25,908 research outputs found

    On Minimum Average Stretch Spanning Trees in Polygonal 2-trees

    Full text link
    A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. We consider the problem of computing a minimum average stretch spanning tree in polygonal 2-trees, a super class of 2-connected outerplanar graphs. For a polygonal 2-tree on nn vertices, we present an algorithm to compute a minimum average stretch spanning tree in O(nlogn)O(n \log n) time. This algorithm also finds a minimum fundamental cycle basis in polygonal 2-trees.Comment: 17 pages, 12 figure

    Minimum cycle and homology bases of surface embedded graphs

    Get PDF
    We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 11-dimensional (Z2\mathbb{Z}_2)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 11-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)O(n^\omega+2^{2g}n^2+m)-time algorithm for graphs embedded on an orientable surface of genus gg. The best known existing algorithms for surface embedded graphs are those for general graphs: an O(mω)O(m^\omega) time Monte Carlo algorithm and a deterministic O(nm2/logn+n2m)O(nm^2/\log n + n^2 m) time algorithm. For the minimum homology basis problem, we give a deterministic O((g+b)3nlogn+m)O((g+b)^3 n \log n + m)-time algorithm for graphs embedded on an orientable or non-orientable surface of genus gg with bb boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of gg and nn. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of O(logn)O(\log n).Comment: A preliminary version of this work was presented at the 32nd Annual International Symposium on Computational Geometr

    Kissing numbers for surfaces

    Get PDF
    The so-called {\it kissing number} for hyperbolic surfaces is the maximum number of homotopically distinct systoles a surface of given genus gg can have. These numbers, first studied (and named) by Schmutz Schaller by analogy with lattice sphere packings, are known to grow, as a function of genus, at least like g^{\sfrac{4}{3}-\epsilon} for any ϵ>0\epsilon >0. The first goal of this article is to give upper bounds on these numbers; in particular the growth is shown to be sub-quadratic. In the second part, a construction of (non hyperbolic) surfaces with roughly g^{\sfrac{3}{2}} systoles is given.Comment: 20 pages, 9 figure
    corecore