9,528 research outputs found

    Beyond Word N-Grams

    Full text link
    We describe, analyze, and evaluate experimentally a new probabilistic model for word-sequence prediction in natural language based on prediction suffix trees (PSTs). By using efficient data structures, we extend the notion of PST to unbounded vocabularies. We also show how to use a Bayesian approach based on recursive priors over all possible PSTs to efficiently maintain tree mixtures. These mixtures have provably and practically better performance than almost any single model. We evaluate the model on several corpora. The low perplexity achieved by relatively small PST mixture models suggests that they may be an advantageous alternative, both theoretically and practically, to the widely used n-gram models.Comment: 15 pages, one PostScript figure, uses psfig.sty and fullname.sty. Revised version of a paper in the Proceedings of the Third Workshop on Very Large Corpora, MIT, 199

    Character-Level Incremental Speech Recognition with Recurrent Neural Networks

    Full text link
    In real-time speech recognition applications, the latency is an important issue. We have developed a character-level incremental speech recognition (ISR) system that responds quickly even during the speech, where the hypotheses are gradually improved while the speaking proceeds. The algorithm employs a speech-to-character unidirectional recurrent neural network (RNN), which is end-to-end trained with connectionist temporal classification (CTC), and an RNN-based character-level language model (LM). The output values of the CTC-trained RNN are character-level probabilities, which are processed by beam search decoding. The RNN LM augments the decoding by providing long-term dependency information. We propose tree-based online beam search with additional depth-pruning, which enables the system to process infinitely long input speech with low latency. This system not only responds quickly on speech but also can dictate out-of-vocabulary (OOV) words according to pronunciation. The proposed model achieves the word error rate (WER) of 8.90% on the Wall Street Journal (WSJ) Nov'92 20K evaluation set when trained on the WSJ SI-284 training set.Comment: To appear in ICASSP 201

    Integrating Learning from Examples into the Search for Diagnostic Policies

    Full text link
    This paper studies the problem of learning diagnostic policies from training examples. A diagnostic policy is a complete description of the decision-making actions of a diagnostician (i.e., tests followed by a diagnostic decision) for all possible combinations of test results. An optimal diagnostic policy is one that minimizes the expected total cost, which is the sum of measurement costs and misdiagnosis costs. In most diagnostic settings, there is a tradeoff between these two kinds of costs. This paper formalizes diagnostic decision making as a Markov Decision Process (MDP). The paper introduces a new family of systematic search algorithms based on the AO* algorithm to solve this MDP. To make AO* efficient, the paper describes an admissible heuristic that enables AO* to prune large parts of the search space. The paper also introduces several greedy algorithms including some improvements over previously-published methods. The paper then addresses the question of learning diagnostic policies from examples. When the probabilities of diseases and test results are computed from training data, there is a great danger of overfitting. To reduce overfitting, regularizers are integrated into the search algorithms. Finally, the paper compares the proposed methods on five benchmark diagnostic data sets. The studies show that in most cases the systematic search methods produce better diagnostic policies than the greedy methods. In addition, the studies show that for training sets of realistic size, the systematic search algorithms are practical on todays desktop computers
    • …
    corecore