9 research outputs found

    When Patrolmen Become Corrupted: Monitoring a Graph Using Faulty Mobile Robots

    Get PDF
    A team of k mobile robots is deployed on a weighted graph whose edge weights represent distances. The robots move perpetually along the domain, represented by all points belonging to the graph edges, without exceeding their maximum speed. The robots need to patrol the graph by regularly visiting all points of the domain. In this paper, we consider a team of robots (patrolmen), at most f of which may be unreliable, i.e., they fail to comply with their patrolling duties. What algorithm should be followed so as to minimize the maximum time between successive visits of every edge point by a reliable patrolman? The corresponding measure of efficiency of patrolling called idleness has been widely accepted in the robotics literature. We extend it to the case of untrusted patrolmen; we denote by Ifk(G) the maximum time that a point of the domain may remain unvisited by reliable patrolmen. The objective is to find patrolling strategies minimizing Ifk(G). We investigate this problem for various classes of graphs. We design optimal algorithms for line segments, which turn out to be surprisingly different from strategies for related patrolling problems proposed in the literature. We then use these results to study general graphs. For Eulerian graphs G, we give an optimal patrolling strategy with idleness Ifk(G)=(f+1)|E|/k, where |E| is the sum of the lengths of the edges of G. Further, we show the hardness of the problem of computing the idle time for three robots, at most one of which is faulty, by reduction from 3-edge-coloring of cubic graphs—a known NP-hard problem. A byproduct of our proof is the investigation of classes of graphs minimizing idle time (with respect to the total length of edges); an example of such a class is known in the literature under the name of Kotzig graphs

    Algorithmic and Combinatorial Results on Fence Patrolling, Polygon Cutting and Geometric Spanners

    Get PDF
    The purpose of this dissertation is to study problems that lie at the intersection of geometry and computer science. We have studied and obtained several results from three different areas, namely–geometric spanners, polygon cutting, and fence patrolling. Specifically, we have designed and analyzed algorithms along with various combinatorial results in these three areas. For geometric spanners, we have obtained combinatorial results regarding lower bounds on worst case dilation of plane spanners. We also have studied low degree plane lattice spanners, both square and hexagonal, of low dilation. Next, for polygon cutting, we have designed and analyzed algorithms for cutting out polygon collections drawn on a piece of planar material using the three geometric models of saw, namely, line, ray and segment cuts. For fence patrolling, we have designed several strategies for robots patrolling both open and closed fences

    When Patrolmen Become Corrupted: Monitoring a Graph using Faulty Mobile Robots

    Get PDF
    International audienceA team of k mobile robots is deployed on a weighted graph whose edge weights represent distances. The robots perpetually move along the domain, represented by all points belonging to the graph edges, not exceeding their maximal speed. The robots need to patrol the graph by regularly visiting all points of the domain. In this paper, we consider a team of robots (patrolmen), at most f of which may be unreliable, i.e. they fail to comply with their patrolling duties. What algorithm should be followed so as to minimize the maximum time between successive visits of every edge point by a reliable patrolmen? The corresponding measure of efficiency of patrolling called idleness has been widely accepted in the robotics literature. We extend it to the case of untrusted patrolmen; we denote by Ifk (G) the maximum time that a point of the domain may remain unvisited by reliable patrolmen. The objective is to find patrolling strategies minimizing Ifk (G). We investigate this problem for various classes of graphs. We design optimal algorithms for line segments, which turn out to be surprisingly different from strategies for related patrolling problems proposed in the literature. We then use these results to study the case of general graphs. For Eulerian graphs G, we give an optimal patrolling strategy with idleness Ifk (G) = (f + 1)|E|/k, where |E| is the sum of the lengths of the edges of G. Further, we show the hardness of the problem of computing the idle time for three robots, at most one of which is faulty, by reduction from 3-edge-coloring of cubic graphs — a known NP-hard problem. A byproduct of our proof is the investigation of classes of graphs minimizing idle time (with respect to the total length of edges); an example of such a class is known in the literature under the name of Kotzig graphs

    On Fence Patrolling by Mobile Agents ∗

    No full text
    Suppose that a fence needs to be protected (perpetually) by k mobile agents with maximum speeds v1,..., vk so that no point on the fence is left unattended for more than a given amount of time. The problem is to determine if this requirement can be met, and if so, to design a suitable patrolling schedule for the agents. Alternatively, one would like to find a schedule that minimizes the idle time, that is, the longest time interval during which some point is not visited by any agent. We revisit this problem, introduced by Czyzowicz et al. (2011), and discuss several strategies for the cases where the fence is an open and a closed curve, respectively. In particular: (i) we disprove a conjecture by Czyzowicz et al. regarding the optimality of their Algorithm A2 for unidirectional patrolling of a closed fence; (ii) we present an algorithm with a lower idle time for patrolling an open fence, improving an earlier result of Kawamura and Kobayashi
    corecore