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ABSTRACT

ALGORITHMIC AND COMBINATORIAL RESULTS ON FENCE
PATROLLING, POLYGON CUTTING AND GEOMETRIC

SPANNERS

by

Anirban Ghosh

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Adrian Dumitrescu

The purpose of this dissertation is to study problems that lie at the intersection of geometry

and computer science. We have studied and obtained several results from three different areas,

namely–geometric spanners, polygon cutting, and fence patrolling. Specifically, we have

designed and analyzed algorithms along with various combinatorial results in these three areas.

For geometric spanners, we have obtained combinatorial results regarding lower bounds on

worst case dilation of plane spanners. We also have studied low degree plane lattice spanners,

both square and hexagonal, of low dilation. Next, for polygon cutting, we have designed and

analyzed algorithms for cutting out polygon collections drawn on a piece of planar material

using the three geometric models of saw, namely, line, ray and segment cuts. For fence

patrolling, we have designed several strategies for robots patrolling both open and closed fences.
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0.1 Geometry and computer science

Geometry as a branch of mathematics is being studied since ancient times. Several civilizations

around the globe had exhibited keen interest in the development of geometry as a discipline

bringing forth a plethora of results and observations. The beauty of geometry lies in its ex-

pressibility, mostly, using diagrams and visualization, which had always attracted the interest of

philosophers and scientists. Geometry is omnipresent. From the shape of a snowflake to the

galaxies – everywhere we can witness the grandeur of geometry and its far and wide applications.

On the other hand, computer science in the modern civilization has emerged as an important

field of research whose presence can be realized in almost every step of our lives.

Henceforth, it becomes quite interesting to study the problems that are common to both the

fields – geometry and computer science. In this dissertation, we have studied various geometric

2



problems that belong to the intersection of the aforesaid domains.

0.2 Research areas

The following, provides a glimpse of the problems which are studied in this dissertation.

0.2.1 Geometric spanners

Let P be a set of points. Geometric spanners are graphs that approximate well the pairwise dis-

tances in P . The area of design and analysis of geometric spanners has been widely researched

since the last three decades. Popular goals include constructions of low stretch factor geometric

spanners that have few edges, bounded degree and so on. Geometric spanners find their applica-

tions in various areas of research such as robotics, computer networks, distributed systems, road

constructions and plenty of others.

In this area, we have focused on lower bound constructions of plane spanners. In particular,

we found a new lower bound construction as a partial answer to a decade long standing open

question about the best lower bound on the spanning ratio of plane geometric graphs. We have

also presented lower bounds in the domain of degree constrained plane geometric graphs. In this

regard, experimental algorithmics in the domain of parallel programming helped us to improve

the bounds. We discuss the bounds in Chapter 1. In addition, we have investigated the dilations

of low degree lattice spanners (square and hexagonal), which were previously not studied in the

area of geometric spanners. The topic will be studied in Chapter 2.

Relevant papers.

1. A. Dumitrescu and A. Ghosh, Lower bounds on the dilation of plane spanners, Inter-

national Journal of Computational Geometry and Applications, 2016, to appear. A pre-

liminary version in: Proceedings of the International Conference on Algorithms and Discrete

Applied Mathematics, (CALDAM 2016), Kerala, Thiruvanthapuram, India, February 2016;
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vol. 9602 of LNCS, pp. 139–151. Also available at http://arxiv.org/abs/1509.07181.

2. A. Dumitrescu and A. Ghosh, Lattice spanners of low degree, Proceedings of the Interna-

tional Conference on Algorithms and Discrete Applied Mathematics, (CALDAM 2016), Ker-

ala, Thiruvanthapuram, India, February 2016; vol. 9602 of LNCS, pp. 152–163. Preprint

with improved results available at http://arxiv.org/abs/1602.04381.

0.2.2 Polygon cutting

The problem of polygon cutting was first introduced by Overmars and Welzl, in their seminal

paper in 1985. Since then the problem has been deeply studied by geometers under several

settings. The problem is to efficiently cut out a polygon collection drawn on a planar piece of

material, such as, paper. Here, by efficiency we refer to the number of cuts and also the total

length of the cuts. Cutting tools are geometrically classified into three types – line cut, ray cut,

and segment cut. In this dissertation, we present algorithms for cutting out polygon collections

drawn on a piece of planar material using the three geometric models of saw. Furthermore, we

also investigate and study various uncuttable polygon collections. For the results, we refer the

reader to Chapter 3.

Polygon cutting algorithms are particularly useful in the industrial applications where cut-

ting out polygonal objects from metal sheets etc. are required. Also, from geometrical perspec-

tive, the algorithms hold a source of great interest to the theoretical computer scientists.

Relevant paper. A. Dumitrescu, A. Ghosh, and M. Hasan, On Collections of Polygons Cut-

table with a Segment Saw, Proceedings of the International Conference on Algorithms and Discrete

Applied Mathematics, (CALDAM 2015), IIT Kanpur, India, February 2015, vol. 8959 of LNCS,

pp. 58–68.
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0.2.3 Multi-agent systems and fence patrolling

By multi-agent systems we refer to a collection of agents (possibly interacting) for accomplishing

an objective, usually under some constrained setting. Agents can be robots, computer programs

or even human beings. Fence patrolling is intensely studied in computer science. It is applied

to numerous situations where surveillance is necessary. For instance, network administrators

may use patrolling for detecting network failures or discovering web-pages to be indexed by a

search engine. Patrolling algorithms are also applied in disaster environments where rescuing is

necessary.

A fence can be open or closed. A closed fence is represented geometrically using a closed

curve, such as a circle, and an open fence using a line segment. In this dissertation, we con-

sider the multi-agent systems mainly from theoretical perspective where we design and analyze

efficient strategies for agents patrolling a fence (open or closed) of finite length. Also, we have

investigated (joint work with Cs. D. Tóth) an important conjecture regarding the optimality of

an existing algorithm for unidirectional patrolling of a closed fence. We discuss these results in

Chapter 4.

Relevant paper. A. Dumitrescu, A. Ghosh, and C. D. Tóth, On fence patrolling by mobile

agents, The Electronic Journal of Combinatorics, 21(3), 2014, P3.4. A preliminary version in: Pro-

ceedings of the 25th Canadian Conference on Computational Geometry, (CCCG 2013), Waterloo,

Ontario, Canada, August 2013, pp. 271–276.
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1.1 Introduction

Given a set of points P in the Euclidean plane, a geometric graph on P is a weighted graph

G = (V,E) where V = P and an edge uv ∈ E is the line segment with endpoints u, v ∈ V

weighted by the Euclidean distance |uv| between them. For t ≥ 1, a geometric graph G is a

t-spanner, if for every pair of vertices u, v in V , the length of the shortest path πG(u, v) between

them in G is at most t times |uv|, i.e., ∀u, v ∈ V, |πG(u, v)| ≤ t|uv|. A complete geometric

graph on a set of points is a 1-spanner. Where there is no necessity to specify t, we use the term
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geometric spanner. A geometric spanner G is plane if no two edges in G cross. In this chapter we

only consider plane geometric spanners. A geometric spanner of degree at most k is referred to

as a degree k geometric spanner.

Given a geometric spanner G = (V,E), the vertex dilation or stretch factor of u, v ∈ V ,

denoted δG(u, v), is defined as

δG(u, v) = |πG(u, v)|/|uv|.

When G is clear from the context, we simply write δ(u, v). The vertex dilation or stretch factor

of G, denoted δ(G), is defined as

δ(G) = sup
u,v∈V

δG(u, v).

The terms graph theoretic dilation and spanning ratio are also used in the literature. Refer to [22,

29, 35] for such definitions.

Given a point set P , let the dilation of P , denoted by δ0(P ), be the minimum stretch factor

of a plane geometric graph (equivalently, triangulation) on vertex set P ; see [34]. Similarly,

let the degree k dilation of P , denoted by δ0(P, k), be the minimum stretch factor of a plane

geometric graph of degree at most k on vertex set P . Clearly, δ0(P, k) ≥ δ0(P ) holds for any

k. Furthermore, δ0(P, j) ≥ δ0(P, k) holds for any j < k. (Note that the term dilation has been

also used with different meanings in the literature, see for instance [11, 30].)

In the last few decades, great progress has been made in the field of geometric spanners;

for an overview refer to [25, 35]. Common goals include constructions of low stretch factor

geometric spanners that have few edges, bounded degree and so on. A survey of open problems

in this area along with existing results can be found in [11]. Geometric spanners find their

applications in the areas of robotics, computer networks, distributed systems and many others.

Refer to [1, 2, 4, 13, 23, 32] for various algorithmic results.

The existence of plane t-spanners for some constant t > 1 (with no restriction on degree)

7



was first investigated by Chew [15] in the 80s. He showed that it is always possible to construct a

plane 2-spanner withO(n) edges on a set of n points; he also observed that every plane geometric

graph embedded on the 4 points placed at the vertices of a square has stretch factor at least
√

2. This was the best lower bound on the worst-case dilation of plane spanners for almost 20

years until it was shown by Mulzer [34] using a computer program that every triangulation

of a regular 21-gon has stretch factor at least (2 sin π
21 + sin 5π

21 + sin 3π
21 )/ sin 10π

21 = 1.4161 . . .

Henceforth, it was posed as an open problem by Bose and Smid [11, Open Problem 1] (as well

as by Kanj in his survey [26, Open Problem 5]): “What is the best lower bound on the spanning

ratio of plane geometric graphs? Specifically, is there a t >
√

2.005367532 ≈ 1.41611 . . . and a point

set P , such that every triangulation of P has spanning ratio at least t?”. We give a positive answer

to the second question by showing that a set S of 23 points placed at the vertices of a regular

23-gon, has dilation δ0(S) ≥ (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . .

The problem can be traced back to a survey written by Eppstein [24, Open Problem 9]:

“What is the worst case dilation of the minimum dilation triangulation?". The point set S also

provides a partial answer for this question. From the other direction, the current best upper

bound of 1.998 was proved by Xia [37] using Delaunay triangulations. Note that this bound

is only slightly better than the bound of 2 obtained by Chew [15] in the 1980s. For previous

results on the upper bound refer to [16, 18, 19, 29].

The design of low degree plane spanners is of great interest to geometers. Bose et al. [9]

were the first to show that there always exists a plane t-spanner of degree at most 27 on any

set of points in the Euclidean plane where t ≈ 10.02. The result was subsequently improved

in [5, 6, 7, 12, 27, 33] in terms of degree. Recently, Kanj et al. [28] showed that t = 20 can be

achieved with degree 4. However, the question whether the degree can be reduced to 3 remains

open at the time of this writing. If one does not insist on having a plane spanner, Das et al. [17]

showed that degree 3 is achievable. While numerous papers have focused on upper bounds on

the dilation of bounded degree plane spanners, not much is known about lower bounds. In this

chapter, we explore this direction and provide new lower bounds for unrestricted degrees and
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when degrees 3 and 4 are imposed.

A greedy triangulation of a finite point set P is constructed in the following way: starting

with an empty set of edges E, repeatedly add edges to E in non-decreasing order of length as

long as edges in E are noncrossing. Bose et al. [10] have showed that the greedy triangulation

is a t-spanner, where t = 8(π − α)2/(α2 sin2(α/4)) ≈ 11739.1 and α = π/6. Here we obtain

a worst-case lower bound of 2.0268; in light of computational experiments we carried out, we

believe that the aforementioned upper bound is very far from the truth.

Related work. If Sn is the set of n vertices of a regular n-gon, Mulzer [34] showed that

1.3836 . . . =
√

2−
√

3 +
√

3/2 ≤ δ0(Sn) ≤ 0.471π/ sin 0.471π = 1.4858 . . . ,

for every n ≥ 74; the upper bound holds for every n ≥ 3. Amarnadh and Mitra [3] have shown

that in the case of a cyclic polygon (a polygon whose vertices are co-circular), the stretch factor

of any fan triangulation (i.e., with a vertex of degree n− 1) is ≤ 1.4846.

As mentioned earlier, low degree plane spanners for general point sets have been studied

in [5, 7, 9, 12, 27, 33]. The construction of low degree plane spanners for the infinite square and

hexagonal lattices has been recently investigated in [21].

Bose et al. [8] presented a finite convex point set for which there is a Delaunay triangulation

whose stretch factor is at least 1.581 > π/2, thereby disproving a widely believed π/2 upper

bound conjectured by Chew [15]. They also showed that this lower bound can be slightly

raised to 1.5846 if the point set need not be convex. This lower bound for non-convex point sets

has been further improved to 1.5932 by Xia and Zhang [38].

Klein et al. [30] proved the following interesting structural result. Let S be a finite set of

points in the plane. Then either S is a subset of one of the well-known sets of points whose

triangulation is unique and has dilation 1, or there exists a number ∆(S) > 1 such that each

finite plane graph containing S among its vertices has dilation at least ∆(S).

Cheong et al. [14] showed that for every n ≥ 5, there are sets of n points in the plane that do
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not have a minimum-dilation spanning tree without edge crossings and that 5 is minimal with

this property. They also showed that given a set S of n points with integer coordinates in the

plane and a rational dilation t > 1, it is NP-hard to decide whether a spanning tree of S with

dilation at most t exists, regardless if edge crossings are allowed or not.

Knauer and Mulzer [31] showed that for each edge e of a minimum dilation triangulation

of a point set, at least one of the two half-disks of diameter about 0.2|e| on each side of e and

centered at the midpoint of e must be empty of points1.

When the stretch factor (or dilation) is measured over all pairs of points on edges or vertices

of a plane graphG (rather than only over pairs of vertices) one arrives at the concept of geometric

dilation of G; see [20, 22].

Our results. (I) Let S be a set of 23 points placed at the vertices of a regular 23-gon. Then,

δ0(S) = (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . . (Theorem 1.1, Section 1.2). This improves the

previous bound of (2 sin π
21 + sin 5π

21 + sin 3π
21 )/ sin 10π

21 = 1.4161 . . ., due to Mulzer [34], on the

worst case dilation of plane spanners.

(II) (a) For every n ≥ 13, there exists a set S of n points such that δ0(S, 3) ≥ 1 +
√

3 =

2.7321 . . . (Theorem 1.2, Section 1.3).

(b) For every n ≥ 6, there exists a set S of n points such that δ0(S, 4) ≥ 1 +
√

(5−
√

5)/2 =

2.1755 . . . (Theorem 1.3, Section 1.3). The previous best lower bound of (2 sin π
21 + sin 5π

21 +

sin 3π
21 )/ sin 10π

21 = 1.4161 . . ., due to Mulzer [34] holds for any degree. Here we sharpen it for

degrees 3 and 4.

(III) For every n ≥ 6, there exists a set S of n points such that the stretch factor of the greedy

triangulation of S is at least 2.0268.

Notations and assumptions. Let P be a planar point set andG = (V,E) be a plane geometric

graph on vertex set P . For p, q ∈ P , pq denotes the connecting segment and |pq| denotes its

Euclidean length. The degree of a vertex (point) p ∈ P is denoted by deg(p). For a specific point
1Their result inaccurately states that the entire disk of that diameter is an exclusion region.
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set P = {p1, . . . , pn}, we denote a path inG consisting of vertices in the order pi, pj, pk, . . . using

%(i, j, k, . . .) and by |%(i, j, k, . . .)| its total Euclidean length. The graphs we construct have the

property that no edge contains a point of P in its interior.

1.2 A new lower bound on the dilation of plane spanners

In this section, we show that the set S = {s0, . . . , s22} of 23 points placed at the vertices of a

regular 23-gon has dilation δ0(S) ≥ (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . . (see Fig. 1.1).
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Figure 1.1: Left: The set S of 23 points placed at the vertices of a regular 23-gon. Right: A
triangulation of S with stretch factor (2 sin 2π

23 + sin 8π
23 )/ sin 11π

23 = 1.4308 . . ., which is achieved
by the detours for the pairs s10, s21 and s6, s18. The shortest paths connecting the pairs are
shown in blue and red, respectively.

Assume that the points lie on a circle of unit radius. We first present a theoretical proof

showing that δ0(S) ≥ (sin 2π
23 + sin 4π

23 + sin 5π
23 )/ sin 11π

23 = 1.4237 . . .; we then raise the bound to

δ0(S) ≥ (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . . using a computer program. The result obtained

by the program is tight as there exists a triangulation of S (see Fig. 1.1 (right)) with stretch factor

exactly (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . .

Define the convex hull length of a chord sisj ∈ S as µ(i, j) = min(|i − j|, 23 − |i − j|).

Observe that 1 ≤ µ(i, j) ≤ 11. Since triangulations are maximal planar graphs, we only consider

triangulations of S while computing δ0(S); in particular, every edge of the convex hull of S is

present. Note that there are C21 = 24, 466, 267, 020 triangulations of S. Here Cn = 1
n+1

(
2n
n

)
11



is the nth Catalan number and there are Cn ways to triangulate a convex polygon with n + 2

vertices.

If si, sj ∈ S, then |sisj| = 2 sin µ(i,j)π
23 . Consider a shortest path connecting si, sj ∈ S con-

sisting of k edges with convex hull lengths n1, . . . , nk; its length is |%(i, . . . , j)| = 2∑k
h=1 sin nhπ

23 .

Let λ = µ(i, j) and

g(λ, n1, . . . , nk) = |%(i, . . . , j)|
|sisj|

=
∑k
h=1 sin nhπ

23
sin λπ

23
. (1.1)

We will use λ = 11 in all subsequent proofs of this section and therefore we set

f(n1, . . . , nk) := g(11, n1, . . . , nk). (1.2)

Various values of f , as given by (1.1) and (1.2), will be repeatedly used in lower-bounding

the stretch factor of point pairs in specific configurations, i.e., when some edges are assumed to

be present. Observe that f is a symmetric function that can be easily computed (tabulated) at

each tuple n1, . . . , nk; see Table 1.1.

f(4, 7) 1.3396 . . . v f(2, 2, 8) 1.4308 . . .
f(5, 6) 1.3651 . . . v f(3, 3, 5) 1.4312 . . .

v f(5, 7) 1.4514 . . . v f(3, 4, 4) 1.4409 . . .
v f(6, 6) 1.4650 . . . v f(1, 4, 7) 1.4761 . . .

f(2, 3, 6) 1.4023 . . . v f(2, 3, 7) 1.4886 . . .
f(1, 5, 5) 1.4061 . . . v f(3, 3, 6) 1.5312 . . .

v f(2, 4, 5) 1.4237 . . . v f(1, 1, 4, 5) 1.4263 . . .
v f(1, 3, 8) 1.4257 . . . v f(1, 2, 3, 5) 1.4388 . . .

Table 1.1: Relevant values of f(n1, . . . , nk) as required by the proofs in this section. Values used
explicitly in the proofs are marked using v.

Given a chord s0si, let lower(s0si) = {si+1, . . . , s22} and upper(s0si) = {s1, . . . si−1}. The

range of possible convex hull lengths of the longest chord in a triangulation of S is given by the

following.

Lemma 1.1. If ` is the convex hull length of the longest chord in a triangulation of S, then ` ∈
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{8, 9, 10, 11}.

Proof. We clearly have ` ≥ 2. Since S is symmetric, we can assume that s0s` is the longest

chord. Since µ(i, j) ≤ 11 for any 0 ≤ i, j ≤ 22, we have ` ≤ 11. Suppose for contradiction that

2 ≤ ` ≤ 7. Then s0s` is an edge of some triangle ∆s0s`sm, where `+ 1 ≤ m ≤ 22. In particular,

µ(0, `), µ(`,m), µ(0,m) ≤ ` ≤ 7. (1.3)

If m ≤ 11, then µ(0,m) = min(m, 23−m) = m ≥ `+ 1, a contradiction to `’s maximality.

Assume now that m ≥ 12; then µ(0,m) = 23−m ≤ `, since ` is the length of a longest chord.

It follows that m ≥ 23− ` ≥ 23− 7 = 16. If m− ` ≤ 11, then µ(`,m) = m− ` ≥ 16− 7 = 9,

a contradiction to (1.3). If m− ` ≥ 12, then µ(`,m) = 23− (m− `) = 23−m + ` ≥ ` + 1, a

contradiction to `’s maximality. Consequently, we have 8 ≤ ` ≤ 11, as required.

Proof outline. For every ` ∈ {8, 9, 10, 11}, if the longest chord in a triangulation T has

length `, we show that δ(T ) ≥ f(2, 4, 5) = 1.4237 . . . Assuming that s0s` is a longest chord, we

consider the triangle with base s0s` and third vertex in upper(s0s`) or lower(s0s`), depending

on `. For each such triangle, we show that if the edges of the triangle along with the convex hull

edges of S are present, then in any resulting triangulation there is a pair whose stretch factor

is at least f(2, 4, 5) = 1.4237 . . . Essentially, the long chords act as obstacles which contribute

to long detours for some point pairs. In four subsequent lemmas, we consider the convex hull

lengths 8, 9, 10, 11 (from Lemma 1.1) successively.

In some arguments, we consider a primary pair si, sj , and possible shortest paths between

the two vertices. We show that if certain intermediate vertices are present in π(si, sj), then

δ(si, sj) ≥ f(2, 4, 5). Otherwise if certain long edges are present in π(si, sj), then δ(su, sv) ≥

f(2, 4, 5), where su, sv is a secondary pair. In the figures, wherever required, we use circles and

squares to mark the primary and secondary pairs, respectively (see for instance Fig. 1.2). In

some of the cases, a primary pair suffices in the argument, i.e., no secondary pair is needed.
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Lemma 1.2. If ` = 8, then δ(T ) ≥ f(2, 4, 5) = 1.4237 . . .
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Figure 1.2: Illustrating Lemma 1.2. Left: s12 ∈ π(s10, s21), primary pair: s10, s21. Right:
s10s15 ∈ π(s10, s21), primary pair: s10, s21, secondary pair: s3, s14.

Proof. Refer to Fig. 1.2. Let s0s8 be the longest chord. The triangle with base s0s8 and third

vertex in lower(s0s8) has two other sides of convex hull lengths 7 and 8. It thus suffices to

consider the triangle ∆s0s8s16 only and assume that the edges s0s8, s8s16 and s0s16 are present.

In this proof, the primary pair is s10, s21 and the secondary pair is s3, s14. Now, consider

the pair s10, s21. Note that either s0 ∈ π(s10, s21) or s16 ∈ π(s10, s21). In the former case,

δ(s10, s21) ≥ |%(10, 8, 0, 21)|/|s10s21| ≥ f(2, 8, 2) = 1.4308 . . . We may thus assume that s16 ∈

π(s10, s21).

Similarly, for the pair s3, s14 either s0 ∈ π(s3, s14) or s8 ∈ π(s3, s14). If s0 ∈ π(s3, s14), then

δ(s3, s14) ≥ |%(3, 0, 16, 14)|/|s3s14| ≥ f(3, 7, 2) = 1.4886 . . . Thus, assume that s8 ∈ π(s3, s14).

If at least one of s12, s13, or s14 is in π(s10, s21), then

δ(s10, s21) ≥ min(|%(10, 12, 16, 21)|, |%(10, 13, 16, 21)|, |%(10, 14, 16, 21)|)
|s10s21|

≥ min(f(2, 4, 5), f(3, 3, 5), f(4, 2, 5)) = f(2, 4, 5) = 1.4237 . . .
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Otherwise, one of s10s15, s10s16, s11s15, or s11s16 must be in π(s10, s21), and

δ(s3, s14) ≥ min(|%(3, 8, 10, 14)|, |%(3, 8, 11, 14)|), |%(3, 8, 15, 14)|)
|s3s14|

≥ min(f(5, 2, 4), f(5, 3, 3), f(1, 5, 7)) = f(2, 4, 5) = 1.4237 . . .

Lemma 1.3. If ` = 9, then δ(T ) ≥ f(2, 4, 5) = 1.4237 . . .

Proof. Let s0s9 be the longest chord and consider the triangle with base s0s9 and the third vertex

in lower(s0s9). There are three possible cases depending on the convex hull lengths of other

two sides of the triangle: {7, 7}, {8, 6} or {9, 5}. We consider them successively.
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Figure 1.3: Illustrating Case A from Lemma 1.3. Left: s5 ∈ π(s3, s14). Right: s3s8 ∈ π(s3, s14).

Case A: The convex hull lengths of the other two sides are {7, 7}. Let ∆s0s9s16 be the

required triangle; refer to Fig. 1.3. In this case, the primary pair is s3, s14 and the secondary

pair is s6, s18. Either s0 ∈ π(s3, s14) or s9 ∈ π(s3, s14). If s0 ∈ π(s3, s14), then δ(s3, s14) ≥

|%(3, 0, 16, 14)|/|s3s14| ≥ f(3, 7, 2) = 1.4886 . . . Thus, we assume that s9 ∈ π(s3, s14).

Similarly, for the pair s6, s18, either s9 ∈ π(s6, s18) or s0 ∈ π(s6, s18). If s9 ∈ π(s6, s18) then

δ(s6, s18) ≥ |%(6, 9, 16, 18)|/|s6s18| ≥ f(3, 7, 2) = 1.4886 . . . Thus, assume that s0 ∈ π(s6, s18).
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Now, if at least one of s5, s6, or s7 is in π(s3, s14), then

δ(s3, s14) ≥ min(|%(3, 5, 9, 14)|, |%(3, 6, 9, 14)|, |%(3, 7, 9, 14)|)
|s3s14|

≥ min(f(2, 4, 5), f(3, 3, 5), f(4, 2, 5)) = f(2, 4, 5) = 1.4237 . . .

Otherwise, one of s3s8, s3s9, s4s8, or s4s9 must be in π(s3, s14), and

δ(s6, s18) ≥ min(|%(6, 3, 0, 18)|, |%(6, 4, 0, 18)|)
|s6s18|

≥ min(f(3, 3, 5), f(2, 4, 5)) = f(2, 4, 5) = 1.4237 . . .

Case B: The convex hull lengths of the other two sides are {8, 6}. Let ∆s0s9s17 be the

required triangle; refer to Fig. 1.4 (left). As in Case A, the primary pair is s3, s14 and the

secondary pair is s6, s18. Consider the pair s3, s14. Either s17 ∈ π(s3, s14) or s9 ∈ π(s3, s14).

If s17 ∈ π(s3, s14), then δ(s3, s14) ≥ |%(3, 0, 17, 14)|/|s3s14| ≥ f(3, 6, 3) = 1.5312 . . . So we

assume that s9 ∈ π(s3, s14).
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Figure 1.4: Illustrating Case B (left) and Case C (right) from Lemma 1.3.

Similarly, for the pair s6, s18, either s9 ∈ π(s6, s18) or s0 ∈ π(s6, s18). If s9 ∈ π(s6, s18)

then δ(s6, s18) ≥ |%(6, 9, 17, 18)|/|s6s18| ≥ f(3, 8, 1) = 1.4257 . . . Thus, we assume that s0 ∈

π(s6, s18). Now, it can be checked that by the same analysis as in Case A, the same lower bound

16



of f(2, 4, 5) holds.

Case C: The convex hull lengths of the other two sides of the triangle are {9, 5}. Let

∆s0s9s18 be the required triangle; refer to Fig. 1.4 (right). Then,

δ(s4, s16) ≥ min(|%(4, 0, 18, 16)|, |%(4, 9, 16)|)
|s4s16|

≥ min(f(4, 5, 2), f(5, 7)) = f(2, 4, 5) = 1.4237 . . .

Lemma 1.4. If ` = 10, then δ(T ) ≥ f(2, 4, 5) = 1.4237 . . .

Proof. Let s0s10 be the longest chord. The possible convex hull lengths of the other two sides of

the triangle with base s0s10 and the third vertex in lower(s0s10) are {10, 3},{9, 4},{8, 5},{7, 6}.

We consider these cases successively.
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Figure 1.5: Illustrating Case A from Lemma 1.4.

Case A: The convex hull lengths of the other two sides of the triangle are {10, 3}, {9, 4}

or {8, 5}. Let ∆s0s10s20, ∆s0s10s19, ∆s0s10s18 be the required triangles, respectively; refer to

Fig. 1.5 and Fig. 1.6 (left). Then,

δ(s4, s16) ≥ min(|%(4, 0, 20, 16)|, |%(4, 0, 19, 16)|, |%(4, 0, 18, 16)|, |%(4, 10, 16)|)
|s4s16|

≥ min(f(4, 3, 4), f(4, 4, 3), f(4, 5, 2), f(6, 6)) = f(2, 4, 5) = 1.4237 . . .
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Figure 1.6: Illustrating Case A (left) and Case B (right) from Lemma 1.4.

Case B: The convex hull lengths of the other two sides are {7, 6}. Let ∆s0s10s17 be the re-

quired triangle; refer to Fig. 1.6 (right). In this case, the primary pair is s3, s14 and the secondary

pair is s6, s18. Either s0 ∈ π(s3, s14) or s10 ∈ π(s3, s14). If s0 ∈ π(s3, s14), then δ(s3, s14) ≥

|%(3, 0, 17, 14)|/|s3s14| ≥ f(3, 6, 3) = 1.5312 . . . Thus, we assume that s10 ∈ π(s3, s14).

Similarly, for the pair s6, s18, either s10 ∈ π(s6, s18) or s0 ∈ π(s6, s18). If s10 ∈ π(s6, s18),

then δ(s6, s18) ≥ |%(6, 10, 17, 18)|/|s6s18| ≥ f(4, 7, 1) = 1.4761 . . . Thus, assume that s0 ∈

π(s6, s18).

Now, if at least one of s5, s6, s7, or s8 is in π(s3, s14), then

δ(s3, s14) ≥ min(|%(3, 5, 10, 14)|, |%(3, 6, 10, 14)|, |%(3, 7, 10, 14)|, |%(3, 8, 10, 14)|)
|s3s14|

≥ min(f(2, 5, 4), f(3, 4, 4), f(4, 3, 4), f(5, 2, 4)) = f(2, 4, 5) = 1.4237 . . .

Otherwise, one of s3s9, s3s10, s4s9, or s4s10 must be in π(s3, s14), and

δ(s6, s18) ≥ min(|%(6, 3, 0, 18)|, |%(6, 4, 0, 18)|)
|s6s18|

≥ min(f(3, 3, 5), f(2, 4, 5)) = f(2, 4, 5) = 1.4237 . . .

Lemma 1.5. If ` = 11, then δ(T ) ≥ f(2, 4, 5) = 1.4237 . . .

18



Proof. Let s0s11 be the longest chord. Since the size of upper(s0s11) is smaller than the size of

lower(s0s11), we consider upper(s0s11) is our analysis. The possible convex hull lengths of the

other two sides of the triangle with base s0s11 and the third vertex in upper(s0s11) are {1, 10},

{2, 9}, {3, 8}, {4, 7}, {5, 6}. We consider the following cases successively.
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Figure 1.7: Illustrating Case A (left) and Case B (right) from Lemma 1.5.

Case A: The convex hull lengths of the other two sides are {1, 10}. Let ∆s0s1s11 be the

required triangle; refer to Fig. 1.7 (left). In this case, the primary pair is s6, s18 and the secondary

pair is s4, s15. Consider the pair s6, s18. Either s11 ∈ π(s6, s18) or s0 ∈ π(s6, s18). If s11 ∈

π(s6, s18), then δ(s6, s18) ≥ |%(6, 11, 18)|/|s6s18| ≥ f(5, 7) = 1.4514 . . . Hence, we assume that

s0 ∈ π(s6, s18).

If at least one of s2, s3, s4, or s5 is in π(s6, s18), then

δ(s6, s18) ≥ min(|%(6, 2, 1, 0, 18)|, |%(6, 3, 1, 0, 18)|, |%(6, 4, 1, 0, 18)|, |%(6, 5, 1, 0, 18)|)
|s6s18|

≥ min(f(4, 1, 1, 5), f(3, 2, 1, 5), f(2, 3, 1, 5), f(1, 4, 1, 5)) = f(1, 1, 4, 5) = 1.4263 . . .

19



Otherwise, s1s6 is in π(s6, s18), and then

δ(s4, s15) ≥ min(|%(4, 6, 11, 15)|, |%(4, 1, 0, 15)|)
|s4s15|

≥ min(f(2, 5, 4), f(3, 1, 8)) = f(2, 4, 5) = 1.4237 . . .

Case B: The convex hull lengths of the other two sides are {2, 9}, {3, 8} or {4, 7}. Let

∆s0s2s11, ∆s0s3s11, ∆s0s4s11 be the required triangles, respectively. Refer to Fig. 1.7 (right)

and Fig. 1.8 (left) for illustrations.
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Figure 1.8: Illustrating Case B (left) and Case C (right) from Lemma 1.5.

As in the Case A, we may assume that s0 ∈ π(s6, s18). Then,

δ(s6, s18) ≥ min(|%(6, 2, 0, 18)|, |%(6, 3, 0, 18)|, |%(6, 4, 0, 18)|)
|s6s18|

≥ min(f(4, 2, 5), f(3, 3, 5), f(2, 4, 5)) = f(2, 4, 5) = 1.4237 . . .

Case C: The convex hull lengths of the other two sides are {5, 6}. Let ∆s0s5s11 be the re-

quired triangle; refer to Fig. 1.8 (right). In this case, the primary pair is s6, s18 and the secondary

pair is s8, s20. As in the Case A, we assume that s0 ∈ π(s6, s18).
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Now, if at least one of s19, s20, s21, or s22 is in π(s6, s18), then

δ(s6, s18) ≥ min(|%(6, 5, 0, 19, 18)|, |%(6, 5, 0, 20, 18)|, |%(6, 5, 0, 21, 18)|, |%(6, 5, 0, 22, 18)|)
|s6s18|

≥ min(f(1, 5, 4, 1), f(1, 5, 3, 2), f(1, 5, 2, 3), f(1, 5, 1, 4)) = f(1, 1, 4, 5) = 1.4263 . . .

Otherwise, s0s18 is in π(s6, s18), and then

δ(s8, s20) ≥ min(|%(8, 5, 0, 20)|, |%(8, 11, 18, 20)|)
|s8s20|

≥ min(f(3, 5, 3), f(3, 7, 2)) = f(3, 3, 5) = 1.4312 . . .

Putting these facts together yields the main result of this section:

Theorem 1.1. Let S be a set of 23 points placed at the vertices of a regular 23-gon. Then

δ0(S) = f(2, 2, 8) =
(

2 sin 2π
23 + sin 8π

23

)/
sin 11π

23 = 1.4308 . . .

Proof. By Lemmas 1.2-1.5, we conclude that

δ0(S) ≥ f(2, 4, 5) =
(

sin 2π
23 + sin 4π

23 + sin 5π
23

)
/ sin 11π

23 = 1.4237 . . .

On the other hand, the triangulation of S in Fig. 1.1 (right) has stretch factor f(2, 2, 8) =

1.4308 . . . and thus f(2, 4, 5) = 1.4237 . . . ≤ δ0(S) ≤ f(2, 2, 8) = 1.4308 . . .

A parallel C++ program (see Appendix) that generates all triangulations of S based on a low

memory algorithm by Parvez et al. [36, Section 4] shows that each of the C21 triangulations

has stretch factor at least f(2, 2, 8). We thereby obtain the following final result: δ0(S) =

f(2, 2, 8) = (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . .

Remarks. Using the program we have also checked that the next largest stretch factor among

all triangulations is f(3, 3, 5) = 1.4312 . . ., and further that there is no triangulation of S that
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has stretch-factor < 1.4312 other than f(2, 2, 8). Thus, the result in Theorem 1.1 is not affected

by floating-point precision errors.
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Figure 1.9: Triangulations of S25 and S26 with stretch factors < 1.4296 and < 1.4202, respec-
tively. Worst stretch factor pairs are marked in circles and the corresponding shortest paths are
shown in red.

Let Sn denote the set of points placed at the vertices of a regular n-gon. Using a computer

program, Mulzer obtained the values δ0(Sn) for 4 ≤ n ≤ 21 in his thesis [34, Chapter 3]. Using

our C++ program, we confirmed the previous values and extended the range up to n = 24:

δ0(S22) = 1.4047 . . ., δ0(S24) = 1.4013 . . . and somewhat surprisingly, δ0(S23) = 1.4308 . . . By

upper bound constructions, it follows that δ0(S25) < 1.4296 and δ0(S26) < 1.4202; see Fig. 1.9.

Observe that δ0(Sn) does not exhibit a monotonic behavior; see Table 1.2.

n δ0(Sn) n δ0(Sn) n δ0(Sn)
4 1.4142 . . . 12 1.3836 . . . 20 1.4142 . . .
5 1.2360 . . . 13 1.3912 . . . 21 1.4161 . . .
6 1.3660 . . . 14 1.4053 . . . 22 1.4047 . . .
7 1.3351 . . . 15 1.4089 . . . 23 1.4308 . . .
8 1.4142 . . . 16 1.4092 . . . 24 1.4013 . . .
9 1.3472 . . . 17 1.4084 . . . 25 < 1.4296
10 1.3968 . . . 18 1.3816 . . . 26 < 1.4202
11 1.3770 . . . 19 1.4098 . . .

Table 1.2: The values of δ0(Sn) for n = 4, . . . , 26.
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1.3 Lower bounds for the degree 3 and 4 dilation

In this section, we provide lower bounds for the worst case degree 3 and 4 dilation of point sets

in the Euclidean plane. We begin with degree 3 dilation. We first present a set P of n = 13 points

(a section of the hexagonal lattice with six boundary points removed) that has δ0(P, 3) ≥ 1+
√

3

and then extend P to achieve this lower bound for any n > 13.

Theorem 1.2. For every n ≥ 13, there exists a set S of n points such that δ0(S, 3) ≥ 1 +
√

3 =

2.7321 . . . The inequality is tight for the presented sets.

Proof. Let P = {p0} ∪ P1 ∪ P2 be a set of 13 points as shown in Fig. 1.10 (left) where P1 =

{p1, p3, p5, p7, p9, p11} and P2 = {p2, p4, p6, p8, p10, p12}. The points in P1 and P2 lie on the ver-
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Figure 1.10: Left: the point set P = {p0, p1, . . . , p12}; some pairwise distances are: |p2p12| = 2,
|p2p3| = |p1p5| = |p1p12| =

√
3. Right: a plane degree 3 geometric spanner on P with stretch

factor 1+
√

3, which is achieved by the detours for the point pairs {p1, p3}, {p5, p7} and {p9, p11}.

tices of two regular homothetic hexagons centered at p0 of radius 1 and 2 respectively. Further-

more, the points in each of the sets {p2, p1, p0, p7, p8}, {p4, p3, p0, p9, p10} and {p12, p11, p0, p5, p6}

are collinear.

We show that δ0(P, 3) ≥ 1 +
√

3. Since no edge can contain a point in its interior, the point

p0 can have connecting edges only with the points from P1. First, assume that the six edges in

E = {p1p3, p3p5, p5p7, p7p9, p9p11, p1p11} are present (see Fig. 1.11 (left)).

We can also assume that the edge p0p1 is present since p0 must be connected to at least one
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Figure 1.11: Left: all edges in E are present. Right: Case B.

of the points in P1. Observe that now deg(p1) = 3. In this case,

δ(p1, p2) ≥ |%(1, i, 2)|
|p1p2|

≥ 1 +
√

3, where i ∈ {3, 11}.

Now assume that an edge in E, say p1p3, is missing. Then, the following three cases arise

depending on deg(p0) ∈ {1, 2, 3}.

Case A: If deg(p0) = 1, then

δ(p1, p3) ≥ |%(1, i, 3)|
|p1p3|

≥ 1 +
√

3 where i ∈ {2, 5, 4, 11}.

Case B: If deg(p0) = 2, consider the edges p0p1, p0p3; see Fig. 1.11 (right). If p0p1, p0p3 are

present δ(p0, p7) ≥ |%(0, 3, 7)|/|p0p7| = 1 +
√

3 else if at least one edge in {p0p1, p0p3} is absent

then since p1p3 is absent, δ(p1, p3) ≥ 1 +
√

3 by the same analysis as in Case A.

Case C: If deg(p0) = 3, then if at least one of the edges p0p1, p0p3 is absent, δ(p1, p3) ≥ 1+
√

3

as shown in Case A. Thus, assume that p0p1, p0p3 are present. Now, the following two non-

symmetric cases will arise. Either p0p5 is present or p0p7 is present.

If p0p5 is present (refer to Fig. 1.12 (left)) then,

δ(p0, p9) ≥ |%(0, i, 9)|
|p0p9|

≥ 1 +
√

3, where i ∈ {1, 5}.

Now assume that p0p7 is present (refer to Fig. 1.12 (right)). Observe that if p7p9 is absent
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Figure 1.12: Left: the edges p0p1, p0p3, p0p5 are present. Right: the edges p0p1, p0p3, p0p7 are
present.

then,

δ(p7, p9) ≥ |%(7, i, 9)|
|p7p9|

≥ 1 +
√

3, where i ∈ {8, 10, 11}.

Thus, assume that p7p9 is present. Similarly, assume that p5p7 is present, otherwise

δ(p7, p5) ≥ |%(7, i, 5)|
|p7p5|

≥ 1 +
√

3, where i ∈ {3, 5, 6}.

Now, as p0p7, p5p7 and p7p9 are present, deg(p7) = 3. In this case,

δ(p7, p8) = |%(7, 9, 8)|
|p7p8|

≥ 1 +
√

3, where i ∈ {5, 9}.

We have thus just shown that δ0(P, 3) ≥ 1+
√

3. For n ≥ 14, we may assume that p0 = (0, 0),

p3 = (1, 0), and let pi = (x + i, 0) for i = 13, . . . , n − 1, where x � 1 (e.g., setting x = 100

suffices); finally, let S = P ∪ P ′, where P ′ = {p13, . . . , pn−1}. See Fig. 1.13.

If u, v ∈ P ⊂ S, then going from u to v via P ′ is inefficient, so as shown earlier in this proof,

δ(u, v) ≥ 1 +
√

3. Thus, δ0(S, 3) ≥ 1 +
√

3, as required. Moreover, this lower bound is tight for

both P and S; see Fig. 1.11 (right).

Remark. If Λ is the infinite hexagonal lattice, it is shown in [21] that δ0(Λ, 3) = 1 +
√

3.

We now continue with degree 4 dilation. We first exhibit a point set P of n = 6 points

with degree 4 dilation 1 +
√

(5−
√

5)/2, and then extend it so to achieve the same lower bound
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Figure 1.13: A set of n ≥ 13 points with degree 3 dilation 1 +
√

3. The figure is not drawn to
scale.

for any larger n. Consider the 6-element point set P = {p0, . . . , p5}, where p1, . . . , p5 are the

vertices of a regular pentagon centered at p0.

Theorem 1.3. For every n ≥ 6, there exists a set S of n points such that

δ0(S, 4) ≥ 1 +
√

(5−
√

5)/2 = 2.1755 . . .

The inequality is tight for the presented sets.

Proof. Assume that p1, . . . , p5 lie on a circle of unit radius centered at p0. Since deg(p0) ≤ 4,

there exists a point pi, 1 ≤ i ≤ 5 such that p0pi is not present; we may assume that i = 1; see

Fig. 1.14. Observe that

p0

p1

p2

p3
p4

p5

Figure 1.14: A plane degree 4 geometric graph on the point set {p0, . . . , p5} that has stretch
factor exactly 1 +

√
(5−

√
5)/2, which is achieved by the detour between the pair p0, p1.

|p0p1| = 1 and |p1p2| = |p1p5| =
√

12 + 12 − 2 · 1 · 1 cos(2π/5) =
√

(5−
√

5)/2.
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Now,

δ(p0, p1) ≥ |%(0, i, 1)|
|p0p1|

≥ 1 +
√

(5−
√

5)/2 = 2.1755 . . . , where i ∈ {2, 5}.

Thus, δ0(P, 4) ≥ 1 +
√

(5−
√

5)/2. As in the proof of Theorem 1.2, the aforesaid six points

can be used to obtain the same lower bound for any n ≥ 6.

To see that the above lower bound is tight, consider the degree 4 geometric graph on P in

Fig. 1.14 whose stretch factor is exactly that, due to the detour between p0, p1.

1.4 A lower bound on the dilation of the greedy triangulation

In this section, we present a lower bound on the worst case dilation of the greedy triangulation.

Place four points at the vertices of a unit square U , and two other points in the exterior of U on

the vertical line through the center of U and close to the lower and upper sides of U , as shown in

Fig. 1.15 (left). For any small ε > 0, the points can be placed so that the resulting stretch factor

is at least δ(p0, p3) ≥ 2− ε. A modification of this idea gives a slightly better lower bound.

Theorem 1.4. For every n ≥ 6, there exists a set S of n points such that the stretch factor of the

greedy triangulation of S is at least 2.0268.

Proof. Replace the unit square by a parallelogram V with two horizontal unit sides, unit height

and angle α ∈ (π/4, π/2) to be determined, as shown in Fig. 1.15 (right). Place four points at the

vertices of V and two other points in the exterior of V on the vertical line through the center

of the V and close to the lower and upper side of V . First, observe that the greedy triangulation

is unique for this point set. Second, observe that there are two candidate detours connecting

p0 with p3: one of length (slightly longer than) 1 + a and one of length (slightly longer than)

2x+ b, where a is the length of the slanted side of V , b is the length of the short diagonal of V ,

and x is the horizontal distance between the upper left corner and the center of V .
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Figure 1.15: Greedy triangulation of 6 points with stretch factors 2− ε (left) and 2.0268 (right).

A straightforward calculation gives:

a = 1
sinα, b =

√
1 + sin2 α− 2 sinα cosα

sinα , and x = 1− cotα
2 .

Let f(α) = min
(

1 + 1
sinα, 1− cotα +

√
1 + sin2 α− 2 sinα cosα

sinα

)
, for α ∈

(
π

4 ,
π

2

)
.

Setting α = 1.3416 (i.e., α = 76.87◦) yields

δ(p0, p3) ≥ max
α∈(π/4,π/2)

f(α) ≥ f(1.3416) = 2.0268 . . . ,

as required. As in the proofs of Theorems 1.2 and 1.3, the lower bound can be extended for

every n ≥ 6 in a straightforward way.

1.5 Concluding remarks

In Section 1.2, we have shown that any plane spanning graph of the vertices of a regular 23-gon

requires a stretch factor of (2 sin 2π
23 + sin 8π

23 )/ sin 11π
23 = 1.4308 . . . Henceforth, the question of

Bose and Smid [11, Open Problem 1] mentioned in the Introduction can be restated:

Problem 1.1. Does there exist a point set S in the Euclidean plane such that δ0(S) > (2 sin 2π
23 +

sin 8π
23 )/ sin 11π

23 = 1.4308 . . .?

Next in Section 1.3, it has been shown that there exist point sets that require degree 3 dila-
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tion 1 +
√

3 = 2.7321 . . . (Theorem 1.2) and degree 4 dilation 1 +
√

(5−
√

5)/2 = 2.1755 . . .

(Theorem 1.3). Perhaps these lower bounds can be improved.

Problem 1.2. Does there exist a point set in the Euclidean plane that has degree 3 dilation greater

than 1 +
√

3? Does there exist a point set in the Euclidean plane that has degree 4 dilation greater

than 1 +
√

(5−
√

5)/2?

Finally in Section 1.4, we show that the stretch factor of the greedy triangulation is at least

2.0268, in the worst case. Perhaps this lower bound is not far from the truth. Using a computer

program we have generated 1000 random uniformly distributed n-element point sets in a unit

square for every n in the range 4 ≤ n ≤ 250, and computed the greedy triangulations and

corresponding stretch factors. The highest stretch factor among these was only 1.97 (as attained

for a 168-element point set), and so this suggests the following.

Problem 1.3. Is the worst case stretch factor of the greedy triangulation attained by points in convex

position?

p1(0, 0) p2(30, 0)

p3(30, 15)

p6(18, 25)

p4(25, 15)
p5(23, 17)

p1(0, 0) p2(30, 0)

p6(18, 25)

p4(25, 15)

Figure 1.16: Left: greedy triangulation of a set of 6 points not in convex position with stretch
factor ∆ = 1.4772 . . . attained by the pair {p1, p4}. Right: the largest stretch factor of the greedy
triangulation of a convex subset is that for the subset S ′ = {p1, p2, p4, p6}; it is attained by the
same pair {p1, p4} and equals 1.4753 . . . < ∆. The corresponding shortest paths are drawn in
red color.

Observe that the point set used in the lower bound construction in Theorem 1.4 is convex,

so it is natural to ask: given a non-convex point set S and a greedy triangulation of S having

stretch factor ∆, does there always exist a convex subset S ′ ⊂ S such that the stretch factor

of a greedy triangulation for S ′ also equals ∆? The point set S = {p1, . . . , p6} illustrated in
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Fig. 1.16 shows that this is not the case. It is routine to verify that the stretch factor of the

greedy triangulation of each convex subset S ′ ⊂ S is at most 1.4753 . . . < ∆ = 1.4772 . . .
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Appendix

Source code. The following parallel C++ code is written using OpenMP in C++11 (notice

the pragma directives present in the code). For the set of N = 23 points, the program ran for

approximately 2 days on a computer with quad core processor. The program was compiled with

g++ 4.9.2. Please note that older versions of g++ might have issues with OpenMP support.

Following is a correct way of compiling the program.

g++ program.cpp -std=c++11 -fopenmp -O3

The number of threads has been set to 4 using the variable numberOfThreads in main(). The

user may alter the value of the variable depending on the processor.

Following is the output from the program.

Execution started...

Triangulations checked: 24466267020

Dilation: 1.4308143191

Time taken: 162829 seconds

#include <iostream>

#include <cmath>

#include <omp.h>

#include <list>

#include <vector>

#include <chrono>

#define M_PI 3.14159265358979323846

using namespace std;

35



using namespace chrono;

struct Edge { unsigned u,v; };

struct gc { unsigned vis_v; Edge oppositeEdge; };

unsigned numberOfThreads;

vector<unsigned long long> countTriangulations;

vector<double> minStretchFactor;

list<unsigned> jobList;

typedef vector<vector<double>> Matrix2D;

vector<Matrix2D> distarrayCollection;

struct Triangulation

{

unsigned N;

list<gc> gcList;

list<Edge> bcList;

Triangulation(const unsigned numberOfPoints)

{

N = numberOfPoints;

for(unsigned vertexID = 2; vertexID < N-1; vertexID++)

gcList.push_front({vertexID,{vertexID-1,vertexID+1}});

}

void flipgc(const unsigned gchord)

{

list<gc>::iterator hold;
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for(auto it = gcList.begin(); it != gcList.end(); it++)

if(it->vis_v == gchord)

{

bcList.push_front(it->oppositeEdge);

if(next(it,1) != gcList.end())

next(it,1)->oppositeEdge.v = it->oppositeEdge.v;

if(it != gcList.begin())

prev(it,1)->oppositeEdge.u = it->oppositeEdge.u;

hold = it;

break;

}

gcList.erase(hold);

}

};

inline double distance(const unsigned p1, const unsigned p2, const unsigned N)

{

unsigned absVal = max(p1,p2) - min(p1,p2);

unsigned lambda = min(absVal,N-absVal);

return 2*sin((lambda*M_PI)/N);

}

void calculateStretchFactorOfTriangulation(const Triangulation T, const unsigned

thread_ID)

{
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double stretchFactor = 0;

Matrix2D dist = distarrayCollection[thread_ID];

for(unsigned i = 0; i < T.N; i++)

for(unsigned j = 0; j < T.N; j++)

dist[i][j] = (i != j)? INFINITY : 0;

for(unsigned i = 0; i < T.N-1; i++)

dist[i][i+1] = dist[i+1][i] = distance(i,i+1,T.N);

dist[T.N-1][0] = dist[0][T.N-1] = distance(T.N-1,0,T.N);

for(auto it = T.gcList.begin(); it != T.gcList.end() ; it++)

dist[0][it->vis_v] = dist[it->vis_v][0] = distance(0,it->vis_v,T.N);

for(auto it = T.bcList.begin(); it != T.bcList.end() ; it++)

dist[it->u][it->v] = dist[it->v][it->u] = distance(it->u,it->v,T.N);

for(unsigned k = 0; k < T.N; k++)

for(unsigned i = 0; i < T.N; i++)

for(unsigned j = 0; j < T.N; j++)

if (dist[i][j] > dist[i][k] + dist[k][j])

dist[i][j] = dist[i][k] + dist[k][j];

for(unsigned i = 0; i < T.N; i++)

for(unsigned j = 0; j < T.N && i != j; j++)

{

double tempRatio = dist[i][j] / distance(i,j,T.N);

if(tempRatio > stretchFactor)
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stretchFactor = tempRatio;

}

if(minStretchFactor[thread_ID] > stretchFactor)

minStretchFactor[thread_ID] = stretchFactor;

}

void findChildren(Triangulation &T, const unsigned gchord,const unsigned

thread_ID)

{

T.flipgc(gchord);

countTriangulations[thread_ID]++;

calculateStretchFactorOfTriangulation(T,thread_ID);

if(!T.gcList.empty())

for(auto it = T.gcList.begin(); it != T.gcList.end(); it++)

if(it->vis_v >= T.bcList.front().u)

{

Triangulation *childTriangulation = new Triangulation(T);

findChildren(*childTriangulation,it->vis_v,thread_ID);

delete childTriangulation;

}

}

void thread_job(const unsigned N, const unsigned thread_ID)

{

Triangulation *childTriangulation;

unsigned gchord;
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while(true)

{

gchord = 0;

#pragma omp critical

{

if(jobList.size() > 0)

{

gchord = jobList.front();

jobList.pop_front();

}

}

if(gchord == 0)

break;

childTriangulation = new Triangulation(N);

findChildren(*childTriangulation,gchord,thread_ID);

delete childTriangulation;

}

}

void findAllTriangulations(const unsigned N)

{

Triangulation rootTriangulation(N);

countTriangulations[0]++;

calculateStretchFactorOfTriangulation(rootTriangulation,0);

40



#pragma omp parallel for num_threads(numberOfThreads)

for(unsigned thread_id = 0; thread_id < numberOfThreads; thread_id++)

thread_job(N,thread_id);

}

void initDataStructures(const unsigned N)

{

minStretchFactor.assign(numberOfThreads,INFINITY);

countTriangulations.assign(numberOfThreads,0);

for(unsigned gc = N-2; gc >= 2; gc--)

jobList.push_front(gc);

distarrayCollection.resize(numberOfThreads);

for(unsigned thread_ID = 0; thread_ID < numberOfThreads; thread_ID++)

{

Matrix2D matrix(N);

for(unsigned pos = 0; pos < N; pos++)

matrix[pos].resize(N);

distarrayCollection[thread_ID] = matrix;

}

}

int main()

{

unsigned N = 23;

numberOfThreads = 4;
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double dilation = INFINITY;

unsigned long long totalNoOfTriangulations = 0;

cout << "Execution started...\n";

auto start = system_clock::now();

initDataStructures(N);

findAllTriangulations(N);

for(unsigned thread_ID = 0; thread_ID < numberOfThreads; thread_ID++)

{

if( countTriangulations[thread_ID] > 0 && minStretchFactor[thread_ID] <

dilation)

dilation = minStretchFactor[thread_ID];

totalNoOfTriangulations += countTriangulations[thread_ID];

}

printf("Triangulations checked: %lld\n",totalNoOfTriangulations);

printf("Dilation: %1.10f\n",dilation);

system_clock::time_point stop = system_clock::now();

auto duration = duration_cast<seconds>( stop - start ).count();

cout << "Time taken: " << duration << " seconds" << endl;

return EXIT_SUCCESS;

}
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2.1 Introduction

Let P be a (possibly infinite) set of points in the Euclidean plane. A geometric graph embedded

on P is a graph G = (V,E) where V = P and an edge uv ∈ E is the line segment connecting

u and v. View G as a edge-weighted graph, where the weight of uv is the Euclidean distance

between u and v. A geometric graph G is a t-spanner, for some t ≥ 1, if for every pair of vertices

u, v in V , the length of the shortest path πG(u, v) between u and v in G is at most t times |uv|,

i.e., ∀u, v ∈ V, |πG(u, v)| ≤ t|uv|. Obviously, the complete geometric graph on a set of points

is a 1-spanner. When there is no need to specify t, the rather imprecise term geometric spanner

is also used. A geometric spanner G is plane if no two edges in G cross. Here we only consider
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plane geometric spanners. A geometric spanner of degree at most k is called degree k geometric

spanner.

Consider a geometric spanner G = (V,E). The vertex dilation or stretch factor of a pair

u, v ∈ V , denoted δG(u, v), is defined as δG(u, v) = |πG(u, v)|/|uv|. If G is clear from the

context, we simply write δ(u, v). The vertex dilation or stretch factor of G, denoted δ(G), is

defined as δ(G) = supu,v∈V δG(u, v). The terms graph theoretic dilation and spanning ratio are

also used [17, 22, 30].

Given a point set P , let the dilation of P , denoted by δ0(P ), be the minimum stretch factor

of a plane geometric graph (equivalently, triangulation) on vertex set P ; see [29]. Similarly,

let the degree k dilation of P , denoted by δ0(P, k), be the minimum stretch factor of a plane

geometric graph of degree at most k on vertex set P . Clearly, δ0(P, k) ≥ δ0(P ) holds for any

k. Furthermore, δ0(P, j) ≥ δ0(P, k) holds for any j < k. (Note that the term dilation has been

also used with different meanings in the literature, see for instance [8, 23].)

The field of geometric spanners has witnessed a great deal of interest from researchers, both

in theory and applications; see for instance the survey articles [8, 19, 20, 30]. For the current

status of various open problems in this area, the reader is referred to the web-page maintained

by Smid [31].

Typical objectives include constructions of low stretch factor geometric spanners that have

few edges, bounded degree, low weight and/or diameter, etc. Geometric spanners find their

applications in the areas of robotics, computer networks, distributed systems and many others.

Various algorithmic and structural results on sparse geometric spanners can be found in [1, 2, 3,

10, 11, 18, 23, 25].

Chew [12] was the first to show that it is always possible to construct a plane 2-spanner with

O(n) edges on a set of n points; more recently, Xia [32] proved a slightly sharper upper bound

of 1.998 using Delaunay triangulations. Bose et al. [7] showed that there exists a plane t-spanner

of degree at most 27 on any set of points in the Euclidean plane where t ≈ 10.02. The result

was subsequently improved in [4, 9, 6, 21, 26] in terms of degree. Recently, Bonichon et al. [5]
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reduced the degree to 4 with t ≈ 156.82. The question whether the degree can be reduced to

3 remains open at the time of this writing; if one does not insist on having a plane spanner,

Das et al. [13] showed that degree 3 is achievable. From the other direction, lower bounds on

the stretch factors of plane spanners for finite point sets have been investigated in [15, 23, 29].

It is natural to study the existence of low-degree spanners of fundamental regular structures,

such as point lattices. Indeed, these have been the focus of interest since the early days of

computing. One such intense research area concerns VLSI [24]. Other applications of spanners

(not necessarily geometric) are in the areas of computer networks and parallel computing; see

for instance [27, 28]. While the authors of [27, 28] do examine grid structures (including planar

ones), the resulting stretch factors however are not defined (or measured) in geometric terms.

More recently, lattice structures at a larger scale are used in industrial design, modern urban

design and outer space design. Indeed, Manhattan-like layout of facilities and road connections

are very convenient to plan and deploy, frequently in an automatic manner. Studying the stretch

factors that can be achieved in low degree spanners of point sets with a lattice structure appears

to be quite useful. The two most common lattices are the square lattice and the hexagonal lattice.

According to an argument due to Das and Heffernan [13],[30, p. 468], the n points in a
√
n×
√
n section of the integer lattice cannot be connected in a path or cycle with stretch factor

o(
√
n), O(1) in particular. Similarly, no degree 2 plane spanner of the infinite integer lattice

can have stretch factor O(1), hence a minimum degree of 3 is necessary in achieving a constant

stretch factor. The same facts hold for the infinite hexagonal lattice.

Our results. Let Λ be the infinite square lattice. We show that the degree 3 and 4 dilation of

this lattice are bounded as follows:

(i) 1 +
√

2 ≤ δ0(Λ, 3) ≤ (3 + 2
√

2) 5−1/2 (Theorem 2.1, Section 2.3).

(ii) δ0(Λ, 4) =
√

2 (Theorem 2.2, Section 2.3).

If Λ is the infinite hexagonal lattice, we show that
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(i) δ0(Λ, 3) = 1 +
√

3 (Theorem 2.3, Section 2.4).

(ii) δ0(Λ, 4) = 2 (Theorem 2.4, Section 2.4).

2.2 Preliminaries

By the well known Cauchy-–Schwarz inequality for n = 2, if a, b, x, y ∈ R+, then

g(x, y) = ax+ by√
x2 + y2 ≤

√
a2 + b2,

and moreover, g(x, y) =
√
a2 + b2 when x/y = a/b. In this chapter, we will use this inequality

in an equivalent form:

Fact 2.1. Let a, b, λ ∈ R+. Then f(λ) = aλ+ b√
λ2 + 1

≤
√
a2 + b2, and moreover, f(λ) =

√
a2 + b2

when λ = a/b.

Notations and assumptions. Let P be a planar point set andG = (V,E) be a plane geometric

graph on vertex set P . For p, q ∈ P , pq denotes the connecting segment and |pq| denotes its

Euclidean length. The degree of a vertex (point) p ∈ V is denoted by deg(p). For a specific point

set P = {p1, . . . , pn}, we denote the shortest path between ps, pt in G consisting of vertices in

the order ps, . . . , pt using %(ps, . . . , pt) and by |%(ps, . . . , pt)| its total Euclidean length. The

graphs we construct have the property that no edge contains a point of P in its interior.

2.3 The square lattice

This section is devoted to the degree 3 and 4 dilation of the square lattice. In [16], we showed

that the degree 3 dilation of the infinite square lattice is at most (7 + 5
√

2) 29−1/2 = 2.6129 . . .;

also see the Appendix for the same results. Here we improve this upper bound to δ0 := (3 +

2
√

2) 5−1/2 = 2.6065 . . . We believe that this upper bound is the best possible, and so in this
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section we present two degree 3 spanners for the infinite square lattice that attain this bound.

Another possible candidate is presented in Section 1.5.

Theorem 2.1. Let Λ be the infinite square lattice. Then,

2.4142 . . . = 1 +
√

2 ≤ δ0(Λ, 3) ≤ (2
√

2 + 3) 5−1/2 = 2.6065 . . .

Proof. To prove the lower bound, consider any point p0 ∈ Λ and its eight neighbors p1, . . . , p8,

as in Fig. 2.1. Since deg(p0) ≤ 3, p0 can be connected to at most three neighbors from

p0

p8

p2

p1

p3p4p5

p6

p7

1

Figure 2.1: Illustrating the lower bound of 1 +
√

2 for the square lattice.

{p2, p4, p6, p8}. We may assume that the edge p0p2 is not present; then

δ(p0, p2) ≥ |%(p0, pi, p2)|
|p0p2|

≥ 1 +
√

2, where i ∈ {1, 3, 4, 8}.

To prove the upper bound, we construct a plane degree 3 geometric graph G as illustrated

in Fig. 2.2 (left); observe that there are four types of vertices in G. For any two lattice points

p, q ∈ Λ, we construct a path in G. Set p = (0, 0) as the origin and consider the four quadrants

Wi, i = 1, . . . , 4, labeled counterclockwise in the standard fashion; see Fig. 2.2 (right). Points on

the dividing lines are assigned arbitrarily to any of the two adjacent quadrants. By the symmetry

of G, we can assume that q lies in the first quadrant, thus q = (x, y), where x, y ≥ 0, while the

origin p = (0, 0) can be at any of the four possible types of lattice points.

Consider the path from p = (0, 0) to q = (x, y) via (z, z), where z = min(x, y), that visits

every other lattice point on this diagonal segment as shown in Fig. 2.3, and let `(x, y) denote its

length. If x = 0, the stretch factor is easily seen to be at most 1 +
√

2. Since a horizontal path

connecting two points with the same y-coordinate at distance a is always shorter than any path
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connecting two points with the same x-coordinate at the same distance a, it is enough to prove

our bound on the stretch factor in the case y ≥ x (i.e., z = x). We thus subsequently assume

that y ≥ x ≥ 1.

p

W1W2

W3 W4

q

Figure 2.2: Left: a degree 3 plane graph on Λ. Right: a schematic diagram showing the path
between p, q (when x ≤ y). The bold path consist of segments of lengths 1 and

√
2.

p

q

p

q

Figure 2.3: Paths connecting p to q inG generated by the procedure outlined in the text. Observe
that in both examples a unit horizontal edge is traversed in both directions (but can be shortcut).

Observe that connecting points (a, a) with (a + 2, a + 2), for any a ≥ 0, requires length

2 + 2
√

2, and that connecting points (a, a) with (a+ 1, a+ 1), for any a ≥ 0, requires length at

most 2 +
√

2. It follows that

`(x, y) ≤
(

2
⌈
x

2

⌉
+
√

2x
)

+ (y − x)(1 +
√

2)

≤ 2
(
x+ 1

2

)
+
√

2x+ (y − x)(1 +
√

2) = 1 + y(1 +
√

2).
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Since |pq| =
√
x2 + y2, the corresponding stretch factor is bounded in terms of x, y as follows

δ(p, q) ≤ γ(x, y) := 1 + y(1 +
√

2)√
x2 + y2 . (2.1)

We now consider the case x = 1 separately. Let λ = 1
y
, where y = 1, 2, 3, 4, 5, . . ., and so

λ = 1, 1
2 ,

1
3 ,

1
4 ,

1
5 , . . . ∈ (0, 1). According to (2.1) we have

γ(1, y) ≤ 1 + y(1 +
√

2)√
y2 + 1

= λ+ 1 +
√

2√
λ2 + 1

=: f(λ).

The derivative f ′ vanishes at λ0 = 1√
2+1 =

√
2 − 1 = 0.4142 . . . On the interval (0, 1): f

is increasing on the interval (0, λ0) and decreasing on the interval (λ0, 1); it attains a unique

maximum at λ = λ0. Since λ0 ∈ (1
3 ,

1
2), we have

f(λ) ≤ max
(
f
(1

3

)
, f
(1

2

))
= f

(1
3

)
= f

(1
2

)
= δ0.

It remains to consider the case x ≥ 2; according to (2.1) we have

δ(p, q) ≤ 1 + y(1 +
√

2)√
x2 + y2 ≤ 1 + y(1 +

√
2)√

4 + y2

= (1 +
√

2)(y/2) + 1/2√
(y/2)2 + 1

≤
√

(1 +
√

2)2 + 1/4 = 2.4654 . . . < δ0,

where the last inequality follows from Fact 2.1 by setting λ = y/2.

This completes the case analysis. Observe that the above analysis is tight since there are

point pairs with x = 1, y = 2 having pairwise stretch factor δ0. We have thus shown that for

any p, q ∈ Λ, we have δ(p, q) ≤ (3 + 2
√

2) 5−1/2, completing the proof of the upper bound, and

thereby the proof of Theorem 2.1.

Another degree 3 spanner with stretch factor δ0 = (3 + 2
√

2) 5−1/2. The graph G is illus-

trated in Fig. 2.4 (left). For any two lattice points p, q ∈ Λ, we construct a path in G. Set
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p = (0, 0) as the origin and consider the four quadrants Wi, i = 1, . . . , 4, labeled counter-

clockwise in the standard fashion; see Fig. 2.4 (right). Points on the dividing lines are assigned

arbitrarily to any of the two adjacent quadrants. By the symmetry of G, we can assume that q

lies in one of the first two quadrants.

p

W4W3

W2 W1

q
q

Figure 2.4: Left: a degree 3 spanner on Λ. Right: a schematic diagram showing the path between
p, q when q lies in different quadrants of p (when y ≤ x). The bold paths consist of segments of
lengths 1 and

√
2.

Case 1: q ∈ W1. By the symmetry of G, we may assume in the analysis that q = (x, y),

where 0 ≤ y ≤ x. Consider the path from p to q via (y, y), that visits every lattice point on this

diagonal segment as shown in Fig. 2.5 and let `(x, y) denote its length.

p

q

q

p

q q

Figure 2.5: Illustration of various paths from p to q depending on the pattern of edges incident
to p; for q ∈ W1 (in red) and for q ∈ W2 (in blue). Observe that in the red path on the left, a
unit vertical edge is traversed in both directions (but can be shortcut).

If y = 0, or x = y, it is easily checked that the stretch factor is at most 1 +
√

2. Assume
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subsequently that x ≥ y + 1 and y ≥ 1. A path of length (2 + 2
√

2)by/2c+ (y mod 1)(2 +
√

2)

suffices to reach from p = (0, 0) to (y, y), and a path of length d(x− y)/2e
√

2 + (x− y) suffices

to reach from (y, y) to q = (x, y). Thus,

`(x, y) ≤ (2 + 2
√

2)
⌊
y

2

⌋
+ (y mod 1)(2 +

√
2) +

⌈
x− y

2

⌉√
2 + (x− y).

That is,

`(x, y) ≤


(2 + 2

√
2)y2 + (x− y) +

⌈
x− y

2

⌉√
2, for even y

(2 + 2
√

2)y − 1
2 + (2 +

√
2) + (x− y) +

⌈
x− y

2

⌉√
2, for odd y.

The distance |pq| equals
√
x2 + y2 in either case, and so the corresponding stretch factor

(bounded in terms of x, y) is

δ(p, q) ≤ γ(x, y) :=



(
1 +

√
2

2

)
x+

√
2

2 y +
√

2
2√

x2 + y2 , for even y (2.2)(
1 +

√
2

2

)
x+

√
2

2 y +
(
1 +

√
2

2

)
√
x2 + y2 , for odd y. (2.3)

Consider first the case of even y. Since the case y = 0 has been dealt with, we have y ≥ 2.

Setting λ = x/y in (2.2) and using Fact 2.1 in the last step yields

δ(p, q) ≤ γ(x, y) =

(
1 +

√
2

2

)
λ+

√
2

2 +
√

2
2y√

λ2 + 1
≤

(
1 +

√
2

2

)
λ+ 3

√
2

4√
λ2 + 1

≤

√√√√(1 +
√

2
2

)2

+ 9
8 < 2.01 < δ0.

Consider now the case of odd y. We have y ≥ 1 and x ≥ y + 1 ≥ 2. By (2.3) we have

γ(x, 1) =

(
1 +

√
2

2

)
x+ (1 +

√
2)

√
x2 + 1

:= f(x).

We next show that f is decreasing on the interval [2,∞). Indeed, f ′(x) = f1(x)/(x2 + 1)3/2,
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where

f1(x) =
(

1 +
√

2
2

)
(x2 + 1)− x

[(
1 +
√

2
2

)
x+ (1 +

√
2)
]

=
(

1 +
√

2
2

)
− (1 +

√
2)x < 0, for x ≥ 2.

Consequently,

δ(p, q) ≤ γ(x, 1) = f(x) ≤ f(2) = δ0,

as required. Observe that the above analysis is tight for some point pairs with x = 2, y = 1 (that

achieve stretch factor δ0).

Consider now the remaining case y ≥ 3. Setting λ = x/y in (2.3) and using Fact 2.1 in the

last step yields

δ(p, q) ≤ γ(x, y) ≤

(
1 +

√
2

2

)
λ+

√
2

2 +
(
1 +

√
2

2

)
1
3√

λ2 + 1
=

(
1 +

√
2

2

)
λ+ 1+2

√
2

3√
λ2 + 1

≤

√√√√(1 +
√

2
2

)2

+
(

1 + 2
√

2
3

)2

< 2.14 < δ0,

as required.

Case 2: q ∈ W2. We may assume that q = (−x, y), where x ≥ y ≥ 0. Consider the path from

p to q via (−y, y), that visits every lattice point on this diagonal segment as shown in Fig. 2.5,

and let `(x, y) denote its length. The distance |pq| equals
√
x2 + y2.

If y = 0, it is easily checked that the stretch factor is at most
√

2, and so we assume subse-

quently that y ≥ 1. The path length `(x, y) is bounded from above as

`(x, y) ≤ 2y + (x− y) +
⌈
x− y

2

⌉√
2 ≤ 2y + (x− y) + x− y + 1

2
√

2

=
(

1 +
√

2
2

)
x+

(
1−
√

2
2

)
y +
√

2
2 ≤

(
1 +
√

2
2

)
x+ y.
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Setting λ = x/y and using Fact 2.1 in the last step yields that the stretch factor is bounded as

δ(p, q) ≤ γ(x, y) :=

(
1 +

√
2

2

)
x+ y

√
x2 + y2 =

(
1 +

√
2

2

)
λ+ 1

√
λ2 + 1

≤

√√√√(1 +
√

2
2

)2

+ 1 <
√

4 = 2 < δ0,

as required.

Next, we determine the degree 4 dilation of the square lattice.

Theorem 2.2. Let Λ be the infinite square lattice. Then δ0(Λ, 4) =
√

2.

Proof. Trivially, the (unrestricted degree) dilation of four points placed at the four corners of a

square is
√

2. Thus, δ0(Λ) ≥
√

2. To prove the upper bound, construct a 4-regular graph G on

Λ by connecting every (i, j) ∈ Λ with its four neighbors (i+ 1, j), (i, j+ 1), (i− 1, j), (i, j− 1).

For any two points p, q ∈ Λ, the Manhattan path connecting them yields a stretch factor of the

form
x+ y√
x2 + y2 ≤

√
2, where x, y ∈ N,

as required.

Remark. It can be checked that the upper and lower bounds in Theorem 2.2 hold for every

degree k ≥ 4. Thus, δ0(Λ, k) =
√

2 for k ≥ 4.

2.4 The hexagonal lattice

This section is devoted to the degree 3 and 4 dilation of the hexagonal lattice. In [16], we

showed that the degree 3 dilation of the infinite hexagonal lattice is between 2 and 3. Also see

the Appendix for the degree 3 geometric spanner having stretch factor 3. Here we establish that

the exact value is 1 +
√

3.

Theorem 2.3. Let Λ be the infinite hexagonal lattice. Then δ0(Λ, 3) = 1 +
√

3.

Proof. Lower bound. Consider a section of the lattice as shown in Fig. 2.6 (left). First, we
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Figure 2.6: If an edge of length
√

3 is present, then the stretch factor of any plane degree 3 graph
is ≥ 1 +

√
3.

will show that if an edge of length at least
√

3 is present, the stretch factor of any resulting

plane degree 3 graph is at least 1 +
√

3. Now assume, as we may, that the edge p0p8 of length
√

3 is present. Now consider the point pair p1, p2. Clearly, |p1p2| = 1. It is easy to check that

between p1, p2, there are two shortest detours each of length 2, viz. %(p1, p8, p2) and %(p1, p0, p2).

The next largest detours %(p1, p8, p9, p2) and %(p1, p0, p3, p2) have length 3 each, in which cases,

δ(p1, p2) ≥ 3. Hence, without loss of any generality, consider %(p1, p8, p2), and assume that the

edges p1p8 and p2p8 are present. Then,

δ(p8, p21) ≥ |%(p8, p2, p21)|
|p8p21|

≥ 1 +
√

3.

A similar argument can be made for any edge e of length greater than
√

3, since one can

always locate two lattice points lying in opposite sides of e; as required in the above analysis.

In the remaining part of the proof, assume that no edge of length
√

3 or more is present. In

particular, we will only consider unit length edges in our proof. Note that if every point in Λ

has degree 1 in the graph, we have a matching on Λ, and hence the graph is disconnected. Thus,

let p0 be any point in Λ with degree at least 2. We have the following two1 cases:

Case 1: deg(p0) = 2. There are 3 non-symmetric sub-cases as follows.
1As mentioned in Section 2.1, one can argue that degree 3 is needed for achieving a constant stretch factor.

Thus, it is enough to analyze the case when deg(p0) = 3. Nevertheless, we include a complete argument.
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Figure 2.7: Illustration of Case 1 from the proof of lower bound in Theorem 2.3. Left: Case 1.1,
Middle: Case 1.2, Right: Case 1.3.

Case 1.1: Refer to Fig. 2.7 (left). Let the edges p0p1, p0p2 be present. Then,

δ(p0, p4) ≥ |%(p0, p2, p3, p4)|
|p0p4|

≥ 3.

Case 1.2: Refer to Fig. 2.7 (middle). Now, let the edges p0p1, p0p3 be present. Then,

δ(p0, p5) ≥ |%(p0, p3, p4, p5)|
|p0p5|

= |%(p0, p1, p6, p5)|
|p0p5|

≥ 3.

Case 1.3: Refer to Fig. 2.7 (right). Let the edges p0p1, p0p4 be present. Note that if the

edge p3p4 is absent, δ(p0, p3) ≥ 3. So, assume that p3p4 is present. Similarly let p4p5 be present

otherwise δ(p0, p5) ≥ 3. Then, arguing the same way as in Case 1.2, δ(p4, p13) ≥ 3.

Case 2: deg(p0) = 3. There are 3 non-symmetric sub-cases as follows.

Case 2.1: Refer to Fig. 2.8 (left). Let the edges p0p1, p0p2, p0p3 be present. Then, by a similar

argument as in Case 1.2, δ(p0, p5) ≥ 3.

Case 2.2: Refer to Fig. 2.8 (middle). Now, let the edges p0p3, p0p4, p0p6 be present. Clearly,

if p1p6 is absent, δ(p0, p1) ≥ 3. Thus, assume that p1p6 is present. Now consider the pair p5, p6.

If p5p6 is present, then δ(p6, p17) ≥ 3, arguing in a similar way to Case 1.2. Thus, assume that

p5p6 is absent. The shortest detour between p5, p6 is %(p5, p16, p6) which has length 2. The

next largest detour has length 3. So, let the edges p6p16 and p5p16 be present. Now consider
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Figure 2.8: Illustration of Case 2 from the proof of lower bound in Theorem 2.3. Left: Case 2.1,
Middle: Case 2.2, Right: Case 2.3.

the pair p16, p17. If p16p17 is present, δ(p16, p32) ≥ 3 (analysis is similar to Case 1.2), otherwise,

δ(p6, p17) ≥ 3.

Case 2.3: Refer to Fig. 2.8 (right). Let p0p2, p0p4, p0p6 be present. To achieve δ(p0, p1) = 2, at

least one of p1p2 or p1p6 needs to be present (the next largest detour has length 3). Without loss

of any generality, assume that p1p2 is present. Now consider the pair p2, p3. If p2p3 is present,

then by Case 2.1, δ(p2, p9) ≥ 3. So, assume that p2p3 is absent. The minimum length detour

is %(p2, p10, p3) (next largest detours have length 3 each). Thus, let p2p10 and p3p10 be present.

Now, observe that the edges incident to p2 form the same symmetric pattern as dealt with in

Case 2.2, where it is shown that the stretch factor of any resulting degree 3 plane graph is at least

3.

Upper bound. We construct a 3-regular graph G achieving δ0(Λ, 3) ≤ 1 +
√

3, as illustrated

in Fig. 2.9 (left). For any two lattice points p, q ∈ Λ, we construct a path inG. Set p as the origin,

and subdivide the plane into six wedges of 60◦ each, centered at p, and labeled counterclockwise

Wi, i = 1, . . . , 6, as in Fig. 2.9 (right). Points on the dividing lines are assigned arbitrarily to any

of the two adjacent wedges. Let θ = π/3, and consider the three unit vectors ~µi = (cos iθ, sin iθ),

for i = 0, 1, 2. We distinguish three cases depending on the location of q.

Case 1: q ∈ W1 (the case q ∈ W4 is symmetric), i.e., ~q = u ~µ0 + v ~µ1, for some u, v ∈ N. By

the symmetry of G, we can assume that u ≥ v ≥ 0 in the analysis. Consider the path from p
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W1W2W3

W4 W5 W6

p

q

q

q

Figure 2.9: Left: a degree 3 plane graph on Λ. Right: a schematic diagram showing the path
between p and q when q lies in different wedges determined by p. The bold paths consist of
segments of lengths 1 and

√
3. Alternative paths are shown using dotted segments.

to q via v ~µ0 + v ~µ1 that visits every lattice point on the diagonal segment, as shown in Fig. 2.10

and let `(u, v) denote its length. Observe that connecting a ~µ0 + a ~µ1 to (a + 2) ~µ0 + (a + 2) ~µ1

requires a length of 2 + 2
√

3. Thus,

`(u, v) ≤ (2 + 2
√

3)
⌊
v

2

⌋
+ (2 +

√
3)(v mod 1) + (u− v) +

⌈
u− v

2

⌉√
3.

p

q

q

q

p

q

q

q

Figure 2.10: Illustration of various paths from p to q depending on the pattern of edges incident
to p; for q ∈ W1 (in red), for q ∈ W2 (in blue), and for q ∈ W6 (in green).
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For even v, `(u, v) is bounded from above by

`(u, v) ≤
(
2 + 2

√
3
) v

2 +
(

1 +
√

3
2

)
(u− v) +

√
3

2 =
(

1 +
√

3
2

)
u+
√

3
2 v +

√
3

2 .

For odd v, `(u, v) is bounded from above by

`(u, v) ≤
(
2 + 2

√
3
) v − 1

2 + (2 +
√

3) +
(

1 +
√

3
2

)
(u− v) +

√
3

2

=
(

1 +
√

3
2

)
u+
√

3
2 v +

(
1 +
√

3
2

)
.

The distance |pq| equals

√
u2 + v2 − 2uv cos 2π

3 =
√
u2 + v2 + uv,

and so the corresponding stretch factor δ(p, q) is bounded by a function γ(u, v) as follows

δ(p, q) ≤ γ(u, v) :=



(
1 +

√
3

2

)
u+

√
3

2 v +
√

3
2√

u2 + v2 + uv
, for even v(

1 +
√

3
2

)
u+

√
3

2 v +
(
1 +

√
3

2

)
√
u2 + v2 + uv

, for odd v.

Consider first the case of even v. We have u ≥ v ≥ 0 and u ≥ 1 (since u = v = 0 is not a

valid choice). We next show that γ(u, v) is a decreasing function of v for v ≥ 0. Indeed,

∂γ(u, v)
∂v

= f(u, v)/[2(u2 + v2 + uv)3/2],

where

f(u, v) =
√

3
(
u2 + v2 + uv

)
− (2v + u)

[(
1 +
√

3
2

)
u+
√

3
2 v +

√
3

2

]

=
(√

3
2 − 1

)
u2 −

(
2 +
√

3
2

)
uv −

√
3

2 u−
√

3v < 0.
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Consequently,

δ(p, q) ≤ γ(u, v) ≤ γ(u, 0) =

(
1 +

√
3

2

)
u+

√
3

2

u
= 1 +

√
3

2 +
√

3
2u ≤ 1 +

√
3,

as required.

Consider now the case of odd v. We have u ≥ v ≥ 1. Since the expressions of γ(u, v) for

odd and even v differ by (u2 + v2 + uv)−1/2, which is also a decreasing function of v, it follows

that γ(u, v) for odd v is decreasing on the same interval, in particular on the interval v ≥ 1.

Consequently,

δ(p, q) ≤ γ(u, v) ≤ γ(u, 1) =

(
1 +

√
3

2

)
u+ (1 +

√
3)

√
u2 + u+ 1

≤ 3
2 + 2√

3
< 1 +

√
3,

as required. To check this last inequality, let

h(u) =

(
1 +

√
3

2

)
u+ (1 +

√
3)

√
u2 + u+ 1

,

and notice that this function is decreasing for u ≥ 1, thus h(u) ≤ h(1) = 3
2 + 2√

3 .

Case 2: q ∈ W2 (the case q ∈ W5 is symmetric), i.e., ~q = u ~µ2 + v ~µ1, for some u, v ∈ N.

Consider the path from p to q via u ~µ2 as shown in Fig. 2.10 and let `(u, v) denote its length.

(Alternatively, the path via v ~µ1 can be used.) Then `(u, v) is bounded from above as follows

`(u, v) ≤ 2u+ v +
⌈
v

2

⌉√
3 ≤ 2u+

(
1 +
√

3
2

)
v +
√

3
2 .

As in Case 1, the distance |pq| equals
√
u2 + v2 − 2uv cos 2π

3 =
√
u2 + v2 + uv, and so the

corresponding stretch factor is

δ(p, q) ≤ γ(u, v) :=
2u+

(
1 +

√
3

2

)
v +

√
3

2√
u2 + v2 + uv

.
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We can assume that u ≥ 1 and v ≥ 1 (else the stretch factor is at most 1 +
√

3). Further,

since the coefficient of u is larger than that of v in the numerator, we can assume that u ≥ v ≥ 1

when maximizing γ(u, v). Set now λ = u
v
≥ 1. We have

γ(u, v) =
2λ+

(
1 +

√
3

2

)
+
√

3
2v√

λ2 + λ+ 1
≤ 2λ+ (1 +

√
3)√

λ2 + λ+ 1
:= f(λ).

It is easy to check that f(λ) is decreasing for λ ≥ 1, hence for u, v ≥ 1 we also have

δ(p, q) ≤ γ(u, v) ≤ f(1) = 1 +
√

3,

as required.

Case 3: q ∈ W6 (the case q ∈ W3 is symmetric), i.e., ~q = −u ~µ2 + v ~µ0, for some u, v ∈ N. By

the symmetry of G, this case is symmetric to Case 2.

This completes the case analysis and thereby the proof of the upper bound.

Remark. In [15] we have shown that a certain 13-point section of the hexagonal lattice with

six boundary points removed has degree 3 dilation at least 1 +
√

3. It is worth noting that this

subset cannot be used however to deduce that the degree 3 dilation of the hexagonal lattice is at

least 1 +
√

3. Indeed, the reason is that the absence of the respective boundary points has been

explicitly invoked in that argument. This is the reason of why in the proof of the lower bound

in Theorem 2.3 we have used a different argument.

Next we determine the degree 4 dilation of the infinite hexagonal lattice.

Theorem 2.4. Let Λ be the infinite hexagonal lattice. Then δ0(Λ, 4) = 2.

Proof. We first prove the lower bound. Let p0 be any point in Λ with its six closest neighbors,

say, p1, . . . , p6, where |p0pi| = 1, for i = 1, . . . , 6. Since deg(p0) ≤ 4 in any plane degree 4

geometric spanner on Λ, there exists i ∈ {1, . . . , 6} such that the edge p0pi is absent; we may
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assume that i = 1. Then

δ(p0, p1) ≥ |%(p0, pi, p1)|
|p0p1|

≥ 2, where i ∈ {2, 6}.

To prove the upper bound, consider the 4-regular graph G shown in Fig. 2.11; it remains to

show that δ(G) ≤ 2. For any two lattice points p, q ∈ Λ, we construct a path in G. Consider

the setup from the proof of Theorem 2.3. Set the lower point p as the origin (0, 0). Let θ = π/3,

p

q

p

q

Figure 2.11: Left: a degree 4 plane graph G on Λ. Middle, Right: illustration of various paths
from p to q depending on their relative position in Λ.

and consider the two unit vectors ~µi = (cos iθ, sin iθ), for i = 0, 1. Then ~q = ±u ~µ0 + v ~µ1, for

some u, v ∈ N. Since the two points can be connected by a path in G of length u + v, and the

distance between the points is
√
u2 + v2 ± uv (depending on their relative position in Λ), the

corresponding stretch factor satisfies

δ(p, q) ≤ γ(u, v) := u+ v√
u2 + v2 ± uv

≤ 2, (2.4)

as required. Indeed, the above inequalities are equivalent to (u±v)2 ≥ 0, which are obvious.

Remarks. 1. Another degree 4 spanner for the hexagonal lattice with stretch factor 2 appears

in Fig. 2.12; the proof for the stretch factor is left to the reader.

2. Note that δ0(Λ, 5) = 2 since the bounds in Theorem 2.4 also hold for degree 5. Let now

k = 6. Connecting each lattice point with all its six closest neighbors yields a planar graph with

stretch factor 2/
√

3. Indeed, as in (2.4), the stretch factor satisfies

δ(p, q) ≤ γ(u, v) := u+ v√
u2 + v2 + uv

≤ 2√
3
,
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Figure 2.12: A degree 4 spanner on Λ with stretch factor 2.

where the above inequality is equivalent to (u − v)2 ≥ 0, which is obvious. Hence δ0(Λ, 6) ≤

2/
√

3. On the other hand, an argument similar to that in the proof of the inequality δ0(Λ, 3) ≥

1 +
√

3 shows that the presence of any edge longer than 1 would force the stretch factor to be at

least 2. We may thus assume that the spanner G contains all unit edges (since no two cross each

other); now the length of a shortest path in G connecting any pair of lattice points at distance
√

3 is 2, thus the stretch factor 2/
√

3 is also needed. Consequently, δ0(Λ, 6) = 2/
√

3. It can be

easily checked that δ0(Λ, k) = δ0(Λ, 6) = 2/
√

3 for every k ≥ 6.

2.5 Concluding remarks

We have given constructive upper bounds and derived close lower bounds on the degree 3 di-

lation of the infinite square lattice in the domain of plane geometric spanners. We have also

derived exact values for the degree 4 dilation of the square lattice along with the degree 3 and 4

dilation of the infinite hexagonal lattice. It is easy to verify that our bounds also apply for finite

sections of these lattices; see [16] or the Appendix for some examples.

It may be worth pointing out that in addition to the low stretch factors achieved, the span-

ners we construct also have low weight and low geometric dilation2; see for instance [14, 17] for

basic terms. That is, each of these two parameters is at most a small constant factor times the

optimal one attainable.
2When the stretch factor (or dilation) is measured over all pairs of points on edges or vertices of a plane graph

G (rather than only over pairs of vertices) one arrives at the concept of geometric dilation of G.
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As shown in Theorem 2.1, the degree 3 dilation of the infinite square lattice is at most

(3 + 2
√

2) 5−1/2. It would be interesting to know whether this upper bound can be improved,

and so we put forward the following.

Conjecture 2.1. Let Λ be the infinite square lattice. Then δ0(Λ, 3) = (3 + 2
√

2) 5−1/2 = 2.6065 . . .

A lighter degree 3 spanner. The graph G is illustrated in Fig. 2.13. It is easy to check that it

is “shorter” than each of the two previous spanners of degree 3 for the square lattice analyzed in

Section 2.3.

Figure 2.13: A lighter degree 3 spanner on the infinite square lattice. The shortest paths between
point pairs with pairwise stretch factor δ0 are shown in red.

Indeed, the average cost (length) per vertex is in this case smaller (note that some vertices

have degree 2):

4
5

(
1
2 + 1

2 +
√

2
2

)
+ 1

5

(√
2

2 +
√

2
2

)
= 4

5 + 3
5
√

2 = 1.6485 . . . ,

while that for the previous spanners it is 1
2 + 1

2 +
√

2
2 = 1.7071 . . . In particular, the total length

of a square lattice section with n points is 1.6485 . . . n + o(n) rather than 1.7071 . . . n + o(n).

If the stretch factor of G would also be δ0 = (3 + 2
√

2) 5−1/2, G would be superior from the

length perspective to the two spanners described in Section 2.3. We conjecture that the stretch

factor of this lighter degree 3 spanner shown in Fig. 2.13 equals δ0.
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Appendix

In this Appendix, we present our earlier upper bounds on the dilation of lattices, both square

and hexagonal.

Square lattice. First, we present a degree 3 spanner having stretch factor
√

4 + 2
√

3 = 2.6131 . . .,

and then we show how a small change in the network gives us a degree 3 spanner with a better

stretch factor.

For all (i, j) ∈ Z2, connect (i, j) with (i+1, j); For all j ∈ Z connect (i, j) with (i+1, j+1)

if i is odd, as shown in Fig. 2.14.

Figure 2.14: A degree 3 plane spanner for the square lattice with stretch factor at most√
4 + 2

√
2 = 2.6131 . . .

Let u = (a, b) and v = (c, d) be any two points in Λ. Clearly, if b = d, δG(u, v) = 1. Now

observe that in G we need to cover a distance of at most
√

2 + 1 to go from (i, j) to (i, j + 1) or

vice-versa. Thus,

δG(u, v) ≤ |a− c|+ (
√

2 + 1)|b− d|√
(a− c)2 + (b− d)2

, (2.5)

since the length of the shortest path between u, v is at most the length of the path consisting of a

straight-line horizontal sub-path of length |a−c| and a zig-zag sub-path of length (
√

2+1)|b−d|.

Now setting |a− c| = x, |b− d| = y and using Fact 1, yields

δG(u, v) ≤ g(x, y) = x+ (
√

2 + 1)y√
x2 + y2 ≤

√
1 + (

√
2 + 1)2 =

√
4 + 2

√
2 = 2.6131 . . . (2.6)
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To see that the same bound holds for any m × n section of the lattice, proceed as follows.

Connect the points in Λ(m,n) as shown in Fig. 2.15. The following connections are made:

Step 1. For j = 0 to n− 1 and i = 0 to m− 2, connect (i, j) with (i+ 1, j).

Step 2. For j = 0 to n− 2, connect (0, j) with (0, j + 1).

Step 3. For j = 0 to n − 2, connect (i, j) with (i + 1, j + 1) if i is odd and (i + 1, j + 1) ∈

Λ(m,n).

Step 4. If m is even, for j = 0 to n− 2, connect (m− 1, j) with (m− 1, j + 1).

(0,0)

(7,4)

(0,0)

(8,4)

Figure 2.15: Connecting the points in Λ(8, 5) (left) and Λ(9, 5) (right).

Instances Λ(8, 5) and Λ(9, 5) are shown in Fig. 2.15. Now the analysis is exactly the same as

above.

Interestingly enough, a twist in the spanner construction yields a slightly better stretch

factor. The following connections are made inG: For all (i, j) ∈ Z2, connect (i, j) with (i+1, j).

For all j ∈ Z connect (i, j) with (i+1, j+1) if i ≡ 1 (mod 4), and connect (i, j) with (i−1, j+1)

if i ≡ 0 (mod 4). See Fig. 2.16.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

11 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

11

Figure 2.16: A degree 3 spanner with stretch factor 5
√

2+7√
29 = 2.6129 . . . Left: a path connecting

(1, 0) with (5, 6). Right: a path connecting (2, 0) with (4, 5) (in red) and a path connecting (2, 0)
with (10, 8) (in black).

Observe that the upper bound in (2.6) still holds, since a path with the same structure,
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namely a straight line horizontal sub-path of length |a − c| followed by a zig-zag sub-path of

length (
√

2 + 1)|b − d| exists. We next derive a sharper bound: δ0(Λ, 3) ≤ (5
√

2 + 7) 29−1/2 =

2.6129 . . .

Assume, as we may, that a ≤ c and b ≤ d. Put x = c − a and y = d − b. We can further

assume that b = 0, and so u = (a, 0).

If x ≥ y, let λ = x/y ≥ 1. We can write

δG(u, v) ≤ (
√

2 + 1)y + x√
x2 + y2 =

√
2 + 1 + λ√

1 + λ2
=: f(λ).

Its derivative is f ′(λ) = 1− (
√

2 + 1)λ√
1 + λ2

< 0, for λ ≥ 1; f is a decreasing function on [1,∞),

and thus f(λ) ≤ f(1) =
√

2 + 1 for this range of λ.

Let now y ≥ x + 1 for the remainder of the proof. If x = 0, it is easy to check that

δG(u, v) ≤
√

2 + 1.

If x = 1, λ = 1
y
, where y = 2, 3, 4, 5, . . ., and so λ = 1

2 ,
1
3 ,

1
4 ,

1
5 , . . . ∈ (0, 1). The derivative

f ′ vanishes at λ0 = 1√
2+1 =

√
2 − 1 = 0.4142 . . . On the interval (0, 1): f is increasing on the

interval (0, λ0) and decreasing on the interval (λ0, 1); it attains a unique maximum at λ = λ0.

Since λ0 ∈ (1
3 ,

1
2), we have

f(λ) ≤ max
(
f
(1

3

)
, f
(1

2

))
= f

(1
3

)
= f

(1
2

)
= 2
√

2 + 3√
5

= 2.6065 . . .

If x = 2, λ = 2
y
, where y = 3, 4, 5, 6, . . ., and so λ = 2

3 ,
2
4 ,

2
5 ,

2
6 , . . . ∈ (0, 1). Since λ0 ∈ (2

5 ,
2
4),

we have

f(λ) ≤ max
(
f
(2

5

)
, f
(1

2

))
= f

(2
5

)
= 5
√

2 + 7√
29

= 2.6129 . . .

If x = 3, λ = 3
y
, where y = 4, 5, 6, 7, 8, 9, . . ., and so λ = 3

4 ,
3
5 ,

3
6 ,

3
7 ,

3
8 , . . . ∈ (0, 1). Since

λ0 ∈ (3
8 ,

3
7), we have

f(λ) ≤ max
(
f
(3

8

)
, f
(3

7

))
= f

(3
7

)
= 5
√

2 + 7√
29

= 2.6129 . . .
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We have thus shown that for x ≤ 3 we have δG(u, v) ≤ (5
√

2 + 7) 29−1/2. Let now x ≥ 4 for

the remainder of the proof. By the symmetry of the spanner construction (recall its periodicity

modulo 4), it suffices to consider four cases:

Case 1: u = (1, 0). Connect u to v using (segments are listed cumulatively): dx4e upward-

right (diagonal) segments, x− dx4e unit horizontal segments (going right), and y − dx4e upward

two-segment zig-zags of length
√

2 + 1 each, as shown in Fig. 2.16 (left). We thus have

|π(u, v)| ≤
(
y −

⌈
x

4

⌉) (√
2 + 1

)
+
⌈
x

4

⌉√
2 +

(
x−

⌈
x

4

⌉)
= y

(√
2 + 1

)
+
(
x− 2

⌈
x

4

⌉)
≤ y

(√
2 + 1

)
+ x

2 . (2.7)

Consequently, by Fact 1 we have

δG(u, v) ≤
√

2 + 1 + λ/2√
1 + λ2

≤
√(√

2 + 1
)2

+
(1

2

)2
= 2.4654 . . . (2.8)

Case 2: u = (2, 0). Connect u to v using: bx4c upward-right (diagonal) segments, x − bx4c

unit horizontal segments (going right), and y − bx4c upward zig-zags of length
√

2 + 1 each; see

Fig. 2.16 (right). Observe that for x ≥ 4 we have bx4c ≥
x
7 . It follows that

|π(u, v)| ≤
(
y −

⌊
x

4

⌋) (√
2 + 1

)
+
⌊
x

4

⌋√
2 +

(
x−

⌊
x

4

⌋)
= y

(√
2 + 1

)
+
(
x− 2

⌊
x

4

⌋)
≤ y

(√
2 + 1

)
+ 5x

7 . (2.9)

Consequently, by Fact 1 we have

δG(u, v) ≤
√

2 + 1 + 5λ/7√
1 + λ2

≤
√(√

2 + 1
)2

+
(5

7

)2
= 2.5176 . . . (2.10)

Case 3: u = (3, 0). Connect u to v using: bx+1
4 c upward-right (diagonal) segments, x−bx+1

4 c

unit horizontal segments (going right), and y − bx+1
4 c upward zig-zags of length

√
2 + 1 each;
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see Fig. 2.17 (left). Observe that for x ≥ 3 we have bx+1
4 c ≥

x
7 . It follows that

|π(u, v)| ≤
(
y −

⌊
x+ 1

4

⌋) (√
2 + 1

)
+
⌊
x+ 1

4

⌋√
2 +

(
x−

⌊
x+ 1

4

⌋)
= y

(√
2 + 1

)
+
(
x− 2

⌊
x+ 1

4

⌋)
≤ y

(√
2 + 1

)
+ 5x

7 . (2.11)

Consequently, δG(u, v) ≤
√(√

2 + 1
)2

+
(

5
7

)2
= 2.5176 . . . follows as in (2.10).
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Figure 2.17: Left: a path connecting (3, 0) with (8, 7). Right: a path connecting (4, 0) with
(9, 6).

Case 4: u = (4, 0). Connect u to v using: bx+2
4 c upward-right (diagonal) segments, x−bx+2

4 c

unit horizontal segments (going right), and y − bx+2
4 c upward zig-zags of length

√
2 + 1 each;

see Fig. 2.17 (right). Observe that for x ≥ 2 we have bx+2
4 c ≥

x
7 . It follows that

|π(u, v)| ≤ y
(√

2 + 1
)

+
(
x− 2

⌊
x+ 2

4

⌋)
≤ y

(√
2 + 1

)
+ 5x

7 . (2.12)

Consequently, δG(u, v) ≤
√(√

2 + 1
)2

+
(

5
7

)2
= 2.5176 . . . follows as in (2.10).

We have thus shown that for any x, y ≥ 0, we have δG(u, v) ≤ (5
√

2 + 7) 29−1/2.

(0,0)

(7,4)

(0,0)

(8,4)

Figure 2.18: Connecting the points in Λ(8, 5) (left) and Λ(9, 5) (right).

It is easy to check that the same upper also holds for finite sections, Λ(m,n) of Λ; see
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Fig. 2.18.

Hexagonal lattice. We present a degree 3 spanner that has stretch factor exactly 3. Classify the

points in Λ into two types. A point u ∈ Λ is of Type I if the edge between the points u = (a, b)

and (a− 0.5, b−
√

3/2) is present otherwise it is of Type II. Now let u = (a, b) and v = (c, d) be

any two points of Λ. Observe that |a− c| = m/2,m ∈ N and |b− d| =
√

3n/2, n ∈ N. Clearly,

if b = d, δG(u, v) = 1. Next, in each of the following remaining cases, we show that δ(u, v) ≤ 3.

p3

p4

p1

p2

Figure 2.19: A degree 3 plane spanner G on the infinite hexagonal lattice; p1 is of Type I and p2
is of Type II.

Case 1: If |b− d| =
√

3/2, then

δG(u, v) ≤ 2.5 + |a− c|√
(a− c)2 +

(√
3

2

)2
≤ 2.5 + 0.5√

0.25 + 0.75
= 3.

Here 2.5 is the maximum distance taken to transfer from the line y = b to the line y = d. This

can be easily verified by considering u either as a Type I point or as a Type II point. Refer to

Fig. 2.19.

Case 2: If a = c, observe that |b− d| = k
√

3, k ∈ Z+. When |b− d| =
√

3, the shortest path

between u and v has length either 3 or 5 (see Fig. 2.19). Thus, δG(u, v) ≤ 5k/k
√

3 = 2.8867 . . .

Case 3: Now assume that |a − c| ≥ 0.5, |b − d| ≥
√

3. We trace out a path from u to v.

Observe that since |b− d|/(
√

3/2) = n, n ∈ N, the shortest path from the line y = b to the line
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y = d starting from u consists of at most 2n unit segments. Thus,

δG(u, v) ≤ (|a− c|+ 0.5) + 4|b− d|/
√

3√
(a− c)2 + (b− d)2

,

since the length of the shortest path from u to v is at most the length of the path consisting of a

straight line horizontal sub-path of length |a−c|+0.5 and a sub-path of length 2|b−d|/(
√

3/2).

While tracing out the path α from u to v, the next point in α is chosen in a way such that it

is the closest to the vertical line x = u. Since the shortest path from the line y = b to the line

y = d starting from u may have its endpoint on y = d at most |a − c| + 0.5 away from v in

terms of x-coordinate, an adjusting factor of 0.5 suffices. Write x = |a− c| and y = |b− d|; since

x ≥ 0.5 and y ≥
√

3, by Fact 1 we obtain:

g(x, y) = x+ 0.5 + 4y/
√

3√
x2 + y2 ≤ x+ 4y/

√
3√

x2 + y2 + 0.5√
0.52 + 3

≤ 2.7939 . . .

Equality is attained for point pairs such as p3, p4 in Fig. 2.19, where |a − c| = 0.5 and

|b− d| =
√

3
2 (4n+ 3), n ∈ N, with p3 of Type II and p4 of Type I.

It is easy to check that the above spanner is "shorter" than the one analyzed in Section 2.4

which has better stretch factor. The average cost (length) per vertex in this case is smaller:

1/2 + 1/2 + 1/2 = 3/2, while that of the previous spanner (analyzed in Section 2.4) is 1/2 +

1/2 +
√

3/2 = 1.8660 . . .
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3.1 Introduction

The problem of efficiently cutting out a simple polygon P drawn on a planar piece of mate-

rial (such as wood, paper, glass) Q, was introduced by Overmars and Welzl in their seminal

paper [21] from 1985. Since then, the problem has attracted the interest of many computational

geometers.

A saw cut may split (divide) Q into a number of pieces—those that lie left of the cut and

those that lie right of the cut. In some situations, the saw may stop short of splittingQ, in which
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case, the material remains as one solid piece. In any case we do not allow a cut to run through

the interior of P . Several variants have been studied, primarily depending on the cutting tools

used [1, 3, 5, 7, 10, 11, 12, 13, 14, 21, 24]: line cuts, ray cuts and segment cuts; they are described

subsequently. In saw cutting, i.e., in all three models above, turns are impossible. The type of

tool used in cutting determines the class of polygons that can be cut within that model.

The measures of efficiency commonly considered in polygon cutting are the total length

of the cuts and the total number of cuts. Polygon cutting problems are useful in industry

applications such as metal sheet cutting, paper cutting, furniture manufacturing and numerous

other areas of engineering, where smart cutting techniques with high efficiency may result in

the reduction of production costs. For instance, reducing the total length of the cuts may result

in lesser power requirement and extend the life of the cutting tool. Similarly, reducing the total

number of cuts may save cutting time and extend the life of the cutting tool.

3.1.1 Line cuts, ray cuts, and segment cuts

A line cut (also called a guillotine cut) is a line that does not go through P and divides the

current piece of material containing P (initially Q) into two pieces. For cutting P out of Q

by line cuts, P must be convex. An instance of a cutting sequence using line cuts appears in

Fig. 3.1. The most studied efficiency measure for line cutting is the total length of the cuts and

several approximation algorithms have been obtained [1, 3, 5, 7, 10, 11, 12, 13, 21, 24], including

a PTAS proposed by Bereg et al. [3].

P

Q

Figure 3.1: Cutting a convex polygon P out of Q using 5 line cuts.

A ray cut comes from infinity and can stop at any point outside P , again, not necessarily

splitting the piece of material into pieces. Ray cuts are usually used to cut out non-convex poly-
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gons; however, not all non-convex polygons can be cut by ray cuts. The following observation

gives a necessary and sufficient condition for ray-cuttability, in the case of a single polygon; see

Fig. 3.2. Several approximation algorithms can be found in [7, 10, 11, 24].

Q

P

Q

P

Figure 3.2: Left: a ray-cuttable polygon. Right: a polygon which is not ray-cuttable or segment-
cuttable.

Observation 3.1. A polygon P drawn on a planar material is ray-cuttable if and only if every edge

of P that has some material adjacent to it, can be extended to infinity from one of its endpoints

without passing through the interior of P .

A segment cut is similar to a ray cut, but is not required to start at infinity, it may start at

some finite point. The segment saw (also referred to as circular saw in [11]) is abstracted as a line

segment, which cuts through material when moved along its supporting line. Before executing

a segment cut, the saw needs to be placed. A small example of a cutting sequence appears in

Fig. 3.3. Recall that saw turns are impossible during a cut; however, if a small free space within

Q is available, a segment cut can be initiated there by maneuvering (i.e., rotating) the saw. The

space required for maneuvering the saw is proportional to the length of the saw. The problem of

cutting a polygon by a segment saw was introduced by Demaine et al. [11] in 2001. The authors

gave a characterization of the class of polygons cuttable by a (possibly short) segment saw: a

polygon is cuttable in this model, i.e., by a sufficiently short segment saw, if and only if it does

not have two adjacent reflex vertices (with interior angle > π).

Note that ray-cuttability is not equivalent with segment-cuttability. For instance the poly-

gon P in Fig. 3.3 is segment-cuttable but not ray-cuttable; indeed, the condition specified by

Observation 3.1 is not fulfilled by two edges of P at the bottom of the pocket.
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P

Q

Figure 3.3: A cutting sequence with a segment saw (in red) consisting of 9 cuts. The polygon is
not ray-cuttable.

For ease of analysis the length of the saw is assumed to be arbitrarily small, i.e., the segment

abstracting the saw is as short as needed. Consequently, a segment cut can be initiated from

an arbitrarily small available free space. In this model, several parts may result after a cut

is made, and any of them can be removed (lifted) from the original plane. Moreover, free

space may appear within the pieces of material from where future segment cuts can be initiated.

The cutting process may continue independently on any of the separated pieces of material, if

resulting parts contain subcollections of a larger collection to be cut out.

3.1.2 Our results and related work

Demaine et al. [11] presented an algorithm for cutting P out of its convex hull using segment

cuts with a total number of cuts and total length of the cuts within constant factors of the

respective optima. With regard to the total number of cuts, this number is within 2.5 times

the respective optimum. Dumitrescu and Hasan [14] improved the approximation ratio on the

total number of cuts from 2.5 to 2. Moreover, the new approximation guarantee is in a stronger

sense than that offered by Demaine et al. [11]. While theirs achieves ratio 2.5 for cutting out P

from its convex hull, the algorithm in [14] achieves ratio 2 for cutting out P from any enclosing

polygon Q.

With regard to the total length measure of the cuts, Demaine et al. [11] reported that their

algorithm achieves the same ratio, 2.5, as for the total number of cuts. Here we point out that

the approximation factor on the total length of the cuts for their algorithm (as implied by their
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proof) is in fact 3. In Section 3.2 we show that with a little care, one can recover the claimed

ratio 2.5; it requires a small change in their algorithm to obtain:

Theorem 3.1. Given a segment-cuttable polygon P , drawn on a planar piece of material Q, P can

be cut out of Q by an arbitrarily short segment saw with the total length of the cuts within 2.5 times

the optimum.

We now proceed to our main results regarding collections of polygons. In the conclusion

of their paper, Demaine et al. [11] left several open questions. Here we focus on one of them:

“What collections of nonoverlapping polygons in the plane can be simultaneously cut out by a

circular saw?”1 The authors remarked that the problem is nontrivial when some of the polygons

share edges. We study the case of axis-parallel rectangles in Section 3.3, where it is shown that

the answer is always positive. Moreover, Section 3.4 gives evidence that the problem is nontrivial

even if the polygons do not share edges.

A collection P of disjoint polygons drawn on a planar piece of material is segment-cuttable

(or cuttable by segments) if there exists a sequence of segment cuts after which every polygon in

the collection is cut out (along its sides) as a separate piece. Otherwise, we say that the collection

is uncuttable by segments. Cuttability with other tools (such as arbitrarily short segment saw,

rays or lines) are defined similarly. The following observations are in order.

1. If a collection of polygons is cuttable by rays, then it is also cuttable by a segment saw of

any length.

2. If a collection of polygons is cuttable by lines, then it is also cuttable by rays.

3. If a collection of polygons is cuttable by a segment saw (segment) s of length |s|, then it

is also cuttable by any segment saw of smaller length.

It is easy to draw collections of disjoint convex polygons (even with axis-parallel rectangles)

that are uncuttable by line cuts. Motivated by this state of affairs, Pach and Tardos have studied
1Recall, this means cuttable by some (possibly short) segment saw.
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the problem of separating a large subfamily from a given family of pairwise disjoint compact

convex sets on a sheet of glass, using line cuts [22]. For the case of axis-parallel rectangles, the

authors show how to separate a subcollection with Ω(n/ log n) members out of given n. From

the other direction, there exist instances of n rectangles such that at most cn of them can be

separated in this model, where c < 1 is a positive constant. Far weaker guarantees, sublinear in

n, can be made for arbitrary convex polygons. For other related results see [2, 8, 9, 19, 23]. In

Section 3.3 we prove:

Theorem 3.2. Given a collectionR of n disjoint axis-parallel rectangles drawn on a planar piece of

material,R is cuttable by rays, so in particular by a segment saw of any length. The cutting sequence

can be computed in O(n log n) time and uses at most 4n ray cuts, which is optimal in the worst case.

In Section 3.4 we exhibit some uncuttable collections of disjoint polygons.

Theorem 3.3. There exist collections of disjoint polygons that are uncuttable by any segment saw.

Such collections can be realized with convex or not necessarily convex polygons, and even with rect-

angles, or triangles.

On the other hand we have the following positive result (in Section 3.4).

Theorem 3.4. Given a collection P of segment-cuttable polygons drawn on a planar piece of ma-

terial such that no two polygons in P touch each other, P is always cuttable by a sufficiently short

segment saw.

In Section 3.5 we prove:

Theorem 3.5. Consider a collection P of k disjoint polygons with n vertices in total drawn on a

planar piece of material Q. Then there exists an algorithm that computes in O(n6) time a suitable

sequence of ray cuts for cutting the polygons in P out of Q when P is ray-cuttable and otherwise

reports P as uncuttable.

The same algorithm can be adapted to the case of line cuts resulting in a faster running time

of O(n4). We conclude in Section 3.6 with some open problems.
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3.2 Cutting out a single polygon using a segment saw 2

In this section we prove Theorem 3.1. Let OPT and ALG denote the lengths of an optimal cutting

sequence and that of a given algorithm being analyzed. We first show that the approximation

algorithm of Demaine et al. [11] for cutting out a polygon achieves ratio 3 in the length measure.

Moreover, this ratio cannot be improved as long as one uses the trivial lower bound on OPT

given by the perimeter of P .

The algorithm cuts the polygon P out of its convex hull, conv(P ), by following the bound-

ary of P (in a chosen fixed direction, clockwise or counterclockwise) and removing the material

in the pockets of P (the maximal connected components of conv(P ) \ P ). The pockets of P

are thereby cut out sequentially; we refer the reader to [11] for details. Note that reflex vertices

in a pocket K correspond to convex vertices of the target polygon P , and vice versa. By the

characterization of Demaine et al. [11], P is cuttable by a (short) segment saw if and only if no

two reflex vertices of P are consecutive; equivalently, no two convex vertices of any pocket K

are consecutive.

Let ai and bi (in this order) be the two edges incident to a convex vertex of K, along the

chosen direction. By the above characterization, any two terms ai and bj are disjoint, i.e., they

denote distinct edges of K. Let i = 1, . . . , k be the sequence of convex vertices along the same

direction. Write A = ∑k
i=1 |ai| and B = ∑k

i=1 |bi|. The cutting algorithm (illustrated in [11,

Fig. 5, p. 74]) gives a cost arbitrarily close to 2A + 3B, while obviously OPT ≥ A + B (the

trivial lower bound on OPT). If A→ 0 and A� B then the ratio can be arbitrarily close to 3:

ALG
OPT ≤

2A+ 3B
A+B

= 2 + B

A+B
→ 3.

Moreover, such a polygon (with A→ 0 and A� B ) can be constructed by choosing small |ai|

and large |bi| in the pockets and minimizing other parts on the perimeter in comparison with

the pockets. See Fig. 3.4.
2The corrections to the Theorem 3.1 has been done in collaboration with Masud Hasan, refer to [15].
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Figure 3.4: Left: a polygon with many thin pockets for which cutting length is close to 3 times
the perimeter. The B-parts (which generate cuts of length close to 3B ) are drawn in red lines;
the pockets are processed in the order indicated by the arrows. The number of cuts (2 or 3)
corresponding to each edge is specified. Right: details of cutting out one of the pockets; for
clarity the internal angles and edge-lengths have been altered.

The revised algorithm chooses the best direction for cutting out each pocketK from the two

possible, clockwise or counterclockwise, namely the direction for which A ≥ B. Recall that the

cutting algorithm gives a cost arbitrarily close to 2A + 3B, while OPT ≥ A + B. Hence the

ratio is arbitrarily close to

ALG
OPT ≤

2A+ 3B
A+B

= 2 + B

A+B
≤ 2.5,

as desired.

Saw Length. As remarked by Demaine et al. [11], it would be interesting to compute the

length of the largest segment saw that can be used to cut out a cuttable polygon. While this

question remains unresolved, the following observation gives an easy upper bound.

Observation 3.2. Let P be a segment-cuttable polygon drawn on a piece of material Q (in its inte-

rior) and E be the set of its edges. Let l1(e) and l2(e) be the lengths of the two extensions of e ∈ E at

both endpoints until they intersect the interior of P and let L(e) = max{l1(e), l2(e)}. If an exten-

sion does not intersect the interior, we consider its length to be infinity. If L is the maximum length
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of a segment saw that can be used to cut P out of Q, then

L ≤ min
e∈E

L(e).

P

e1

e2

e3
e5

e6

e7
e8

x1 x2
e4

Figure 3.5: A line represents the two end extensions and a ray represents one end extension of
an edge. If x1 ≥ x2, L ≤ x1 is needed.

Proof. For an illustration refer to Fig. 3.5. To remove the material adjacent to an edge e, we need

to place the saw on one of the extensions of e and the maximum length of the saw that can be

used for e is the maximum of the lengths of the two extensions, i.e., L(e). Since a fixed length

saw is used for every edge of P , we need to take the minimum of all L(e), e ∈ E.

3.3 Cutting out a collection of axis-parallel rectangles using a

segment saw

In this section we prove Theorem 3.2. As it turns out, the problem of cutting out a collection

of axis-parallel rectangles by a segment saw is very much related to the problem of separating

such a collection by moving the rectangles, one at at time, to infinity, using translations. We

start by recalling the following classical result of Guibas and Yao [18] concerning translations

of rectangles in a common direction.

Lemma 3.1 (Guibas and Yao [18]). Let R be any set of n disjoint axis-parallel rectangles in the

plane, and θ be any direction. Then there is an ordering R1, . . . , Rn of the rectangles such that

Ri can be moved continuously to infinity in direction θ without colliding with the rectangles Rj ,

1 ≤ i < j ≤ n. Such an ordering can be computed in O(n log n) time.
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The reader can verify that the proof of Lemma 3.1 in [18] implies the following stronger

result; see also [16, Lemma 3].

Lemma 3.2 (Guibas and Yao [18]). For any set of n disjoint axis-parallel rectangles in the plane,

there is an ordering R1, . . . , Rn of the rectangles such that Ri can be moved continuously to infinity

in any direction between 0 and π/2 without colliding with the rectangles Rj , 1 ≤ i < j ≤ n. Such

an ordering can be computed in O(n log n) time.

In Lemma 3.2 the set of directions under discussion make the closed interval [0, π/2]. It is

now convenient to reformulate this lemma in terms of our interest.

Notation Given two points p, q ∈ R2, p dominates q if the inequalities x(p) > x(q) and

y(p) > y(q) hold among their x- and y-coordinates. Given two axis-parallel rectangles R′, R′′,

write R′′ >x R
′ if there exists a vertical line that separates R′ and R′′, so that R′ lies in the left

(closed) halfplane and R′′ lies in the right (closed) halfplane determined by the line.

Lemma 3.3. For any set of n disjoint axis-parallel rectangles in the plane, there is an ordering

R1, . . . , Rn of the rectangles such that Ri is unblocked in any direction between 0 and π/2 by any of

the rectangles Rj , 1 ≤ i < j ≤ n. Such an ordering can be computed in O(n log n) time.

To be precise, Ri is unblocked in any direction between 0 and π/2 by any of the rectangles

Rj , i < j ≤ n, if and only if no vertex of such a rectangle dominates the lower left corner of Ri;

see Fig. 3.6.

R

Figure 3.6: R is unblocked hence it is cuttable.

The two-step algorithm from [18] for computing the order is as follows.

83



1. Sort the rectangles by decreasing order of their y-coordinate of the top side; let R1, . . . , Rn

be the resulting order.

2. Start with an empty list L and add the rectangles Ri, for i = 1, . . . , n, in this order. Place

each new rectangle R in the first (i.e., leftmost) position in L consistent to the constraint

that R >x S for every rectangle S following R in L.

An illustration of the ordering produced appears in Fig. 3.7. An obvious implementation

of Step 2 takes O(n2) time, however, Guibas and Yao [18] showed that it is possible to use

balanced trees in a non-trivial way to reduce the time to O(n log n). Consequently, the two-step

algorithm runs in O(n log n) time. Using the ordering guaranteed by Lemma 3.3, we get our

desired result.

Proof of Theorem 3.2 We use the ordering provided by Lemma 3.3 and cut out rectangles one

by one in this order; there are n iterations, i = 1, . . . , n. The following invariant is maintained:

in iteration i, rectangles R1, . . . , Ri−1 have been cut out (i.e., each has detached on a separate

piece of material), and the current piece of material contains the subcollection Ri, . . . , Rn. Ob-

serve that in iteration i, rectangle Ri is unblocked in any direction between 0 and π/2, hence it

is cuttable as follows; refer again to Fig. 3.6.

We execute two ray cuts from infinity (or from the boundary of the material): one vertical

(going down) and one horizontal (going left); the two cuts meet at the lower left corner of Ri.

Further, each ray cut is extended until it hits the interior of a rectangle or the boundary of the

current piece of material. The effect is detaching Ri from the piece of material containing the

remaining rectangles Rj , i < j ≤ n. The piece containing Ri contains no other rectangles, so

two more cuts along two sides of Ri suffice to completely separate Ri completely, for a total of

at most 4 cuts per rectangle. The process is continued until all rectangles are cut out in this way,

with at most 4n cuts overall.

Clearly some collections require at least 4 cuts for each rectangle, e.g., if no two rectangle

sides are collinear, for a total of at least 4n cuts. Hence the number of cuts executed in the
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Figure 3.7: Step 2 of the algorithm. After R1, . . . , R23 are successively inserted into L, the list
is 11, 13, 12, 16, 18, 22, 8, 3, 2, 6, 15, 17, 19, 21, 4, 9, 1, 5, 10, 14, 20, 7, 23. The first rectangle to be
cut out is 11.

algorithm is worst-case optimal.

Remark There are cases when as few as Θ(
√
n) cuts suffice, for instance when the rectangles

are arranged in a square grid formation with their sides aligned.

3.4 Cuttable and uncuttable collections by a segment saw

It is easy to exhibit collections of disjoint polygons that are uncuttable by a segment saw, es-

pecially if one uses non-convex polygons or convex polygons with many sides. The problem

becomes more interesting when one restricts the number of sides of the polygons or their shape.

In this section we prove Theorem 3.3. An uncuttable collection of rectangles (in arbitrary ori-

entations) is shown in Fig. 3.8 (left); this example has n = 12 rectangles, 6 drawn on the sides

of a regular hexagon in its exterior, and 6 drawn in its interior. A similar pattern can be realized

for every n ≥ 10 (with bn/2c rectangles on the outer boundary of the union and the remaining

dn/2e inside). Observe that every possible cut that can be initiated from outside is blocked by

85



one of the small rectangles; moreover, all intersecting cuts are incident to some tangency point

between two consecutive outer rectangles. Hence none of the rectangles can be separated. In

R1

R2

R3

R4

R5

R6

R0

Figure 3.8: Left: an uncuttable collection of n = 12 rectangles; arrows represent saw cuts that
fail in cutting out any rectangle. Right: a cuttable collection of n = 7 rectangles.

contrast, the similar looking construction with n = 7 rectangles shown in Fig. 3.8 (right) is

cuttable by rays, hence in particular, by a segment saw of any length. This particular example

has n = 7 rectangles, 6 drawn on the sides of a regular hexagon in its exterior, and one drawn

in its interior. Start by separating R1 by using two ray cuts aligned with the long sides of its

left and right neighbor rectangles. Observe that these two rays cross each other, so the piece of

material containing the top rectangle can be detached. Once one of the rectangles has been cut

out separately, the rest can be easily cut out one by one, and so can the entire collection.

If we slightly modify the placements of the rectangles in Fig. 3.8 (left) so that no two rect-

angles touch each other, as shown in Fig. 3.9 (left), then the resulting collection becomes cut-

table using a segment saw. Indeed, every outer rectangle can be separated out as shown in

Fig. 3.9 (right). Next, using a similar approach, the inner rectangles can also be separated out.

After separation, it is easy to remove any material adjacent to an edge of a rectangle.

This approach can be applied to any collection of segment-cuttable polygons where no

two polygons touch each other. Separation can be achieved by using double cuts as shown in
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1

2

3

4

5

Figure 3.9: Left: a collection of n = 12 rectangles where no two rectangles touch each other.
The collection is now cuttable by a (sufficiently short) segment saw. Right: a magnified view.

Figure 3.10: Double cuts (pairs of segment cuts of about the same length) can be used to cut
along any polygonal line achieving separation of two or more polygons.

Fig. 3.10. After separation, the individual polygons can be cut out using the algorithm from [11].

We have thereby proved Theorem 3.4.

An uncuttable collection of triangles is shown in Fig. 3.11 (left). Such collections can be

also realized with a larger number of triangles. For any k ≥ 4, it is straightforward to draw

uncuttable k-gon collections using k + 1 polygons P0, P1, . . . , Pk. Constructions for k = 4 and

k = 6 are shown in Fig. 3.11 (middle and right).

Remarks It is interesting to observe that separability by translations in a single direction holds

for any collection of disjoint convex bodies; see also [4, Theorem 1], [16, Lemma 1], [20, The-

orem 8.7.2]. Theorem 3.6 below appears in the work of Fejes Tóth and Heppes [17], but it can

be traced back to de Bruijn [6]; the algorithmic aspects of the problem have been studied by

Guibas and Yao [18].
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P1

P0 P2

P3

P4

P0

P2

P1

P6

P5

P4

P3

Figure 3.11: Uncuttable k-gon collections. Left: construction with triangles (k = 3). Middle:
k = 4. Right: k = 6. Arrows represent the only possible useful cuts in the collection.

Theorem 3.6. [6, 17, 18] Any set of n convex objects in the plane can be separated via translations

all parallel to any given fixed direction, with each object moving only once. If the top and bottom

points of each object are given, an ordering of the moves can be computed in O(n log n) time.

In general, separability via translation does not imply cuttability. Observe that the collec-

tions in Fig. 3.8 (left) and 3.11 are not cuttable by a segment saw although they can be separated

via translations along any fixed direction as stated in Theorem 3.6. On the other hand, the

broader variant of separability for axis-aligned rectangles stated in Lemma 3.2 (so that Ri can

be translated along any direction in the first quadrant) finally allows cuttability by rays for any

family of axis-parallel rectangles.

3.5 Cutting out a collection of polygons using ray cuts

In this section we prove Theorem 3.5. Consider a collection P of k disjoint polygons P1, . . . , Pk,

with n vertices in total, drawn on a planar piece of material Q. Recall that a ray cut comes from

infinity and can stop at any point. We may assume that each Pi is ray-cuttable by itself; otherwise

the collection is not ray-cuttable. (Note that a collection of convex polygons is not necessarily

ray-cuttable; see Fig. 3.11.)

We present a polynomial-time algorithm that computes a suitable cutting sequence to cut

the polygons in P out of Q using ray cuts when P is ray-cuttable and otherwise reports P as

uncuttable.
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A subcollection of polygons P ′ ⊂ P drawn on a piece of material Q′ ⊂ Q is called separated

if Q′ is already detached from Q after executing a sequence of ray cuts. Observe that a ray cut

can produce multiple (separated) subcollections; in that case, we say that the ray cut achieves

some separation. In order to cut out the polygons in P , it is necessary to separate out every

polygon in the given collection.

When two ray cuts r, r′ meet at a point p, the non-reflex angle between the ray cuts at p is

called their internal angle and is denoted by θ(r, r′). The wedge-shaped piece of material enclosed

by r, r′ when θ(r, r′) is considered is denoted by W (r, r′); see Fig. 3.12.

Q3

r1 r7

r4

r2

r3

r5

r6

r8
W (r3, r7)

θ(r3, r7)

θ(r2, r4)

W (r2, r4)

W (r1, r5)

θ(r1, r5)

r9

r10

W (r9, r10)

Figure 3.12: Let S = r1, . . . , r10 be a sequence of executed ray cuts. (r3, r7) and (r9, r10) are the
only separating pairs; r5 and r8 are the only separating rays. However, (r1, r5) is not a separating
pair since r5 is a separating ray.

By slightly abusing the notation, we refer to the current piece of material as Q and the sub-

collection present on Q as P . Consider a sequence S of ray cuts executed on Q. We assume that

the detached pieces of Q, with or without polygons, are removed immediately after separation

and are handled independently. Furthermore, we extend any ray cut r ∈ S until it hits the

interior of a polygon in P or the boundary of Q.

A separating ray is a ray cut r ∈ S executed onQ such that its endpoint is on the boundary of
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Q and each side of r contains a proper polygon subcollection of P . A separating pair (of rays) is

a pair of meeting ray cuts r, r′ in S executed on Q such that W (r, r′) contains a proper polygon

subcollection of P and r, r′ are not separating rays. Refer to Fig. 3.12 for an illustration.

The following lemma shows that there is always a separating ray or a separating pair in any

sequence S of ray cuts that achieves some separation. The ray cuts in S are executed until the

first separation occurs. After separation each piece of material is handled independently.

Lemma 3.4. Let S = r1, . . . , rs be a sequence of ray cuts executed in this order and achieving some

separation. Then either there is a separating ray or a separating pair in S .

Proof. Consider the subsequence S ′ = r1, . . . , rt where t ≤ s, such that the first separation

occurs when rt is executed. If rt is a separating ray, we are done. Now assume that rt is not

a separating ray. Since separation is achieved only after rt is executed, then it must be the case

that rt forms a separating pair with some previously executed ray cut ri ∈ S ′, with i < t, i.e.,

W (ri, rt) ∩ P is not empty.

A ray is called canonical if it passes through at least two polygon vertices (not necessarily of

the same polygon). Clearly, there areO(n2) canonical rays in the given configuration. Any valid

ray cutting sequence will repeatedly partition the given polygon collection using separating pairs

or separating rays until each polygon has been separated out. A cutting sequence need not to

contain canonical ray cuts. However, the following lemma shows that any valid separation can

be achieved by using canonical ray cuts only. This observation is key for designing a polynomial-

time ray cutting algorithm, based on finding appropriate canonical ray cuts for separation.

Lemma 3.5. Let (r1, r2) be a separating pair. Then there exists a pair of canonical ray cuts (r′′1 , r′′2)

that achieves the same effect as (r1, r2) in terms of separability.

Proof. We transform the pair (r1, r2) into the pair (r′′1 , r′′2) so that the two rays intersect at all

times during the transformation; refer to Fig. 3.13. Let p be the intersection point of r1, r2 such

that the pair separates P ′ ⊂ P . Translate r1 towards P ′ until it touches a polygon vertex, say
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a, and refer to this ray as r′1. Similarly, translate r2 towards P ′ and obtain the ray r′2 passing

through c. Then (r′1, r′2) is still a separating pair, where r′1, r′2 intersect at p′.

r2
r1

Q

a

r′1r′2

c

r′′2

d

r′′1

p

p′

p′′

b

Figure 3.13: Separating the set of polygons P ′ ⊂ P (in light blue) using the canonical pair
(r′′1 , r′′2).

For a given a ray r, let πleft(r) denote the open half plane to the left of r and πright(r) denote

the open half plane to the right of r. If r′1 passes through a only, we have the following two cases

where r′′1 is obtained by rotating r′1 around a until it passes through a second polygon vertex b.

1. If a ∈ πleft(r′2), rotate r′1 clockwise around a.

2. If a ∈ πright(r′2) or a ∈ r′2, rotate r′1 counter-clockwise around a.

Similarly if r′2 passes through c only, we obtain r′′2 passing through vertices c and d by rotating

r′2 around c in the following analogous way.

1. If c ∈ πleft(r′1) or c ∈ r′1, rotate r′2 clockwise around c.

2. If c ∈ πright(r′1), rotate r′1 counter-clockwise around c.

The canonical rays r′′1 , r′′2 meet at p′′ and can also separate P ′.

A rather straightforward argument also yields:

Lemma 3.6. Let r be a separating ray. Then there exists a canonical separating ray that achieves the

same partition.
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Algorithm for cutting According to Lemmas 3.4,3.5,3.6, the existence of a canonical separat-

ing ray is first determined. If at least one exists, an arbitrary ray is chosen and the corresponding

cut is executed. If no canonical separating ray exists, the existence of a canonical separating pair

is determined. If at least one exists, an arbitrary pair is chosen and the corresponding cuts are

executed. After separation the algorithm continues independently and recursively on each of the

newly formed pieces; it terminates when every polygon has been separated from the rest. If no

canonical separating ray or canonical separating pair exists at some point during the algorithm,

P is reported as uncuttable.

As mentioned earlier, each ray cut is extended until it hits the interior of a polygon or the

boundary of the current piece of material. (In some instances separation can be only achieved

with separating rays, e.g., for a collection of stacked congruent axis-aligned rectangles.)

After each polygon in P has been separated out, it is cut out using ray cuts. This step can

be achieved by considering one end extensions of the edges that have some material attached to

them, to form the necessary ray cuts (refer to Observation 3.1).

Analysis There areO(n2) canonical ray cuts andO(n4) canonical pairs of ray cuts in any given

configuration. Hence we have O(n4) ways to cut in total. Verifying whether a canonical pair is

a separating pair and a canonical ray is a separating ray can be done in O(n) time. In the worst

case, we need to execute O(n) canonical separating pairs and rays. After each execution, the

bookkeeping of separation and creation of new pieces can be performed in O(n) time. Thus,

separation of the polygons can be achieved in O(n6) time. After the separation step, in O(n)

time we can remove the pieces of material adjacent to the edges of the polygons. Hence the

overall running time of the algorithm is O(n6). This completes the proof of Theorem 3.5.

Line Cuts The above algorithm can be easily adapted for cutting out polygon collections using

line cuts instead of ray cuts. Similar to the approach described above, we will use only canonical

separating lines and since there are O(n2) of them, the algorithm would run in O(n4) time.
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3.6 Open problems

1. The obvious remaining open problem is devising an algorithm, which, given a collection

of disjoint polygons in the plane determines whether it is cuttable by a segment saw, and

computes a suitable cutting sequence if it is. We conjecture that the problem admits a

polynomial-time algorithm.

2. Can the cutting algorithm presented in Section 3.5 (or its analysis) be substantially im-

proved? Is there a substantially faster algorithm?
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4.1 Introduction

A set of k mobile agents with (possibly distinct) maximum speeds vi (i = 1, . . . , k) are in charge

of patrolling a given region of interest. Patrolling problems find applications in the field of

robotics where surveillance of a region is necessary. An interesting one-dimensional variant has

been introduced by Czyzowicz et al. [7], where the agents move along a rectifiable Jordan curve

representing a fence. The fence is either a closed curve (the boundary of a compact region in the

plane), or an open curve (the boundary between two regions). For simplicity (and without loss

of generality) it can be assumed that the open curve is a line segment and the closed curve is

a circle. The movement of the agents over the time interval [0,∞) is described by a patrolling

schedule (or guarding schedule), where the speed of the ith agent, ai (i = 1, . . . , k), may vary
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between zero and its maximum value vi in any of the two moving directions (left or right).

Given a closed or open fence of length ` and maximum speeds v1, . . . , vk > 0 of k agents, the

goal is to find a patrolling schedule that minimizes the idle time I , defined as the longest time

interval in [0,∞) during which a point on the fence remains unvisited, taken over all points.

A straightforward volume argument [7] yields the lower bound I ≥ `/
∑k
i=1 vi for an (open or

closed) fence of length `. A patrolling algorithm computes a patrolling schedule for a given fence

and set of speeds v1, . . . , vk > 0.

For an open fence (line segment), Czyzowicz et al. [7] proposed a simple partitioning strat-

egy, algorithm A1, where each agent moves back and forth perpetually in a segment whose

length is proportional with its speed.

Algorithm A1. For a segment of length ` and k agents with maximum speeds v1, . . . , vk, the

algorithm partitions the segment into k pieces of lengths `vi/
∑k
j=1 vj , and schedules the ith

agent to patrol the ith interval with speed vi. Refer to Fig. 4.1 for an illustration.

AlgorithmA1 has been proved to be optimal for uniform speeds [7], i.e., when all maximum

speeds are equal. Algorithm A1 achieves an idle time 2`/∑k
i=1 vi on a segment of length `, and

so A1 is a 2-approximation algorithm for the shortest idle time. It has been conjectured [7,

Conjecture 1] thatA1 is optimal for arbitrary speeds, however this was disproved by Kawamura

and Kobayashi [12]: they selected speeds v1, . . . , v6 and constructed a schedule for 6 agents that

achieves an idle time of 41
42

(
2`/∑k

i=1 vi
)
.

A patrolling algorithm A is universal if it can be executed with any number of agents k and

any speed setting v1, . . . , vk > 0 for the agents. For example, A1 above is universal, however

certain algorithms (e.g., algorithm A3 in Section 4.3 or the algorithm in Section 4.4) can only

be executed with certain speed settings or number of agents, i.e., they are not universal.

For the closed fence (circle), no universal algorithm has been proposed to be optimal. For

uniform speeds (i.e., v1 = . . . = vk = v), it is not difficult to see that placing the agents

uniformly around the circle and letting them move in the same direction yields the shortest
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a1

Position on the Fence

I

0 LL/2

I/2

Idle Time : I = 2L
v1

= 10
3
.

0 L

v1 = 3, L = 5,

Unit Length Fence

1
3

2
3

a1 a2

Figure 4.1: Top: illustration of the algorithm A1 with one agent and fence length L. Bottom:
patrolling an unit length fence with two agents. Here, v1 = 2, v2 = 1, I = 2/3.

idle time. Indeed, the idle time in this case is `/(kv) = `/
∑k
i=1 vi, matching the lower bound

mentioned earlier.

For the variant in which all agents are required to move in the same direction along a circle

of unit length (say clockwise), Czyzowicz et al. [7, Conjecture 2] conjectured that the following

algorithm A2 always yields an optimal schedule.

Algorithm A2. Label the agents so that v1 ≥ v2 ≥ . . . ≥ vk > 0. Let r, 1 ≤ r ≤ k, be an

index such that max1≤i≤k ivi = rvr. Place the agents at equal distances of 1/r around the circle,

so that each moves clockwise at the same speed vr. Discard the remaining agents, if any. Since all

agents move in the same direction, we also refer toA2 as the “runners” algorithm. It achieves an

idle time of 1/max1≤i≤k ivi [7, Theorem 2]. Observe that A2 is also universal. Refer to Fig. 4.2

for an illustration with three agents.
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vr =
1
3

a1

a2

a3

Figure 4.2: Demonstration of A2 using 3 equidistant agents moving clockwise : v1 = 1, v2 =
1
2 , v3 = 1

3 , vr = 1
3 , I = 1

max1≤i≤kivi
= 1

max{1·1, 2· 12 , 3· 13}
= 1.

Related problems. Multi-agent patrolling is a variation of the problem of multi-robot cov-

erage [4, 5], studied extensively in the robotics community. A variety of models has been

considered for patrolling, including deterministic and randomized, as well as centralized and

distributed strategies, under various objectives [1, 10]. Idleness, as a measure of efficiency for a

patrolling strategy, was introduced by Machado et al. [13] in a graph setting; see also the article

by Chevaleyre [4].

The closed fence patrolling problem is reminiscent of the classical lonely runners conjecture,

introduced by Wills [14] and Cusick [6], independently, in number theory and discrete geom-

etry. Assume that k agents run clockwise along a circle of length 1, starting from the same

point at time t = 0. They have distinct but constant speeds (the speeds cannot vary, unlike in

the model considered in this chapter). A runner is called lonely when he/she is at distance of

at least 1
k

from any other runner (along the circle). The conjecture asserts that each runner ai

is lonely at some time ti ∈ (0,∞). The conjecture has only been confirmed for up to k = 7

runners [2, 3]. A recent survey [8] lists a few other related problems.
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Notation and terminology. A unit circle is a circle of unit length. We parameterize a line

segment and a circle of length ` by the interval [0, `]. A schedule of k agents consists of k

functions fi : [0,∞] → [0, `], for i = 1, . . . , k, where fi(t) is the position of agent i at time

t. Each function fi is continuous (for a closed fence, the endpoints of the interval [0, `] are

identified), it is piecewise differentiable, and its derivative (speed) is bounded by |f ′i | ≤ vi.

A schedule is called periodic with period T > 0 if fi(t) = fi(t + T ) for all i = 1, . . . , k and

t ≥ 0. The idle time I of a schedule is the maximum length of an open time interval (t1, t2) such

that there is a point x ∈ [0, `] where fi(t) 6= x for all i = 1, . . . , k and t ∈ (t1, t2). Given a fence

length `, a fence type (closed or open), and maximum speeds v1, . . . , vk, idle(A) denotes the

idle time of a schedule produced by algorithm A for these parameters.

We use position-time diagrams to plot the agent trajectories with respect to time. One axis

represents the position fi(t) of the agents along the fence and the other axis represents time. In

Fig. 4.3, for instance, the horizontal axis represents the position of the agents along the fence

and the vertical axis represents time.

s

w

Distance (along fence)

T
im

e

I

s

A

B

C

Figure 4.3: Agent moving with speed s from A to B, waiting at B for time w and then moving
from B to C with speed s.

A schedule with idle time I is equivalent to a covering problem in such a diagram (see
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Fig. 4.3). For a straight-line (i.e., constant speed) trajectory between points (x1, y1) and (x2, y2)

in the diagram, construct a shaded parallelogram with vertices, (x1, y1), (x1, y1 + I), (x2, y2),

(x2, y2 + I), where I denotes the desired idle time and the shaded region represents the covered

region. In particular, if an agent stays put in a time-interval, the parallelogram degenerates to a

vertical segment. A schedule for the agents ensures idle time I if and only if the entire area of

the diagram in the time interval [I,∞) is covered.

The efficiency of a patrolling algorithm A is measured by the ratio

% = idle(A)
idle(A1)

between the idle times of A and the partition-based algorithm A1. Lower values of % indicate

better (more efficient) algorithms. Recall however that certain algorithms can only be executed

with certain speed settings or number of agents.

Our results.

1. Consider the unidirectional unit circle (where all agents are required to move in the same

direction).

(i) We disprove a conjecture by Czyzowicz et al. [7, Conjecture 2] regarding the optimality

of algorithm A2. Specifically, we construct a schedule for 32 agents with harmonic speeds

vi = 1/i, i = 1, . . . , 32, that has an idle time strictly less than 1. In contrast, algorithm A2

yields a unit idle time for harmonic speeds (idle(A2) = 1), hence it is suboptimal. See

Theorem 4.1, Section 4.2.

(ii) For every τ ∈ (0, 1] and t ≥ τ , there exists a positive integer k = k(t) ≤ e4t/τ2 and

a schedule for the system of k agents with harmonic speeds vi = 1/i, i = 1, . . . , k, that

ensures an idle time at most τ during the time interval [0, t]. See Theorem 4.2, Section 4.2.

2. Consider the open fence patrolling. For every integer x ≥ 2, there exist k = 4x+ 1 agents

with
∑k
i=1 vi = 16x + 1 and a guarding schedule for a segment of length 25x/3. Alterna-
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tively, for every integer x ≥ 2 there exist k = 4x+1 agents with suitable speeds v1, . . . , vk,

and a guarding schedule for a unit segment that achieves idle time at most 48x+3
50x

2∑k

i=1 vi

.

In particular, for every ε > 0, there exist k agents with suitable speeds v1, . . . , vk, and

a guarding schedule for a unit segment that achieves idle time at most
(

24
25 + ε

)
2∑k

i=1 vi

.

This improves the previous bound of 41
42

2∑k

i=1 vi

by Kawamura and Kobayashi [12]. See

Theorem 4.3, Section 4.4.

3. Consider the bidirectional unit circle.

(i) For every k ≥ 4, there exist maximum speeds v1, . . . , vk > 0 and a patrolling algorithm

A3 with a shorter idle time than that achieved by both A1 and A2. In particular, for

large k, the idle time of A3 with these speeds is about 2/3 of that achieved by A1 and A2.

See Proposition 4.1, Section 4.3.

(ii) For every k ≥ 2, there exist maximum speeds v1, . . . , vk > 0 and an optimal schedule

for patrolling the circle that does not use up to k − 1 of the agents a2, . . . , ak. In contrast,

for a segment, any optimal schedule must use all agents. See Proposition 4.2, Section 4.3.

(iii) There exist settings in which if all k agents are used by a patrolling algorithm, then

some agent(s) need overtake (pass) other agent(s). This partially answers a question left

open by Czyzowicz et al. [7, Section 3]. See the remark at the end of Section 4.3.

Note. For the case open fence patrolling (refer to Result 2), Kawamura and Soejima [11]

subsequently improved the ratio from 24/25 to 3/4.

General observations. 1. Strategy scalability. Suppose we have a patrolling strategy with k

agents for a fence (open or closed) of length l with ratio % (relative to the partition strategy).

Then, we can scale this strategy for every l′ 6= l using k agents as follows. Let l′/l = c, then

v′i = cvi, 1 ≤ i ≤ k, where v′i is the scaled speed of ai. The waiting times used in the strategy

at specific positions for agents need not to be scaled. One can check that the ratio % remains

unchanged.
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2. Strategy extension. Suppose we have a patrolling strategy with k agents for a fence (open

or closed) of length l with ratio % > 1 (relative to the partition strategy). Then for any k′ > k,

there exists a a patrolling strategy with k′ agents for a fence of length l′ > l with ratio %′ > 1:

use m = k′ − k additional agents with
∑k′

i=k+1 vi = 2(l′ − l) to patrol l′ − l using the partition

strategy. Now if % = a
b
> 1 , then one can check that %′ = a+2(l′−l)

b+2(l′−l) > 1. It follows from

the results of Kawamura and Kobayashi [12] and the above observation that the partition based

algorithm is not optimal for a segment for any k ≥ 6, and k suitable speeds.

4.2 Unidirectional circle patrolling1

A counterexample for the optimality of algorithm A2. We show that algorithm A2 by

Czyzowicz et al. [7] for unidirectional circle patrolling is not always optimal. We consider

agents with harmonic speeds vi = 1/i, i ∈ N. Obviously, for this setting we have idle(A2) = 1,

which is already achieved by the agent a1 with the highest (here unit) speed. We design a periodic

schedule (patrolling algorithm) for k = 32 agents with idle time I < 1. In this schedule, agent

a1 moves continuously with unit speed, and it remains to schedule agents a2, . . . , a32 such that

every point is visited at least one more time in the unit length open time interval between two

consecutive visits of a1. We start with a weaker claim shown in Lemma 4.1, for closed intervals

but using only 6 agents. Then, using the lemma we arrive at our main result in Theorem 4.1.

Lemma 4.1. Consider the unit circle, where all agents are required to move in the same direction.

For k = 6 agents of harmonic speeds vi = 1/i, i = 1, . . . , 6, there is a schedule where agent a1 moves

continuously with speed 1, and every point on the circle is visited by some other agent in every closed

unit time interval between two consecutive visits of a1.

Theorem 4.1. Consider the unit circle, where all agents are required to move in the same direction.

For 32 agents of harmonic speeds vi = 1/i, i = 1, . . . , 32, there is a periodic schedule with idle time

strictly less than 1.
1Theorem 4.1 is mainly the work of Cs. D. Tóth, refer to [9].
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Finite time patrolling. Interestingly enough, we can achieve any prescribed idle time below

1 for an arbitrarily long time in this setting, provided we choose the number of agents k large

enough.

Theorem 4.2. Consider the unit circle, where all agents are required to move in the same direction.

For every 0 < τ ≤ 1 and t ≥ τ , there exists k = k(t) ≤ e4t/τ2 and a schedule for the system of k

agents with maximum speeds vi = 1/i, i = 1, . . . , k, that ensures an idle time at most τ during the

time interval [0, t].

Proof. We construct a schedule with an idle time at most τ . Let agent a1 start at time 0 and

move clockwise at maximum (unit) speed, i.e., f1(t) = t mod 1 denotes the position on the

unit circle of agent a1 at time t. Assume without loss of generality that t is a multiple of τ , i.e.,

t = mτ , where m is a natural number. Divide the time interval [0, t] into 2m subintervals of

length τ/2. For j = 1, . . . , 2m, [(j − 1)τ/2, jτ/2] is the jth interval.

For each j, cover the unit circle C so that every point of C is visited at least once by some

agent. This ensures that each point of the circle is visited at least once in the time interval [0, τ/2]

and no two consecutive visits to any one point are separated in time by more than τ thereafter

until time t, as required.

To achieve the covering condition in each interval j, we use the first agent (a1, of unit speed),

and as many other unused agents as needed. The ‘origin’ on C is reset to the current position

of a1 at time (j − 1)τ/2, i.e., the beginning of the current time interval. So the fastest agent is

used (continuously) in all 2m time intervals. Agent a1 can cover a distance of τ/2 during one

interval. From its endpoint, at time (j − 1)τ/2, start the unused agent with the smallest index,

say i1(j); this agent can cover a distance of τ2
1

i1(j) during the interval. Continue in the same way

using new agents, all starting at time (j−1)τ/2, until the entire circle C is covered; let the index

of the last agent used be i2(j). The covering condition can be written as:

τ

2

1 +
i2(j)∑
i=i1(j)

1
i

 ≥ 1, or equivalently, 1 +
i2(j)∑
i=i1(j)

1
i
≥ 2
τ
. (4.1)
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For example2, if τ = 2/3: j = 1 requires agents a1 through a11, sinceH11 ≥ 3, butH10 < 3; j =

2 requires agents a1 and agents a12 through a85, since 1+(H85−H11) ≥ 3, but 1+(H84−H11) < 3.

We now bound from above the total number k of distinct agents used. Observe that the

covering condition (4.1) may lead to overshooting the target. Because the harmonic series has

decreasing terms, the overshooting error cannot exceed the term 1
i2(1)+1 for τ = 1, namely 1/5

(the overshooting for τ = 1 is only 1
3 −

1
4 = 1

12 <
1
5 ). So inequality (4.1) becomes

2
τ
≤ 1 +

i2(j)∑
i=i1(j)

1
i
≤ 2
τ

+ 1
5 . (4.2)

Recall that t = mτ . By adding inequality (4.2) over all 2m time intervals yields (in equivalent

forms)

Hk − 1 + 8m
5 ≤

4m
τ
, or Hk ≤

4t
τ 2 + 1− 8t

5τ . (4.3)

For t ≥ τ we have 1 ≤ 8t
5τ . Since ln k ≤ Hk, it follows from (4.3) that

ln k ≤ 4t
τ 2 , or k ≤ e4t/τ2

,

as required.

4.3 Bidirectional circle patrolling

The “train” algorithm for closed fence patrolling. Czyzowicz et al. [7, Theorem 5] showed

that for k = 3 there exist maximum speeds v1, v2, v3 and a schedule that achieves a shorter idle

time than both algorithm A1 and A2, namely 35/36 versus 12/11 and 1. We extend their result

for all k ≥ 4. We propose a new patrolling algorithm,A3, for maximum speeds v1 > v2 ≥ . . . ≥

vk > 0. That is, A3 assumes that one of the agents is faster than all others; we then show that

for all k ≥ 4 there exist k maximum speeds for which A3 outperforms both A1 and A2.

Place the k−1 agents a2, . . . , ak at equal distances, x on the unit circle, and let them move all
2Hn =

∑n
i=1 1/i denotes the nth harmonic number.
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clockwise perpetually at the same speed vk; we say that a2, . . . , ak make a “train”. Let a1 move

back and forth (i.e., clockwise and counterclockwise) perpetually on the moving arc of length

1− (k − 2)x, i.e., between the start and the end of the train. Refer to Fig. 4.4.

a2
a3

ak ak−1

a1
vk

v1

Figure 4.4: Train algorithm: the train a2, . . . , ak moving unidirectionally with speed vk and the
bidirectional agent a1 with speed v1.

Proposition 4.1. For every k ≥ 4, there exist maximum speeds v1 > v2 ≥ . . . ≥ vk such that

algorithm A3 achieves a shorter idle time than both A1 and A2. In particular, for large k, the idle

time achieved by the train algorithm is about 2/3 of the idle times achieved by A1 and A2.

Proof. Consider the speed setting v1 = a, v2 = . . . = vk = b, where a > b > 0, and

max1≤i≤k ivi = kb (i.e., a ≤ kb). Put y = 1 − (k − 2)x. To determine the idle time, x/b,

write:

[1− (k − 2)x]
( 1
a− b

+ 1
a+ b

)
= x

b
, or equivalently,

2ay
a2 − b2 = 1− y

(k − 2)b.

Solving for x/b yields

idle(A3) = 2a
a2 − b2 + 2(k − 2)ab.

For our speed setting, we also have

idle(A1) = 2
a+ (k − 1)b, and idle(A2) = 1

kb
.
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Write t = a/b. It can be checked that for k ≥ 4, idle(A3) ≤ idle(A1) and idle(A3) ≤

idle(A2) when a2 − b2 − 4ab ≥ 0, i.e., t ≥ 2 +
√

5. In particular, for a = 1, and b = 1/k (note

that a ≤ kb), we have

idle(A3) = 2
1− 1/k2 + 2(k − 2)/k −→k→∞

2
3 ,

while

idle(A1) = 2
1 + (k − 1)/k −→k→∞ 1, and idle(A2) = 1

k(1/k) = 1.

Useless agents for circle patrolling. Czyzowicz et al. [7] showed that for k = 2 there are

maximum speeds for which an optimal schedule does not use one of the agents. Here we extend

this result for all k ≥ 2:

Proposition 4.2. (i) For every k ≥ 2, there exist maximum speeds v1, . . . , vk > 0 and an optimal

schedule for patrolling the circle with these speeds that does not use up to k−1 of the agents a2, . . . , ak.

(ii) In contrast, for a segment, any optimal schedule must use all agents.

Proof. (i) Let v1 = 1 and v2 = . . . = vk = ε/k, for a small positive ε ≤ 1/300, and C be a unit

circle. Obviously by using agent a1 alone (moving perpetually clockwise) we can achieve unit

idle time. Assume for contradiction that there exists a schedule achieving an idle time less than

1. Let f1(t) denote the position of agent a1 at time t. Assume without loss of generality that

f1(0) = 0 and consider the time interval [0, 2]. For 2 ≤ i ≤ k, let Ji be the interval of points

visited by agent ai during the time interval [0, 2], and put J = ∪ki=2Ji. We have |Ji| ≤ 2ε/k,

thus |J | ≤ 2ε. We make the following observations:

1. f1(1) ∈ [−2ε, 2ε]. Indeed, if f1(1) /∈ [−2ε, 2ε], then either some point in [−2ε, 2ε] is not

visited by any agent during the time interval [0, 1], or some point in C \ [−2ε, 2ε] is not

visited by any agent during the time interval [0, 1].

2. a1 has done almost a complete (say, clockwise) rotation along C during the time interval
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[0, 1], i.e., it starts at 0 ∈ [−2ε, 2ε] and ends in [−2ε, 2ε], otherwise some point in C \

[−2ε, 2ε] is not visited during the time interval [0, 1].

3. f1(2) ∈ [−4ε, 4ε], by a similar argument.

4. a1 has done almost a complete rotation along C during the time interval [1, 2], i.e., it starts

in [−2ε, 2ε] and ends in [−4ε, 4ε]. Moreover this rotation must be in the same clockwise

sense as the previous one, since otherwise there would exist points not visited for at least

one unit of time.

Pick three points x1, x2, x3 ∈ C \ J close to 1/4, 2/4, and 3/4, respectively, i.e., |xi− i/4| ≤

1/100, for i = 1, 2, 3. By Observations 2 and 4, these three points must be visited by a1 in the

first two rotations during the time interval [0, 2] in the order x1, x2, x3, x1, x2, x3. Since a1 has

unit speed, successive visits to x1 are separated in time by at least one time unit, contradicting

the assumption that the idle time of the schedule is less than 1.

( ii) Given v1 ≥ v2 ≥ . . . ≥ vk > 0, assume for contradiction that there is an optimal

guarding schedule with unit idle time for a segment s of maximum length that does not use

agent aj (with maximum speed vj ), for some 1 ≤ j ≤ k. Extend s at one end by a subsegment

of length vj/2 and assign aj to this subsegment to move back and forth from one end to the

other, perpetually. We now have a guarding schedule with unit idle time for a segment longer

than s, which is a contradiction.

Overtaking other agents. Consider an optimal schedule for circle patrolling (with unit idle

time) for the agents in the proof of Proposition 4.2, with v1 = 1 and v2 = . . . = vk = ε/k, in

which all agents move clockwise at their maximum speeds. Obviously a1 will overtake all other

agents during the time interval [0, 2]. Thus there exist settings in which if all k agents are used

by a patrolling algorithm, then some agent(s) need to overtake (pass) other agent(s). Observe

however that overtaking can be easily avoided in this setting by not making use of any of the

agents a2, . . . , ak.
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4.4 An improved idle time for open fence patrolling

Kawamura and Kobayashi [12] showed that algorithm A1 by Czyzowicz et al. [7] does not

always produce an optimal schedule for open fence patrolling. They presented two counterex-

amples: their first example uses 6 agents and achieves an idle time of 41
42 idle(A1); their second

example uses 9 agents and achieves an idle time of 99
100 idle(A1). By replicating the strategy

from the second example with a number of agents larger than 9, i.e., iteratively using blocks of

agents, we improve the ratio to 24/25+ε for any ε > 0. We need two technical lemmas to verify

this claim.
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Figure 4.5: Three agents each with a speed of 5 patrolling a fence of length 25/3; their start
positions are 0, 5, and 20/3, respectively. Figure is not to scale.

Lemma 4.2. Consider a segment of length ` = 25
3 such that three agents a1, a2, a3 are patrolling

perpetually each with speed of 5 and generating an alternating sequence of uncovered triangles T2, T1,

T2, T1, . . ., as shown in the position-time diagram in Fig. 4.5. Denote the vertical distances between

consecutive occurrences of T1 and T2 by δ12 and between consecutive occurrences of T2 and T1 by δ21.

Denote the bases of T1 and T2 by b1 and b2 respectively, and the heights of T1 and T2 by h1 and h2

respectively. Then

(i) 10
3 is a period of the schedule.
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(ii) T1 and T2 are congruent; further, b1 = b2 = 1
3 , δ12 = δ21 = 4

3 , and h1 = h2 = 5
6 .

Proof. (i) Observe that a1, a2 and a3 reach the left endpoint of the segment at times 2(25/3)/5 =

10/3, 5/5 = 1, and (25/3 + 5/3)/5 = 2, respectively. During the time interval [0, 10/3], each

agent traverses the distance 2` and the positions and directions of the agents at time t = 10/3

are the same as those at time t = 0. Hence 10/3 is a period for their schedule.

(ii) Since AL ‖ BM and AB ‖ LM , we have b1 = b2. Since L is the midpoint of IP ,

we have δ12 + b2 = δ21 + b1, thus δ12 = δ21. Since all the agents have same speed, 5, all

the trajectory line segments in the position-time diagram have the same slope, 1/5. Hence

∠BAC = ∠ABC = ∠MLN = ∠LMN . Thus, T1 is similar to T2. Since b1 = b2, T1 is

congruent to T2, and consequently h1 = h2.

Put b = b1, h = h1, and δ = δ12. Recall from (i) that |AH| = 10/3. By construction,

we have |BD| = 1, thus |BH| = |BD| + |DG| + |GH| = 1 + 1 + 1 = 3. We also have

|AH| = b+ |BH|, thus b = 10/3−3 = 1/3. Since L is the midpoint of IP , we have δ+b = 5/3,

thus δ = 5/3− b = 4/3.

Let x(N) denote the x-coordinate of point N ; then x(N) + h = 25/3. To compute x(N)

we compute the intersection of the two segments HL and BM . We have H = (0, 0), L =

(25/3, 5/3), B = (0, 3), and M = (25/3, 4/3). The equations of HL and BM are HL : x = 5y

and BM : x+ 5y = 15, and solving for x yields x = 15/2, and consequently h = 25/3− 15/2 =

5/6.

Lemma 4.3. (i) Let s1 be the speed of an agent needed to cover an uncovered isosceles triangle Ti;

refer to Fig. 4.6 (left). Then s1 = h
1−b/2 , where b < 1 and h are the base and height of Ti, respectively.

(ii) Let s2 be the speed of an agent needed to cover an alternate sequence of congruent isosceles

triangles T1, T2 with bases on same vertical line; refer to Fig. 4.6 (right). Then s2 = h
3b/2+y−1 where

y is the vertical distance between the triangles, b < 1 is the base and h is the height of the congruent

triangles.

Proof. (i) In Fig. 4.6 (left), tanα = 1/s1, |UZ| = b/2, hence |V Z| = 1 − b/2. Also, |V Z||WV | =
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Figure 4.6: Left: agent covering an uncovered triangle Ti. Right: agent covering an alternate
sequence of congruent triangles T1, T2, with collinear bases.

tanα = 1−b/2
h

= 1
s1

, which yields s1 = h
1−b/2 .

( ii) In Fig. 4.6 (right), |AB| = 1+ 2h
s2

. Also, |CD| = b
2 +y+b+ h

s2
. Equating 1+ 2h

s2
= 3b

2 +y+ h
s2

and solving for s2, we get s2 = h
3b/2+y−1 .

Theorem 4.3. For every integer x ≥ 2, there exist k = 4x + 1 agents with
∑k
i=1 vi = 16x + 1

and a guarding schedule for a segment of length 25x/3. Alternatively, for every integer x ≥ 2 there

exist k = 4x + 1 agents with suitable speeds v1, . . . , vk, and a guarding schedule for a unit segment

that achieves idle time at most 48x+3
50x

2∑k

i=1 vi

. In particular, for every ε > 0, there exist k agents with

suitable speeds v1, . . . , vk, and a guarding schedule for a unit segment that achieves idle time at most(
24
25 + ε

)
2∑k

i=1 vi

.

Proof. Refer to Fig. 4.7. We use a long fence divided into x blocks; each block is of length 25/3.

Each block has 3 agents each of speed 5 running in zig-zag fashion. Consecutive blocks share

one agent of speed 1 which covers the uncovered triangles from the trajectories of the zig-zag

agents in the position-time diagram. The first and the last block use two agents of speed 1 not

shared by any other block. The setting of these speeds is explained below.

From Lemma 4.2(ii), we conclude that all the uncovered triangles generated by the agents of
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Figure 4.7: Top: iterative construction with 5 blocks; each block has three agents with speed 5.
Middle: 6 agents with speed 1. Bottom: patrolling strategy for 5 blocks using 21 agents for two
time periods (starting at t = 1/3 relative to Fig. 4.5); the block length is 25/3 and the period is
10/3.
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speed 5 are congruent and their base is b = 1/3 and their height is h = 5/6. By Lemma 4.3(i),

we can set the speeds of the agents not shared by consecutive blocks to s1 = 5/6
1−1/6 = 1. Also, in

our strategy, Lemma 4.2(ii) yields y = δ = 4/3. Hence, by Lemma 4.3(ii), we can set the speeds

of the agents shared by consecutive blocks to s2 = 5/6
1/2+4/3−1 = 1.

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 4.7 (top),

unit speed agents not shared by 2 consecutive blocks and unit speed agents shared by two consec-

utive blocks as in Fig. 4.7 (middle). By Lemma 4.2(i), the agents of first type have period 10/3.

In Fig. 4.7 (middle), there are two agents of second type and both have a similar trajectory. Thus,

it is enough to verify for the leftmost unit speed agent. It takes 5/6 time from A to B and again

5/6 time from B to C. Next, it waits for 5/3 time at C. Hence after 5/6 + 5/6 + 5/3 = 10/3

time, its position and direction atD is same as that at A. Hence, its time period is 10/3. For the

agents of third type, refer to Fig. 4.7 (middle): it takes 10/6 time from E to F and 10/6 time

from F to G. Thus, arguing as above, its time period is 10/3. Hence, overall, the time period of

the strategy is 10/3.

For x blocks, we use 3x+(x+1) = 4x+1 agents. The sum of all speeds is 5(3x)+1(x+1) =

16x + 1 and the total fence length is 25x
3 . The resulting ratio is % = 16x+1

2 /25x
3 = 48x+3

50x . For

example, when x = 2 we reobtain the bound of Kawamura and Kobayashi [12] (from their

2nd example), when x = 39, % = 100
104 and further on, % −→

x→∞
24
25 . Thus an idle time of at most(

24
25 + ε

)
2∑k

i=1 vi

can be achieved for every given ε > 0, as required.

4.5 Framework for deriving a tighter bound for %

In this section, we consider the patrolling schedules for open fences. We present an idea how to

possibly derive a tighter non trivial lower bound for %. Let η = 1/%. Recall that by a volumetric

argument it can be shown that η ≤ 2 for open fence patrolling. We believe that η < 2, or

equivalently there is no strategy which is twice as efficient as the partition-based strategy for

open fences when unit idle time is considered. The following discussion establishes a possible
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framework for achieving a tighter concrete upper bound for η, less than 2. Here, we focus our

attention to the periodic schedules only. However, we think that our argument can be extended

to any arbitrary schedule.

Let v1, . . . , vk be the maximum speeds of the k agents. Fix a periodic schedule S for the k

agents with time period T , that patrols an open fence of length L. Our approach is based on a

covering argument in the position-time diagrams. For S, consider the rectangular region R in

the diagram with one side having length L, parallel to the fence and the other having length T ,

parallel to the time axis. Obviously, area(R) = LT . Now we consider the trajectories of the

agents in one time period T . Observe that in the time interval T , an agent with maximum speed

vi can generate a shaded region of maximum area Tvi inside R. Thus,

LT ≤ T
k∑
i=1

vi − α, (4.4)

where α is the total area of the overlapping shaded regions contributed by the k agents.

Overlapping of shaded regions can occur when an agent takes turn or at least two different

agents meet. Using (4.4), the following relation between % and α can be obtained.

η = 2L∑k
i=1 vi

= 2LT
T
∑k
i=1 vi

≤ 2(T ∑k
i=1 vi − α)

T
∑k
i=1 vi

= 2− 2 α

T
∑k
i=1 vi

< 2. (4.5)

If there is a positive constant c such that for any open fence patrolling schedule, α

T
∑k

i=1 vi

≥ c,

a tighter upper bound for η can be obtained, i.e., η ≤ 2(1 − c). Also, it follows from (4.5)

that η is inversely proportional to α. Simply put, an efficient patrolling schedule has low α.

Furthermore, we note that in any schedule based on the partition-based strategy, any subsection

of the rectangular region R is overlapping.

Note that if every agent has the same maximum speed, the partition-based strategy is opti-

mal; see [12]. Assume that we have many agents of high speed and many agents of low speed.

We believe that in any patrolling schedule there is always a certain positive percentage of overlap

between the shaded regions of the high speed and low speed agents. In other words, if O be the
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area of the said overlap, we believe that O/LT ≥ p for some constant 0 < p < 1. This may be

useful to obtain a bound for α as discussed above. For instance, the aforesaid observation can

be verified for the infinite family of strategies presented in [11]; refer to Fig. 4.8 for a member

strategy. For more details, we refer the reader to their paper. The same observation can also be

verified for the strategies presented in this chapter.
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Figure 4.8: A patrolling strategy when fence length is 8. Ais are the unit speed (high speed)
agents and Bijs are the low speed agents each having maximum speed 1/5. Total number of
agents used is 34. Figure by Kawamura and Soejima, source: arxiv.org/abs/1411.6853.
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