility. Finally, the effects of the aforementioned approaches are discussed by means of numerical tests in different geometries with one set of model parameters. Furthermore, the validation of the developed model is questioned by comparing simulation results with empirical data

    Single-file pedestrian dynamics: a review of agent-following models

    Full text link
    Single-file dynamics has been studied intensively, both experimentally and theoretically. It shows interesting collective effects, such as stop-and-go waves, which are validation cornerstones for any agent-based modeling approach of traffic systems. Many models have been proposed, e.g. in the form of car-following models for vehicular traffic. These approaches can be adapted for pedestrian streams. In this study, we delve deeper into these models, with particular attention on their interconnections. We do this by scrutinizing the influence of different parameters, including relaxation times, anticipation time, and reaction time. Specifically, we analyze the inherent fundamental problems with force-based models, a classical approach in pedestrian dynamics. Furthermore, we categorize car-following models into stimulus-response and optimal velocity models, highlighting their historical and conceptual differences. These classes can further be subdivided considering the conceptual definitions of the models, e.g. first-order vs. second-order models, or stochastic vs. deterministic models with and without noise. Our analysis shows how car-following models originally developed for vehicular traffic can provide new insights into pedestrian behavior. The focus on single-file motion, which is similar to single-lane vehicular traffic, allows for a detailed examination of the relevant interactions between pedestrians.Comment: 35 pages, 10 Figures; chapter accepted for publication in Crowd Dynamics (vol. 4

    How simple rules determine pedestrian behavior and crowd disasters

    Full text link
    With the increasing size and frequency of mass events, the study of crowd disasters and the simulation of pedestrian flows have become important research areas. Yet, even successful modeling approaches such as those inspired by Newtonian force models are still not fully consistent with empirical observations and are sometimes hard to calibrate. Here, a novel cognitive science approach is proposed, which is based on behavioral heuristics. We suggest that, guided by visual information, namely the distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive procedures to adapt their walking speeds and directions. While simpler than previous approaches, this model predicts individual trajectories and collective patterns of motion in good quantitative agreement with a large variety of empirical and experimental data. This includes the emergence of self-organization phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves. Moreover, the combination of pedestrian heuristics with body collisions generates crowd turbulence at extreme densities-a phenomenon that has been observed during recent crowd disasters. By proposing an integrated treatment of simultaneous interactions between multiple individuals, our approach overcomes limitations of current physics-inspired pair interaction models. Understanding crowd dynamics through cognitive heuristics is therefore not only crucial for a better preparation of safe mass events. It also clears the way for a more realistic modeling of collective social behaviors, in particular of human crowds and biological swarms. Furthermore, our behavioral heuristics may serve to improve the navigation of autonomous robots.Comment: Article accepted for publication in PNA

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    Modeling the desired direction in a force-based model for pedestrian dynamics

    Full text link
    We introduce an enhanced model based on the generalized centrifugal force model. Furthermore, the desired direction of pedestrians is investigated. A new approach leaning on the well-known concept of static and dynamic floor-fields in cellular automata is presented. Numerical results of the model are presented and compared with empirical data.Comment: 14 pages 11 figures, submitted to TGF'1

    Quantitative Description of Pedestrian Dynamics with a Force based Model

    Full text link
    This paper introduces a space-continuous force-based model for simulating pedestrian dynamics. The main interest of this work is the quantitative description of pedestrian movement through a bottleneck. Measurements of flow and density will be presented and compared with empirical data. The results of the proposed model show a good agreement with empirical data. Furthermore, we emphasize the importance of volume exclusion in force-based models.Comment: 4 pages, 7 figures, 2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT 2009), 15-18 September 2009, in Milano, Italy, 200

    Analyzing Stop-and-Go Waves by Experiment and Modeling

    Full text link
    The main topic of this paper is the analysis and modeling of stop-and-go waves, observable in experiments of single lane movement with pedestrians. The velocity density relation using measurements on a 'microscopic' scale shows the coexistence of two phases at one density. These data are used to calibrate and verify a spatially continuous model. Several criteria are chosen that a model has to satisfy: firstly we investigated the fundamental diagram (velocity versus density) using different measurement methods. Furthermore the trajectories are compared to the occurrence of stop-and-go waves qualitatively. Finally we checked the distribution of the velocities at fixed density against the experimental one. The adaptive velocity model introduced satisfies these criteria well.Comment: Fifth International Conference on Pedestrian and Evacuation Dynamics, March 8-10, 2010, National Institute of Standards and Technology, Gaithersburg, MD US
    corecore