71 research outputs found

    Implications in bounded systems

    Get PDF
    Abstract A consistent connective system generated by nilpotent operators is not necessarily isomorphic to Łukasiewicz-system. Using more than one generator function, consistent nilpotent connective systems (so-called bounded systems) can be obtained with the advantage of three naturally derived negations and thresholds. In this paper, implications in bounded systems are examined. Both R- and S-implications with respect to the three naturally derived negations of the bounded system are considered. It is shown that these implications never coincide in a bounded system, as the condition of coincidence is equivalent to the coincidence of the negations, which would lead to Łukasiewicz logic. The formulae and the basic properties of four different types of implications are given, two of which fulfill all the basic properties generally required for implications

    Distributivity of strong implications over conjunctive and disjunctive uninorms

    Get PDF
    summary:This paper deals with implications defined from disjunctive uninorms UU by the expression I(x,y)=U(N(x),y)I(x,y)=U(N(x),y) where NN is a strong negation. The main goal is to solve the functional equation derived from the distributivity condition of these implications over conjunctive and disjunctive uninorms. Special cases are considered when the conjunctive and disjunctive uninorm are a tt-norm or a tt-conorm respectively. The obtained results show a lot of new solutions generalyzing those obtained in previous works when the implications are derived from tt-conorms

    The *-composition -A Novel Generating Method of Fuzzy Implications: An Algebraic Study

    Get PDF
    Fuzzy implications are one of the two most important fuzzy logic connectives, the other being t-norms. They are a generalisation of the classical implication from two-valued logic to the multivalued setting. A binary operation I on [0; 1] is called a fuzzy implication if (i) I is decreasing in the first variable, (ii) I is increasing in the second variable, (iii) I(0; 0) = I(1; 1) = 1 and I(1; 0) = 0. The set of all fuzzy implications defined on [0; 1] is denoted by I. Fuzzy implications have many applications in fields like fuzzy control, approximate reasoning, decision making, multivalued logic, fuzzy image processing, etc. Their applicational value necessitates new ways of generating fuzzy implications that are fit for a specific task. The generating methods of fuzzy implications can be broadly categorised as in the following: (M1): From binary functions on [0; 1], typically other fuzzy logic connectives, viz., (S;N)-, R-, QL- implications, (M2): From unary functions on [0,1], typically monotonic functions, for instance, Yager’s f-, g- implications, or from fuzzy negations, (M3): From existing fuzzy implications

    Fitting aggregation operators to data

    Full text link
    Theoretical advances in modelling aggregation of information produced a wide range of aggregation operators, applicable to almost every practical problem. The most important classes of aggregation operators include triangular norms, uninorms, generalised means and OWA operators.With such a variety, an important practical problem has emerged: how to fit the parameters/ weights of these families of aggregation operators to observed data? How to estimate quantitatively whether a given class of operators is suitable as a model in a given practical setting? Aggregation operators are rather special classes of functions, and thus they require specialised regression techniques, which would enforce important theoretical properties, like commutativity or associativity. My presentation will address this issue in detail, and will discuss various regression methods applicable specifically to t-norms, uninorms and generalised means. I will also demonstrate software implementing these regression techniques, which would allow practitioners to paste their data and obtain optimal parameters of the chosen family of operators.<br /

    A Deep Study of Fuzzy Implications

    Get PDF
    This thesis contributes a deep study on the extensions of the IMPLY operator in classical binary logic to fuzzy logic, which are called fuzzy implications. After the introduction in Chapter 1 and basic notations about the fuzzy logic operators In Chapter 2 we first characterize In Chapter 3 S- and R- implications and then extensively investigate under which conditions QL-implications satisfy the thirteen fuzzy implication axioms. In Chapter 4 we develop the complete interrelationships between the eight supplementary axioms FI6-FI13 for fuzzy implications satisfying the five basic axioms FI1-FI15. We prove all the dependencies between the eight fuzzy implication axioms, and provide for each independent case a counter-example. The counter-examples provided in this chapter can be used in the applications that need different fuzzy implications satisfying different fuzzy implication axioms. In Chapter 5 we study proper S-, R- and QL-implications for an iterative boolean-like scheme of reasoning from classical binary logic in the frame of fuzzy logic. Namely, repeating antecedents nn times, the reasoning result will remain the same. To determine the proper S-, R- and QL-implications we get a full solution of the functional equation I(x,y)=I(x,I(x,y))I(x,y)=I(x,I(x,y)), for all xx, y[0,1]y\in[0,1]. In Chapter 6 we study for the most important t-norms, t-conorms and S-implications their robustness against different perturbations in a fuzzy rule-based system. We define and compare for these fuzzy logical operators the robustness measures against bounded unknown and uniform distributed perturbations respectively. In Chapter 7 we use a fuzzy implication II to define a fuzzy II-adjunction in F(Rn)\mathcal{F}(\mathbb{R}^{n}). And then we study the conditions under which a fuzzy dilation which is defined from a conjunction C\mathcal{C} on the unit interval and a fuzzy erosion which is defined from a fuzzy implication II^{'} to form a fuzzy II-adjunction. These conditions are essential in order that the fuzzification of the morphological operations of dilation, erosion, opening and closing obey similar properties as their algebraic counterparts. We find out that the adjointness between the conjunction C\mathcal{C} on the unit interval and the implication II or the implication II^{'} play important roles in such conditions

    Faculty of Sciences

    Get PDF
    A comprehensive study of fuzzy rough sets and their application in data reductio

    Rotation-invariant t-norms

    Get PDF

    The Mathematical Landscape

    Get PDF
    The intent of this paper is to present the reader will enough information to spark a curiosity in to the subject. By no means is the following a complete formulation of any of the topics covered. I want to give the reader a tour of the mathematical landscape. There are plenty of further details to explore in each section, I have just touched the tip the iceberg. The work is basically in four sections: Numbers, Geometry, Functions, Sets and Logic, which are the basic building blocks of Math. The first sections are a exposition into the mathematical objects and their algebras. The last section dives into the foundation of math, sets and logic, and develops the ``language\u27\u27 of Math. My hope is that after this, the reader will have the necessary (maybe not sufficient) information needed to talk the language of Math
    corecore