12,270 research outputs found

    Complete enumeration of two-Level orthogonal arrays of strength dd with d+2d+2 constraints

    Full text link
    Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength dd with d+2d+2 constraints for any dd and any run size n=λ2dn=\lambda2^d. Our results not only give the number of nonisomorphic orthogonal arrays for given dd and nn, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of JJ-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.Comment: Published at http://dx.doi.org/10.1214/009053606000001325 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Difference Covering Arrays and Pseudo-Orthogonal Latin Squares

    Get PDF
    Difference arrays are used in applications such as software testing, authentication codes and data compression. Pseudo-orthogonal Latin squares are used in experimental designs. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146

    Parity of Sets of Mutually Orthogonal Latin Squares

    Full text link
    Every Latin square has three attributes that can be even or odd, but any two of these attributes determines the third. Hence the parity of a Latin square has an information content of 2 bits. We extend the definition of parity from Latin squares to sets of mutually orthogonal Latin squares (MOLS) and the corresponding orthogonal arrays (OA). Suppose the parity of an OA(k,n)\mathrm{OA}(k,n) has an information content of dim(k,n)\dim(k,n) bits. We show that dim(k,n)(k2)1\dim(k,n) \leq {k \choose 2}-1. For the case corresponding to projective planes we prove a tighter bound, namely dim(n+1,n)(n2)\dim(n+1,n) \leq {n \choose 2} when nn is odd and dim(n+1,n)(n2)1\dim(n+1,n) \leq {n \choose 2}-1 when nn is even. Using the existence of MOLS with subMOLS, we prove that if dim(k,n)=(k2)1\dim(k,n)={k \choose 2}-1 then dim(k,N)=(k2)1\dim(k,N) = {k \choose 2}-1 for all sufficiently large NN. Let the ensemble of an OA\mathrm{OA} be the set of Latin squares derived by interpreting any three columns of the OA as a Latin square. We demonstrate many restrictions on the number of Latin squares of each parity that the ensemble of an OA(k,n)\mathrm{OA}(k,n) can contain. These restrictions depend on nmod4n\mod4 and give some insight as to why it is harder to build projective planes of order n2mod4n \not= 2\mod4 than for n2mod4n \not= 2\mod4. For example, we prove that when n2mod4n \not= 2\mod 4 it is impossible to build an OA(n+1,n)\mathrm{OA}(n+1,n) for which all Latin squares in the ensemble are isotopic (equivalent to each other up to permutation of the rows, columns and symbols)

    Genuinely multipartite entangled states and orthogonal arrays

    Full text link
    A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, written k-uniform, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudits GHZ states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several new classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N>5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Additionally, single vectors of another class of 2-uniform states are one-to-one related to maximal sets of mutually unbiased bases. Furthermore, we establish links between existence of k-uniform states, classical and quantum error correction codes and provide a novel graph representation for such states.Comment: 24 pages, 7 figures. Comments are very welcome

    Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices

    Get PDF
    Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity.Comment: 18 pages, 2 figures. Comments are very welcom
    corecore