research

Complete enumeration of two-Level orthogonal arrays of strength dd with d+2d+2 constraints

Abstract

Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength dd with d+2d+2 constraints for any dd and any run size n=λ2dn=\lambda2^d. Our results not only give the number of nonisomorphic orthogonal arrays for given dd and nn, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of JJ-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.Comment: Published at http://dx.doi.org/10.1214/009053606000001325 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019