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ABSTRACT

BEYOND ACCURACY IN MACHINE LEARNING

Aneseh Alvanpour

May 12, 2022

Machine Learning (ML) algorithms are widely used in our daily lives. The need to

increase the accuracy of ML models has led to building increasingly powerful and complex

algorithms known as black-box models which do not provide any explanations about the

reasons behind their output. On the other hand, there are white-box ML models which are

inherently interpretable while having lower accuracy compared to black-box models.

To have a productive and practical algorithmic decision system, precise predictions

may not be sufficient. The system may need to have transparency and be able to pro-

vide explanations, especially in applications with safety-critical context such as medicine,

aerospace, robotics, and self-driving vehicles; or in socially-sensitive domains such as credit

scoring and predictive policing. This is because having transparency can help explain why

a certain decision was made and this in turn could be useful in discovering possible biases

that lead to discrimination against any individual or group of people.

Fairness and bias are another aspect that needs to be considered in evaluating ML

models. Therefore, depending on the application domain, accuracy, explainability and fair-

ness from bias may be necessary in building a practical and effective algorithmic decision

system. However, in practice, it is challenging to have a model that optimizes all of these

three aspects simultaneously.

In this work, we study ML criteria that go beyond accuracy in two different problems:
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1) in collaborative filtering recommendation, where we study explainability and bias in ad-

dition to accuracy; and 2) in robotic grasp failure prediction, where we study explainability

in addition to prediction accuracy.

We discuss the trade-offs between accuracy, explainability and bias and we study the

effect of popularity debiasing on Explainable Matrix Factorization (EMF) by applying an

inverse propensity scoring. To overcome the popularity bias problem in recommendation,

we propose new algorithms to recommend more explainable and less popular items to users.

Our experiments compare the performance of the proposed algorithms to existing methods

in terms of accuracy, explainability, novelty, and diversity on publicly available benchmark

data and study the trade-offs between these three aspects.

Moreover, we report on a study of explainable robotic grasp failure prediction, com-

paring classical interpretable white-box ML models, more sophisticated black-box models,

and an intermediate, glass-box model, based on the explainable boosting machine (EBM ).

The results show that applying EBM leads to a gain in performance, not only in accuracy

metrics but also in implementation time, without sacrificing interpretability. While the

Logistic Regression white-box model (LR) is faster at prediction time than the glass-box

model (EBM ), LR is only globally interpretable and is not locally explainable. To obtain

a local explanation, it takes almost 2 orders of magnitude longer for LR (which relies on

LIME for the explanation generation) compared to a local explanation generated by EBM

for its own prediction. Our experiments further show that applying proper effort to the

object and particularly the effort of joint 1 has important role in the stability of the grasps.

Thus our results match with the mechanical concepts.

In addition, we extend our study of explainable robotic grasp failure prediction

by evaluating the consistency between the explanations generated from different post-hoc

explanation methods, in a third case study. The results show that the local explanations

generated from the output of a black-box model (Random Forest, in our case) are more

consistent in ranking of feature contributions than the local explanations generated from

the output of a white-box model (a Decision Tree classifier in our study). This shows
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that the consistency of the explanations (rankings of important feature contributions in our

case), generated from different explanation methods, depends on the type of predictive ML

model used to make the predictions in the first place.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Motivation and Problem statement

1.1.1 Motivation

Machine Learning (ML) algorithms are being increasingly used in many sectors that

affect society at large. The need to increase the accuracy in performance of ML models,

led to building more powerful and complex algorithms known as black-box models which

do not provide explanations about the reasons behind the output of the models. On the

other hand, there are white-box models which are inherently interpretable while generally

having lower accuracy compared to black-box models.

To have a productive and practical algorithmic decision system, precise predictions

may not be sufficient. The system needs to have transparency such as by being able to pro-

vide explanations, especially in applications with safety-critical contexts such as medicine,

aerospace, robotics, and self-driving vehicles, or in socially-sensitive domains such as credit

scoring and predictive policing. Having transparency can help explain why a certain deci-

sion was made and it can be useful in discovering possible biases leading to discrimination

against any individual or group of people.

Fairness and bias are another dimension that needs to be considered in evaluating ML

models. Therefore, depending on the application, accuracy, explainability and fairness may

be necessary in building a practical and effective algorithmic decision system. However,

in practice, it is challenging to have a model that optimizes all of these three aspects

simultaneously.

Recommender Systems provide personalized suggestions for consumers to help them

discover their preferred items among millions of songs, movies, news, jobs, courses and
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friends. They also support providers to gain more benefits while being used in many appli-

cations such as e-commerce and social media.

Focusing on achieving higher accuracy by discovering the most relevant items to

users, led to using black-box algorithms such as Matrix Factorization (MF ) [3] which pro-

vides highly accurate predictions about users’ interests, but no explanations about the

predictions of the model. A recent work by Abdollahi and Nasraoui [4, 5] introduced an

explainability constrained MF technique called Explainable Matrix Factorization (EMF ).

By adding soft explainability constraints to the MF objective function, it brought users

closer to their explainable items in latent space and showed significant improvement in

explainability and accuracy in recommendations.

Analysing the sensitivity of EMF to explainability and accuracy, [4, 5] found that

there is a positive correlation between explainability and accuracy. They showed that by

increasing the explainability parameter (λ), there is no sacrifice in the accuracy of EMF .

However due to the inherent bias of the input rating data, the explainability scores which

aggregate the neighbors’ ratings may be affected by popularity bias. So far only one recent

study addressed both explainability and debiasing together [6]; however it focuses on implicit

feedback data, which is outside the scope of this work. In contrast, this work focuses on

explicit (rating) data.

To mitigate the effect of popular items on EMF’s explainability and accuracy, we

propose a Debiased Explainable Matrix Factorization (Debiased EMF) method which uses

an inverse popularity propensity score (IPS) in its objective function.

Grasping reliability is important in many robotic tasks involving human safety or

material costs. For this reason, predicting grasp failures before they occur can give timely

warnings about potential reliability risks during manipulation. These predictions can guide

decision making by both humans interacting with the robot and by design engineers seeking

to improve the robot performance.

Despite advances in robot control, imprecision in sensing and actuation is still a

challenge in making a robot’s grasp more stable [7]. This has motivated using ML to
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predict failures before they occur. However, Black-Box models fail to explain the reasons

for predicted failures, and thus give no clues about why failures are predicted to occur,

whether to trust the prediction of failure, nor how to avoid failures for instance by different

designs. This is why explainability in ML could provide a solution for the robotic grasp

failure prediction challenge.

1.1.2 Problem Statement and Scope

We study ML criteria that go beyond accuracy in two different domains: 1) in

collaborative filtering recommendation where we study explainability and bias in addition

to accuracy, and 2) in robotic grasp failure prediction where we study explainability in

addition to prediction accuracy.

To achieve a balance between accuracy, explainability and bias in matrix factor-

ization based recommendation systems, we propose a new algorithm which provides both

Debiasing and Explainability simultaneously, called Debiased Explainable Matrix Factor-

ization (Figure 1.1). Moreover, we compare the effect of applying the Inverse Propensity

Weighting or Scoring (IPW or IPS) in the following two different terms of the combined

loss function:

1. The rating prediction loss

2. The explainability regularization term

We would like to evaluate the effectiveness of down-weighting popular items in rating pre-

diction for unseen items and in recommending more explainable items to users. We limit

the scope of our work to Collaborative Filtering, since this paradigm is considered the state

of the art and drives the most flexible recommendation engines in a wide variety of domain.

In real world recommendation systems, popularity bias can happen due two other

biases; interaction bias, when users tend to have more interaction with popular items, and

presentation bias, when recommender systems show more popular items compared to items

in the long-tail (less popular items) [8]. Since the dataset that we use for our study does
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Figure 1.1: Explainability and bias trade-offs in the proposed debiasing recommendation
methods (in bold) and existing competitive baselines.

not provide any information to distinguish between interaction bias and presentation bias,

we assume that popularity bias comes from the long-tail problem and presentation of more

popular items in the recommendation list to users.

1.2 Research Contributions

In this work, we study ML criteria that go beyond accuracy in two different problems

where accuracy alone may not be sufficient as a performance goal: 1) in collaborative

filtering recommendation where we study explainability and bias in addition to accuracy

and 2) in robotic grasp failure prediction where we study explainability in addition to

prediction accuracy.

1. We propose new recommendation algorithms which provide both Debiasing and Ex-

plainability simultaneously, called Debiased Explainable Matrix Factorization to study

the trade-offs between accuracy, explainability and bias (Fig. 1.1).

2. We study the effectiveness of down-weighting popular items in rating prediction for

unseen items and in recommending more explainable items to users.

3. We explore the trade-offs between prediction accuracy and explainability in another

ML application, namely robotic grasp failure prediction by comparing the performance

of classical white-box models and different sophisticated black-box models as well as an

intermediate model called glass-box model based on the explainable boosting machine

(EBM) [9–11].
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4. We analyze the consistency of Post-hoc Explanation methods in ranking feature con-

tributions and finding the most responsible features for grasp failures.

1.3 Document Organization

The rest of the document is organized as follows:

• Chapter 2 reviews some background about explainability and bias in recommender

systems. It also includes background about applying machine learning models from

two perspectives, namely accuracy and interpretability of the models for predicting

the failure of the stability of robotic grasps.

• Chapter 3 presents our proposed research and experimental results to mitigate the

effect of popularity debiasing on explainability and accuracy of Explainable Matrix

Factorization (EMF) model. Then we present the results for the proposed Debiased

EMF based methods, comparing them with the baseline methods, and evaluating

their performance from different perspectives; accuracy, explainability, novelty and

diversity.

• Chapter 4 presents our methodologies and experimental results through three case

studies on the possibility to generate explanations for predicted robotic failures, while

exploring different ML modeling and explanation generation techniques that vary in

their accuracy and explanation capability.

• Finally, Chapter 5 presents our conclusion.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter reviews the background related to explainability and bias in recom-

mender systems. It also provides background about applying machine learning models from

two perspectives; interpretability of the models and prediction accuracy for the stability of

robotic grasps. In addition, it reviews the metrics to evaluate (measure) the similarity be-

tween global explanations generated by ML models and the local explanations by Post-hoc

explanation methods.

2.1 Recommender Systems

Recommender systems are methods which suggest items that are more likely to be

used by users [12, 13] . Their suggestions help users in buying items, taking courses, or

choosing books to read.

To provide recommendations, recommender systems use three types of data: items,

users and interactions, which explain the relation between users and items.

Items are the objects that a recommender system suggests to its users and may be

characterized by their complexity and their value or utility [14]. Items such as CDs, books,

movies can be considered as low complexity and value recommendations, while insurance

policies, financial investments, travels, and jobs are the most complex [14]. Also, an item

may be represented by a single id code or a set of features. For example, in a movie

recommender system, a movie can be described by various attributes such as genre (crime,

romantic, etc.), the director, and actors.

Moreover, recommender systems, based on their built-in technology, can use different

features and information of the users in personalizing the recommendations. For example,
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a list of ratings which each user has provided for watching movies, models the users in a

collaborative-filtering technique. In demographic recommender systems, users are described

by sociodemographic attributes such as age, gender, profession, and education.

2.1.1 Recommendation Techniques

Based on the domain, knowledge or the algorithm, we can classify the recommender

systems techniques into different categories such as Content-based, Collaborative-filtering

(CF), Demographic, Knowledge-based, Community-based, and Hybrid recommender sys-

tems. In this work we focus on CF because it is the leading modern approach in recom-

mendation systems [15].

2.1.1.1 Collaborative Filtering

Collaborative Filtering (CF) is a popular technique and is currently the leading

approach in recommender systems which uses the known preferences of a group of users to

make recommendations or predictions of the unknown preferences for other users [15]. The

fundamental assumption is that if users A and B rate k items similarly, they share similar

tastes, and hence will rate other items similarly. Approaches differ in how they define a

“rating,” how they define k, and how they define “similarly” [15]. The need of finding related

items and users in CF systems, has led to two main techniques of CF: the neighborhood

approach and latent factor models. Neighborhood methods focus on relationships between

items or users. An item-item approach models the preference of a user to an item based on

ratings of similar items by the same user. Latent factor models, such as matrix factorization,

transforms both items and users to the same latent factor space. The latent space tries to

explain ratings by characterizing both products and users on factors automatically inferred

from user feedback [14].
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2.1.2 Transparency in Recommender Systems

Transparency lets the users know how the system works [14]. Most modern recom-

mender systems rely on sophisticated black-box machine learning models that are unable to

explain their output predictions. Thus, recent research has developed methods to address

lack of transparency by introducing Explainable models.

Based on algorithms used in building recommender systems, explanations can be pro-

vided in different styles, such as Collaborative-based, Content-based, Demographic-based,

Case-based reasoning, and Knowledge and Utility-based.

Here, we focus on collaborative-based approach which provides explanations by us-

ing user u’s ratings on items i. Then these ratings are used to identify users that are similar

in ratings to u. These similar users are often called “neighbors” as nearest-neighbors ap-

proaches are commonly used to compute similarity. Then, a prediction for the recommended

item is extrapolated from the neighbors’ ratings of i.

In our research, we study the effect of inverse popularity propensity based debiasing

on explainability, accuracy, novelty and diversity on the state-of-the-art Explainable Matrix

Factorization (EMF ) method proposed by [4, 5]. The authors introduced an explainabil-

ity constrained MF technique that computes the top-n recommendation list from items

that are explainable. They formulated the explainability based on the rating distribution

within the user’s or item’s neighborhood. They extended MF by adding soft explainabil-

ity constraints to the objective function to bring users closer to their explainable items in

latent space. Their results showed significant improvement in explainability and accuracy

in recommendations. We will discuss more details about EMF in Chapter 3.

2.1.3 Bias in Recommender Systems

Recommender Systems are widely used not only in providing personalized sugges-

tions for consumers but also in supporting providers to gain more benefits while being used

in many applications such as e-commerce and social media. From the user’s perspective, the

recommender systems help us in discovering our preferred items among millions of songs,
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movies, news, jobs, courses and friends. Although the recommender systems have important

roles in our online and digital daily life, the issue of bias may affect their effectiveness.

The authors in [16] mention three reasons for having bias in the recommender sys-

tems. One reason is that user behavior data is observational rather than experimental. It

means that users behave based on the items which were exposed to them. The presentation

of the items in the data is another reason to cause biases in the recommender systems.

For example, popular items, which get more user behaviors, have more effects on what

the model learns from the data. Thus the result of the recommendation systems would be

biased towards them [16].

2.1.3.1 Bias in Recommendation

1. Bias in Data

The training data, which reflects the user behaviours, can be a source of biases in

recommender systems and leading to biased decisions in the system. Whether the

input data to the systems has implicit or explicit feedback from the users, we can

classify this type of bias into four groups: exposure bias and position bias in implicit

feedback, and selection bias and conformity bias in explicit feedback.

(a) Bias in explicit feedback data

Having explicit feedback from users, when users give numerical ratings to items,

can cause the Selection bias. As authors mention [16], the selection bias occurs

because users are free in choosing items to rate. Thus the observed ratings are

not a representative sample of all ratings. In other words, the missing ratings in

the data are not at random (MNAR).

Another type of bias which roots from the explicit feedback is conformity bias.

Sometimes users would like to give similar ratings to the others in a group.

Therefore, the rating data does not necessarily reflect the user’s true preferences

[16].

9



(b) Bias in implicit feedback data

Sometimes the feedback data which is used in recommendation is a result of

natural behaviors of users. For example, it includes information about users

purchases, views, and clicks. This implicit feedback which only provides a par-

tial signal of positive, can be the source of two other biases, exposure bias and

position bias [16].

Since users are exposed to a part of specific items, the unobserved interactions do

not reflect the negative preference. Therefore could cause the exposure bias [16].

Another type of bias, which is more common in e-commerce recommender sys-

tems, comes from the position of items in the recommendation list and called

position bias. Items with higher position in the recommendation list are more

likely to be chosen by users regardless of their relevance to the user’s true pref-

erence [16].

2. Bias in Model

Generalization and better prediction of the unseen data is one of the main goals in

Machine Learning. This goal can be achieved by a set of assumptions made by learning

algorithms. These added assumptions to the model refer to Inductive bias [16].

3. Bias and Unfairness in Results

In addition to the biases introduced in data and model, popularity bias and unfairness

are two other important biases which can be found in the results.

(a) Popularity Bias

In the recommender system training data, most of user interactions belong to

a small proportion of popular items which cause the long-tail issue in the rec-

ommendation and it introduces the popularity bias [16, 17]. Using data with

the long-tail problem, popular items receive higher scores by the learning algo-

rithms while unpopular items get negative scores. Therefore, popular items are
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recommended even more frequently than their initial popularity presented in the

dataset [17].

Disregarding the popularity bias will cause several issues:

i. Recommending popular items will ignore users preferences and will hurt the

level of personalization.

ii. Suggesting popular items, which may not always have high quality, will

decrease the chance of other items to be seen by the users and will make the

results unfair.

iii. Increasing the chance of exposure for popular items will cause the collected

data for future use to be more imbalanced and will cause the “Matthew

effect” [18] issue.

Unfairness is another common bias in recommendation systems. The authors

in [19] define fairness as “absence of any prejudice or favoritism towards an indi-

vidual or a group based on their intrinsic or acquired traits”. Therefore Unfair-

ness happens when a system makes unfair decisions against certain individuals

or groups of people [20].

Usually the unequal representation of different groups of users based on sensitive

features such as age, race, gender, education level or wealth makes the training

data unbalanced. Using the unbalanced data, the model learns the behavior of

the majority groups better than minority groups. Therefore, the model’s output

would be biased towards the majority groups and against minority groups. One

example, job recommenders offer fewer ads for high-paying jobs and career coach

services to women compared to men [21], [22]. This can happen due to the gender

imbalance in the historical data that was used in the model training process.

2.1.3.2 Debiasing Methods

Many methods have been proposed to decrease the effect of popularity bias including

Regularization [23, 24], Adversarial learning [25], Causal graph [26], and Propensity Score
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[8]. So far only one recent study addressed both explainability and debiasing together [6];

however it focuses on implicit feedback data, which is outside the scope of this work. In our

study we will use popularity to estimate the propensity score [27] and to debias the EMF

model [4, 5] on explicit (rating) data.

2.1.4 Recommender System Evaluation Metrics

2.1.4.1 Explainability Metrics

To measure the explainability of the models we adopted Mean Explainability Preci-

sion (MEP ) metric from [4,5].

MEP =
1

|U |
∑
u∈U

|{i : i ∈ top− n,Explu,i > θ}|
|top− n|

(2.1)

To get better estimation of our model explainability, we use Weighted Mean Ex-

plainability Precision (WMEP ) which includes the explainability score of the items in its

evaluation.

WMEP =
1

|U |
∑
u∈U

(Explu,i)
|{i : i ∈ top− n,Explu,i > θ}|

|top− n|
(2.2)

We also measure the explainability with True Mean Explainability Precision (TMEP )

which considers explainable items from the true (ground truth) top-n ranked items in ad-

dition to items that belong to top-n recommendation list (from estimated ratings).

TMEP =
1

|U |
∑
u∈U

|{i : i ∈ {(top− n) ∩ (True− top− n)}, Explu,i > θ}|
|top− n|

(2.3)

WTMEP considers the effect of assigning explainability weights and considering

items from true top-n ranked list simultaneously in its explainability evaluation.

WTMEP =
1

|U |
∑
u∈U

(Explu,i)
|{i : i ∈ {(top− n) ∩ (True− top− n)}, Explu,i > θ}|

|top− n|
(2.4)
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2.1.4.2 Novelty and Diversity Metrics

To measure Novelty of new recommended items, we use a Popularity-based Nov-

elty metric called Expected Free Discovery (EFD) [28] which defines item novelty as the

difference between an item and “what has been observed” as shown in Equation 2.5.

EFD =
−1

|R|
∑
i∈R

(1− Pu,i) (2.5)

Pu,i =
Ni

NU
(2.6)

Here Pu,i is the probability that user u has observed item i and is equal to the proportion

of Ni (number of users who rated item i) to NU (total number of users).

Given a popularity threshold θ, for each user we count number of unpopular items

(items which whose popularity is less than the threshold) among the top-n recommended

items to that user (Du). Then we report the average of this count on all users as shown in

Equation 2.7.

Diversity =
1

|U |
∑
u∈U
|Du| (2.7)

Here Du is the count of unpopular items among the top-n recommendation list.

Du = {i ∈ top− n : Pu,i < θ} (2.8)

2.2 Background on Grasp Failure Prediction

ML models have been widely used to increase the stability of robotic grasping by

detecting or predicting grasping failures and taking appropriate actions to correct them

[29,30]. The authors in [31] used dual robot arms and applied convolutional neural networks

(CNN) to approximate the grasping points of the objects and predict grasping failures. Deep

neural networks and an anthropomorphic soft hand were used to improve the reliability of

grasping [32]. Partial least square (PLS) was another approach that monitored faults during

robot operation, online, while the faults were detected offline [33].
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Among fault diagnosis methods, in data-driven (knowledge-based) techniques, a di-

agnosis decision is made by comparing the performance output of the system and a learned

knowledge (from the performance of the system in the past) which is based on the ex-

tracted information achieved by applying artificial intelligence to a large amount of histor-

ical data [34]. This knowledge can be obtained from qualitative or quantitative methods.

The qualitative techniques are mainly grouped into Signed Directed Graph [35], Expert

System (ES) [36], and Fault Tree (FT) [36]. While the quantitative methods can be di-

vided into three main Machine Learning algorithms: Supervised Learning (such as Partial

Least Squares (PLS) [37], Principal Component Analysis (PCA) [38], Support Vector Ma-

chine (SVM) [39], Neural Networks (NNs), Fuzzy Logic (FL) [40], Bayesian Classifier [41]),

Unsupervised Learning (such as Nearest Neighbor [42] and K-means [43, 44]), and Rein-

forcement Learning [45, 46]. Despite the extensive research and advancements in object

manipulation, maintaining grasp stability is still challenging in robotics due to uncertain-

ties during the grasping process (from detecting correct finger positions on the object to

applying the proper force by fingers) [47]. Thus research has been conducted to propose

strategies and methods to provide high-precision grasps and to predict potential faults by

applying different ML algorithms including Deep Learning methods [48]. The authors in [29]

proposed an effective fault detection algorithm based on neural networks to detect faults

for robot manipulators. Another study by [49] was able to classify and predict grasp failure

in soft robotic hands by proposing two deep learning architectures. By applying a deep

neural architecture they classified successful and unsuccessful grasps. Then by proposing

a second neural architecture, composed of three convolutional layers (CNN) and two Long

Short Memory Networks (LSTM), they predicted the times of failure before they occurred.

Another LSTM-based model was proposed by [50] to detect faults for an industrial robot

manipulator and it showed better performance in predicting faults compared to other ML

models including Random Forest [51], SVM, and k-NN+ DTW (k-Nearest Neighbor and

Dynamic Time Warping [52]).
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2.3 Interpretable Machine Learning Methods

Machine learning algorithms have been applied to help robots learn how to work and

make decisions based on information received from sensors. Information could be in the

form of image features from cameras or positions or velocity of gripper joints [53]. Despite

advances in robot control, imprecision in sensing and actuation still challenge the stability

of a robot’s grasp [7].

Interpretable ML methods can be categorized based on whether interpretability is

achieved by limiting the complexity of the ML model (hence called intrinsically interpretable

methods) or by applying methods that analyze the learned ML model after training (hence

called post-hoc interpretable methods) [54]. Algorithms that produce simple structures

such as Decision Trees (DT) [55] and linear models, like Logistic Regression (LR) [56], are

intrinsically interpretable. This is because we can easily produce global explanations based

on the estimated coefficients of logistic regression models (LR) or by visualizing decision

paths from decision tree models. Despite having high interpretability, these simple White-

Box (WB) models have some weaknesses. For example, based on the intuition behind the

LR classifier, the algorithm fails to build an accurate and reliable model if in reality the

relationship between features and dependent variable (outcome) is non-linear or if there is

interaction between features [57]. Fortunately, modifications on linear and additive models

has created new algorithms such as Generalized Additive Models with pairwise interactions

(GA2M) [9] which is as accurate as BB models and still inherently interpretable. Ex-

plainable Boosting Machine (EBM) [9–11], a tree-based GA2M model, will be used in this

paper.

Black-Box (BB) models, on the other hand, do not generate natural interpreta-

tions. Instead, interpretations generally have to be extracted in a follow-up phase, after

the model has been learned, using post-hoc explanation methods that extract information

from learned black-box models such as ensemble methods [58] or neural networks, and help

us to figure out “what else the model can tell us” [59]. These explanations are obtained by

learning a separate interpretable model on the predictions of the black-box model [60, 61],
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by perturbing inputs and analyzing the black-box model reactions [62], or by applying both

methods [63]. The aim of these methods is to approximate the initial model (usually a

BB model) to provide explanations [57]. Recent post-hoc approaches include Permutation

Feature Importance [64], Local Interpretable Model-agnostic Explanations (LIME) [63],

SHapley Additive exPlanations (SHAP ) [65], Tree-SHAP (a variation of SHAP for tree-

based ML models) and TreeInterpreter (TI) [66,67].

2.3.1 Explainable Boosting Machine (EBM)

EBM [9–11] is an interpretability algorithm based on the Generalized Additive Model

(GAM) [68, 69]. This glass-box model provides a high accuracy comparable to black-box

models such as Random Forest and Boosted Trees while keeping its inherent interpretability

[11]. Moreover, unlike black-box explanation approaches which are approximations of the

model, EBM explanations are exact [57].

The standard GAMs have the form

g(E[y]) = β0 +
∑

fj(xj) (1)

which adds single-feature models, called shape functions (fj), through a linear function [69].

GA2Ms model pairwise interactions between features (fij) to boost the accuracy

compared to the standard GAMs [9].

g(E[y]) = β0 +
∑

fj(xj) + fij(xi, xj). (2)

In the above formulas, x is an input, y is the label, and g is a link function.

EBM first learns the feature function fj for the jth feature, by using modern ML

algorithms such as gradient boosting and bagging while considering only the jth feature

at a time and in a round-robin manner for all features. EBM also includes fij which is

a pairwise interaction feature function to increase the accuracy of standard GAMs while

maintaining the interpretability [11, 57]. By plotting the output value of one-dimensional

(fi) and two-dimensional (fij) components against their input values, we can visualize the
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contribution of the features in shaping the final decision by the model. This is how GAMs

provide interpretability [9].

2.3.2 Logistic Regression

Logistic Regression [56] is a statistical method that calculates the probabilities for

binary classification problems. It aggregates the input features (xi) with coefficients (βi) in

a linear way to predict the probability of an event (p).

log
p

1− p
= β0 + β1x1 + ...+ βnxn. (3)

The LR is a white-box model because the contribution of each input feature (xi) in the

model’s output is interpretable. In other words, a unit increase in one of the input features

(xi) causes a log-odds output increase by one coefficient (βi) [70]. Therefore, by interpreting

the input response terms (βixi), we can understand the output of the model.

2.3.3 SHapley Additive exPlanations (SHAP) and Tree-SHAP

SHAP is an additive feature attribution method and presents the explanations in

a linear function which makes it more understandable for the users [54]. Shapley values

explain the model’s output of a function f as a sum of the effect φi that each feature has

contributed to the output. Based on the additive feature attribution, the explanation model

of g is defined as:

g(z ′) = φ0 +

M∑
i=1

φiz
′
i (1)

Where M is the number of features, z ′ ∈ {0, 1}M , and φi ∈ R.

The z ′i is equal to one if a feature being observed and equal to zero for unknown

ones and the φi’s are the attribution of features. f(hx(z ′)) is the mapping function that

evaluate the effect of feature observation. Variable S is the set of non-zero indexes in z and

fx(S) = f(hx(z ′)) = E[f(x)|xs]. Here E[f(x)|xs] is the expected value of the function

conditioned on a subset S of the input features. SHAP values combine these conditional

expectations with the classic Shapley values from game theory to attribute φi values to each
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Figure 2.1: Summary of Post-hoc Explanation Methods.

feature:

φi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)] (2)

where N is the set of all input features [71].

SHAP values can be extended to the SHAP interaction values based on the Shap-

ley interaction index from game theory [72]. This approach discovers important pairwise

interactions learned by the model. It shows if the effect of a feature on the predicted result

depends on the value of other features.

φi,i = φi −
∑
j 6=i

φi,j (2.9)

The SHAP interaction value between feature i and feature j is equal (φij = φji) and the

total interaction effect is computed by adding φij + φji . Thus, the difference between the

SHAP value (φi) and the SHAP interaction values for a feature (φij) quantifies the main

effects for a prediction (φi,i).

In our study, we use Tree-SHAP which is a variant of SHAP for tree based machine

learning models such as the LightGBM classifier [73] and Random Forest [51]. While Tree-

SHAP adds local explainability to any model, it also adds a computational overhead.

A comparison of these three post-hoc explanations methods is presented in (Fig. 2.1).
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2.3.4 Local Interpretable Model-agnostic Explanations (LIME)

LIME [63] is a model-agnostic approach which means it can be applied to any ML

model and it provides individual explanations. To understand why a ML model made a

specific prediction, LIME approximates the prediction of the ML model (f) with a linear

regression explanation model (g) locally around that prediction (πx) [57]. This explanation

model can be achieved as follows:

ζ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (4)

The explanation model g belongs to a family of interpretable models (G) such as decision

trees or linear models. The goal is to minimize L(f, g, πx) while keeping the complexity of

the explanation model (Ω(g)) low to achieve understandable explanations [63].

2.3.5 TreeInterpreter (TI)

Another post-hoc explanation method is TreeInterpreter that generates explana-

tions for each individual predictions (local explanations) in tree-based models (either for

regression or classification tasks) [66, 67]. This method follows the decision paths of each

prediction’s output, from the root to the leaf nodes in a tree, and extracts the available

information for a specific feature, such as the expected prediction values at each internal

and leaf node. Using this information, TI breaks down the final prediction value into a

sum of feature contributions and a bias term (which is the mean over the training dataset).

Therefore, TI makes the predicted output of the tree-based Black-Box models, such as RF,

explainable and more understandable [66,67]. Thus the decision function f(x) in a decision

tree can be decomposed into the sum of feature contributions and a constant value of Cfull

(bias term) as formulated in Eq.2.10 [66,67]:

f(x) = Cfull +

K∑
k=1

contrib(x, k) (2.10)

Here the value of the root node is defined as Cfull (bias term) and x is an input feature

vector. Thus contrib(x, k) presents the contribution of the k-th feature in the feature vector

x [66, 67].
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Since a RF model builds several trees and takes the average of predictions made by

those trees as its final predictions, the prediction function can be defined as an average of

each function f(x) from Eq.2.10. Therefore the decision function (F (x)) in a RF model

can be calculated as follows:

F (x) =
1

J

J∑
j=1

fj(x) (2.11)

F (x) =
1

J

J∑
j=1

Cjfull +

K∑
k=1

(
1

J

J∑
j=1

contribj(x, k)) (2.12)

Having a forest with J trees, the final prediction is decomposed by taking the average

of both the bias term (Cfull) and the contribution of each feature (contrib(x, k)) [66,67].

2.3.6 Feature Importance in Decision Tree and Random Forest Classifiers

Since in our study we compare the global explanations between Decision Trees (DT)

[55] and Random Forest (RF) [51], in this section we provide a brief review on how these

explanations can be measured in different ML models.

The global explanation shows the importance of each feature (globally) on the

model’s outcome over the training set. The explanations are based on Feature Importance

(FI) score that measures the impact of each feature on predicting the output of ML models

(either Black Box or White Box models) such as RF or Logistic Regression (LR) [56]. How-

ever, the FI can not be considered as a “consistent” explainer [71]. It means that changing

the model can decrease the importance of a feature despite the fact that the feature may

still have a high impact on the predicted output [71].

In linear ML models such as LR, the output of the model is the weighted sum of the

input features. Therefore, these linear models provide a set coefficients which can be used

as the FI score. In tree-based models such as DT and RF, the importance of each feature

is measured based on the reduction in impurity criterion after choosing that feature (i) to

split a node (j) that is explained in Eq. 2.13 in more details.

In our experiments in Chapter 4, we will use Scikit-learn library [74] for building

the models and comparing their global explanations based on the provided FI scores by
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this library. The Scikit-learn implemented an optimized version of CART algorithm [75]

(Classification and Regression Trees) for DT models. Therefore, the feature importance

of DT models can be measured by Gini Impurity or Entropy [75] for classification tasks,

and Mean Squared Error (MSE) or Mean Absolute Error (MAE) [76] for regressions.

Considering a binary tree built by CART algorithm, the importance of node j after splitting

on feature i (nij) is defined by calculating the reduction in node impurity (Cj) and weighting

it (wj) by the probability of reaching node j as explained in Eq.2.13 [77].

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (2.13)

Here Cleft(j) and wleft(j) are the impurity and the weighted number of samples reach-

ing a child node from the left split on node j, respectively. The same notation is used for a

child node from the right split on node j (right(j)) [77].

Then the importance of feature i (fii) is determined by adding the importance of all

nodes j that were split on feature i, over the summation of node importance for all nodes

k (nik) as: [77]

fii =

∑
j:node j splits on feature i nij∑

k∈all nodes k nik
(2.14)

Similarly, the RF algorithm implemented by Scikit-learn provides the feature impor-

tance score (fii) by averaging over all the trees as shown in Eq.2.15:

RFfii =

∑
t:all trees normfiit

T
(2.15)

Where normfiit is the normalized importance of feature i in tree t and has values between

0 and 1. Finally, the feature importance in RF is defined by dividing the summation of

normalized feature importance score on each tree t to the total number of trees T . Therefore,

more important features have higher values [77].

2.3.7 Rank Similarity Metrics

To measure the similarity between the ranked lists of explanations (lists of the fea-

tures that are ranked based on their contributions or impacts on the model’s output) gener-
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ated by Post-hoc methods, we use two types of metrics: Correlation based and Intersection

(set) based.

2.3.7.1 Kendall’s Tau correlation coefficient

One of the most commonly used rank correlation measures is Kendall’s Tau corre-

lation coefficient [78]. This metric calculates the probability of two items appearing in the

same order in two (conjoint) ranking lists. If the items are in the similar order (identical),

then correlation is strong and positive (+1). Whereas the reverse order results a strong and

negative correlation (-1). Moreover, “randomly” related or uncorrelated items will have zero

correlations coefficient [79, 80]. In calculating the correlations between every pair of items

from two ranked lists, Kendall’s Tau assumes that the lists are conjoint (all the features

are available in both lists) and there are no ties between the lists (no two items have the

same rank in each of two lists) [79]. Considering these assumptions, Kendall’s Tau (τ) can

be calculated as:

τ = pc − pd =
C

P (n)
− D

P (n)
=
C −D
n(n−1)

2

(2.16)

Having n items in a ranked list, P (n) is the total number of pairs. Therefore, the

probability of choosing a pair of items (i, j) at random, if the pair have the same order in

both ranked lists (concordant pairs), can be calculated as pc. Similarly, the probability of

discordant pairs (D) can be computed as pd. Here C is the number of concordant pairs and

D is the number of discordant pairs [79].

Despite the fact that Kendall’s Tau has been widely used in quantifying the simi-

larities of ranked lists, this metric is inefficient for non-conjoint rankings (when some items

exist in one ranked list but not in the other list) [79]. Also, it does not assign higher weights

to the top items of the ranked list (it is unweighted).

To address these issues, several approaches and implementations of the original

Kendall’s Tau (such as Kendall’s Tau a) have been proposed. In our experiments we will use

one of the implementations from the Scipy statistical module1 which by default calculates

Kendall’s Tau b. This version of the Kendall’s Tau handles the ties between ranked items

22



(when two items have the same rank). We applied Kendall’s Tau b with the default values

for all the parameters.

Moreover, we will use a weighted Kendall’s Tau implementation from the same statis-

tic library2. In the weighted version of Kendall’s Tau, the exchange of items with higher

weights has more impact than the exchange of items with lower weights. Therefore, to

assign more weights to the top-n items/features, we set the parameter rank as False to rank

the items based on their indices directly. Another parameter is weigher which by default

assigns a weight of 1
1+r to each item with rank r.

2.3.7.2 Rank-Biased Overlap (RBO)

Among the intersection based similarity measures, we chose RBO (Rank-Biased

Overlap) [79] that supports the Kendall’s Tau issues. The RBO measures the similarity

between two rankings even if they are incomplete (which in that case needs to support non-

conjoint rankings) and at any depth of the lists. Looking at RBO from the set intersection

(overlap) perspective, the overall idea behind RBO is to “bias the proportional overlap at

each depth by a convergent series of weights” (a geometric series with a finite sum as formu-

lated in Eq. 2.17) [79]. In other words, RBO can be calculated by averaging the proportion

of overlapping items while increasing the depths.

∞∑
d=1

p(d−1) =
1

1− p
(2.17)

Where d is the depth of the ranking list that are being tested and p defines the degree of

contributions that the top-d items could have while measuring the similarity by RBO.

Having two infinite ranking lists of S and T , the Si and Ti refer to their elements at

rank i. Therefore, the size of the intersection (overlap), (IS,T,d), between these two ranking

lists at each depth d can be measured as:

IS,T,d = S:d ∩ T:d (2.18)

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.htmlscipy.stats.kendalltau
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.htmlscipy.stats.weightedtau
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XS,T,d = |IS,T,d| (2.19)

Where S:d and T:d refer to the elements that appear in the intersection of list S and T ,

from position 1 to d. Defining Ad as the proportion of the items overlapping at depth d,

the average of the overlap (AO(S, T, k)) can be formulated as shown in Eq. 2.18 and 2.19:

Ad =
XS,T,d

d
, (2.20)

AO(S, T, k) =
1

k

k∑
d=1

Ad. (2.21)

Here k is the evaluation depth. After having the average of overlaps at each depth, consid-

ering w as a vector of weights and wd as the weight at position d, the similarity between

two ranked lists S and T can be measured using Eq. 2.22 [79]:

SIM(S, T, w) =
∞∑
d=1

wd ·Ad (2.22)

If w is a convergent vector of weights (with finite sum as formulated in Eq. 2.17), then the

Rank-biased overlap can be derived as [79]:

RBO(S, T, p) = (1− p)
∞∑
d=1

p(d−1) ·Ad (2.23)

Therefore, RBO ranges from 0 to 1, where 0 means the ranked lists are disjoint, and

1 means they are identical. In Eq. 2.23, the degree of contribution that the top-d items

can have on the RBO is defined by the parameter p. Thus, the smaller value of p indicates

that the top ranked items have more weights in measuring similarities by RBO compared

to the items in the bottom of the lists. Similarly, for the values of p closer to 1, the weights

become arbitrarily flat [79] and RBO becomes unweighted.

2.4 Summary

In this chapter, we started with reviewing the literature about recommendation

systems and existing concerns about transparency and bias in the recommendations. We

continued our discussion about the role of trust, transparency and explainability in making
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TABLE 2.1: Rank similarity metrics’ range of values

-1 0 1

Kendall’s Tau similar in reverse order disjoint (no similarity) identical (similar)

Weighted Kendall’s Tau similar in reverse order disjoint identical

RBO NA disjoint identical

Weighted RBO NA disjoint identical

more practical and effective recommender systems. Then, we reviewed sources of bias

in the recommendation process. We ended the recommender systems section by describing

evaluation metrics that we plan to use to evaluate the performance of our proposed methods

in terms of explainability, novelty and diversity in Chapter 3.

Moreover, we reviewed previous work in making reliable robotic grasps. Despite

advances in robot control, imprecision in sensing and actuation still is a challenge in making

a robot’s grasp more stable. Furthermore Black Box models can fail to explain the reasons

for predicted failures, and thus give no clues about why failures occur, whether to trust the

prediction of failure, or how to avoid failures for instance by different designs. This is why

explainability in ML could provide a solution for the failure prediction challenge.

We also reviewed several interpretable ML methods, which can generate global and

local explanations, including post-hoc explanation methods.

Finally, we discussed criteria (such as feature importance) and metrics (such as

Kendall’s Tau and RBO) that we plan to use to compare the consistency of the similarity

between the generated (global or local) explanations from different explanation methods in

Chapter 4.
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CHAPTER 3

BEYOND ACCURACY IN MACHINE LEARNING: TRANSPARENCY AND

BIAS TRADE-OFFS IN COLLABORATIVE FILTERING RECOMMENDATION

SYSTEMS

In this chapter, we study ML criteria that go beyond accuracy in collaborative

filtering recommendation, where we study explainability and bias in addition to accuracy.

In Section 3.1, we propose different algorithms to mitigate the effect of popularity debiasing

on explainability and accuracy of Explainable Matrix Factorization (EMF) model. Then in

Section 3.2, we present the results for the proposed Debiased EMF based methods, while

comparing them with baseline methods, and evaluating their performance from different

perspectives; namely accuracy, explainability, novelty, and diversity.

3.1 Debiased Explainable Matrix Factorization (Debiased EMF)

As we mentioned in Chapter 2, inverse propensity scoring (IPS) is one of the most

popular methods to mitigate the effect of popularity of items on model training. The

IPS under-weights popular items to increase the chance of rare (non-popular) items to be

recommended to users.

In propensity-based MF [27], the IPS is used in the objective function to under-

weight the loss for each observation as shown in Eq. 3.1:

argmax
V,M

∑
Ou,i=1

‖ R− V TM ‖2

Pu,i
+ λ(‖ V ‖2F + ‖M ‖2F ) (3.1)

Here Pu,i is the propensity score which shows the probability that a user u will see

item i. V and M are the two latent factors in the MF . Ou,i is a binary value which indicates

that if user u provided a rating for item i to the system. (Ou,i equal to 1 means that user
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u has observed item i and provided rating R.)

One way to estimate the propensity is to use a popularity score [81]. This method

assumes that Ou,i has a Bernoulli distribution and the propensity score is fixed among

users. Therefore, having a rating matrix, the popularity of an item is the proportion of that

item being exposed to certain users among all the users [82]. In our experiment, we used

the popularity score to calculate the IPS as shown by Eq. 3.2:

Pu,i =
Ni

NU
(3.2)

Here Pu,i is the probability that user u has observed item i and is equal to the ratio of Ni

(number of users who rated item i) to NU (total number of users).

To study the effect of popularity bias on explainability and accuracy of a MF-based

model, we applied the IPS on the state-of-the-art Explainable Matrix Factorization (EMF)

[4, 5]. EMF is a latent factor model which adds a soft explainability constraint to the

Matrix Factorization (MF ) objective function (Eq. 3.3) while increasing the accuracy of

the model (resulting in Eq. 3.4).

JMF =
∑
u,i∈R

(ru,i − puqTi )2 +
β

2
(‖ pu ‖2 + ‖ qi ‖2) (3.3)

JEMF =
∑
u,i∈R

(ru,i − puqTi )2 +
β

2
(‖ pu ‖2 + ‖ qi ‖2) +

λ

2
‖ pu − qi ‖2 Wu,i (3.4)

Here ru,i is the rating that user u has given to item i. pu and qi are representations

for user u and item i in a lower dimension (k) and their dot product (puq
T
i ) results in

an approximation for the rating that user u has given to item i. β is a coefficient for L2

regularization term (12(‖ pu ‖2 + ‖ qi ‖2)). The parameter λ is a coefficient to control the

softness of learning new representations (pu and qi) in explainability regularization term

(λ2 ‖ pu−qi ‖
2 Wu,i). λ also manages the trade-offs between accuracy and explainability [4].

Wu,i is an explanation matrix which can be calculated in different formats. In our study we

use Neighborhood Style Explanation (NSE), which provides explanations based on similar

users, used by [4]. The goal in EMF is to recommend explainable items i to user u by
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learning their representations in the latent space (pu and qi) that are close to each other.

Thus, pu- qi should be close to zero.

Eq. 3.5 defines the explainability matrix Wu,i which calculates the explainability

score of explainable items (Explu,i ≥ σ) between each pair of users and items. We chose

the explainability threshold σ as zero based on the previously recommended in [4, 5].

Wu,i =


Explu,i if Explu,i ≥ σ

0 otherwise

(3.5)

The NSE based explainability is calculated as the expected value of the ratings given

on item i by users who are similar to user u [4]:

E(ru,i|Nu) =
∑
z∈ζ

z ×P(ru,i = z|Nu) (3.6)

Given a set of similar users for user u (Nu), the probability of giving rating z to item

i can be estimated by following equation:

Pr(ru,i = z|Nu) =
|Nu ∩ Ui,z|
|Nu|

(3.7)

Here Ui,z is the set of users who have given rating z to item i. Thus, the probability is equal

to the proportion of number of users who have given rating z to item i, and are similar to

user u ( |Nu ∩ Ui,z|) to the number similar users for user u (|Nu|) .

Analysing the sensitivity of EMF to explainability and accuracy, [4, 5] found that

there is a positive correlation between explainability and accuracy. They showed that by

increasing the explainability parameter (λ), there is no sacrifice in the accuracy of EMF

which in fact increases. However the explainability scores which aggregate the neighbors’

ratings may be affected by popularity bias.

To mitigate the effect of popular items on the model’s explainability and accuracy, we

propose a Debiased Explainable Matrix Factorization (Debiased EMF) method which uses

IPS in its model training. The inverse popularity propensity score (Pu,i) can be applied to

in two different terms of the EMF objective in Eq. 3.4:
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1. rating prediction loss ( (ru,i − puqTi )2)

2. explainability regularization (λ2 ‖ pu − qi ‖
2 Wu,i)

Therefore, we investigate three Debiased EMF models.

The first model is Debiased EMF 1, which uses inverse popularity propensity score

in its rating prediction loss as shown in Eq. 3.8:

JDebiased EMF 1 =
∑
u,i∈R

(ru,i − puqTi )2

Pu,i
+
β

2
(‖ pu ‖2 + ‖ qi ‖ 2) +

λ

2
‖ pu − qi ‖ 2Wu,i (3.8)

Algorithm 3.1 Debiased Explainable Matrix Factorization 1 (Debiased EMF 1)

Input: data matrix R, number of factors k, number of neighbors n, hyperparameter α, β,
and λ, top n recommended item list. Output: P and Q

1. for each user u:

(a) calculate Nn(u) using Cosine similarity

2. end for

3. for each user-item pair (u, i):

(a) calculate Wu,i using Eq. 3.5

4. end for

5. for each item i:

(a) calculate the ratio of Ni
NU

6. end for

7. for each user item pair (u, i):

(a) calculate Pu,i using Eq. 3.2

8. end for

9. initialize Pu and Qi

10. for each ru,i from the training data:

(a) solve for pnewu and qnewi using the update rule in Eq. 3.11

11. end for
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The idea behind Debiased EMF 1 is to down-weight popular items in rating predic-

tion and to provide more explainable items.

In the second model, which is called Debiased EMF 2, the explainability regular-

ization term is multiplied by the inverse popularity propensity score as shown in Eq. 3.9:

JDebiased EMF 2 =
∑
u,i∈R

(ru,i − puqTi )2 +
β

2
(‖ pu ‖2 + ‖ qi ‖ 2) +

λ

2
‖ pu − qi ‖ 2Wu,i

Pu,i
(3.9)

In Debiased EMF 2, the intuition is the more explainable item i is to user u and the less

popular item i is for user u, the closer is user’s and item’s representation in latent space to

each other. In other word, the goal is to make user’s representation in latent space (pu) to

be close to more explainable and less popular item (qi), and thus enhance the chance for

those items to be recommended.

Finally, in Debiased EMF 1 2, we apply the IPS not only in the rating prediction

loss, but also in the explainability regularization term. Thus, we increase the weight of less

popular items in both the prediction and explanation components. (Eq. 3.10)

JDebiased EMF 1 2 =
∑
u,i∈R

(ru,i − puqTi )2

Pu,i
+
β

2
(‖ pu ‖2 + ‖ qi ‖ 2)+

λ

2
‖ pu−qi ‖ 2Wu,i

Pu,i
(3.10)

We use stochastic gradient descent to minimize the objective functions for the pro-

posed methods. The updated pu and qi can be obtained by differentiation and are given

by the following Equations for Debiased EMF 1, Debiased EMF 2, Debiased EMF 1 2

respectively :

Updated equation for Debiased EMF 1:

pu
(t+1) ← pu

(t) + α(2
(ru,i−puqTi )

Pu,i
qi − βpu − λ(pu − qi)Wu,i)

qi
(t+1) ← qi

(t) + α(2
(ru,i−puqTi )

Pu,i
pu − βqi + λ(pu − qi)Wu,i)

(3.11)

Updated equation for Debiased EMF 2:

pu
(t+1) ← pu

(t) + α(2(ru,i − puqTi )qi − βpu − λ(pu − qi)
Wu,i

Pu,i
)

qi
(t+1) ← qi

(t) + α(2(ru,i − puqTi )pu − βqi + λ(pu − qi)
Wu,i

Pu,i
)

(3.12)

Updated equation for Debiased EMF 1 2:
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Algorithm 3.2 Debiased Explainable Matrix Factorization 2 (Debiased EMF 2)

Input: data matrix R, number of factors k, number of neighbors n, hyperparameter α, β,
and λ, top n recommended item list. Output: P and Q

1. for each user u:

(a) calculate Nn(u) using Cosine similarity

2. end for

3. for each user-item pair (u, i):

(a) calculate Wu,i using Eq. 3.5

4. end for

5. for each item i:

(a) calculate the ratio of Ni
NU

6. end for

7. for each user item pair (u, i):

(a) calculate Pu,i using Eq. 3.2

8. end for

9. initialize Pu and Qi

10. for each ru,i from the training data:

(a) solve for pnewu and qnewi using the update rule in Eq. 3.12

11. end for

pu
(t+1) ← pu

(t) + α(2
(ru,i−puqTi )

Pu,i
qi − βpu − λ(pu − qi)

Wu,i

Pu,i
)

qi
(t+1) ← qi

(t) + α(2
(ru,i−puqTi )

Pu,i
pu − βqi + λ(pu − qi)

Wu,i

Pu,i
)

(3.13)

The algorithms for the proposed methods are described in Algorithms 3.1, 3.2, and

3.3. In the next section, we will present experimental results to compare the effect of

IPS-based debiasing in the proposed models.
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Algorithm 3.3 Debiased Explainable Matrix Factorization 1 and 2 (Debiased EMF 1 2)

Input: data matrix R, number of factors k, number of neighbors n, hyperparameter α, β,
and λ, top n recommended item list. Output: P and Q

1. for each user u:

(a) calculate Nn(u) using Cosine similarity

2. end for

3. for each user-item pair (u, i):

(a) calculate Wu,i using Eq. 3.5

4. end for

5. for each item i:

(a) calculate the ratio of Ni
NU

6. end for

7. for each user item pair (u, i):

(a) calculate Pu,i using Eq. 3.2

8. end for

9. initialize Pu and Qi

10. for each ru,i from the training data:

(a) solve for pnewu and qnewi using the update rule in Eq. 3.13

11. end for

3.2 Experimental Evaluation of Accuracy, Explainability and Bias Trade-offs

in Matrix Factorization based Recommender Systems

We used the public MovieLens benchmark ratings data [83]. The dataset includes

100,000,000 ratings, on a scale of 1 to 5, for 1682 movies and 943 users. We split the data

randomly into 80% for training, 10% for validation and model hyperparameter tuning, and

10% for testing and reporting the generalization of the model.

We tuned the hyperparameters of each model using grid search, while optimizing

the model accuracy on the validation set by finding the best MAP . We performed all

the experiments 10 times and report the average of the results. The values for the learning
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TABLE 3.1: Accuracy Evaluation of the Models

Model k alpha beta lambda RMSE MAE NDCG MAP

MF 25 0.001 0.0001 0 1.08492 0.83843 0.89455 0.00738

EMF 20 0.0001 0.001 0.001 1.05210 0.81064 0.90061 0.00723

Popularity Propensity MF 50 0.0001 0.01 0 2.96409 1.90082 0.85813 0.00340

Debiased EMF 1 50 0.0001 0.0001 0.001 9.17890 8.97475 0.83186 0.00184

Debiased EMF 2 20 0.001 0.0001 0.001 1.03119 0.79663 0.90284 0.00693

Debiased EMF 1 2 20 0.00001 0.0001 0.01 2.09869 1.69614 0.83390 0.00163

parameter (α), L2 regularization (β), and explainability regularization (λ) were chosen from

the following sets: α=[0.001, 0.0001, 0.00001], β=[0.01, 0.001, 0.0001], λ = [0.1, 0.01, 0.001].

We set the size of the recommendation list (|top n|) to 10 and the number of neighbors to

20 based on the previously recommended ranges in [4,5]. Also, for counting the number of

non-popular items (when evaluating diversity), we chose the popularity threshold (θ) to be

0.1. In this way if the popularity of an item is less than 0.1, we treat it as a non-popular

item among the top 10 recommended item list.

Next, we ran the experiment to test the trained models on the test set by considering

the best hyperparameters for each model and computed different evaluation metrics. Since

we have tuned the hyperparameters based on MAP, we reported the results for each model

with the highest MAP. For example, for MF the best MAP was obtained at k= 25, λ =

0.001, and β = 0.0001. Thus, we only show the evaluation metrics that were obtained with

these parameters for MF.

Tables 3.1−3.3 compare the performance of the models based on their accuracy,

explainability, novelty and diversity respectively. Each row shows different metrics for each

model which were obtained by the aforementioned parameters in that row. The best metric’s

value for each model is in bold and the second to the best is underlined.

Evaluating the models based on their accuracy from Table 3.1, we see that De-

biased EMF 2 surpassed other models in most rating prediction (accuracy and ranking

quality) metrics followed by EMF [4,5]. The only exception was in MAP, on which MF [3]

showed better performance. A possible interpretation for this result could be due to the
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Figure 3.1: Debiased EMF 2 has the best accuracy performance in terms of RMSE.

optimization part in which we tuned the hyperparameters to get the best MAP , as is

customary in the literature on training MF for recommendation application.

In terms of RMSE (Root Mean Squared Error), MAE (Mean Absolute Error),

and NDCG (Normalized Discounted Cumulative Gain) , we can see that adding explain-

ability (from MF to EMF ) and then debiasing the explainability regularization part (in

Debiased EMF 2) has improved the accuracy of the rating predictions. A comparison

in performance of other models such as Popularity Propensity MF , Debiased EMF 1,

and Debiased EMF 1 2, shows a decrease in their rating prediction accuracy. According

to these observations, debiasing the prediction loss by multiplying it by the IPS (inverse

popularity propensity score) hurts the accuracy of the models, while using the IPS in the

explainability regularization part improves the accuracy. This result illustrates the trade-

offs between accuracy and popularity debiasing in the performance of the models.

Figures 3.1 and 3.2 also show the effect of varying the latent factor number (k) on the

RMSE and NDCG values in each model, respectively. Fig. 3.2 shows that MF , EMF , and

Debiased EMF 2 had lower errors (in terms of NDCG) in predicting unseen ratings while

Popularity Propensity MF , Debiased EMF 1, and Debiased EMF 1 2 had higher errors.

Debiased EMF 1 had high accuracy up to the k = 15 latent factors. Then its accuracy

decreased with increasing latent factors beyond 15. Fig. 3.2 presents changes in the NDCG

values by increasing the latent factor (k) for each model. It shows that Debiased EMF 2
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Figure 3.2: Debiased EMF 2 has the best ranking quality in terms of NDCG.

TABLE 3.2: Explainability Evaluation of the Models

Model k alpha beta lambda WMEP TMEP WTMEP

MF 25 0.001 0.0001 0 1.60379 0.82050 1.44055

EMF 20 0.0001 0.001 0.001 1.61120 0.82314 1.44994

Popularity Propensity MF 50 0.0001 0.01 0 1.57358 0.80479 1.38932

Debiased EMF 1 50 0.0001 0.0001 0.001 1.48487 0.77561 1.29055

Debiased EMF 2 20 0.001 0.0001 0.001 1.61656 0.82538 1.45806

Debiased EMF 1 2 20 0.00001 0.0001 0.01 1.49174 0.77757 1.29896

was the best among other models in terms of ranking quality by NDCG. For latent factors

between 5 and 10, Debiased EMF 2 had the highest NDCG.

Table 3.2 compares the models based on their explainability. Here, also the Debi-

ased EMF 2 model showed the best performance in terms of explainability metrics such as

WMEP , TMEP , and WTMEP following by EMF [4,5]. Models with debiasing in their

prediction loss (Popularity Propensity MF , Debiased EMF 1, and Debiased EMF 1 2)

showed weaker performance in terms of explainability. These results also show the different

impacts of popularity debiasing in the prediction loss and explainability regularization term

and suggest a trade-offs between explainability and popularity debiasing in performance of

the models. Fig. 3.3 shows that increasing the latent factor k decreases the WMEP values

for most of the models. It also shows that Debiased EMF 2 had better performance in

terms of explainability compared to the rest of models.

Table 3.3, which presents the evaluation of the models in terms of their novelty and
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Figure 3.3: Debiased EMF 2 has the best explainability performance in terms of WMEP

Figure 3.4: Users are expected to be able to see more novel items (compared to baselines)
for both Debiased EMF 1 2 and Debiased EMF 1 models.

diversity metrics (EFD, Diversity), shows that Popularity Propensity MF was able to

recommend more diverse (less popular) items to the users following by Debiased EMF 1.

In other word, on average 9.4, items from the list of top 10 recommended items to users by

Popularity Propensity MF were non-popular (diverse). Fig. 3.5 shows that by increasing

the latent factor number k, models such as MF , EMF , and Debiased EMF 2 were able

to recommend more non-popular items to users while for the rest of the models such as

Popularity Propensity MF and Debiased EMF 1, the diversity of the list of recommended

item has been decreased.

In terms of novelty, the results show that users were recommended more novel items

(compared to what they have previously observed) byDebiased EMF 1 2. Debiased EMF 1

also showed a comparable results, in terms of novelty, to Debiased EMF 1 2. Fig. 3.4
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TABLE 3.3: Novelty and Diversity Evaluation of the Models

Model k alpha beta lambda EFD(Novelty) Diversity

MF 25 0.001 0.0001 0 0.93552 7.55642

EMF 20 0.0001 0.001 0.001 0.91608 6.83489

Popularity Propensity MF 50 0.0001 0.01 0 0.92960 9.38706

Debiased EMF 1 50 0.0001 0.0001 0.001 0.93826 7.94252

Debiased EMF 2 20 0.001 0.0001 0.001 0.92681 7.26363

Debiased EMF 1 2 20 0.00001 0.0001 0.01 0.93838 7.65769

Figure 3.5: Popularity Propensity MF was able to recommend more diverse (less popular)
items to the users following by Debiased EMF 1.

shows that by increasing the latent factor number k, the novelty metrics (EFD) has been

increased for MF , EMF , and Debiased EMF 2, while it has been decreased for Popu-

larity Propensity MF and Debiased EMF 1. For Debiased EMF 1 2, there were some

changes for latent factor numbers ranging from 5 to 25, but after k = 25 its EFD values

remained almost the same.

3.3 Summary

In this chapter, we presented several approaches to mitigate the effect of popularity

debiasing on Explainable Matrix Factorization ( EMF) model [4] by applying inverse pop-

ularity propensity score (IPS ). We discussed the intuition behind our proposed methods

in using the IPS in different terms of the EMF objective function. We also presented the

experimental results for studying the effect of popularity debiasing on our proposed EMF

based models in terms of accuracy, explainability, novelty and diversity.
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The experiments showed that Debiased EMF 2, which was debiased in its explain-

ability regularization term, outperformed other models in most accuracy and explainability

metrics. In terms of accuracy metrics such as RMSE, MAE, and NDCG, we can see that

adding explainability (from MF to EMF ) and then debiasing the explainability regular-

ization part (from EMF to Debiased EMF 2 ) has improved the accuracy of the rating

predictions. Comparing the explainability of the models based on metrics such as WMEP,

TMEP, and WTMEP, we found that Debiased EMF 2 had the best performance. While

in terms of novelty and diversity, models with a debiasing term in their rating prediction

loss such as Popularity Propensity MF [82], Debiased EMF 1, and Debiased EMF 1 2 have

better performance.
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CHAPTER 4

BEYOND ACCURACY IN MACHINE LEARNING: TRANSPARENCY AND

ACCURACY TRADE-OFFS IN ROBOTIC FAILURE PREDICTION

In this chapter, we study Machine Learning criteria that go beyond accuracy, in

robotic grasp failure prediction, where we study explainability in addition to prediction

accuracy. In Section 4.1, we present two methodologies to compare the explainability and

accuracy of white-box and black-box ML models. Then we present another methodology to

evaluate the explanations generated by different post-hoc explanation methods (Section 4.2).

Finally in Section 4.1.1 and Section 4.2.1, we present the results of studying the trade-offs

between accuracy and explainability in the robotic grasping failure prediction problem using

three case studies, presented in Sections 4.1.2, 4.1.3, and 4.2.1.1, respectively.

4.1 A Methodology for Studying Accuracy and Explainability Trade-offs in

Robotic Failure Prediction

Grasping reliability is important in many robotic tasks involving human safety or

material costs. For this reason, predicting grasp failures before they occur can give timely

warnings about potential reliability risks during manipulation. These predictions can guide

decision making by both humans interacting with the robot and by design engineers seeking

to improve the robot performance.

Traditional failure prediction, by using machine learning (ML) methods, utilizes both

experiments and simulation task performance data. ML models include either White-Box

(WB) models, whose prediction mechanism is interpretable, or Black-Box (BB) models who

have superior performance, but are opaque to interpretation. In fact, black-box models do

not have the inherent ability to explain the reasons behind their predictions.
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In many cases, particularly those where robots must collaborate with humans, it is

not sufficient to predict an impending failure. In addition, the predictions must come with

explanations.

We present an empirical study of the trade-offs between prediction accuracy and

explainability using the interpretability of white-box models and post-hoc explanations

methods, such as Tree-SHAP [65, 71], to generate explanations from black-box models.

For this purpose, we use the Kaggle grasp dataset which was generated with the Shadow

Hand [1,2].

We also investigate an alternative approach to accurate and yet explainable failure

prediction. For this purpose, we start by contrasting the performance and explainability

of grasp failure prediction using a classical interpretable white-box ML model and a more

sophisticated glass-box model that shows a gain in performance without sacrificing inter-

pretability. The glass-box model, Explainable Boosting Machine (EBM) [9–11], provides a

high accuracy while being designed to be explainable. EBM is a type of Generalized Addi-

tive Model [68,69] which models the individual features’ impacts on the model’s output, as

well as the pairwise interaction between the features.

Furthermore, we investigate extracting local explanations, for individual test cases,

using Local Interpretable Model-agnostic Explanations (LIME) [63] (the most popular post-

hoc explanation method) and EBM [9–11] as an inherently explainable glass box model.

Local explanations can provide contextual and specialized explanations for individual grasp-

ing cases, and thus help explain both white-box models and glass-box models, in addition

to black-box models. Ideally, these explanations should be able to show how each feature

has contributed (positively or negatively) to the predicted results for any individual sample

in the data. This is in contrast to global explanations which cannot explain an individual

instance’s prediction, but rather give an overall impact of the features for an entire set of

data or instances.

In the first study of grasp failure prediction and explainability, in Section 4.1.2, we

explore the following research questions:
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Figure 4.1: Methodology Flow Diagram 1 (white box and black box models).

• RQ1: How do white box and black box models perform in terms of accuracy and

explainability on this particular task?

• RQ2: Can we achieve both explainability and accuracy in the grasp failure prediction

task?

To answer these questions, we train different models on grasp failure simulation data,

then compare the white-box models to black-box models. To bridge the black box model’s

accuracy and the white box model’s explainability we extract local and global explanations

for the black box model using the SHAP explanation method [65,71] (Fig. 4.1).

We use Tree-SHAP [65,71] to explore local and global explanations and to determine

which features are most responsible for grasp failures, in general (global explanations), or

for a specific input test case (local explanation). For instance, which features (torque or

velocity) and their values, in which joint and finger has contributed more in failing a grasp.

In the second grasp failure prediction and explainability study, in Section 4.1.3,

we train and compare two different models on grasp failure simulation data, a white-box

model (Logistic Regression [56]) which is inherently interpretable and a glass-box model

(EBM [9–11]) which is designed to have a comparable accuracy to black-box models while

maintaining its interpretability. Since the LR classifier does not explain individual predic-

tions, we use the LIME [63] method to provide local explanations for any sample of data.
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Figure 4.2: Methodology Flow Diagram 2 (White box and glass box models).

In addition to the local and global explanations, we visualize the shape function of one of

the most important features in predicting the risk of robot grasp failures to monitor the

feature’s behavior in both models and to compare the ability of EBM and LR models in

capturing non-linear and more complex relationships in the data. Fig. 4.2 depicts the flow

of our methodology, starting with learning predictive models for failure, then generating

explanations for predicted failures, and finally evaluating the results. The experimental

results will be presented in Section 4.1.3.

4.1.1 Experimental Results for Studying Accuracy and Explainability Trade-

offs in Robotics Failure Prediction

4.1.1.1 Dataset information

In the robotic grasp failure prediction task, we used the simulated robot grasp dataset

provided by the author [1] and publicly is available in the Kaggle [2]. This dataset was gen-

erated by using the Smart Grasping Sandbox simulation for the Shadow’s Smart Grasping

System1 with the UR10 robot from the Universal Robots company2. The end-effector had

three fingers and each finger had three joints. In total, there were nine joints and in each
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TABLE 4.1

Notation of the input features

Feature Definition

H1 F1J1 eff effort in joint 1 in finger 1
H1 F1J1 vel velocity in joint 1 in finger 1

Figure 4.3: Robot hand with three fingers and three joints in each finger, Shadow Robot
Company [1, 2].

joint, features including velocity, effort (torque) and position were measured. The dataset

has 992,641 records of grasps and 28 features, with 448,046 records (45% of data), labeled

as Stable grasps and 544,595 records (55% of data), labeled as Unstable grasps.

Following the recommendation in [1, 2], the joint position was excluded from the

features. This is because the shape of the hand is object-specific, whereas our aim in this

study is to predict the quality of the grasp in an object agnostic manner. As a result, 18

input features which measure effort (torque) and velocity of each joint in all of the three

fingers, and a grasp quality feature (as the target label) were used in training our ML

models. Table 4.1 provides more details about the features’ notations. Fig. 4.3 also shows

the robots’ fingers and joints.

The data set, consisting of the above features and target, was randomly split into

1https://www.shadowrobot.com/shadow-smart-grasping-system/
2https://www.universal-robots.com/products/ur10-robot/
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TABLE 4.2: ML Model Evaluation Metrics (Methodology 1)

Metric Decision Tree Logistic Regression Tree Ensemble (LightGBM) Neural Net (MLP)

Accuracy 0.79 0.74 0.83 0.82

AUC 0.84 0.81 0.91 0.90

F1 0.78 0.74 0.83 0.81

Precision 0.93 0.83 0.93 0.86

Recall 0.66 0.66 0.76 0.75

a training set (794,112 records) to learn the ML model, a validation set (99,265 records),

and a test set (99,265 records) for evaluating and reporting the generalization ability of the

model on unseen data.

4.1.2 Case Study 1

In the first study on grasp failure prediction, we chose the logistic regression (LR) [56]

and Decision Tree (DT) classifiers as white box models and the LightGBM (gradient boost-

ing classifier) as black box models to conduct our experiments. We then built the models

using the training set and validated the results on the test set. Table 4.2 compares these

four models based on the prediction metrics obtained by cross-validation. In the following,

we report the results of our experiments in terms of the standard ML model’s performance

metrics of prediction accuracy (proportion of correct classifications), area under the ROC

curve (AUC), precision (proportion of true positives out of the predicted positives), re-

call (proportion of true positives predicted relative to all the true positives), and F1 score

(harmonic mean of precision and recall). All the metrics range in [0, 1] with higher values

indicating better performance.

As we can see in Table 4.2, LightGBM surpassed the DT and Logistic regression

classifiers in all evaluation metrics.

In the following, we chose LightGBM for further prediction and explainability anal-

ysis, since it was the top performer in most metrics.

Fig. 4.4 shows LightGBM’s prediction results on the test set. 41,674 of the records

with the true success label were predicted correctly in the success class (True Negatives)

and 41,028 of the true failures were predicted correctly to be a failure (True Positive).
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Figure 4.4: LightGBM confusion matrix

Figure 4.5: Global interpretability of the entire training data by the white-box Logistic
Regression

4.1.2.1 Comparing White-Box and Black-Box Model Global Explanations

Important features in building a logistic regression model are achieved by calculating

the coefficients of the features in the decision function. As shown in Figure 4.8, joint 1’s

effort (torque) in finger 2 and finger 3 and its velocity in finger 3 have positive contributions

in predicting the likelihood of robot’s grasp failure, whereas joint 1 and joint 3 effort (torque)

in finger 1 have negative coefficients contributing most negatively. This means that joint

1’s effort in finger 2 and finger 3 and its velocity in finger 3 make the failure more likely

and joint 1 and joint 3’s efforts in finger 1 make failure less likely. Based on the estimated

coefficients, the effect of the rest of features on the prediction output is very small or zero.

Fig. 4.6 also shows the features, sorted according to their importance in making

decisions in the DT model. It reveals that joint 1’s effort (torque) in all fingers is more
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Figure 4.6: Global interpretability of the entire training data by the white-box DT classifier,
joint 1 effort (torque) in all fingers is more important than velocity in predicting grasp
stability

Figure 4.7: The DT classifier’s decision paths for correct and incorrect classifications.

important than velocity in predicting grasp stability.

4.1.2.2 Comparing White-Box and Black-Box Model Local Explanations

Logistic regression does not provide local explanations for the individual data records

while decision paths in the DT model show how the decisions were made. Figure 4.10,

displays part of these decision paths for correct classifications and incorrect classification

(misclassifications). For example, following nodes 0, 32, 48, 56, 57, 59, and paying attention

to the feature values that led to the final decision, we can see that all 14 records were

classified correctly in the class “Stable grasp”; while the path including nodes 0, 32, 48, 56,

57, 58 resulted in 4 incorrectly classified records and 2 correctly classified records.
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Figure 4.8: Global interpretability for the entire training data by the LightGBM black-box
classifier based on feature importance.

4.1.2.3 Comparing Global and Local Explanations Generated by the SHAP

Post-hoc Explanation Method

LightGBM classifier is a tree ensemble learning method. The output of the model is

considered a black box because the model consists of many individual decision trees, which

are built using randomly chosen variables, thus making it difficult for users and even experts

to understand the decision process.

Although global “feature importance” has been used to interpret a LightGBM model,

it only gives an overview of the contribution of the features in the prediction results for the

entire training data (global interpretation) and not for individual samples. Also, feature

importance is not considered to be a “consistent” approach, meaning that changing the

model may decrease the importance of a feature even though the feature might still have a

high impact on the model’s output [71]. In contrast, another global interpretation method

provided by SHAP has solved the consistency problem by using additive feature attribu-

tion methods and considering the attribution of the features in the output of the model.

Moreover, SHAP provides global and local explanations for both training and test data sets.

According to Figure 4.11, Joint 1’s and 2’s effort (torque) in all fingers is more

important than its velocity in predicting grasp stability (failure risk in the grasp).

In the following, we use the SHAP Tree explainer [71] on the prediction output of the
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Figure 4.9: Global interpretability of the entire test set for the LightGBM model based on
SHAP explanations

LightGBM model to see what information we can extract about the robot’s grasp failure

cases. As we mentioned, SHAP computes two types of explanations: Local and global

explanations, as we will illustrate below.

To get a general view of which features are most important in failure prediction, we

can check the global explanation plot for either training or test data set. This explanation

ranks each feature based on its mean absolute Shapley value (global importance).

Figure 4.12 shows that based on the Shapley values among test samples, joint 2’s

effort in finger 2 is the most important feature in predicting grasp failure. Joint 1’s effort

in the other fingers is also important as shown in Figure 4.11.

To know how joint 2’s finger 2 impacts the prediction of failure, we can examine

Figure 4.13 which shows the distribution and value impact of the features in detail.

To display the explanation information in Figure 4.13, SHAP first sorts the features

based on their global importance. Then dots, representing the SHAP values, are plotted

horizontally. Each dot is colored by the value of that feature, from low (blue) to high

(fuchsia).

48



Figure 4.10: Distribution and value impact of the features of the test data for the LightGBM
model, explained by SHAP Global interpretability

As we can see, lower values (blue dots towards the right) of joint 2’s effort in finger 2

have higher impact on the model’s output, whereas higher values (fuchsia dots), have lower

impact. The next important feature is joint 1’s effort in finger 3 which increases the risk of

failures in the robot’s grasp.

SHAP also provides explanations for any given data record (local explanation). To do

that, SHAP decomposes the prediction in a graph and visualizes the feature’s contribution

to the prediction result. We chose one instance of true positive records from the test set

and show its explanation in Figure 4.14. Each feature value is a force that either increases

(positive values in fuchsia ) or decreases (negative values in blue) the prediction of the

failure.

Our model has predicted that the robot will fail in grasping this sample of data

with probability almost 1 (output value in Figure 4.14). Also, the average of all predicted

probabilities for the failure class in the test data (base value) is equal to 0.9038, which is

the output value while ignoring all the input features.
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Figure 4.11: Local explanations for a true positive case predicted to be in the Failure class
by the LightGBM model

Figure 4.12: Local explanations for a false negative case among the prediction results of the
LightGBM model.

According to Figure 4.14, features in fuchsia such as joint 2’s effort in finger 2

(the most important features from global explanations) and joint 1’s effort in finger 1 and 3

contributed to push the model’s output from the base value that ignores all features (0.9038)

toward the model’s actual output that takes into account the features (probability of failure

for this specific record which is equal to 1).

Figure 4.15 shows how the effort in joints’ 1 finger 1 and joints’ 2 finger 2 led the

model to misclassify this sample of data as a success.

Figure 4.16 shows that while features in blue, such as joint 2’s effort in finger 2 help

the prediction to be correct (decreasing the probability of failure), the effects of the fuchsia

features such as joint 1’s and 3’s effort in finger 2 led to incorrectly classify this sample.

With these predictions and explanations, an alternative planning of the task can be

achieved through checking the reliability of other intervention methods. For example, this

can be done by utilizing a variable autonomy based framework, where the level of autonomy

Figure 4.13: Local explanations for a false positive case for the LightGBM model prediction.
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TABLE 4.3: ML model evaluation metrics (white-box vs glass-box)

Metric Logistic Regression Explainable Boosting Machine (EBM)

Accuracy 0.74 0.80

AUC 0.81 0.86

F1 0.74 0.78

Precision 0.83 0.93

Recall 0.66 0.68

can be chosen for specific sub tasks such that the overall performance is optimized. In case

of a prediction of a failure during a task, by observing the explanation, either the level of

autonomy can be changed to manual for human intervention or an alternate path planning

process can be initiated for autonomous intervention for the fault.

Our experimental results and their analysis, illustrate the need for an accurate ex-

planation of a predicted fault in order to be able to think about and choose an effective

corrective measure.

The white-box model was the Logistic Regression classifier [56]. Explainable Boost-

ing Machine (EBM) [9–11], was used as the glass-box model.

In our experiments, we use interpretML [11], an open-source Python package, for all

the implementations. Following the recommendation in [11] the default parameters for the

EBM were chosen to obtain a faster performance.

Table 4.5 compares the prediction metrics obtained by cross-validation of the ML

models.

4.1.3 Case Study 2

As shown in Table 4.3, EBM surpassed the Logistic Regression (LR) classifier on

all evaluation metrics. Fig. 4.14 and Fig. 4.15 display the ROC curves for LR and EBM,

respectively. EBM has a higher AUC score (0.86) than the LR (0.81).

4.1.3.1 Comparing White-Box and Glass-Box Models’ Global Interpretability

Both EBM and LR can measure the contribution of each feature in shaping the final

decision made by the models. Fig. 4.16 and Fig. 4.17 show the importance of each feature
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Figure 4.14: ROC curve (in orange) of the Logistic Regression Classifier. The y and x-axis
are True Positive Rate and False Positive Rate, respectively. The blue line is the random
guess which is the minimum performance benchmark.

Figure 4.15: ROC curve (in orange), EBM. The y and x-axis are True Positive Rate and
False Positive Rate, respectively. The blue line is the random guess which is the minimum
performance benchmark.

Figure 4.16: EBM Global Interpretability. Effort in joint 1 in finger 3 (outlined in red) and
joint 2 in finger 2 (outlined in green) have globally important roles in predicting the risk of
grasp failure.
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Figure 4.17: Logistic Regression Global Interpretability. Joint 1’s effort in finger 3 (outlined
in red), which is the most important feature in Figure 4.19, has the highest positive effect
on the LR’s output, as well. On the other hand, joint 2’s effort in finger 2 (outlined in
green), which is the second most important feature in the EBM model, has a very small
negative impact on predicting the risk of failure of the grasp.

(globally) on the model’s outcome over the training set.

Fig. 4.16 shows the global importance of features in building the EBM model. Effort

in joint 1 in finger 3 (outlined in red) and joint 2 in finger 2 (outlined in green) have globally

important roles in predicting the risk of grasp failure. Among the top 10 features which are

ranked based on their overall importance, eight features are measuring effort and only two

of them are velocity (joint 3’s velocity in finger 3 and finger 1). This shows that applying

proper effort to the object is more important in failing a grasp than velocity.

Fig. 4.17 displays the importance of features based on their coefficients (weights) in

building the LR model. Features with positive contributions are presented in orange and

features with negative effects are shown in blue. Comparing the feature importance plots

of both models, it is interesting to note that joint 1’s effort in finger 3, which is the most

important feature in Figure 4.19, has the highest positive effect on the LR’s output, as well.

Meanwhile, joint 2’s effort in finger 2, which is the second most important feature in the

EBM model, has a very small negative impact on predicting the risk of failure of the grasp.

It means increasing the effort in joint 2 of finger 2, decreases the risk of failure predicted

by the LR model.
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Figure 4.18: EBM’s Local Interpretability. Feature joint 3’s effort in finger 1 (outlined in
red) has positive impact in predicting the risk of failure in the grasp. While joint 1’s effort
in finger 2 has negative effect (outlined in green).

Figure 4.19: Logistic Regression’s Local Interpretability. Feature joint 3’s effort in finger 1
(outlined in red) has positive impact in predicting the risk of failure in the grasp. While
joint 1’s effort in finger 2 has negative effect (outlined in green).

4.1.3.2 Comparing White-Box and Glass-Box Models’ Local Interpretability

The LR model provides only global interpretability. Thus, we used the LIME [63]

technique to extract the local explanation for LR. In contrast, the glass-box algorithm

(EBM) explains its own predictions both locally and globally.

To understand why and how both models made a decision (in this example a correct

decision) about one of the test set samples, we chose one instance from the true positive

records (a true failures which was predicted correctly to be a failure).

Fig. 4.18 and Fig. 4.19 show EBM and LR’s individual explanations (local inter-

pretability), respectively. The figures display how each feature has contributed to predict

this grasp correctly in the Failure class. Features with positive effects are shown in orange

and features with negative effects are shown in blue. Regardless of the features’ order, both
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TABLE 4.4: Prediction and explanation run-time (in seconds) and the figure showing the
corresponding explanation in parentheses. While the white-box model (LR) is faster at
prediction time than the glass-box model (EBM), LR is only globally interpretable and is
not locally explainable. To obtain a local explanation, it takes almost 2 orders of magnitude
longer for LR (which relies on LIME for the explanation generation) compared to a local
explanation generated by EBM for its own prediction.

Prediction per instance (sec.) Local explanation per instance (sec.)

LR EBM LIME to locally explain LR EBM

1e−07 1.7e−06 7.245187 (Fig. 4.18) 0.0289855 (Fig. 4.19)

local explanations have common features. For example, joint 3’s effort in finger 1 (outlined

in red) has positive impact in both plots. Also, both explanations agree on the negative

effect of joint 1’s effort in finger 2 in predicting the risk of failure in the grasp. Also, both

plots show a rounded value for each feature following the feature’s name; but because their

values are very small, they do not seem very different.

Moreover, Table 4.4 shows that EBM performs significantly faster (0.03 seconds)

than LIME (7.25 seconds) when it comes to generating and visualizing the local explana-

tions, as shown in Fig. 4.18 and Fig. 4.19. This is due to the fact that unlike EBM, LIME

must learn a surrogate model for each new test prediction case, which involves sampling

enough training points in the test case’s neighborhood, then training a surrogate model.

While the white-box model (LR) is faster at prediction time than the glass-box model

(EBM), LR is only globally interpretable and is not locally explainable. To obtain a local

explanation, it takes almost 2 orders of magnitude longer for LR (which relies on LIME for

the explanation generation) compared to a local explanation generated by EBM for its own

prediction.

All the experiments were conducted on a 2.20 GHz Intel Core i7 PC with 8 GB of

RAM.

4.1.3.3 Comparing White-Box and Glass-Box Models’ Shape Plots

One of the features provided by any GAM-based model is the ability to visualize

the shape function of each feature in the data. This capability helps to understand how
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Figure 4.20: EBM’s shape plots of joint 1’s effort in finger 3. The risk of failing a grasp by
the robot increases by 0.82 for the feature values between -0.2 and 0.05 (Nm), but it shows a
high jump to a risk score of 0.82 when the effort is equal to 0.0083 (Nm).The x-axis displays
the applied effort in joint 1’s effort in finger 3 (Nm) and the y-axis shows the corresponding
risk score of failure.

Figure 4.21: Logistic Regression’s shape plots of joint 1’s effort in finger 3 fails to learn and
uncover any details about the feature behaviour in the learning process. The x-axis displays
the applied effort in joint 1’s effort in finger 3 (Nm) and the y-axis shows the corresponding
risk score of failure.

each feature shapes the predicted results (in our case, predicting the risk of grasp failures).

Moreover, it helps to capture any unexpected impact or even discover a meaningful result,

as was done in healthcare research [10].

Fig. 4.20 shows the EBM’s shape function for joint 1’s effort in finger 3. According

to the plot, the risk of failing a grasp increases by 0.82 for the feature values between -0.2

and 0.05 (Nm) but it shows a high jump in the risk score of 0.82 when the effort is equal

to 0.0083 (Nm). For the rest of the features’ values, the score does not have any noticeable

change. In contrast, Fig. 4.21 shows that because the LR model is not able to capture

non-linear relationships in the data, it fails to learn and uncover those details from joint 1’s

effort in finger 3.
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4.2 A Methodology for Rank Similarity Analysis of Post-hoc Explanations

Methods in Robotic Failure Prediction

In the third grasp failure prediction study, we investigate the following research

questions:

• RQ3: Do the explanation methods agree on selecting the most responsible feature for

grasp failures?

• RQ4: How similar are their results on ranking important features and their contribu-

tions in explaining the failures?

• RQ5: Do their rankings of important features depend on the type of predictive ML

Model?

• RQ6: How to evaluate the explanation rankings?

Figure 4.22: Methodology Flow Diagram 3, Rank Similarity Analysis of Post-hoc Explana-
tion Methods

To explore these questions, we train and compare two different models on grasp

failure simulation data, a white-box model (Decision Tree classifier [55]) which is inherently
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interpretable and a black-box model (Random Forest classifier [51]) with high accuracy and

no explanations about the prediction results. To explain individual predictions, we use Tree-

SHAP [71], LIME [63] and TreeInterpreter (TI) [66,67] explanation methods to provide local

explanations for any sample of data. Fig. 4.22 depicts the flow of our methodology, starting

with learning predictive models for failure, then generating explanations for predicted fail-

ures. After evaluating the prediction results of both white-box and black-box models, we

apply the explanation methods to generate local explanations for each record in sub-samples

of the test set (based on classification’s output: False Negative (FN), True Negative (TN),

False Positive (FP) and True Positive (TP)). Then, we use four ranking similarity metrics

(Kendal Tau [78], Weighted Kendal Tau [84], RBO and Weighted RBO [79]) to measure

the similarity between top-3 feature contributions generated by each explanation methods.

Finally, by calculating the median of the correlation metrics in each sub-sample, we com-

pare the consistency of the feature contributions. The experimental results are presented

in Section 4.2.1.

4.2.1 Experimental Results for Rank Similarity Analysis of Post-hoc Explana-

tions Methods in Robotic Failure Prediction

4.2.1.1 Case Study 3

In our third study on grasp failure prediction, we used the same data set and applied

the same data preprocessing as we did in [85]. We tuned the hyperparameters of the

algorithms using grid search, while evaluating the AUC of the model on the validation set.

Table 4.5 compares the prediction accuracy metrics obtained by cross-validation of

the ML models. All the reported results are obtained from the average of a 5-fold cross-

validation and consist of standard ML models performance evaluation metrics. The metrics

all range in [0,1] with 1 being the best performance. Based on the mean and standard

deviation (in parenthesis) of the results, we conclude that RF surpassed the DT in all

evaluation metrics, as highlighted in the table. Since RF is an ensemble ML method which

aggregates multiple DTs, it has higher accuracy than a single DT model.
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TABLE 4.5: Mean (and standard deviation) of ML model performance obtained from the
average of a 5-fold cross-validation, Random Forest (Black-box) vs Decision Tree (White-
box). The best metric’s value for each model, here based on the AUC score, is in bold.

Metric Random Forest Decision Tree

Accuracy 0.8020(+/− 0.0001) 0.7947 (+/- 0.0030)
F1 0.7879 (+/- 0.0004) 0.7816 (+/- 0.0062)

Precision 0.9530 (+/- 0.0015) 0.9369 (+/- 0.0124)
Recall 0.6715 (+/- 0.0013) 0.6707 (+/- 0.0151)
AUC 0.8712 (+/- 0.0002) 0.8524 (+/- 0.0053)

Comparing White-Box and Black-Box Model Global Explanations To answer re-

search question RQ5 from the global explanation perspective, we compared the global ex-

planations from the decision tree and random forest classifiers.

As described in Section 2.3.6, the global explanation shows the importance of each

feature (globally) on the model’s outcome over the entire training data. The explanations

are based on the Feature Importance (FI) score that measures the impact of each feature

on predicting the output of the ML models. Therefore, we measured the (FI) scores1 to

study if applying different predictive ML models, in our case the decision tree and random

forest classifiers, causes any changes (increase/decrease) in the feature importance (FI)

score of a specific feature. Since both models were built using the Gini index criteria for

node splitting, the FI scores were based on the Gini index, too.

Figure 4.23: Comparison of the top-4 features ranked by Random Forest (left) and Decision
Tree Classifier (right) based on Global Interpretability.

Fig. 4.23 shows the differences between the positions of the top-4 features which were

ranked by the Random Forest (RF) (left) and Decision Tree (DT) (right) classifiers based

1We used the feature-importance function from the Scikit-learn library [74].
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on the FI score. Comparing the ranked positions in the lists, we notice that the effort in

the first joints of both finger 3 and finger 1, has the same importance on failing a grasp

(predicted by the RF and DT models). Whereas, the effort in the first joint of finger 2 has

different ranked positions (third position in the ranked-list by RF and fourth position in the

ranked-list by DT). Also, the effort in the second joint of finger 2 has different positions.

These differences show that the RF and DT models disagreed on the impacts that these

two features could have on stability of the grasp and causing the failures.

The rest of the experimental results for Case Study 3 are presented in the following

sections.

4.2.1.2 Comparing White-Box and Black-Box Models’ Local Explanations

To answer research questions RQ3 and RQ4, we compared the local explanations

generated after using the decision tree and random forest classifiers as the predictive models.

The explanations were generated by three post-hoc explanation methods including LIME,

Tree-SHAP and TI.

Fig. 4.24 and 4.25 show individual explanations (local explanations) for one of the

true positive test samples, generated by LIME (in blue), Tree-SHAP (in green) and TI

(in orange) from the predicted outputs of DT and RF model, respectively. To compare the

local explanations, we chose one instance from the true positive records (a true failure which

was predicted correctly to be a failure) from both ML models (DT and RF). The figures

display how each feature has contributed to predict this grasp correctly in the Failure

class. The figure also displays if the features have positive effects (with contributions to the

right direction) and if they have negative effects (with contributions to the left direction).

Fig. 4.24 shows that based on the Tree-SHAP explanations (in green) and TI (in orange),

joint 1’s effort in finger 3 is the most responsible feature in grasping failure. While LIME

(in blue) selected the joint 1’s effort in finger 1 as the most important feature in failing a

grasp.

Comparing the RF individual (local) feature contributions, for the same true positive
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Figure 4.24: Decision Tree individual (local) feature contributions for one of the True
Positives. According to Tree-SHAP explanations (in green) and TI (in orange), joint 1’s
effort in finger 3 is the most responsible features in grasping failure. While LIME (in blue)
selected the joint 1’s effort in finger 1 as the most important features in failing a grasp.

sample, reveals that based on the Tree-SHAP explanations (in green), joint 1’s effort in finger

1 and finger 3 are the most responsible features in grasping failure. While TI (in orange)

selected joint 1’s effort in finger 3, and LIME (in blue) found the joint 1’s effort in finger 1, as

the most important features in failing a grasp. In this example, all the explanation methods

mostly agree on the importance of joint 1’s effort in finger 1 and finger 3 in predicting the

instability of the grasp and causing failure.

Moreover, Table 4.6 compares the implementation run-time of the explanation meth-

ods for both DT and RF models and for each instance of the test set. All the experiments

were conducted on a 2.20 GHz Intel Core i7 PC with 8 GB of RAM and implementing on

Google Colab (cloud). The results show that TreeInterpreter (TI) runs one order of magni-

tude faster than other Tree-SHAP and 5 orders of magniture faster than LIME to generate

local explanations in both ML models as shown in Fig. 4.26. This is due to the fact that

unlike the Tree-SHAP and TI, LIME must learn a surrogate model for each new test predic-

tion case, which involves sampling enough training points in the test case’s neighborhood.
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Figure 4.25: Random Forest individual (local) feature contribution for one of the True
Positive instances. According to Tree-SHAP explanations (in green), joint 1’s effort in
finger 1 and finger 3 are the most responsible features in grasping failure. While TI (in
orange) selected joint 1’s effort in finger, and LIME (in blue) found the joint 1’s effort in
finger 1, as the most important features in failing a grasp.

TABLE 4.6: Comparing the average run-time in seconds (per instance) of three Post-hoc
Explanations Methods (Tree-SHAP, Treeinterpretr and LIME) between two ML Models
(Decision Tree and Random Forest Classifier).

ML Model Tree-SHAP 1 TreeInterpreter 2 LIME 3

Decision Tree 0.00024 0.00001 3.33447

Random Forest 0.07646 0.00234 4.66648

Thus, although both TI and Tree-SHAP generate explanations for tree-based models, in

our study TI shows faster performance than Tree-SHAP. TI generates the feature contri-

butions based on the series of decisions in a tree (from the root of the tree to the leaves for

each instance of data) and it only considers one order of the features. Whereas, Tree-SHAP

calculates the average of all possible orders among the features. For this reason, TI has a

faster running time than Tree-SHAP. This also shows that TI has more transparency than

Tree-SHAP.

In addition, the comparison of the performance of all the post-hoc explanation meth-
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ods in generating explanations from DT and RF models reveals that in general, the expla-

nation methods have faster run-time in generating explanations from DT compared to RF.

This is not a surprising result as the DT has a less complex model than RF (see Table 4.6).

Considering one true positive sample, our initial experiments showed the inconsis-

tency and differences in the feature contributions generated by Tree-SHAP, Treeinterpretr

and LIME. Therefore to conduct our experiments, we applied the post-hoc explanation

methods to generate local explanations for each record from the sub-samples of the test

set, after partitioning the test data instances based on the classification model’s output,

namely including False Negatives (FN), True Negatives (TN), False Positives (FP), and

True Positives (TP).

Next, we used four ranking similarity metrics, Kendal Tau [78], Weighted Kendal

Tau [84], RBO, and Weighted RBO [79], to measure the similarity between the top-3 feature

contributions generated by each explanation method and to answer research question RQ6.

Figure 4.26: Average of Post-hoc Explanations Methods Run-time Per Instance (seconds).

We used Kendall’s Tau b4 to assess the consistency of the explanations. In the

weighted version of Kendall’s Tau5, the exchange of items with higher weights has more

1https://github.com/slundberg/shap
2https://github.com/andosa/treeinterpreter
3https://github.com/marcotcr/lime
4We applied the Kendall’s Tau b with the default values for all the input parameters. To apply

Kendall’s Tau and Weighted Kendall’s Tau, we used two implementations provided by Scipy statisti-
cal module. The Kendall’s Tau implementation by default calculates a version of the original Kendall’s
Tau (Kendall’s Tau b) which handles ties between ranked items (when two items have the same rank):
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.htmlscipy.stats.kendalltau
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impact than the exchange of items with lower weights. Therefore, to assign more weights to

the top-n items/features by ranking the items based on their indices and assigning a weight

of 1
1+r to each item with rank r.

To compare the effect of the weighting used by RBO on the top-3 feature contribu-

tions generated by each post-hoc explanation method, we used p = 0.5 for Weighted-RBO

and p = 1 for RBO. As mentioned in Sec. 2.3.7.2, having p = 1 makes the weights of each

ranked feature contribution the same, as with the default Kendall’s Tau, in which the rank

or position does not matter.

Finally, by calculating the median of the rank similarity metrics in each sub-sample,

we compared the consistency of the feature contributions. In evaluating the explanations,

we used the absolute value of the feature contributions. Reviewing LIME’s implementation1,

we confirmed that this method provides the explanations of the features with their indices

as a dictionary, including a sorted list of the explanations based on their absolute values.

In our experiments, we thus followed the same strategy and we used the original indices

generated by LIME to order and extract the feature contributions. Similarly, for Tree-SHAP

and TreeInterpreter, we sorted the explanations based on their absolute values. Then we

extracted the index of features which were sorted based on their absolute values. Applying

the same strategy in extracting the outputs of the post-hoc explanation methods helped to

make the comparison between all the methods consistent.

The results in Table 4.7 summarize the ranking similarity of the explanations (feature

contributions) between each pair of post-hoc explanation methods for the decision tree

classifier outputs. The greater values (shown in bold) indicate that the explanations were

more similar based on their ranking positions. Considering the Kendall Tau and Weighted

Kendall Tau metrics, in the True Positive sub-sample, all the explanation methods show

very strong agreement (median = +1) on the ranking of the feature contributions. In other

5We used the Weighted Kendall’s Tau implementation from https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.htmlscipy.stats.weightedtau.
We set the parameter rank as False to rank the items based on their indices directly and we use parameter
weigher, which by default assigns a weight of 1

1+r
to each item with rank r.

6we used one implementation for both RBO and Weighted RBO metrics but with two different values
for the input parameter p: https://github.com/changyaochen/rbo
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words, all the ranked lists generated by each pair of explanation methods are identical.

The agreement between Tree-SHAP and TI is lower for the rest of sub-samples (with the

median of +0.3 or +0.2). The consistency between each pair of explanation methods is

low (with median of -0.3, -0.2 or +0.3) for the other sub-samples. For the True Negatives

and False Negative sub-samples, all the post-hoc methods had the same level of agreement

(correlation) on determining the feature contributions.

In contrast, RBO and Weighted RBO captured more similarity between Tree-SHAP

and TI compared to the rest of the methods, the ranked lists of feature contributions

generated by LIME and TI had no similarities (median = 0). Recall that Table 2.1 provided

more details about the range of values for each rank similarity metric. The table also defines

how each value indicates similarity or dissimilarity between the ranked lists. For example,

both RBO and Weighted RBO have a range of [0,1], while Kendall Tau and Weighted

Kendall Tau have a range of [-1,1]. The value of -1 in the Kendall Tau and Weighted

Kendall Tau shows that the similarity (correlation) is strong but features (in the ranked

lists) are in the reverse orders, which means the lists are very dissimilar.

Fig. 4.27 to 4.30 visualize the same information as shown in Table 4.7. A summary

of the ranking similarity analysis on Random Forest’s sub-samples is presented in Table 4.8.

Considering the Kendall Tau and Weighted Kendall Tau metrics, for the False Positive and

True Positive sub-samples, Tree-SHAP and TI show very strong agreement/consistency

(median = +1) on the ranking of the feature contributions. In contrast, these two expla-

nation methods have low consistency for the True Negative samples (median = +0.3) and

moderate consistency for the False Negative sub-samples (median = +0.5). Agreement is

defined if the correlations are positive and disagreement is defined if the correlations are

negative.

Using the RBO and Weighted RBO metrics and assigning more weights to the fea-

tures at the top of the lists, we notice that the consistency between Tree-SHAP and TI

explanations, on all sub-samples, has increased (median = +0.8 or +0.9 ). Thus these two

metrics captured more similarity between Tree-SHAP and TI compared to the rest of the
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TABLE 4.7: Comparing the different explanations generated from the Decision Tree clas-
sifier’s outputs based on ranking similarity (median). Note that RBO and Weighted RBO
have a range of [0,1] while Kendall Tau and Weighted Kendall Tau have a range of [-1,1].
Bold means

(a) True Negatives

Explanation Method Pair Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 0.3 0.2 0.7 0.7

Tree-SHAP & LIME 0.3 0.2 0.3 0.2

LIME & TI 0.3 0.2 0.0 0.0

(b) False Negatives

Explanation Method Pair Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 0.3 0.2 0.7 0.7

Tree-SHAP & LIME 0.3 0.2 0.3 0.2

LIME & TI 0.3 0.2 0.0 0.0

(c) True Positives

Explanation Method Pair Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 1 1 0.9 0.8

Tree-SHAP & LIME 1 1 0.4 0.2

LIME & TI 1 1 0.3 0.2

(d) False Positives

Explanation Method Pair Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 0.3 0.2 0.6 0.7

Tree-SHAP & LIME 0.3 0.3 0.4 0.2

LIME & TI -0.3 -0.2 0.3 0.2

methods. In contrast, the ranked lists of feature contributions generated by LIME and TI

had weak similarities (median = 0).

The heat maps in Fig. 4.31-4.34 visualize the same information as shown in Table 4.8.

The agreement is defined if the correlations (similarities) are positive and disagreement is

defined if the correlations are negative. In Fig. 4.27, weak positive correlations (similarities)

are shown as small blue circles and the weak negative correlations are shown as small red

circles. In the heat maps, different similarity metrics are shown with different shapes.

Thus circle, squares, triangles and hexagons, display the similarity values for Kendall Tau,

Weighted Kendall Tau, RBO and weighted RBO, respectively.

Considering the Decision Tree Classifier’s outputs in Table 4.7, Kendall Tau and

Weighted Kendall Tau show the same similarities between each pair of explanation methods.

In other words, adding weights to Kendall Tau did not have any effect on capturing the
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TABLE 4.8: Comparing Explanations for Random Forest Classifier outputs based on rank-
ing similarity (median). Please note that RBO and Weighted RBO have a range of [0,1]
while Kendall Tau and Weighted Kendall Tau have a range of [-1,1].

(a) True Negatives

Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 0.3 0.5 0.8 0.8

Tree-SHAP & LIME 0.3 0.2 0.6 0.3

LIME & TI -0.3 -0.4 0.4 0.2

(b) False Negatives

Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 0.3 0.5 0.9 0.8

Tree-SHAP & LIME 0.3 0.2 0.6 0.3

LIME & TI -0.3 -0.4 0.4 0.2

(c) True Positives

Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 1 1 0.9 0.8

Tree-SHAP & LIME 0.3 0.5 0.4 0.2

LIME & TI 0.3 0.5 0.4 0.2

(d) False Positives

Kendall Tau Weighted Kendall Tau RBO Weighted RBO

Tree-SHAP & TI 1 1 0.9 0.8

Tree-SHAP & LIME -0.3 -0.4 0.3 0.2

LIME & TI -0.3 -0.4 0.3 0.2

similarities between the explanation methods. In contrast, the results in Table 4.8 show

that using Random Forest Classifier (which is a more accurate model than the Decision

Tree classifier) has affected the Weighted Kendall Tau’s ability to capture the similarity

between each pair of explanation methods. Therefore, there is a higher consistency between

the explanations generated by Tree-SHAP and TI from the RF classifier’s outputs.

Comparing the RBO and Weighted RBO similarity results, from both the DT and

RF’s outputs, we observe that the similarity between the explanations generated by Tree-

SHAP and TI is higher than the rest of the explanations methods.

Our experiments showed that applying proper effort to the object and particularly

the effort of joint 1 in finger 3 (for which both models agreed on its global importance

in predicting failures) plays an important role in the stability of the grasps. From the

mechanical design, in a three-finger gripper, the effort (power) that the first joints (joint 1),
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Figure 4.27: Similarities between the Top-3 ranking lists of feature contributions generated by the
different post-hoc explanation methods and measured by Kendall Tau (based on median) for the
Decision Tree Classifier’s outputs. In the True Positive sub-sample, all explanation methods show
very strong agreement/consistency (median = +1) on the ranking of the feature contributions. In
other words, all the ranked lists generated by each pair of explanation methods are identical. The
agreement between Tree-SHAP and TI is lower in the rest of sub-samples (median = +0.3). The
consistency between each pair of explanation methods is low (either median = +0.3 or -0.3) in other
sub-samples.

Figure 4.28: Similarities between the Top-3 ranking lists of feature contributions generated by
different post-hoc explanation methods and measured by Weighted Kendall Tau (based on median)
for the Decision Tree Classifier’s outputs. In the True Positive sub-sample, all explanation methods
show very strong agreement/consistency (median = +1) on the ranking of the feature contributions.
In other words, all the ranked lists generated by each pair of explanation method are identical. The
agreement between Tree-SHAP and TI is lower in the rest of sub-samples (median = +0.2). The
consistency between each pair of explanation methods is lower in the rest of sub-samples (either
median = +0.2 or -0.2). Same in the False positive sub-sample, the similarity between LIME and
Tree-SHAP is low (median = +0.3).
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Figure 4.29: Similarities between the Top-3 ranking lists of feature contributions generated by
different post-hoc explanation methods and measured by RBO (rank-biased overlap) for Decision
Tree Classifier’s outputs (based on median). In the True Positive sub-sample the consistency between
Tree-SHAP and TI explanations is high (median = +0.9). While it is more moderate in the rest of
sub-samples ( median = +0.7 in the True Negatives and the False Negative and median = +0.6 in the
False Positives). The median of 0 between explanations of LIME and TI in the False Negative and
True Negative sub-samples shows that there is no similarity between the Top-3 feature contributions
generated by these two methods. In other words, the ranked lists are disjoint.

Figure 4.30: Similarities between the Top-3 ranking lists of feature contributions generated by
different post-hoc explanation methods and measured by Weighted RBO (rank-biased overlap) for
Decision Tree Classifier’s outputs (based on median). Compared to the RBO results, the figure
shows that assigning more weights to the top of the ranked lists does not change the consistency
between each pair of explanations methods in the True Negative and False Negative sub-samples (the
results of RBO and Weighted RBO is the same). The exceptions are in the True Positive and False
Positive sub-samples where Weighted RBO was able to capture more similarity between Tree-SHAP
and TI. In the False Negative and True Negative sub-samples, the similarity between Top-3 feature
contributions generated by LIME and TI is 0. Thus, the ranked lists are disjoint.
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Figure 4.31: Similarities between the Top-3 ranking lists of feature contributions generated by
different post-hoc explanation methods and measured by Kendall Tau (based on Median) for Random
Forest Classifier’s outputs. In the False Positive and True Positive sub-samples, Tree-SHAP and TI
show very strong agreement/consistency (median = +1) on the ranking of the feature contributions.
Whereas these two explanation methods have lower consistency in the True Negative (median =
+0.3) and the False Negative (median = +0.3) sub-samples. Agreement is defined if the correlations
(similarities) are positive and disagreement is defined if the correlations (similarities) are negative.
Weak positive correlations are shown as small blue circles and weak negative correlations are shown
as small red circles. The (dis)agreement between the rest of the explanation methods are not as
strong as Tree-SHAP and TI.

Figure 4.32: Similarities between the Top-3 ranking lists of feature contributions generated by
different posts and measured by Weighted Kendall Tau (based on Median) for Random Forest
Classifier’s outputs. In the False Positive and True Positive sub-samples, Tree-SHAP and TI show
very strong agreement/consistency (median = +1) on the ranking of the feature contributions. While
these two explanation methods have lower consistency in the True Negative (median = +0.3) and
moderate consistency in the False Negative sub-samples (median = +0.5).
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Figure 4.33: Similarities between the Top-3 ranking lists of feature contributions generated by
different post-hoc explanation methods and measured by RBO (rank-biased overlap) for Random
Forest Classifier’s outputs. As shown in the figure, having common (similar) feature contributions’
positions in the ranked list at different depth, increases the consistency between Tree-SHAP and
TI explanations among all of the sub-samples. The similarities are strong in the False Positive and
True Positive sub-samples (median = +0.9). Same in the False Negatives and True Negatives with
a high similarity (median = +0.8).

Figure 4.34: Similarities between the Top-3 ranking lists of feature contributions generated by
different post-hoc explanation methods and measured by Weighted RBO (rank-biased overlap) for
Random Forest Classifier’s outputs. As shown in the figure, assigning more weight to the top of the
ranked lists, increases the consistency between Tree-SHAP and TI explanations among all of the
sub-samples (median = +0.8).
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on all fingers, apply to make the first contact with the object, has an important impact on

the failure or success of the grasping. Thus our results match with the mechanical concepts.

In a collaborative task between a human operator and a robot, the prediction of failure,

especially when enriched with an explanation of the reasons leading to the failure, can help

the human user to take appropriate actions and prevent the potential risks.

Such information about a system is crucial during collaborative tasks involving a

human operator and a robot. For a given task model, a prediction of failure is needed,

in addition to providing an explanation for the prediction. The explainability can enable

a quick and appropriate intervention by a human user in case of failure. Also, the failure

prediction can allow the user to take preemptive measures to avoid the conditions.

4.3 Summary

In this chapter, we presented and evaluating three methodologies, presented through

three case studies, for investigating the prediction of robotic grasp failures and for providing

explanations to better understand the failure reasons in the grasping mechanism.

In the first case study, in Section 4.1.2, we compared the explainability and accu-

racy of the white-box models (which are inherently interpretable but less accurate) with

black-box models (which do not provide any explanations but they have high accuracy). To

get more insight about the robot hand failure reasons, we then compared global and local

explanations generated by white-box and black-box models. To generate the local explana-

tions from the predictions output of the selected BB model, we used the SHAP explanation

method for tree-based models. We found that the explanations agree with concepts from

the mechanical design of graspers. Some of our results have been published in [85].

In the second grasp failure prediction case study, in Section 4.1.3, we compared two

different models on grasp failure simulation data, a white-box model (Logistic Regression

[56]) which is inherently interpretable and a glass-box model (EBM) [9–11] which is designed

to have a comparable accuracy to black-box models, while maintaining its interpretability.

Our experiments in Subsection. 4.1.3.1 showed that applying proper effort to the object and
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particularly to joint 1 in finger 3 (for which both models agreed on its global importance in

predicting failures) plays an important role in the stability of the grasps. Furthermore, while

the white-box model (LR) is faster at prediction time than the glass-box model (EBM), LR

is only globally interpretable and is not locally explainable. To obtain a local explanation, it

takes almost 2 orders of magnitude longer for LR (which relies on LIME for the explanation

generation) compared to a local explanation generated by EBM for its own prediction.

We also extended our empirical analysis of robotic grasp failure prediction and ex-

plainability in a third case study (in Sec. 4.2.1.1) by applying three different post-hoc expla-

nation methods, including Tree-SHAP, LIME, and TreeInterpreter. Then, we compared the

similarity between the local explanations generated by these post-hoc explanation methods,

using two different ranking similarity metrics, tKendall’s Tau which is a correlation based

metric and RBO which is an intersection based metric that addresses the limitations of

the original Kendall’s Tau metric. The results show that the local explanations generated

from the output of a black-box model (Random Forest, in our case) are more consistent in

ranking of feature contributions than the local explanations generated from the output of a

white-box model (a Decision Tree classifier in our study). This shows that the consistency

of the explanations (rankings of important feature contributions in our case), generated

from different explanation methods, depends on the type of predictive ML model used to

make the predictions in the first place.
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CHAPTER 5

CONCLUSION

In this work, we studied Machine Learning criteria that go beyond accuracy in two

different problems where accuracy alone may not be sufficient as a performance goal: 1) in

collaborative filtering recommendation where we study explainability and bias in addition

to accuracy and 2) in robotic grasp failure prediction where we study explainability in

addition to prediction accuracy. A summary of our contributions are listed as follows:

1. We proposed new recommendation algorithms which provide both debiasing and ex-

plainability simultaneously, called Debiased Explainable Matrix Factorization, to study

the trade-offs between accuracy, explainability, and bias.

2. We studied the effectiveness of down-weighting popular items in rating prediction for

unseen items and in recommending more explainable items to users.

3. We explored the trade-offs between prediction accuracy and explainability in another

ML application, namely robotic grasp failure prediction by comparing the performance

of white-box, black-box, and glass-box models.

4. We extended our study of explainable robotic grasp failure prediction by evaluating

the consistency of local explanations generated by three different leading post-hoc

explanation methods, including Tree-SHAP, LIME, and TreeInterpreter, in ranking

feature contributions and finding the most responsible features for explaining pre-

dicted grasp failures.

Our experiments in Chapter 3 showed that adding explainability (from MF to EMF )

and then debiasing the explainability regularization term (from EMF to Debiased EMF 2 )
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has improved the accuracy and explainability of the recommended items, while reduc-

ing their novelty and diversity compared to the models with a debiasing term in their

rating prediction loss such as Popularity Propensity MF [82], Debiased EMF 1, and Debi-

ased EMF 1 2. These observations illustrate the trade-offs between accuracy, explainability,

and popularity-debiasing in the performance of the models. Being able to assess the cost of

debiasing on the model’s accuracy and explainability can help researchers and data scientists

to make better decisions about which models to deploy depending on the recommendation

domain.

The limitations of the work on debiasing explainable recommendations include the

need to conduct user studies to assess the impact on real systems, involving actual users.

In the second part of our work, we focused on an application of ML in robotic failure

prediction. Robots that perform high risk tasks can benefit from predicting an impending

failure. Furthermore, and especially in cases involving a robot collaborating with humans,

there is a need for an explanation of failure predictions.

In our first case study in grasp failure prediction, we compared explainability and

accuracy of the white-box models (which are inherently interpretable but less accurate) with

black-box models (which do not provide any explanations but they have high accuracy). To

get more insight about the robot hand failure reasons, we then compared global and local

explanations generated by white-box and black-box models. To generate the local expla-

nations from the predictions output of the selected BB model, we used SHAP explanation

methods for tree-based models.

Our results showed that the explanations agree with concepts from the mechanical

design of graspers. Although the 3-finger grasper examples were simple, the explainable

machine learning approach promises to help uncover failure mechanism causes in new, less

familiar systems.

In the second study, we found that while the white-box model (LR) is faster at

prediction time than the glass-box model (EBM), LR is only globally interpretable and is

not locally explainable. To obtain a local explanation, it takes almost 2 orders of magnitude
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longer for LR (which relies on LIME for the explanation generation) compared to a local

explanation generated by EBM for its own prediction.

We finally extended our study in robotic grasp failure prediction, in a third study, by

applying and evaluating the consistency of three different post-hoc explanation methods, in-

cluding Tree-SHAP, LIME, and TreeInterpreter. Then, we compared the local explanations

generated by these leading post-hoc explanation methods, using different ranking similarity

metrics, based on Kendall’s Tau, which is a correlation based metric, and RBO, which is an

intersection based metric, that solves the limitations of the original Kendall’s Tau metric.

The results show that the local explanations generated from the output of a black-box

model (Random Forest, in our case) are more consistent in ranking of feature contributions

than the local explanations generated from the output of a white-box model (a Decision Tree

classifier in our study). This shows that the consistency of the explanations (rankings of

important feature contributions in our case), generated from different explanation methods,

depends on the type of predictive ML model used to make the predictions in the first place.

While we were able to perform our robotic failure prediction study efficiently using an

existing benchmark simulation dataset, future work needs to address real experimental data

collection and actual task-based validation, since simulations are not a perfect representation

of reality. This in turn must address the challenge of having to collect enough representative

data from real experiments. Also, some of the post-hoc explanation methods that we have

studied, are model specific, or only have faster run-time on a specific group of ML models.

For example despite the simplicity and faster running-time TreeInterpreter, it is limited

to some traditional tree-based ML models (mainly Decision Tree and Random Forest).

In contrast LIME, which is significantly slower in generating local explanations, has the

advantage of being model agnostic. Similarly, Shapley explanations have several variations,

including a model agnostic algorithm (SHAP) and another, TreeSHAP, that is specialized

for tree based models.
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