13 research outputs found

    Automatic Emergency Dust-Free solution on-board International Space Station with Bi-GRU (AED-ISS)

    Full text link
    With a rising attention for the issue of PM2.5 or PM0.3, particulate matters have become not only a potential threat to both the environment and human, but also a harming existence to instruments onboard International Space Station (ISS). Our team is aiming to relate various concentration of particulate matters to magnetic fields, humidity, acceleration, temperature, pressure and CO2 concentration. Our goal is to establish an early warning system (EWS), which is able to forecast the levels of particulate matters and provides ample reaction time for astronauts to protect their instruments in some experiments or increase the accuracy of the measurements; In addition, the constructed model can be further developed into a prototype of a remote-sensing smoke alarm for applications related to fires. In this article, we will implement the Bi-GRU (Bidirectional Gated Recurrent Unit) algorithms that collect data for past 90 minutes and predict the levels of particulates which over 2.5 micrometer per 0.1 liter for the next 1 minute, which is classified as an early warningComment: 11 pages, 5 figures, and 1 tabl

    Expert cancer model using supervised algorithms with a LASSO selection approach

    Get PDF
    One of the most critical issues of the mortality rate in the medical field in current times is breast cancer. Nowadays, a large number of men and women is facing cancer-related deaths due to the lack of early diagnosis systems and proper treatment per year. To tackle the issue, various data mining approaches have been analyzed to build an effective model that helps to identify the different stages of deadly cancers. The study successfully proposes an early cancer disease model based on five different supervised algorithms such as logistic regression (henceforth LR), decision tree (henceforth DT), random forest (henceforth RF), Support vector machine (henceforth SVM), and K-nearest neighbor (henceforth KNN). After an appropriate preprocessing of the dataset, least absolute shrinkage and selection operator (LASSO) was used for feature selection (FS) using a 10-fold cross-validation (CV) approach. Employing LASSO with 10-fold cross-validation has been a novel steps introduced in this research. Afterwards, different performance evaluation metrics were measured to show accurate predictions based on the proposed algorithms. The result indicated top accuracy was received from RF classifier, approximately 99.41% with the integration of LASSO. Finally, a comprehensive comparison was carried out on Wisconsin breast cancer (diagnostic) dataset (WBCD) together with some current works containing all features

    A comparison of various machine learning algorithms and execution of flask deployment on essay grading

    Get PDF
    Students’ performance can be assessed based on grading the answers written by the students during their examination. Currently, students are assessed manually by the teachers. This is a cumbersome task due to an increase in the student-teacher ratio. Moreover, due to coronavirus disease (COVID-19) pandemic, most of the educational institutions have adopted online teaching and assessment. To measure the learning ability of a student, we need to assess them. The current grading system works well for multiple choice questions, but there is no grading system for evaluating the essays. In this paper, we studied different machine learning and natural language processing techniques for automated essay scoring/grading (AES/G). Data imbalance is an issue which creates the problem in predicting the essay score due to uneven distribution of essay scores in the training data. We handled this issue using random over sampling technique which generates even distribution of essay scores. Also, we built a web application using flask and deployed the machine learning models. Subsequently, all the models have been evaluated using accuracy, precision, recall, and F1-score. It is found that random forest algorithm outperformed the other algorithms with an accuracy of 97.67%, precision of 97.62%, recall of 97.67%, and F1-score of 97.58%

    A new feature extraction approach based on non linear source separation

    Get PDF
    A new feature extraction approach is proposed in this paper to improve the classification performance in remotely sensed data. The proposed method is based on a primary sources subset (PSS) obtained by nonlinear transform that provides lower space for land pattern recognition. First, the underlying sources are approximated using multilayer neural networks. Given that, Bayesian inferences update unknown sources’ knowledge and model parameters with information’s data. Then, a source dimension minimizing technique is adopted to provide more efficient land cover description. The support vector machine (SVM) scheme is developed by using feature extraction. The experimental results on real multispectral imagery demonstrates that the proposed approach ensures efficient feature extraction by using several descriptors for texture identification and multiscale analysis. In a pixel based approach, the reduced PSS space improved the overall classification accuracy by 13% and reaches 82%. Using texture and multi resolution descriptors, the overall accuracy is 75.87% for the original observations, while using the reduced source space the overall accuracy reaches 81.67% when using jointly wavelet and Gabor transform and 86.67% when using Gabor transform. Thus, the source space enhanced the feature extraction process and allow more land use discrimination than the multispectral observations

    Bayes model for assessing the reading difficulty of English text for English education in Jordan

    Get PDF
    Predicting the reading difficulty level of English texts is a critical process for second language education and assessment. Reading difficulty level is concerned with the problem of matching a reader’s proficiency and the appropriate text. The reading difficulty level or readability assessment is the process for predicting the reading grade level required from an input text or document, which corresponds to the reader and to the materials. Students in Jordan at their academic levels find obstacles in finding relevant readable data for any subject at their levels. This paper is intended to introduce a model that foretells the reading difficulty level of a given text in terms of a student's ability to read and understand English as a non-native English speaker in Jordanian schools. In this paper, Jordanian students were classified into four categories according to their knowledge of English. The prediction of the reading difficulty level is achieved by using a modern statistical model that is situated on the Bayes model. The model compares the given text with some standard predefined text that strongly reflects the ability to read and understand English text. The accuracy of the proposed model was tested using the hold-out method. The overall prediction accuracy was 75.9%

    Applying adaptive learning by integrating semantic and machine learning in proposing student assessment model

    Get PDF
    Adaptive learning is one of the most widely used data driven approach to teaching and it received an increasing attention over the last decade. It aims to meet the student’s characteristics by tailoring learning courses materials and assessment methods. In order to determine the student’s characteristics, we need to detect their learning styles according to visual, auditory or kinaesthetic (VAK) learning style. In this research, an integrated model that utilizes both semantic and machine learning clustering methods is developed in order to cluster students to detect their learning styles and recommend suitable assessment method(s) accordingly. In order to measure the effectiveness of the proposed model, a set of experiments were conducted on real dataset (Open University Learning Analytics Dataset). Experiments showed that the proposed model is able to cluster students according to their different learning activities with an accuracy that exceeds 95% and predict their relative assessment method(s) with an average accuracy equals to 93%
    corecore