534 research outputs found

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    A Review of Movie Recommendation System : Limitations, Survey and Challenges

    Get PDF
    Recommendation System is a major area which is very popular and useful for people to take proper decision. It is a method that helps user to find out the information which is beneficial for the user from variety of data available. When it comes to Movie Recommendation System, recommendation is done based on similarity between users (Collaborative Filtering) or by considering particular user's activity (Content Based Filtering) which he wants to engage with. So to overcome the limitations of collaborative and content based filtering generally, combination of collaborative and content based filtering is used so that a better recommendation system can be developed. Also various similarity measures are used to find out similarity between users for recommendation. In this paper, we have reviewed different similarity measures. Various companies like face book which recommends friends, LinkedIn which recommends job, Pandora recommends music, Netflix recommends movies, Amazon recommends products etc. use recommendation system to increase their profit and also benefit their customers. This paper mainly concentrates on the brief review of the different techniques and its methods for movie recommendation, so that research in recommendation system can be explored

    Recent Developments in Recommender Systems: A Survey

    Full text link
    In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field

    Leveraging Large Language Models in Conversational Recommender Systems

    Full text link
    A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations

    Beyond accuracy in machine learning.

    Get PDF
    Machine Learning (ML) algorithms are widely used in our daily lives. The need to increase the accuracy of ML models has led to building increasingly powerful and complex algorithms known as black-box models which do not provide any explanations about the reasons behind their output. On the other hand, there are white-box ML models which are inherently interpretable while having lower accuracy compared to black-box models. To have a productive and practical algorithmic decision system, precise predictions may not be sufficient. The system may need to have transparency and be able to provide explanations, especially in applications with safety-critical contexts such as medicine, aerospace, robotics, and self-driving vehicles; or in socially-sensitive domains such as credit scoring and predictive policing. This is because having transparency can help explain why a certain decision was made and this, in turn, could be useful in discovering possible biases that lead to discrimination against any individual or group of people. Fairness and bias are other aspects that need to be considered in evaluating ML models. Therefore, depending on the application domain, accuracy, explainability, and fairness from bias may be necessary in building a practical and effective algorithmic decision system. However, in practice, it is challenging to have a model that optimizes all of these three aspects simultaneously. In this work, we study ML criteria that go beyond accuracy in two different problems: 1) in collaborative filtering recommendation, where we study explainability and bias in addition to accuracy; and 2) in robotic grasp failure prediction, where we study explainability in addition to prediction accuracy
    corecore