484 research outputs found

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    The Complexity of Enriched Mu-Calculi

    Full text link
    The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus.Comment: A preliminary version of this paper appears in the Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP), 2006. This paper has been selected for a special issue in LMC

    Relating timed and register automata

    Get PDF
    Timed automata and register automata are well-known models of computation over timed and data words respectively. The former has clocks that allow to test the lapse of time between two events, whilst the latter includes registers that can store data values for later comparison. Although these two models behave in appearance differently, several decision problems have the same (un)decidability and complexity results for both models. As a prominent example, emptiness is decidable for alternating automata with one clock or register, both with non-primitive recursive complexity. This is not by chance. This work confirms that there is indeed a tight relationship between the two models. We show that a run of a timed automaton can be simulated by a register automaton, and conversely that a run of a register automaton can be simulated by a timed automaton. Our results allow to transfer complexity and decidability results back and forth between these two kinds of models. We justify the usefulness of these reductions by obtaining new results on register automata.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Limit Synchronization in Markov Decision Processes

    Full text link
    Markov decision processes (MDP) are finite-state systems with both strategic and probabilistic choices. After fixing a strategy, an MDP produces a sequence of probability distributions over states. The sequence is eventually synchronizing if the probability mass accumulates in a single state, possibly in the limit. Precisely, for 0 <= p <= 1 the sequence is p-synchronizing if a probability distribution in the sequence assigns probability at least p to some state, and we distinguish three synchronization modes: (i) sure winning if there exists a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there exists a strategy that produces a sequence that is, for all epsilon > 0, a (1-epsilon)-synchronizing sequence; (iii) limit-sure winning if for all epsilon > 0, there exists a strategy that produces a (1-epsilon)-synchronizing sequence. We consider the problem of deciding whether an MDP is sure, almost-sure, limit-sure winning, and we establish the decidability and optimal complexity for all modes, as well as the memory requirements for winning strategies. Our main contributions are as follows: (a) for each winning modes we present characterizations that give a PSPACE complexity for the decision problems, and we establish matching PSPACE lower bounds; (b) we show that for sure winning strategies, exponential memory is sufficient and may be necessary, and that in general infinite memory is necessary for almost-sure winning, and unbounded memory is necessary for limit-sure winning; (c) along with our results, we establish new complexity results for alternating finite automata over a one-letter alphabet

    Enriched MU-Calculi Module Checking

    Full text link
    The model checking problem for open systems has been intensively studied in the literature, for both finite-state (module checking) and infinite-state (pushdown module checking) systems, with respect to Ctl and Ctl*. In this paper, we further investigate this problem with respect to the \mu-calculus enriched with nominals and graded modalities (hybrid graded Mu-calculus), in both the finite-state and infinite-state settings. Using an automata-theoretic approach, we show that hybrid graded \mu-calculus module checking is solvable in exponential time, while hybrid graded \mu-calculus pushdown module checking is solvable in double-exponential time. These results are also tight since they match the known lower bounds for Ctl. We also investigate the module checking problem with respect to the hybrid graded \mu-calculus enriched with inverse programs (Fully enriched \mu-calculus): by showing a reduction from the domino problem, we show its undecidability. We conclude with a short overview of the model checking problem for the Fully enriched Mu-calculus and the fragments obtained by dropping at least one of the additional constructs

    Synchronizing Data Words for Register Automata

    Full text link
    Register automata (RAs) are finite automata extended with a finite set of registers to store and compare data from an infinite domain. We study the concept of synchronizing data words in RAs: does there exist a data word that sends all states of the RA to a single state? For deterministic RAs with k registers (k-DRAs), we prove that inputting data words with 2k+1 distinct data from the infinite data domain is sufficient to synchronize. We show that the synchronization problem for DRAs is in general PSPACE-complete, and it is NLOGSPACE-complete for 1-DRAs. For nondeterministic RAs (NRAs), we show that Ackermann(n) distinct data (where n is the size of the RA) might be necessary to synchronize. The synchronization problem for NRAs is in general undecidable, however, we establish Ackermann-completeness of the problem for 1-NRAs. Another main result is the NEXPTIME-completeness of the length-bounded synchronization problem for NRAs, where a bound on the length of the synchronizing data word, written in binary, is given. A variant of this last construction allows to prove that the length-bounded universality problem for NRAs is co-NEXPTIME-complete

    Alternating register automata on finite words and trees

    Get PDF
    We study alternating register automata on data words and data trees in relation to logics. A data word (resp. data tree) is a word (resp. tree) whose every position carries a label from a finite alphabet and a data value from an infinite domain. We investigate one-way automata with alternating control over data words or trees, with one register for storing data and comparing them for equality. This is a continuation of the study started by Demri, Lazic and Jurdzinski. From the standpoint of register automata models, this work aims at two objectives: (1) simplifying the existent decidability proofs for the emptiness problem for alternating register automata; and (2) exhibiting decidable extensions for these models. From the logical perspective, we show that (a) in the case of data words, satisfiability of LTL with one register and quantification over data values is decidable; and (b) the satisfiability problem for the so-called forward fragment of XPath on XML documents is decidable, even in the presence of DTDs and even of key constraints. The decidability is obtained through a reduction to the automata model introduced. This fragment contains the child, descendant, next-sibling and following-sibling axes, as well as data equality and inequality tests
    corecore