13 research outputs found

    On extracting probability distribution information from time series

    Get PDF
    Time-series (TS) are employed in a variety of academic disciplines. In this paper we focus on extracting probability density functions (PDFs) from TS to gain an insight into the underlying dynamic processes. On discussing this "extraction" problem, we consider two popular approaches that we identify as histograms and Bandt-Pompe. We use an information-theoretic method to objectively compare the information content of the concomitant PDFs.Instituto de Física La PlataFacultad de Ciencias Exacta

    On extracting probability distribution information from time series

    Get PDF
    Time-series (TS) are employed in a variety of academic disciplines. In this paper we focus on extracting probability density functions (PDFs) from TS to gain an insight into the underlying dynamic processes. On discussing this "extraction" problem, we consider two popular approaches that we identify as histograms and Bandt-Pompe. We use an information-theoretic method to objectively compare the information content of the concomitant PDFs.Instituto de Física La PlataFacultad de Ciencias Exacta

    On extracting probability distribution information from time series

    Get PDF
    Time-series (TS) are employed in a variety of academic disciplines. In this paper we focus on extracting probability density functions (PDFs) from TS to gain an insight into the underlying dynamic processes. On discussing this "extraction" problem, we consider two popular approaches that we identify as histograms and Bandt-Pompe. We use an information-theoretic method to objectively compare the information content of the concomitant PDFs.Instituto de Física La PlataFacultad de Ciencias Exacta

    Relative Entropies and Jensen Divergences in the Classical Limit

    Get PDF
    Metrics and distances in probability spaces have shown to be useful tools for physical purposes. Here we use this idea, with emphasis on Jensen Divergences and relative entropies, to investigate features of the road towards the classical limit. A well-known semiclassical model is used and recourse is made to numerical techniques, via the well-known Bandt and Pompe methodology, to extract probability distributions from the pertinent time-series associated with dynamical data

    Relative Entropies and Jensen Divergences in the Classical Limit

    Get PDF
    Metrics and distances in probability spaces have shown to be useful tools for physical purposes. Here we use this idea, with emphasis on Jensen Divergences and relative entropies, to investigate features of the road towards the classical limit. A well-known semiclassical model is used and recourse is made to numerical techniques, via the well-known Bandt and Pompe methodology, to extract probability distributions from the pertinent time-series associated with dynamical data.Facultad de Ciencias Exacta

    Relative Entropies and Jensen Divergences in the Classical Limit

    Get PDF
    Metrics and distances in probability spaces have shown to be useful tools for physical purposes. Here we use this idea, with emphasis on Jensen Divergences and relative entropies, to investigate features of the road towards the classical limit. A well-known semiclassical model is used and recourse is made to numerical techniques, via the well-known Bandt and Pompe methodology, to extract probability distributions from the pertinent time-series associated with dynamical data.Facultad de Ciencias Exacta

    Relative Entropies and Jensen Divergences in the Classical Limit

    Get PDF

    Relative Entropies and Jensen Divergences in the Classical Limit

    Get PDF
    Metrics and distances in probability spaces have shown to be useful tools for physical purposes. Here we use this idea, with emphasis on Jensen Divergences and relative entropies, to investigate features of the road towards the classical limit. A well-known semiclassical model is used and recourse is made to numerical techniques, via the well-known Bandt and Pompe methodology, to extract probability distributions from the pertinent time-series associated with dynamical data.Facultad de Ciencias Exacta

    Dynamic optimization based reactive power planning for improving short-term voltage performance

    Get PDF
    Short term voltage stability in the form of delayed voltage recovery (FIDVR) poses a significant threat to system stability and reliability. This work examines the voltage instability issue in a power system with dense concentration of induction motor loads and applies dynamic VAR injection as a counter-measure to ensure short term voltage stability following a large disturbance. The dynamic behavior of motor loads, such as decelerating and stalling, is considered as the major cause of FIDVR incidents especially during summer peak load conditions in areas where low inertia single-phase air conditioning (A/C) motors comprise a significant portion of the load. If system dynamics are not taken into account properly, the proposed control solution may be an expensive over design or an under design which is not capable of mitigating FIDVR problems completely. This work aims to provide a comprehensive dynamic VAR planning strategy for handling short term voltage stability problems by proper consideration of system dynamics, multiple contingencies, multiple scenarios and operating conditions. In addition, this approach aims to provide valuable system insights such as behavior of different contingencies and dynamic voltage control areas. Contingencies are clustered together according to their behavioral similarity with respect to voltage performance using an entropy based metric called Kullback-Liebler (KL) measure. Using the information of contingency clusters, a new concept called dynamic voltage control areas is derived. The concept of dynamic voltage control area will address the importance of the location of dynamic reactive reserves. Control vector parameterization (CVP), a dynamic optimization based approach is used to identify the optimal locations and amount of dynamic VARs required to mitigate short term voltage problems. The main idea of CVP approach is to solve the system dynamics separately and utilize the system dynamics results in the constraints evaluation during optimization routine. Also this method is applicable to large scale systems because of the utilization of commercial power system and large scale optimization solvers. Simulations have been carried out on modified IEEE 162 bus system to show the working of contingency clustering, dynamic voltage control area identification and CVP method for single contingency case. The CVP method has also been tested on a large scale realistic power system to show the scalability of the proposed approach

    Nonlinear Systems

    Get PDF
    The editors of this book have incorporated contributions from a diverse group of leading researchers in the field of nonlinear systems. To enrich the scope of the content, this book contains a valuable selection of works on fractional differential equations.The book aims to provide an overview of the current knowledge on nonlinear systems and some aspects of fractional calculus. The main subject areas are divided into two theoretical and applied sections. Nonlinear systems are useful for researchers in mathematics, applied mathematics, and physics, as well as graduate students who are studying these systems with reference to their theory and application. This book is also an ideal complement to the specific literature on engineering, biology, health science, and other applied science areas. The opportunity given by IntechOpen to offer this book under the open access system contributes to disseminating the field of nonlinear systems to a wide range of researchers
    corecore