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Preface

In many fields of science, monotone functions are used to aggregate multiple numerical inputs
into a single numerical output. These numerical inputs can represent physical observations, bio-
logical criteria, preferences, statistical data, economical and/or financial data, probabilities, etc.
The output enables us to explain and predict physical, biological and economical phenomena,
to classify objects and species or to make well-founded decisions. The aggregation process often
requires that the input values as well as the output value must belong to a same numerical
interval. Due to the monotonicity of the aggregation functions involved, it is often possible to
rescale the input values as well as the output value into the unit interval.

In this work we mainly focus on the description of monotone [0, 1]2 → [0, 1] functions F in
terms of monotone [0, 1] → R functions. In the literature there largely exist two possible
approaches. Firstly, F is sometimes expressed by means of a monotone [0, 1] → R function
(the generator) and its (pseudo-)inverse. A predetermined external [0, 1]2 → [0, 1] function
combines the generator and its inverse. Additive and multiplicative generators of t-norms are
by far the best known examples of this approach (see e.g. [51]). Unfortunately, the method
is not applicable to all monotone functions F . Additional conditions such as associativity are
often difficult to grasp. In this respect, when dealing with t-norms, additive and multiplicative
generators produce only Archimedean t-norms. The second approach consists in fixing F on
a subset {(x, f(x)) | x ∈ [0, 1]} of [0, 1]2 that is determined by a given monotone [0, 1] → [0, 1]
function f . Invoking some additional (required) properties on F , F |{(x,f(x))|x∈[0,1]} can then be
used to define F on the whole unit square. In this respect, continuous t-norms and copulas have
been constructed with fixed diagonal sections (f = id) (see e.g. [20] and [51]). Note that often
multiple functions F can coincide on {(x, f(x)) | x ∈ [0, 1]}.

We contribute to a less known third approach in which F is described by means of its con-
tour lines. Contour lines are decreasing [0, 1] → [0, 1] functions determining the limits of the
horizontal cuts of F . The dissertation is organized as follows.

1. In Part I we focus on the symmetry aspects of monotone [0, 1] → [0, 1] functions. In Chap-
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ter 1 we generalize the classical inverse of a monotone function. We use this generalization
to describe the symmetry of monotone [0, 1] → [0, 1] functions in Chapter 2. Finally, we
invoke the new insights to investigate the invariance (Chapter 3) and the orthosymmetry
aspects (Chapter 4) of more general monotone [0, 1]n → [0, 1] functions.

2. The results from Part I lay the foundation for a more profound study of rotation-invariant
t-norms in terms of contour lines (Part II). We express first the characteristic properties
of uninorms in terms of contour lines (Chapter 5). Special attention goes to the existence
of a continuous contour line. In particular, we try to understand how the continuity
of a contour line influences the structure of a uninorm. In Chapter 6 we focus on left-
continuous t-norms. We introduce the companion and zooms as additional tools to lay
bare the geometrical structure of a left-continuous t-norm T . Finally, we introduce brand
new and natural methods for decomposing (Chapter 7) and constructing (Chapter 8)
rotation-invariant t-norms.

3. Finally, we invoke our knowledge on the structure of rotation-invariant t-norms to per-
form a comparative study between the disjunctive and conjunctive fuzzified normal forms
(Part III). These fuzzified normal forms are rooted in a straightforward adjustment of the
disjunctive and conjunctive Boolean normal forms. In Chapter 9 we set out the framework
in which the fuzzified normal forms occur. We explore for which continuous De Morgan
triplets the disjunctive fuzzified normal form is smaller than or equal to the conjunc-
tive fuzzified normal form. A system of functional equations turns up if some functional
independence of the difference between both fuzzified normal forms is demanded. In Chap-
ter 10 we inquire which De Morgan triplets, based on a left-continuous (rotation-invariant)
t-norm T , solve this system.

Most of the work presented in this dissertation has already been published in peer reviewed
international journals. Chapter 1 has been described in [63]. The results from Chapter 2 can be
found in [62]. The work presented in Chapter 3 has been published in [61]. Chapter 4 contains a
lot of new, yet unpublished work. However, the results from Section 4.2 and Chapter 5 have been
described in [60]. Most of our work stated in Chapters 6–8 can be found in [64], [65] and [66].
Part III of the dissertation contains the oldest material. Chapter 9 has been described in [57].
Finally, our results from [58] and [59] have been given a face-lift and have been summarized in
Chapter 10.



Part I

Monotone functions





CHAPTER 1

Inverses of monotone functions

1.1 Introduction

In the unit square [0, 1]2, the inverse A−1 of a set A ⊆ [0, 1]2 is defined as A−1 := {(x, y) ∈
[0, 1]2 | (y, x) ∈ A}. Geometrically, we obtain A−1 by reflecting A about the graph of the identity
function id : [0, 1] → [0, 1] : x 7→ x. For a function f (i.e. every element x in the domain of f
is mapped to a unique image f(x)), its inverse f−1 = {(x, y) ∈ [0, 1]2 | x = f(y)} is again
a function if and only if f is injective. A set A is symmetrical w.r.t. the identity function if
(x, y) ∈ A whenever (y, x) ∈ A, meaning that the set and its inverse coincide. Analogously,
A is symmetrical w.r.t. the standard negator N : [0, 1] → [0, 1] : x 7→ 1 − x if it holds that
(x, y) ∈ A whenever (1−y, 1−x) ∈ A. Hence, AN := {(x, y) ∈ [0, 1]2 | (1−y, 1−x) ∈ A} can be
understood as the inverse of A w.r.t. the standard negator. In particular, AN is the reflection
of A about the graph of N . However, reflections are not always apt to define the inverse of a
set w.r.t. a given monotone [0, 1] → [0, 1] bijection Φ. For instance, suppose that Φ contains
part of a circle with center (x, y) belonging to A (see Fig. 1.1(a)). There does not exist a unique
straight line perpendicular to Φ that contains (x, y). This observation forces us to approach the
inverse of A in a different way.

We introduce a new type of inverse w.r.t. monotone bijections Φ. Inverting a monotone function
in the unit square, however, does not necessarily result in a function. Extending the approach
of Schweizer and Sklar [85] we associate to each monotone function f a set Q(f,Φ) containing
the ‘inverse’ functions of f w.r.t. a given monotone [0, 1] → [0, 1] bijection Φ. By far the most
attention goes to exposing the geometrical and algebraical properties of Q(f,Φ). The study of
the set Q(f, id) is crucial as each set Q(f,Φ) is either isomorphic or antimorphic with Q(f, id).
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1.2 Inverse functions

Monotone [0, 1] → [0, 1] bijections can be either increasing or decreasing. We will use the
following terminology to indicate the type of monotonicity:

Definition 1.1 An increasing [0, 1] → [0, 1] bijection φ is called an automorphism; a decreasing
[0, 1] → [0, 1] bijection N is called a strict negator . The image of x under φ is denoted as φ(x).
For a strict negator we (usually) use the exponential notation xN .

The identity function id is a prototypical automorphism while the standard negator N is the
prototype of a strict negator. Given a monotone bijection Φ, we introduce now an alternative
way to invert a set A ⊆ [0, 1]2 w.r.t. Φ. Through every point (x, y) ∈ A we draw a line parallel
to the X-axis and a line parallel to the Y-axis. These lines intersect the graph of Φ in the points
(Φ−1(y), y) and (x,Φ(x)), respectively. (Φ−1(y),Φ(x)) is the fourth point of the rectangle defined
by (x, y), (Φ−1(y), y) and (x,Φ(x)). The set of all these points (Φ−1(y),Φ(x)), with (x, y) ∈ A,
can be understood as the inverse of A w.r.t. the bijection Φ. Figure 1.1 illustrates this procedure.

0 1
0  

1  

x 

y 

φ(x) 

φ−1(y) 

(a) φ-inverse of a circle

0 1

1  

0  
x 

y 

xN 

y(N
−1

) 

(b) N -inverse of a circle

Figure 1.1: The φ-inverse and N -inverse (dashed gray lines) of a circle (dashed black line), with
φ the automorphism (solid line) depicted in Fig. 1.1(a) and N the strict negator (solid line)
depicted in Fig. 1.1(b).

Definition 1.2 Let Φ be a monotone [0, 1] → [0, 1] bijection. The Φ-inverse of a set A⊆ [0, 1]2

is given by AΦ := {(x, y) ∈ [0, 1]2 | (Φ−1(y),Φ(x)) ∈ A}.

It holds that (x, y) ∈ AΦ if and only if (Φ(x),Φ−1(y)) ∈ A−1. In case Φ is the identity function id,
Aid equals A−1 and will still be referred to as the inverse of A. The Φ-inverse of a function f is
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again a function if and only if f is injective. Moreover, in this case fΦ = Φ ◦ f−1 ◦Φ. Note also
that (AΦ)Φ = A.

From now on, let f be a monotone [0, 1] → [0, 1] function and Φ be a monotone [0, 1] → [0, 1]
bijection. If f is not bijective, its Φ-inverse fΦ cannot be seen as a [0, 1] → [0, 1] function (see
e.g. Fig. 1.2(a)). There are various ways to adjust this Φ-inverse, ensuring that it becomes
a [0, 1] → [0, 1] function. Given an increasing [0, 1] → [0, 1] function f , Schweizer and Sklar
geometrically construct a set of ‘id-inverse’ functions [85]. Some additional results for monotone
functions are due to Klement et al. [50, 51]. We will largely extend these results and associate
to each monotone function f a set of [0, 1] → [0, 1] functions: the ‘Φ-inverse’ functions of f .

Definition 1.3 A completion f∗ of a monotone [0, 1] → [0, 1] function f is a continuous line
from the point (0, 0) to the point (1, 1), whenever f is increasing, and/or from the point (0, 1)
to the point (1, 0), whenever f is decreasing. f∗ is obtained by adding vertical segments to the
graph of f .

0 1
0  

1  

(a) φ-inverse fφ of f

0 1
0  

1  

(b) φ-inverse (f∗)φ of f∗

Figure 1.2: The φ-inverse (dashed gray lines) of a decreasing function f and of its completion
f∗ (dashed black lines), with φ the automorphism depicted by the solid line.

For example, Fig. 1.2(b) depicts the completion f∗ (dashed black line) of the decreasing func-
tion f (dashed black line) from Fig. 1.2(a). Clearly, every non-constant monotone function f has
a unique completion. As a constant [0, 1] → [0, 1] function α (α(x) = α), with α ∈ [0, 1], is both
increasing and decreasing, it has an increasing completion as well as a decreasing completion.

Definition 1.4 Let Φ be a monotone [0, 1] → [0, 1] bijection and f be a monotone [0, 1] → [0, 1]
function. Q(f,Φ) is the set of all [0, 1] → [0, 1] functions that have a completion coinciding with
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the Φ-inverse (f∗)Φ of a completion f∗ of f .

All decreasing [0, 1] → [0, 1] functions that are covered by the dashed gray line in Fig. 1.2(b)
constitute the set Q(f, φ), with f the decreasing function from Fig. 1.2(a) (dashed black line)
and φ the automorphism from Figs. 1.2(a) and 1.2(b) (solid black line). For a non-constant
function f , the members of Q(f,Φ) are constructed from (f∗)Φ by deleting from any vertical
segment all but one point. For a constant [0, 1] → [0, 1] function α, the set Q(α,Φ) contains
functions constructed from the increasing completion of α as well as functions constructed
from the decreasing completion of α. The following theorem shows that the injectivity and/or
surjectivity of f is reflected in the set Q(f,Φ).

Theorem 1.5 Consider a monotone [0, 1] → [0, 1] bijection Φ. For a monotone [0, 1] → [0, 1]
function f the following assertions hold:

1. f is injective if and only if |Q(f,Φ)| = 1.
2. f is surjective if and only if Q(f,Φ) contains injective functions only.
3. f is bijective if and only if fΦ ∈ Q(f,Φ).

For a bijective function f it clearly holds that Q(f,Φ) = {fΦ}.

Proof Follows immediately from the definition of Q(f,Φ). �

We can introduce an equivalence relation on the class of monotone [0, 1] → [0, 1] functions by
calling two functions f and h equivalent if their completed curves coincide, or equivalently, if
the sets Q(f,Φ) and Q(h,Φ) coincide. The monotone bijection Φ can be chosen arbitrarily. The
equivalence class containing a function f is then given by Q(g,Φ), with g ∈ Q(f,Φ).

Theorem 1.6 Consider a monotone [0, 1] → [0, 1] bijection Φ. For a monotone [0, 1] → [0, 1]
function f the following assertions hold:

1. For every g ∈ Q(f,Φ) it holds that f ∈ Q(g,Φ).
2. For every g1, g2 ∈ Q(f,Φ) it holds that Q(g1,Φ) = Q(g2,Φ).
3. For every g ∈ Q(f,Φ) it holds that h ∈ Q(g,Φ) ⇔ Q(h,Φ) = Q(f,Φ).

Proof Follows immediately from the definition of Q(f,Φ). �

In order to describe the members of Q(f,Φ) mathematically, we first have to introduce four

[0, 1] → [0, 1] functions f
Φ

, fΦ, fΦ and f
Φ

:

f
Φ

(x) = sup{t ∈ [0, 1] | f(Φ−1(t)) < Φ(x)}
fΦ(x) = inf{t ∈ [0, 1] | f(Φ−1(t)) > Φ(x)}
fΦ(x) = sup{t ∈ [0, 1] | f(Φ−1(t)) > Φ(x)}
f

Φ
(x) = inf{t ∈ [0, 1] | f(Φ−1(t)) < Φ(x)}
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(sup ∅ = 0 and inf ∅ = 1). In the following theorem we lay bare the tight connection between
the above functions constructed from a monotone bijection Φ and those constructed from the
identity function id.

Theorem 1.7 Consider a monotone [0, 1] → [0, 1] function f .

1. For an automorphism φ the following identities hold:

f
φ

= f ◦ φ−1
id ◦ φ = φ ◦ φ−1 ◦ f id

= φ−1 ◦ f ◦ φ−1
id

= φ ◦ f id ◦ φ ;

fφ = f ◦ φ−1
id ◦ φ = φ ◦ φ−1 ◦ f id = φ−1 ◦ f ◦ φ−1

id = φ ◦ f id ◦ φ ;

fφ = f ◦ φ−1id ◦ φ = φ ◦ φ−1 ◦ f id
= φ−1 ◦ f ◦ φ−1id = φ ◦ f id ◦ φ ;

f
φ

= f ◦ φ−1
id

◦ φ = φ ◦ φ−1 ◦ f
id

= φ−1 ◦ f ◦ φ−1
id

= φ ◦ f
id

◦ φ .

2. For a strict negator N the following identities hold:

f
N

= f ◦N−1
id ◦N = N ◦N−1 ◦ f id = N−1 ◦ f ◦N−1id = N ◦ f

id
◦N ;

fN = f ◦N−1
id ◦N = N ◦N−1 ◦ f id

= N−1 ◦ f ◦N−1
id

= N ◦ f id ◦N ;

fN = f ◦N−1id ◦N = N ◦N−1 ◦ f
id

= N−1 ◦ f ◦N−1
id

= N ◦ f id ◦N ;

f
N

= f ◦N−1
id

◦N = N ◦N−1 ◦ f id
= N−1 ◦ f ◦N−1

id = N ◦ f id ◦N .

Proof We will prove the theorem for f
φ

and f
N

the other cases being similar. On the one

hand, for an automorphism φ, we obtain that

f
φ
(x) = inf{t ∈ [0, 1] | f(φ−1(t)) < φ(x)} = f ◦ φ−1

id
(φ(x)) ;

= φ(inf{s ∈ [0, 1] | f(s) < φ(x)}) = φ(f
id

(φ(x))) ;

= inf{t ∈ [0, 1] | φ−1(f(φ−1(t))) < x} = φ−1 ◦ f ◦ φ−1
id

(x) ;

= φ(inf{s ∈ [0, 1] | φ−1(f(s)) < x}) = φ(φ−1 ◦ f
id

(x)) ,

for every x ∈ [0, 1]. On the other hand, for a strict negator N , we obtain that

f
N

(x) = inf
{
t ∈ [0, 1] | f(t(N

−1)) < xN
}

= f ◦N−1
id

(xN ) ;

=
(
sup{s ∈ [0, 1] | f(s) < xN}

)N
= (f

id
(xN ))N ;

= inf
{
t ∈ [0, 1] | (f(t(N

−1)))(N
−1) > x

}
= N−1 ◦ f ◦N−1

id(x) ;

=
(
sup
{
s ∈ [0, 1] | (f(s))(N

−1) > x
})N

= (N−1 ◦ f id
(x))N ,

for every x ∈ [0, 1]. �

Thanks to this theorem, properties of f
id

, f id, f id and f
id

are easily translated to properties of

f
Φ

, fΦ, fΦ and f
Φ

.
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Corollary 1.8 Consider a monotone [0, 1] → [0, 1] bijection Φ and a monotone [0, 1] → [0, 1]

function f . Both functions f
Φ

and fΦ have the same type of monotonicity as Φ. The monotonic-
ity of the functions fΦ and f

Φ
is opposite to the monotonicity of Φ.

Proof It is easily verified that f
id

and f id are always increasing and that f id and f
id

are
always decreasing. Taking into account Theorem 1.7 yields the postulate. �

We will now show that both sets Q(f,Φ) and Q(f, id) are either isomorphic or antimorphic,
(i.e. there exists an isomorphism or antimorphism from Q(f,Φ) to Q(f, id)). To this end we
first recall some well-known definitions.

Definition 1.9 A partially ordered set or poset (P,6) consists of a non-empty set P and a
binary relation 6 on P that satisfies the following properties:

(PS1) Reflexivity : x 6 x, for every x ∈ P .
(PS2) Antisymmetry : x 6 y ∧ y 6 x ⇒ x = y, for every (x, y) ∈ P 2.
(PS3) Transitivity : x 6 y ∧ y 6 z ⇒ x 6 z, for every (x, y, z) ∈ P 3.

A binary relation on P satisfying the above properties is called a partial order . If the partial
order is clear from the context, we briefly use P to denote the poset (P,6).

Definition 1.10 Let (P1,61) and (P2,62) be two posets. An isomorphism is an order-preserving
P1 → P2 bijection. An order-reversing P1 → P2 bijection is called an antimorphism.

Automorphisms are those isomorphisms that map the unit interval [0, 1] to itself. Strict negators
are in fact [0, 1] → [0, 1] antimorphisms. Note that we equip the set of all [0, 1] → [0, 1] functions
with an elementwise partial ordering. Explicitly, for two [0, 1] → [0, 1] functions g1 and g2,
g1 6 g2 holds if g1(x) 6 g2(x) is satisfied for every x ∈ [0, 1].

Theorem 1.11 Consider two monotone [0, 1] → [0, 1] bijections Φ and Ψ. For a monotone
[0, 1] → [0, 1] function f the following assertions hold

1. Q(f,Φ) and Q(f,Ψ) are isomorphic in case Φ and Ψ have the same type of monotonicity.
2. Q(f,Φ) and Q(f,Ψ) are antimorphic in case Φ and Ψ have opposite types of monotonicity.

In particular, for every g ∈ Q(f,Φ) there exists a unique function h ∈ Q(f,Ψ) such that Φ−1 ◦
g ◦ Φ−1 = Ψ−1 ◦ h ◦ Ψ−1.

Proof It suffices to prove that

IΦ : Q(f,Φ) → Q(f, id) : g 7→ IΦ(g) := Φ−1 ◦ g ◦ Φ−1

is an isomorphism for every automorphism Φ and an antimorphism whenever Φ is a strict
negator. Recall the geometrical construction of Q(f,Φ) and Q(f, id). For every g ∈ Q(f,Φ) we
know that (Φ−1(g(x)),Φ(x)), with x ∈ [0, 1], is covered by a completion f∗ of f . Hence, the set

{(Φ(x),Φ−1(g(x))) | x ∈ [0, 1]} = {(u, IΦ(g)(u)) | u ∈ [0, 1]}
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indeed defines a [0, 1] → [0, 1] function belonging to Q(f, id). Conversely, consider a function
k ∈ Q(f, id), then {(k(x), x) | x ∈ [0, 1]} is a subset of a completion f∗. It is clear that the set

{(Φ−1(x),Φ(k(x))) | x ∈ [0, 1]} = {(u,Φ(k(Φ(u)))) | u ∈ [0, 1]}

defines a function belonging to Q(f,Φ) and thus k = IΦ(Φ ◦ k ◦ Φ). We conclude that IΦ is
a surjection. The bijectivity of Φ ensures that IΦ is also injective. It clearly holds that IΦ is
increasing whenever Φ is increasing and that IΦ is decreasing whenever Φ is decreasing. There-
fore, depending on the monotonicity of Φ, IΦ is indeed an order-preserving or order-reversing
bijection. �

Corollary 1.12 Consider two monotone [0, 1] → [0, 1] bijections Φ and Ψ, and a monotone
[0, 1] → [0, 1] function f . Then for every g ∈ Q(f,Φ) there exists a unique function h ∈ Q(f,Ψ)
such that

gΦ = h
Ψ
, gΦ = hΨ, g

Φ = hΨ and g
Φ

= hΨ ,

whenever Φ and Ψ have the same monotonicity and

gΦ = hΨ, gΦ = hΨ, g
Φ = h

Ψ
and g

Φ
= hΨ ,

whenever Φ and Ψ have opposite types of monotonicity.

Proof From Theorem 1.11 we know that, given a function g ∈ Q(f,Φ), there exists a unique
function h ∈ Q(f,Ψ) such that Φ−1 ◦ g ◦ Φ−1 = Ψ−1 ◦ h ◦ Ψ−1. The statements then follow
immediately from Theorem 1.7. �

Taking a closer look at functions of the form Φ−1 ◦ f ◦ Φ−1 we obtain the following result:

Theorem 1.13 Consider a monotone [0, 1] → [0, 1] bijection Φ. For every monotone [0, 1] →
[0, 1] function f it holds that Q(f,Φ) = Q(Φ−1 ◦ f ◦ Φ−1, id).

Proof Because f(Φ−1(y)) = Φ(x) ⇔ Φ−1 ◦ f ◦ Φ−1(y) = x it holds that (Φ−1(y),Φ(x)) ∈ f∗

if and only if (y, x) ∈ (Φ−1 ◦ f ◦Φ)∗, with f∗ a completion of f and (Φ−1 ◦ f ◦Φ)∗ a completion
of Φ−1 ◦ f ◦ Φ. Hence, (x, y) ∈ (f∗)Φ ⇔ (x, y) ∈ ((Φ−1 ◦ f ◦ Φ)∗)id. In view of the geometrical
construction of the sets Q(f,Φ) and Q(Φ−1 ◦ f ◦ Φ−1, id), their equality follows. �

1.3 The set Q(f, id)

The mathematical description of the set Q(f, id) originates from the following observations
dealing with monotone [0, 1] → [0, 1] functions f :

(Q1) If x ∈ f([0, 1]), then f−1(x) := {y ∈ [0, 1] | f(y) = x} is an interval.

(Q2a) If f is increasing and x ∈ [0, 1] \ f([0, 1]), then f
id

(x) = f id(x).
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(Q2b) If f is decreasing and x ∈ [0, 1] \ f([0, 1]), then f id(x) = f
id

(x).

As shown by Schweizer and Sklar [85], the set Q(f, id) can be described as the set of [0, 1] → [0, 1]
functions g fulfilling the following conditions:

(Q1)id
(
∀x ∈ f([0, 1])

)(
g(x) ∈

[
inf(f−1(x)), sup(f−1(x))

])
.

(Q2a)id If f is increasing:
(
∀x ∈ [0, 1] \ f([0, 1])

)(
g(x) = f

id
(x) = f id(x)

)
.

(Q2b)id If f is decreasing:
(
∀x ∈ [0, 1] \ f([0, 1])

)(
g(x) = f id(x) = f

id
(x)
)
.

Special attention is drawn to the constant functions α. Q(α, id) contains functions fulfilling
condition (Q2a)id as well as functions fulfilling condition (Q2b)id. Whenever f(0) 6= f(1),
all elements of Q(f, id) fulfill the same condition: either (Q2a)id or (Q2b)id. According to
Klement et al. [51], in this case we can merge conditions (Q2a)id and (Q2b)id as follows:

(Q2)id
(
∀x ∈ [0, 1] \ f([0, 1])

)(
g(x) = sup{t ∈ [0, 1] | (f(t) − x) · (f(1) − f(0)) < 0}

= inf{t ∈ [0, 1] | (f(t) − x) · (f(1) − f(0)) > 0}
)
.

In case f(0) < f(1), resp. f(1) < f(0), the function f
id

, resp. f id, is known as the pseudo-

inverse f (−1) of f [51]. For a constant [0, 1] → [0, 1] function α, Klement et al. [51] define
the pseudo-inverse as α(−1) := 0. This pseudo-inverse does not necessarily coincide with αid

or αid, which can easily be verified by considering the [0, 1] → [0, 1] function 1
2 . The authors

were clearly inspired by the ‘supremum expression’ in condition (Q2)id. However, when deal-
ing with constant functions, condition (Q2)id can never hold as sup ∅ = 0 < 1 = inf ∅. The
‘supremum expression’ in condition (Q2)id is then neither related to condition (Q2a)id nor to
condition (Q2b)id. Pseudo-inverses are often used in the construction of triangular norms and
conorms (see [50, 51, 90, 91]). They have been studied extensively in that context. Some of
our results concerning the pseudo-inverse of non-constant monotone functions can be (partially)
found in [50, 51, 91]. Our goal was not only to extend the existing knowledge, but also to purify
the theorems from superfluous conditions and to rearrange the results in a more insightful way.
We also clarified the inversion of constant functions.

We now try to figure out the significance of the four functions f
id

, f id, f id and f
id

. In the
following theorem we investigate which of these functions belongs to Q(f, id) and can therefore
be understood as some kind of inverse of f .

Theorem 1.14 For a monotone [0, 1] → [0, 1] function f the following assertions hold:

1. If f(0) < f(1), then a [0, 1] → [0, 1] function g belongs to Q(f, id) if and only if f
id

6 g 6

f id.
2. If f(1) < f(0), then a [0, 1] → [0, 1] function g belongs to Q(f, id) if and only if f id 6 g 6

f
id

.

3. If f(0) = f(1), then a [0, 1] → [0, 1] function g belongs to Q(f, id) if and only if f
id

6 g 6

f id or f id 6 g 6 f
id

.
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Proof Can be shown easily by considering conditions (Q1)id, (Q2a)id and (Q2b)id and by

recalling the definitions of the functions f
id

, f id, f id and f
id

. �

The structural difference between f
id
, f id and f id, f

id
implies the following corollary:

Corollary 1.15 For a monotone [0, 1] → [0, 1] function f the following assertions hold:

1. If f(0) < f(1), then Q(f, id) contains increasing functions only and {f id, f
id
}∩Q(f, id) =

∅.
2. If f(1) < f(0), then Q(f, id) contains decreasing functions only and {f id

, f id}∩Q(f, id) =
∅.

3. If f(0) = f(1), then Q(f, id) contains increasing and decreasing functions.

Proof Consider arbitrary (x, y) ∈ [0, 1]2 such that x < y. Because {t ∈ [0, 1] | f(t) 6 x} ⊆ {t ∈
[0, 1] | f(t) < y}, it holds that

f id(x) = sup{t ∈ [0, 1] | f(t) 6 x} 6 sup{t ∈ [0, 1] | f(t) < y} = f
id

(y)

f
id

(y) = inf{t ∈ [0, 1] | f(t) < y} 6 inf{t ∈ [0, 1] | f(t) 6 x} = f id(x) .

It is now easily verified that every function located between f
id

and f id is increasing and
that every function located between f id and f

id
is decreasing. By definition it holds that

f
id

(0) = f id(1) = 0 and f id(1) = f
id

(0) = 1. Furthermore, f id(0) = 1 and f
id

(1) = 0, resp.

f
id

(1) = 1 and f id(0) = 0, if f(0) < f(1), resp. f(1) < f(0). Taking into account the monotonic-
ity of the members of Q(f, id) yields that {f id, f

id
} ∩ Q(f, id) = ∅ whenever f(0) < f(1) and

{f id
, f id} ∩Q(f, id) = ∅ whenever f(1) < f(0). �

Depending on the monotonicity of f , the functions f
id
, f id or f id, f

id
do not only constitute

the boundaries of Q(f, id), they can also be sifted out of Q(f, id) on the basis of their continuity.

Theorem 1.16 Consider a monotone [0, 1] → [0, 1] function f satisfying f 6∈ {0,1}.

1. If f is increasing, then

a) f
id

is the only member of Q(f, id) that is left continuous and maps 0 to 0.
b) f id is the only member of Q(f, id) that is right continuous and maps 1 to 1.

2. If f is decreasing, then

a) f id is the only member of Q(f, id) that is right continuous and maps 1 to 0.
b) f

id
is the only member of Q(f, id) that is left continuous and maps 0 to 1.

Proof Follows immediately from Theorem 1.14 and the fact that f
id

(0) = 0, f id(1) = 1,
f id(1) = 0, f

id
(0) = 1. �
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The set Q(0, id), resp. Q(1, id), contains exactly two continuous functions: 0id = 0 and 0id = 1,

resp. 1
id

= 0 and 1id = 1. The above theorem has to be adjusted as follows.

Theorem 1.17 The following assertions hold:

1. a) 0
id

and 0id are the only members of Q(0, id) that are left continuous and map 0 to 0.
b) 0id is the only member of Q(0, id) that is right continuous and maps 1 to 1.
c) 0id is the only member of Q(0, id) that is right continuous and maps 1 to 0.
d) 0id and 0id are the only members of Q(0, id) that are left continuous and map 0 to 1.

2. a) 1
id

is the only member of Q(1, id) that is left continuous and maps 0 to 0.
b) 1id and 1id are the only members of Q(1, id) that are right continuous and map 1

to 1.
c) 1

id
and 1id are the only members of Q(1, id) that are right continuous and map 1

to 0.
d) 1id is the only member of Q(1, id) that is left continuous and maps 0 to 1.

Note that Theorem 1.16 remains applicable to the other constant functions α, with α ∈ ]0, 1[.
The boundary conditions ensure the unicity.

We now focus on the characteristic properties of the classical inverse and figure out under
which conditions these properties are preserved in the new framework. Firstly, we deal with the
involutivity of the ‘inverse’, i.e. (f−1)−1 = f . From Theorem 1.6 we know that f ∈ Q(g, id), for
every g ∈ Q(f, id). Therefore, interpreting g as an inverse of f and f as an inverse of g, we obtain
that in some sense inverting some inverse yields the original function. For monotone bijections f
this reasoning is sound as Q(f, id) = {f id} = {f−1} (Theorem 1.5). Otherwise, whenever f
is not bijective, we know that |Q(f, id)| > 1 and/or |Q(g, id)| > 1, for some g ∈ Q(f, id)
(Theorem 1.5). We need to find out how the inverse g of f , resp. the inverse of g, should be
selected from the set Q(f, id), resp. Q(g, id). Special attention is drawn here to the boundary

functions f
id
, f id and f id, f

id
.

Theorem 1.18 For a monotone [0, 1] → [0, 1] function f the following assertions hold:

1. If there exists a function g ∈ Q(f, id) such that gid = f , then f must be increasing, left
continuous and f(0) = 0.

2. If there exists a function g ∈ Q(f, id) such that gid = f , then f must be increasing, right
continuous and f(1) = 1.

3. If there exists a function g ∈ Q(f, id) such that gid = f , then f must be decreasing, right
continuous and f(1) = 0.

4. If there exists a function g ∈ Q(f, id) such that g
id

= f , then f must be decreasing, left
continuous and f(0) = 1.

Proof Consider a monotone function f and suppose that there exists a function g ∈ Q(f, id)
such that gid = f . The increasingness of f is an immediate consequence of Corollary 1.8. From
Corollary 1.15 we know that g must be increasing whenever f(0) < f(1). In case f(0) = f(1),



1.3. The set Q(f, id) 23

it follows from f(0) = gid(0) = sup{t ∈ [0, 1] | g(t) < 0} = 0 that f = 0. Therefore,
gid(x) = sup{t ∈ [0, 1] | g(t) < x} = 0, for every x ∈ [0, 1]. The latter can only hold if
g(t) = 1, for every t ∈ ]0, 1]. We conclude that g must be increasing. Theorems 1.16 and 1.17
then ensure the left continuity of f = gid. The other cases are proven in the same way. �

Note that neither gid = f nor g
id

= f can hold if f(0) < f(1) and g ∈ Q(f, id). Indeed, in

contrast to f , both functions gid and g
id

are decreasing (Corollary 1.8). Similarly, if f(1) < f(0),

there does not exist a function g ∈ Q(f, id) such that gid = f or gid = f . Also the converse of
the previous theorem holds.

Theorem 1.19 Consider a non-constant monotone [0, 1] → [0, 1] function f .

1. For an increasing function f it holds that:

a) If f is left continuous and f(0) = 0, then gid = f , for every g ∈ Q(f, id).
b) If f is right continuous and f(1) = 1, then gid = f , for every g ∈ Q(f, id).

2. For a decreasing function f it holds that:

a) If f is right continuous and f(1) = 0, then gid = f , for every g ∈ Q(f, id).
b) If f is left continuous and f(0) = 1, then g

id
= f , for every g ∈ Q(f, id).

Proof Consider a left-continuous, increasing function f for which f(0) = 0 and take g ∈
Q(f, id). Theorem 1.14 and the left continuity of f ensure that

g(f(x) − ε) 6 f id(f(x) − ε) = inf{t ∈ [0, 1] | f(t) > f(x) − ε} < x , (1.1)

for every x ∈ [0, 1] such that 0 < f(x) and with ε ∈ ]0, f(x)]. Moreover, it holds that

g(f(x) + ε) > f
id

(f(x) + ε) = sup{t ∈ [0, 1] | f(t) < f(x) + ε} > x , (1.2)

for every x ∈ [0, 1] such that f(x) < 1 and with ε ∈ ]0, 1 − f(x)]. Consider arbitrary x ∈ [0, 1]
such that f(x) ∈ ]0, 1[ and let ε ∈ ]0,min(f(x), 1 − f(x))]. As g is increasing (Corollary 1.15),
combining Eqs. (1.1) and (1.2) leads to

gid(x) = sup{t ∈ [0, 1] | g(t) < x} = f(x) . (1.3)

In case f(x) = 0, then Eq. (1.2), with arbitrary ε ∈ ]0, 1], also implies Eq. (1.3). In a similar
way, Eq. (1.1) implies Eq. (1.3) whenever f(x) = 1. We conclude that gid = f . The other cases
are proven in a similar way. �

For the constant functions 0 and 1 we obtain the following result.

Theorem 1.20 For a [0, 1] → [0, 1] function g the following assertions hold:

1. gid = 0 if and only if 0
id

6 g 6 0id.
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2. gid = 1 if and only if 1
id

6 g 6 1id.
3. gid = 0 if and only if 0id 6 g 6 0id.

4. g
id

= 1 if and only if 1id 6 g 6 1id.

Proof As 0
id

(x) = 0id(x) = 1 whenever x ∈ ]0, 1] and 0
id

(0) = 0 < 1 = 0id(0), it holds that

0
id

6 g 6 0id is equivalent with g(x) = 1, for every x ∈ ]0, 1]. The latter is also equivalent with
gid(x) = sup{t ∈ [0, 1] | g(t) < x} = 0, for every x ∈ [0, 1]. This proves the first assertion. The
other assertions are proven in the same way. �

Note that if, for example, gid equals a non-constant left continuous function f fulfilling f(0) = 0,

then it does not necessarily hold that g ∈ Q(f, id) (e.g. g = 0
id

). This prevents us from further
generalizing Theorem 1.19.

In classical analysis it holds that f−1 ◦ f = id if and only if f is injective. It is easily ver-

ified that f
id ◦ f 6 id[0,1] 6 f id ◦ f whenever f is increasing and f id ◦ f 6 id 6 f

id
◦ f

whenever f is decreasing.

Theorem 1.21 A monotone [0, 1] → [0, 1] function f is injective if and only if there exists a
function g ∈ Q(f, id) such that g ◦ f = id.

Proof We present the proof for an increasing function f . If g◦f = id holds for some g ∈ Q(f, id),
then g must be surjective. From Theorem 1.5 it then follows that Q(g, id) contains only injective
functions. Since f ∈ Q(g, id) (Theorem 1.6), this means that f must be injective. Conversely,
assume that f is an injective increasing [0, 1] → [0, 1] function. Expressing the injectivity of f

(∀x ∈ ]0, 1])(∀ε ∈ ]0, x])(f(x− ε) < f(x))

is equivalent with

f
id

(f(x)) = sup{t ∈ [0, 1] | f(t) < f(x)} = x ,

for every x ∈ [0, 1]. Recall from Theorems 1.5 and 1.14 that Q(f, id) = {f id}. Hence, g ◦f = id,
if g ∈ Q(f, id). �

For monotone [0, 1] → [0, 1] functions f , it holds that f ◦ f−1 = id if and only if f is bijective.
The injectivity of f ensures that f−1 is a function. Since Q(f, id) only contains functions, the
injectivity of f will become superfluous when replacing f−1 by some g ∈ Q(f, id).

Theorem 1.22 A monotone [0, 1] → [0, 1] function f is surjective if and only if there exists a
function g ∈ Q(f, id) such that f ◦ g = id. In particular, f ◦ g = id, for every g ∈ Q(f, id).

Proof We present the proof for an increasing function f . Clearly f ◦ g = id, for some g ∈
Q(f, id), requires the surjectivity of f . Conversely, suppose that f is surjective, then f is
continuous, f(0) = 0 and f(1) = 1. By definition it then holds that

f(f
id

(x)) = f(sup{t ∈ [0, 1] | f(t) < x}) = x = f(inf{t ∈ [0, 1] | f(t) > x}) = f(f id(x)) ,
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for every x ∈ [0, 1]. Taking into account that f
id

6 g 6 f id, for every g ∈ Q(f, id) (Theo-
rem 1.14), this leads to f ◦ f id = f ◦ g = f ◦ f

id
= id. �

Combining Theorems 1.21 and 1.22, we obtain the following corollary.

Corollary 1.23 A monotone [0, 1] → [0, 1] function f is bijective if and only if there exists a
function g ∈ Q(f, id) such that g ◦ f = id and f ◦ g = id.

Recall that in this case necessarily g = f−1 (Theorem 1.5).

1.4 The set Q(f, Φ)

In this section we generalize our previous results concerning the set Q(f, id), to properties of
the set Q(f,Φ) where f is a monotone [0, 1] → [0, 1] function and Φ is a monotone [0, 1] →
[0, 1] bijection. The correlation between Q(f, id) and Q(f,Φ) (see Theorem 1.11) allows a
straightforward conversion of the properties ofQ(f, id) to those ofQ(f,Φ): for every g ∈ Q(f,Φ),
we know that Φ−1 ◦ g ◦ Φ−1 belongs to Q(f, id). Throughout this translation process we make
extensively use of Theorem 1.7 and Corollary 1.12, where Ψ = id. The proofs are elementary
and therefore left out.

A. Φ is an automorphism φ

The set Q(f, φ) can be described as the set of all [0, 1] → [0, 1] functions g satisfying the following
conditions:

(Q1)φ
(
∀x ∈ φ−1(f([0, 1]))

)(
g(x) ∈ φ

([
inf(f−1(φ(x))), sup(f−1(φ(x)))

]))
.

(Q2a)φ If f is increasing:
(
∀x ∈ φ−1 ([0, 1] \ f([0, 1]))

)(
g(x) = f

φ
(x) = fφ(x)

)
.

(Q2b)φ If f is decreasing:
(
∀x ∈ φ−1 ([0, 1] \ f([0, 1]))

)(
g(x) = fφ(x) = f

φ
(x)
)
.

For a constant function α, with α ∈ [0, 1], the set Q(α, φ) contains functions satisfying (Q2a)φ
as well as functions satisfying (Q2b)φ. The following theorems point out the significance and

importance of the functions f
φ
, fφ, f

φ and f
φ
.

Theorem 1.24 Consider an automorphism φ. For a monotone [0, 1] → [0, 1] function f the
following assertions hold:

1. If f(0) < f(1), then a [0, 1] → [0, 1] function g belongs to Q(f, φ) if and only if f
φ

6 g 6

fφ.

2. If f(1) < f(0), then a [0, 1] → [0, 1] function g belongs to Q(f, φ) if and only if fφ 6 g 6

f
φ
.

3. If f(0) = f(1), then a [0, 1] → [0, 1] function g belongs to Q(f, φ) if and only if f
φ

6 g 6 fφ
or fφ 6 g 6 f

φ
.
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It is clear that Q(f, φ) only contains increasing, resp. decreasing, functions provided that f(0) <

f(1), resp. f(1) < f(0). Depending on the monotonicity of f , the functions f
φ
, fφ and fφ, f

φ

can also be characterized by means of some continuity conditions.

Theorem 1.25 Consider an automorphism φ and a monotone [0, 1] → [0, 1] function f satis-
fying f 6∈ {0,1}.

1. If f is increasing, then

a) f
φ

is the only member of Q(f, φ) that is left continuous and maps 0 to 0.
b) fφ is the only member of Q(f, φ) that is right continuous and maps 1 to 1.

2. If f is decreasing, then

a) fφ is the only member of Q(f, φ) that is right continuous and maps 1 to 0.
b) f

φ
is the only member of Q(f, φ) that is left continuous and maps 0 to 1.

Dealing with the constant functions 0 and 1, we have to reformulate Theorem 1.17 in a similar
way. This adjustment has been omitted since it is straightforward yet lengthy. Next, we show
under which conditions ‘inverting’ some inverse of f yields the original function.

Theorem 1.26 Consider an automorphism φ. For a monotone [0, 1] → [0, 1] function f the
following assertions hold:

1. If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be increasing, left
continuous and f(0) = 0.

2. If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be increasing, right
continuous and f(1) = 1.

3. If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be decreasing, right
continuous and f(1) = 0.

4. If there exists a function g ∈ Q(f, φ) such that g
φ

= f , then f must be decreasing, left

continuous and f(0) = 1.

Also the converse property holds.

Theorem 1.27 Consider an automorphism φ and a non-constant monotone [0, 1] → [0, 1] func-
tion f .

1. For an increasing function f it holds that:

a) If f is left continuous and f(0) = 0, then gφ = f , for every g ∈ Q(f, φ).
b) If f is right continuous and f(1) = 1, then gφ = f , for every g ∈ Q(f, φ).

2. For a decreasing function f it holds that:

a) If f is right continuous and f(1) = 0, then gφ = f , for every g ∈ Q(f, φ).
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b) If f is left continuous and f(0) = 1, then g
φ

= f , for every g ∈ Q(f, φ).

The results for the constant functions 0 and 1 are easily obtained from Theorem 1.20. Although
Theorems 1.21, 1.22 and Corollary 1.23 can also be easily transformed to properties on the set
Q(f, φ), it still remains unclear what the meaning is of g ◦ f and f ◦ g with g ∈ Q(f, φ). Also,
fφ ◦ f and f ◦ fφ have no straightforward interpretation.

B. Φ is a strict negator N

The set Q(f,N) can be described as the set of all [0, 1] → [0, 1] functions g satisfying the
following conditions:

(Q1)N
(
∀x ∈ (f([0, 1]))(N

−1)
)(
g(x) ∈

([
inf(f−1(xN )), sup(f−1(xN ))

])N)
.

(Q2a)N if f is increasing:
(
∀x ∈ ([0, 1] \ f([0, 1]))(N

−1))(g(x) = fN (x) = f
N

(x)
)
.

(Q2b)N if f is decreasing:
(
∀x ∈ ([0, 1] \ f([0, 1]))(N

−1))(g(x) = f
N

(x) = fN (x)
)
.

Working with decreasing bijections instead of increasing bijections interchanges the role of the

functions f
N

and fN and of the functions fN and f
N

.

Theorem 1.28 Consider a strict negator N . For a monotone [0, 1] → [0, 1] function f the
following assertions hold:

1. If f(0) < f(1), then a [0, 1] → [0, 1] function g belongs to Q(f,N) if and only if fN 6 g 6

f
N

.

2. If f(1) < f(0), then a [0, 1] → [0, 1] function g belongs to Q(f,N) if and only if f
N

6 g 6

fN .
3. If f(0) = f(1), then a [0, 1] → [0, 1] function g belongs to Q(f,N) if and only if fN 6 g 6

f
N

or f
N

6 g 6 fN .

Every function located between fN and f
N

is increasing and every function located between f
N

and fN is decreasing. In the following theorem we try to pinpoint the functions f
N
, fN and

fN , f
N

by means of their continuity.

Theorem 1.29 Consider a strict negator N and a monotone [0, 1] → [0, 1] function f satisfying
f 6∈ {0,1}.

1. If f is increasing, then

a) fN is the only member of Q(f,N) that is left continuous and maps 0 to 0.
b) f

N
is the only member of Q(f,N) that is right continuous and maps 1 to 1.

2. If f is decreasing, then
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a) f
N

is the only member of Q(f,N) that is right continuous and maps 1 to 0.
b) fN is the only member of Q(f,N) that is left continuous and maps 0 to 1.

The next two theorems we can be used to more profoundly study the existence of the identities

f
N
N

= f, fNN = f, fN
N

= f and f
NN

= f .

Theorem 1.30 Consider a strict negator N . For a monotone [0, 1] → [0, 1] function f the
following assertions hold:

1. If there exists a function g ∈ Q(f,N) such that gN = f , then f must be increasing, left
continuous and f(0) = 0.

2. If there exists a function g ∈ Q(f,N) such that g
N

= f , then f must be increasing, right
continuous and f(1) = 1.

3. If there exists a function g ∈ Q(f,N) such that gN = f , then f must be decreasing, right
continuous and f(1) = 0.

4. If there exists a function g ∈ Q(f,N) such that gN = f , then f must be decreasing, left
continuous and f(0) = 1.

Theorem 1.31 Consider a strict negator N and a non-constant monotone [0, 1] → [0, 1] func-
tion f .

1. For an increasing function f it holds that:

a) If f is left continuous and f(0) = 0, then gN = f , for every g ∈ Q(f,N).
b) If f is right continuous and f(1) = 1, then g

N
= f , for every g ∈ Q(f,N).

2. For a decreasing function f it holds that:

a) If f is right continuous and f(1) = 0, then gN = f , for every g ∈ Q(f,N).
b) If f is left continuous and f(0) = 1, then gN = f , for every g ∈ Q(f,N).



CHAPTER 2

Orthosymmetry of monotone functions

2.1 Introduction

The identity function id and symmetrical strict negators are the only monotone [0, 1] → [0, 1]
functions f that coincide with their inverse. However, a monotone function f can have some
symmetrical behaviour w.r.t. a monotone [0, 1] → [0, 1] bijection Φ different from id. Introduc-
ing two new kinds of symmetry, one based on the Φ-inverse of f and one based on its associated
set Q(f,Φ) of Φ-inverse functions, we reveal some unknown symmetry aspects of monotone
functions. Special attention goes to symmetrical pairs. The study of these pairs, consisting
of two monotone [0, 1] → [0, 1] bijections that are symmetrical w.r.t. each other, will provide
new insights into the class of monotone [0, 1] → [0, 1] bijections. Composing two strict negators
yields an automorphism and no composition of two automorphisms results in a strict negator.
This observation indicates that the class of all monotone [0, 1] → [0, 1] bijections can at best be
described in terms of strict negators. Note that the latter contrasts the approach of Trillas [87]
and Fodor [25]. Their characterization of involutive, resp. strict, negators is based on automor-
phisms. More profoundly studying symmetrical pairs sheds a new light on some mathematical
folklore: every monotone [0, 1] → [0, 1] bijection can be built from at most four involutive nega-
tors [24, 38, 73]. This allows us to partition the class of monotone bijections into four subclasses.
We present a geometrical way of determining the subclass in which a monotone bijection Φ can
be classified. Although our method is very similar to the approaches of Young [99], Jarczyk [39]
and O’Farrell [73], we largely focus on the geometrical and symmetry aspects of the construction
instead of recalling its topological background.

Besides involutive negators several other types of negators (i.e. decreasing [0, 1] → [0, 1] func-
tions N satisfying 0N = 1 and 1N = 0) have been studied in the literature: the intuitionistic
negation [97] and its dual [75], fractal negations [68], Sugeno negations [67], negations generated
by compensations [93], contracting and expanding negations [4, 2], sub-involutive and super-
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involutive negators [12, 21, 96], etc. Fixed point properties of negators have been investigated
in [37] and [92]. Batyrshin and Wagenknecht [3] laid bare the overall structure of a non-involutive
strict negator N .

2.2 Orthosymmetry

Generalizing the classical notion of symmetry w.r.t. the identity function id, we now study sets
that are symmetrical w.r.t. a given monotone [0, 1] → [0, 1] bijection Φ.

Definition 2.1 Let Φ be a monotone [0, 1] → [0, 1] bijection. A set A ⊆ [0, 1]2 is Φ-symmetrical
if it satisfies A = AΦ.

Explicitly, A is Φ-symmetrical if it holds that (Φ−1(y),Φ(x)) ∈ A ⇔ (x, y) ∈ A. Unfortunately,
when dealing with a monotone [0, 1] → [0, 1] function f only bijections can coincide with their
Φ-inverse. Indeed, if f has discontinuity points, its Φ-inverse fΦ will not be defined on the
entire unit interval [0, 1]. Otherwise, if f is not injective, its Φ-inverse will not be a function.
To overcome these problems we will further generalize the concept of symmetry in terms of the
set Q(f,Φ) which contains the Φ-inverse functions associated with f .

Definition 2.2 Let Φ be a monotone [0, 1] → [0, 1] bijection. A monotone [0, 1] → [0, 1] func-
tion f is Φ-orthosymmetrical if f ∈ Q(f,Φ).

The prefix ‘ortho’ refers to the rectangle-based construction of Q(f,Φ) (see Section 1.2). By
definition of the set Q(f,Φ) it holds that a monotone function f is Φ-orthosymmetrical if it has
a completion f∗ such that its Φ-inverse (f∗)Φ is again a completion of f . Due to the uniqueness
of its completion f∗, a non-constant monotone function f is Φ-orthosymmetrical if it has a
Φ-symmetrical completion (i.e. (f∗)Φ = f∗). Figure 2.1 depicts an automorphism φ (solid line)
for which the decreasing function f (dashed black line) from Fig. 1.2 is φ-orthosymmetrical.

Theorem 2.3 Consider a monotone [0, 1] → [0, 1] bijection Φ. If a monotone [0, 1] → [0, 1]
function f is Φ-orthosymmetrical, then every member of Q(f,Φ) is Φ-orthosymmetrical.

Proof If f is Φ-orthosymmetrical, then there exists a function g ∈ Q(f,Φ) such that f = g.
Consider then h ∈ Q(g,Φ). Based on Theorem 1.6, we know that Q(h,Φ) = Q(f,Φ) = Q(g,Φ).
Therefore h ∈ Q(h,Φ), for every h ∈ Q(f,Φ). �

From Theorem 1.5 we know that Q(f,Φ) = {fΦ} holds whenever f is bijective. This observation
straightforwardly allows us to link Φ-symmetry to Φ-orthosymmetry.

Theorem 2.4 Consider a monotone [0, 1] → [0, 1] bijection Φ. A monotone [0, 1] → [0, 1]
bijection Ψ is Φ-symmetrical if and only if it is Φ-orthosymmetrical. Monotone [0, 1] → [0, 1]
bijections are the only monotone [0, 1] → [0, 1] functions that can be both Φ-symmetrical and
Φ-orthosymmetrical.
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0 1
0  

1  

(a) φ-orthosymmetrical function f

0 1
0  

1  

x φ−1(v) u φ−1(y) 

φ(x) 

v 

φ(u) 

y 

(b) (f∗)φ = f∗

Figure 2.1: A φ-orthosymmetrical decreasing function f (dashed line), with φ the automorphism
depicted by the solid line.

Proof The first statement follows immediately from Q(Ψ,Φ) = {ΨΦ}. Furthermore, if a
monotone [0, 1] → [0, 1] function f is Φ-symmetrical and Φ-orthosymmetrical, then necessarily
f = fΦ ∈ Q(f,Φ). Theorem 1.5 states that in this case f must be bijective. �

As Φ itself is clearly Φ-symmetrical this leads to the following corollary.

Corollary 2.5 Every monotone [0, 1] → [0, 1] bijection Φ is Φ-orthosymmetrical.

The following theorem yields necessary and sufficient conditions for Φ-orthosymmetry in terms

of the boundary functions f
Φ

, fΦ, fΦ and f
Φ

.

Theorem 2.6 Consider a monotone [0, 1] → [0, 1] bijection Φ. Then a non-constant monotone
[0, 1] → [0, 1] function f is Φ-orthosymmetrical if and only if

1. f
Φ

6 f 6 fΦ in case f and Φ have the same type of monotonicity.
2. fΦ 6 f 6 f

Φ
in case f and Φ have opposite types of monotonicity.

The only Φ-orthosymmetrical constant functions are 0 and 1.

Proof The first part is an immediate consequence of Theorems 1.24 and 1.28. Consider now
a Φ-orthosymmetrical, constant function α and suppose that α ∈ ]0, 1[. By definition, it holds
that αΦ(0) = αΦ(0) ∈ {0, 1} and αΦ(0) = αΦ(0) ∈ {0, 1}. However, we know from Theorems
1.24 and 1.28 that αΦ(0) 6 α(0) 6 αΦ(0) or αΦ(0) 6 α(0) 6 αΦ(0), which leads to the
contradiction α = α(0) ∈ {0, 1}. Our supposition α ∈ ]0, 1[ is false and hence, α ∈ {0, 1}.
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Because 0 = 0Φ ∈ Q(0,Φ) and 1 = 1Φ ∈ Q(1,Φ), the constant functions 0 and 1 are indeed
Φ-orthosymmetrical. �

The geometrical construction of a Φ-inverse (Section 1.2) implies that a monotone bijection Ψ
can only be Φ-symmetrical if it coincides with the bijection Φ itself or if Ψ and Φ have opposite
types of monotonicity. Similar results hold when considering Φ-orthosymmetry.

Theorem 2.7 Consider a monotone [0, 1] → [0, 1] bijection Φ and a non-constant monotone
[0, 1] → [0, 1] function f . If f is Φ-orthosymmetrical, then one of the following assertions holds:

1. f = Φ.
2. f and Φ have opposite types of monotonicity.

Proof It suffices to prove that f = Φ whenever f and Φ have the same type of monotonicity.
From Theorem 2.6 we know that

sup{t ∈ [0, 1] | f(Φ−1(t)) < Φ(x)} 6 f(x) 6 inf{t ∈ [0, 1] | f(Φ−1(t)) > Φ(x)} ,

for every x ∈ [0, 1]. In particular this means that Φ(x) 6 f(Φ−1(t)) whenever t ∈ ]f(x), 1] and
that f(Φ−1(t)) 6 Φ(x) whenever t ∈ [0, f(x)[. Suppose that there exists a number x ∈ [0, 1]
such that f(x) < Φ(x). If we choose arbitrary t ∈ ]f(x),Φ(x)[, then the increasingness of f ◦Φ−1

implies that f(Φ−1(t)) 6 f(x) < Φ(x), which contradicts Φ(x) 6 f(Φ−1(t)). Similarly, suppose
that there exists a number x ∈ [0, 1] such that Φ(x) < f(x), then for every t ∈ ]Φ(x), f(x)[, we
obtain the contradiction Φ(x) < f(x) 6 f(Φ−1(t)). We conclude that f = Φ. �

For a non-constant function f it is imposible that fΦ 6 f 6 f
Φ

if f and Φ have the same type
of monotonicity. This is easily illustrated by evaluating the functions in x = 0. It enables us to
simplify the previous theorem. Combining Theorems 2.6 and 2.7 leads to the following result

Corollary 2.8 Consider a monotone [0, 1] → [0, 1] bijection Φ. A monotone [0, 1] → [0, 1]
function f is Φ-orthosymmetrical if and only if either f ∈ {0,Φ,1} or fΦ 6 f 6 f

Φ
.

Based on Theorems 1.25 and 1.29 we can provide simple methods to verify whether a non-
constant, left- or right-continuous, monotone [0, 1] → [0, 1] function f 6= Φ is Φ-orthosymmetrical
or not. Depending on the monotonicity of f and Φ, the continuity of f , and given some ad-
ditional boundary conditions, we have to verify whether f = fΦ or f = f

Φ
holds. Moreover,

given the bijection Φ, these equalities fix the monotonicity and continuity of f , and imply
its Φ-orthosymmetry. The explicit formulation of these results has been omitted as they are
straightforwardly obtained by combining Corollary 1.8, Theorems 1.24 and 1.26, and Corol-
lary 2.8 and by combining Corollary 1.8, Theorems 1.28 and 1.30, and Corollary 2.8. Note
that every f ∈ {0,Φ,1} besides being Φ-orthosymmetrical is trivially continuous. In the fol-
lowing theorem we look for all other continuous, Φ-orthosymmetrical, monotone functions. For
uninorms, the result will facilitate the description of continuous contour lines (Chapter 5).
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Theorem 2.9 Consider a monotone bijection Φ and a non-constant, monotone [0, 1] → [0, 1]
function f that has the opposite type of monotonicity as Φ. Then f is Φ-orthosymmetrical and
continuous if and only if f(Φ−1(f(x))) = Φ(x) holds for every x ∈ [Φ−1(f(1)),Φ−1(f(0))] with
either f(0) ∈ {0, 1} or f(1) ∈ {0, 1}.

Proof ⇒ Suppose that f is Φ-orthosymmetrical and continuous. Then necessarily fΦ 6

f 6 f
Φ

(Corollary 2.8). Take x ∈ [Φ−1(f(1)),Φ−1(f(0))] and denote l := min{t ∈ [0, 1] |
f(Φ−1(t)) = Φ(x)} and u := max{t ∈ [0, 1] | f(Φ−1(t)) = Φ(x)}. The decreasingness of
f ◦ Φ−1 ensures that l = fΦ(x) 6 f(x) 6 f

Φ
(x) = u. Hence, f(Φ−1(f(x))) = Φ(x), for

every x ∈ [Φ−1(f(1)),Φ−1(f(0))]. Suppose now that f(0) ∈ ]0, 1[, then, taking into account
that f ◦ Φ−1 is decreasing and f is non-constant, it is easily verified that fΦ(1) = f

Φ
(1) = 0

whenever Φ is increasing and that fΦ(1) = f
Φ

(1) = 1 whenever Φ is decreasing. Invoking
Corollary 2.8 this leads to f(1) ∈ {0, 1}. In a similar way f(1) ∈ ]0, 1[ implies that f(0) ∈ {0, 1}.

⇐ Assume that f satisfies f(Φ−1(f(x))) = Φ(x), for every x ∈ [Φ−1(f(1)),Φ−1(f(0))], and that
either f(0) ∈ {0, 1} or f(1) ∈ {0, 1}. Then, f(x) = f(y), with (x, y) ∈ [Φ−1(f(1)),Φ−1(f(0))]2,
can only occur if x = y and f must reach every number in [min(f(0), f(1)),max(f(0), f(1))].
As f and Φ have opposite types of monotonicity, we also know that either Φ−1(f(0)) = 1 or
Φ−1(f(1)) = 0. Hence, f(1) = f(Φ−1(f(0))) or f(0) = f(Φ−1(f(1))) which leads to resp.
f(Φ−1(f(1))) = f(Φ−1(f(Φ−1(f(0))))) = f(0) and f(Φ−1(f(0))) = f(Φ−1(f(Φ−1(f(1))))) =
f(1). We conclude that f(Φ−1(f(0))) = f(1) and f(Φ−1(f(1))) = f(0). The restriction of f
to [Φ−1(f(1)),Φ−1(f(0))] is a [Φ−1(f(1)),Φ−1(f(0))] → [min(f(0), f(1)),max(f(0), f(1))] bijec-
tion. Taking into account that f([0,Φ−1(f(1))]) = {f(0)} and f([Φ−1(f(0)), 1]) = {f(1)}, it
follows that f must be continuous on [0, 1].

To illustrate the Φ-orthosymmetry of f it suffices to show that fΦ 6 f 6 f
Φ

(Corollary 2.8).

For every x ∈ [Φ−1(f(1)),Φ−1(f(0))] the decreasingness of f ◦ Φ−1 ensures that

fΦ(x) = sup{t ∈ [0, 1] | f(Φ−1(t)) > f(Φ−1(f(x)))} 6 f(x)

6 inf{t ∈ [0, 1] | f(Φ−1(t)) < f(Φ−1(f(x)))} = f
Φ

(x) .

We now have to figure out what happens if x ∈ [0,Φ−1(f(1))[ ∪ ]Φ−1(f(0)), 1]. Recall that either
Φ−1(f(0)) = 1 or Φ−1(f(1)) = 0. In case 0 < Φ−1(f(1)), then Φ−1(f(0)) = 1. Take arbitrary x ∈
[0,Φ−1(f(1))[. If Φ is increasing then f(0) = 1 and Φ(x) < f(1) = f(Φ−1(f(0))) = f(Φ−1(1)).
For a decreasing bijection Φ we obtain that f(0) = 0 and f(Φ−1(0)) = f(Φ−1(f(0))) = f(1) <
Φ(x). Recall from the discussion above that f(x) = f(0). By definition it then holds that
f(x) = 1 = fΦ(x) = f

Φ
(x) if Φ is increasing and f(x) = 0 = fΦ(x) = f

Φ
(x) if Φ is decreasing.

A similar reasoning applies to Φ−1(f(0)) < 1. This finishes the proof. �

To conclude this section we investigate the convergence of a sequence of Φ-orthosymmetrical,
monotone functions. Consider the family (φn)n∈N0 of automorphisms defined by φn(x) =
n
√

1 − (1 − x)n. It is easily verified that all these automorphisms are N -symmetrical, with N
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the standard negator. Unfortunately, the limit function φ∞ = limn→∞ φn, given by

φ∞(x) =

{
0, if x = 0 ,

1, if x ∈ ]0, 1] ,

is not N -symmetrical. Nevertheless, as (φ∗∞)N = φ∗∞, the N -orthosymmetry of the automor-
phisms φn is passed on to φ∞.

Theorem 2.10 Consider a monotone [0, 1] → [0, 1] bijection Φ. The limit of a pointwisely
converging sequence of Φ-orthosymmetrical, monotone [0, 1] → [0, 1] functions (fn)n∈N is always
a Φ-orthosymmetrical, monotone [0, 1] → [0, 1] function.

Proof Let (fn)n∈N be a sequence of Φ-orthosymmetrical, monotone [0, 1] → [0, 1] functions
pointwisely converging to a function f . Clearly, f is a monotone [0, 1] → [0, 1] function. If
f ∈ {0,1} then it follows from Theorem 2.6 that f is Φ-orthosymmetrical. Furthermore, f = Φ
trivially ensures the Φ-orthosymmetry of f . Suppose now that f 6∈ {0,Φ,1}, then there exits
a number n0 ∈ N such that all functions fn, with n > n0, differ from 0, Φ and 1. From
Corollary 2.8 we then know that

sup{t ∈ [0, 1] | fn(Φ−1(t)) > Φ(x)} 6 fn(x) 6 inf{t ∈ [0, 1] | fn(Φ−1(t)) < Φ(x)} ,

for every x ∈ [0, 1] and every n > n0. The latter implies that for n > n0 it holds that
fn(Φ−1(t)) 6 Φ(x) whenever t ∈ ]fn(x), 1] and that Φ(x) 6 fn(Φ−1(t)) whenever t ∈ [0, fn(x)[.
Suppose now that there exists a number t ∈ ]f(x), 1] such that f(Φ−1(t)) > Φ(x). Because
limn→∞ fn = f , there exists a natural number n1 > n0 such that for every n > n1 it holds
that t ∈ ]fn(x), 1]. Furthermore, there exists a second natural number n2 > n1 such that
fn(Φ−1(t)) > Φ(x), for every n > n2. Combining both results we obtain the contradiction that
there exists for every n > n2 a number t ∈ ]fn(x), 1] such that fn(Φ−1(t)) > Φ(x). Consequently,
it necessarily holds that f(Φ−1(t)) 6 Φ(x) whenever t ∈ ]f(x), 1]. In a similar way, it is shown
that Φ(x) 6 f(Φ−1(t)) whenever t ∈ [0, f(x)[. Hence,

sup{t ∈ [0, 1] | f(Φ−1(t)) > Φ(x)} 6 f(x) 6 inf{t ∈ [0, 1] | f(Φ−1(t)) < Φ(x)} ,

for every x ∈ [0, 1], or, in other words fΦ 6 f 6 f
Φ

. Applying Corollary 2.8 finishes the
proof. �

From Theorem 2.6, it then follows that a sequence of Φ-orthosymmetrical, monotone [0, 1] →
[0, 1] functions (fn)n∈N can never converge to α if α ∈ ]0, 1[.

2.3 Symmetrical pairs

Dealing with the Φ-orthosymmetry of a monotone [0, 1] → [0, 1] bijection Ψ we know that it
suffices to investigate its Φ-symmetry only (Theorem 2.4). Explicitly, Ψ is Φ-symmetrical if and
only if Ψ = ΨΦ = Φ ◦Ψ−1 ◦Φ or equivalently Φ = Ψ ◦Φ−1 ◦Ψ, which expresses the Ψ-symmetry
of Φ. This interchangeability between Φ and Ψ supports the following definition.
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Definition 2.11 Two monotone [0, 1] → [0, 1] bijections Φ and Ψ form a symmetrical pair
{Φ,Ψ} if Ψ is Φ-symmetrical.

In particular, {Φ,Φ} is a (trivial) symmetrical pair for every monotone [0, 1] → [0, 1] bijec-
tion Φ (Corollary 2.5). Figure 2.2 illustrates that the automorphism φ (solid line) displayed in
Fig. 1.2(a) and strict negator N (solid line) displayed in Fig. 1.1(b) form a symmetrical pair.
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(a) N is φ-symmetrical
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(b) φ is N -symmetrical

Figure 2.2: A symmetrical pair {φ,N}, with φ the automorphism depicted by the solid in
Fig. 2.2(a) and N the strict negator depicted by the solid line in Fig. 2.2(b).

In the following theorem we present a method for constructing a symmetrical pair {Φ,Ψ}, given
one of its components.

Theorem 2.12 Two monotone [0, 1] → [0, 1] bijections Φ and Ψ form a symmetrical pair if and
only if Ψ = Φ or there exists a number β ∈ ]0, 1[ and a monotone [0, β] → Φ([β, 1]) bijection Γ
with the opposite type of monotonicity as Φ such that

Ψ(x) =

{
Γ(x), if x ∈ [0, β] ,

Φ(Γ−1(Φ(x))), if x ∈ [β, 1] .
(2.1)

Proof In case Ψ = Φ or Eq. (2.1) holds, we immediately obtain that Ψ = Φ ◦ Ψ−1 ◦ Φ. The
latter expresses the Φ-symmetry of Ψ and, hence, {Φ,Ψ} is a symmetrical pair. Conversely, if
Ψ 6= Φ and {Φ,Ψ} is a symmetrical pair, then Ψ = Φ◦Ψ−1 ◦Φ. Since in this case Ψ and Φ must
have opposite types of monotonicity (Theorem 2.7), it holds that Ψ(0) = Φ(1) and Ψ(1) = Φ(0).
Furthermore, there exists a unique β ∈ ]0, 1[ such that Ψ(β) = Φ(β). Hence, Ψ([0, β]) = Φ([β, 1])
and Ψ([β, 1]) = Φ([0, β]). It is then clear that Γ := Ψ|[0,β] is a [0, β] → Φ([β, 1]) bijection. Note
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that Γ has the same type of monotonicity as Ψ and that Γ−1 = Ψ−1|Φ([β,1]). Taking into account
that Ψ = Φ ◦ Ψ−1 ◦ Φ, Eq. (2.1) is easily verified. �

Studying symmetrical pairs, involutive bijections and in particular involutive negators will play
a profound role.

Definition 2.13 Let A ⊆ [0, 1]. A monotone A→ A function f is involutive if f ◦ f = id|A.

Obviously, every involutive monotone function f must be bijective. Its surjectivity is straight-
forward and its injectivity is required as f(x) = f(y), for some (x, y) ∈ A2 implies that
x = f(f(x)) = f(f(y)) = y. Geometrically, involutive monotone functions are exactly those
monotone A → A bijections that are id-symmetrical (see e.g. also [2]). Hence, the identity
function id is the only involutive automorphism. All other involutive monotone [0, 1] → [0, 1]
functions are involutive strict negators. They will be briefly referred to as involutive negators.
The standard negator N is the prototype of such an involutive negator. The importance of invo-
lutive negators already shows from the observation that they link the components of symmetrical
pairs.

Theorem 2.14 Two monotone [0, 1] → [0, 1] bijections Φ and Ψ form a symmetrical pair if
and only if Ψ = Φ or there exists an involutive negator N such that Ψ = Φ ◦N .

Proof For a symmetrical pair {Φ,Ψ} it holds by definition that Ψ = Φ ◦ Ψ−1 ◦ Φ. Rewriting
this equality as (Φ−1 ◦ Ψ) ◦ (Φ−1 ◦ Ψ) = id, it follows that Φ−1 ◦ Ψ must be involutive. Hence,
Φ−1 ◦Ψ = id or Φ−1 ◦Ψ defines an involutive negator N . Conversely, as {Φ,Φ} is a trivial sym-
metrical pair, we only have to consider Ψ = Φ ◦N , for some involutive negator N . Expressing
the involutivity of N leads to N = Φ−1 ◦Ψ = Ψ−1 ◦Φ. The latter implies that Ψ = Φ ◦Ψ−1 ◦Φ.
We conclude that Ψ is indeed Φ-symmetrical and, thus, forms a symmetrical pair with Φ. �

Definition 2.15 Let Φ and Ψ be two monotone [0, 1] → [0, 1] bijections and consider A ⊆ [0, 1].
If Φ(x) < Ψ(x) whenever x ∈ A, or Φ(x) = Ψ(x) whenever x ∈ A, or Ψ(x) < Φ(x) whenever
x ∈ A, we say that the mutual position of Φ and Ψ is fixed on A. Otherwise, we say that the
mutual position of Φ and Ψ on A is undetermined.

For instance, the mutual position of an automorphism φ and a strict negator N is fixed on the
sets [0, β[, {β} and ]β, 1], with β the unique point satisfying φ(β) = βN . In the following theorem
we present a sufficient condition such that an automorphism φ is N -symmetrical, with N some
involutive negator. For every monotone [0, 1] → [0, 1] bijection Φ we denote Φ◦ . . .◦Φ (j times),
resp. Φ−1 ◦ . . . ◦ Φ−1 (j times), as Φj , resp. Φ−j . By convention, Φ0 = id.

Theorem 2.16 Consider an automorphism φ. If the mutual position of φ and id is fixed on
]0, 1[, then φ is symmetrical w.r.t. an involutive negator.

Proof As stated before, every involutive negator forms a symmetrical pair with φ = id. We
present the proof for an automorphism φ satisfying id|]0,1[ < φ|]0,1[, the case φ|]0,1[ < id|]0,1[ being
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similar. Choose a ∈ ]0, 1[ and let N1 be an arbitrary decreasing [a, φ(a)] → [a, φ(a)] bijection
fulfilling N1◦N1 = id|[a,φ(a)] (a rescaled involutive negator will do). Figure 2.3 illustrates how we
can build, starting from N1, an involutive negator that is φ-symmetrical. Part I of N is the id-
symmetrical bijection N1. Drawing the φ-inverse of part I, we obtain part II. Reflecting part II
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Figure 2.3: Construction of an involutive negator N (dashed line) that forms a symmetrical pair
with a given automorphism φ (solid line) that satisfies x < φ(x), for every x ∈ ]0, 1[.

about the identy function yields part III. Part IV is established by expressing that it must be
the φ-inverse of part III. Part V is the reflection (about id) of part IV. Pursuing this procedure
of alternately implementing φ-symmetry and id-symmetry, yields an appropriate negator N .
Mathematically, we can describe N as follows:

xN =





1, if x = 0 ,

φ−i ◦N1 ◦ φ−i(x), if x ∈ [φi(a), φi+1(a)], with i ∈ Z ,

0, if x = 1 .

Because a < φ(a), we know that φi(a) < φi+1(a), for every i ∈ Z. Note also that (φi(a))N =
φ−(i−1)(a). The function N is clearly continuous and strictly decreasing on ]φ−∞(a), φ∞(a)[.
Consider the equality φi+1(a) = φ(φi(a)). Taking the limits i → −∞ and i → ∞ it follows
from the continuity of φ that φ−∞(a) = φ(φ−∞(a)) and φ∞(a) = φ(φ∞(a)). The latter is only
possible if φ−∞(a) = 0 and φ∞(a) = 1. Therefore, N is indeed a strict negator. Due to the
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observation that

xN ∈





[1, 1], if x = 0 ,

[φ−i(a), φ−i+1(a)], if x ∈ [φi(a), φi+1(a)], with i ∈ Z ,

[0, 0], if x = 1 .

it is now easily verified that N ◦N = id and φ = N ◦ φ−1 ◦N . We conclude that N is indeed
an involutive negator and that φ is N -symmetrical (i.e. {φ,N} is a symmetrical pair). �

The proof of Theorem 2.16 provides a method for constructing an involutive negator that is φ-
symmetrical, with φ a given automorphism whose position on the interval ]0, 1[ is fixed w.r.t. the
identity function id. As can be seen from the construction method, there exist infinitely many
appropriate involutive negators. Combining Theorems 2.14 and 2.16, we obtain the following
result.

Corollary 2.17 Consider an automorphism φ. If the mutual position of φ and id is fixed on
]0, 1[, then there exist two involutive negators N1 and N2 such that φ = N1 ◦N2.

Unfortunately, we cannot extend this corollary to all automorphisms φ. For example, let φ
be an automorphism fulfilling φ(a) = a, for some a ∈ ]0, 1[, φ(x) < x, whenever x < a, and
x < φ(x), whenever a < x. Suppose that φ = N1 ◦N2, where N1 and N2 are involutive negators.
Then aN1 = aN2 , xN1 < xN2 , whenever x < a and xN2 < xN1 , whenever a < x. For arbitrary
y < min(a, aN1) it holds that max(a, aN1) < yN1 . Hence, yN2 < yN1 and (yN1)N1 < (yN1)N2 .
The second inequality is equivalent with yN1 < yN2 , a contradiction. The automorphism φ can
never be written as a composition of two involutive negators.

Theorem 2.18 1. For every strict negator N there exist three involutive negators N1, N2

and N3 such that N = N1 ◦N2 ◦N3.
2. For every automorphism φ there exist four involutive negators N1, N2, N3 and N4 such

that φ = N1 ◦N2 ◦N3 ◦N4.

Proof Consider an arbitrary strict negator N and choose an involutive negator N1 such that
xN < xN1 holds for every x ∈ ]0, 1[. If x = aN is the unique number in [0, 1] satisfying xN = x,
it suffices to define N1 as follows (see Theorem 2.12 with Φ = id and Ψ = N1):

xN1 =

{
xM , if x ∈ [0, β] ,

x(M−1), if x ∈ [β, 1] ,

where β ∈ ]aN , 1[ andM is a decreasing [0, β] → [β, 1] bijection satisfying xM > max(xN , x(N−1)),
for every x ∈ ]0, β]. As N < N1 on ]0, 1[, we also know that x < (xN )N1 , for every x ∈ ]0, 1[.
The automorphism N1 ◦N fulfills the conditions of Theorem 2.16: id|]0,1[ < N1 ◦N |]0,1[. There
exist now two involutive negators N2 and N3 such that N1 ◦ N = N2 ◦ N3, or equivalently
N = N1 ◦N2 ◦N3. Note that every automorphism φ can be written as φ = N ◦N4, with N4 an
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arbitrary involutive negator and N := φ ◦N4 a strict negator. This completes the proof. �

Theorem 2.18 enables us to partition the set of monotone [0, 1] → [0, 1] bijections. There exist
two types of strict negators: involutive ones and non-involutive ones. Every non-involutive strict
negator is a composition of three involutive negators and can never be represented as a single
involutive negator. The set of automorphisms can also be divided into two parts. On the one
hand, we distinguish automorphisms that are symmetrical w.r.t. an involutive negator N . These
automorphisms can be expressed as a composition of two involutive negators. On the other hand,
we group those automorphisms that are not symmetrical w.r.t. any involutive negator. They
can never be composed out of two involutive negators and are always written as the composition
of four involutive negators. As can be seen from the proofs of Theorems 2.16 and 2.18, the set
of involutive negators generating a given monotone bijection Φ is not unique.

Remarks 2.19 1. Interpreting [0, 1] as a topological space, with the open subintervals of
[0, 1] as its open subsets, every monotone [0, 1] → [0, 1] bijection Φ that forms a sym-
metrical pair with an involutive negator N is said to be conjugate to Φ−1. Monotone
[0, 1] → [0, 1] bijections Φ constitute the set of homeomorphisms (i.e. continuous bijec-
tions between two topological spaces that have a continuous inverse) on the unit interval
[0, 1]. In this context, Theorem 2.16, Corollary 2.17 and Theorem 2.18 reproduce some
less-known historical mathematical results (see e.g. [24, 38, 73]). Unaware of their exis-
tence we rediscovered these results by studying symmetrical pairs. Several months after
the acceptance of our work for publication [62], E. Walker brought the matter to our
attention. Nevertheless, we opted to explicitly present here the proofs of the results as
our approach additionally provides a simple method for constructing an appropriate set
of involutive negators generating a given monotone [0, 1] → [0, 1] bijection Φ and displays
very clearly the symmetry aspects of this building process.

2. From a group-theoretical point of view the set G, of all monotone [0, 1] → [0, 1] bijections,
equipped with the composition ◦ forms a group G := (G, ◦) that has neutral element id [71].
The set of all automorphisms forms a non-trivial subgroup of G [71]. Therefore, no set
of automorphisms can generate G. Moreover, G is an example of a Coxeter group as it is
generated by its involutive elements (Theorem 2.18).

2.4 Automorphisms that have an alternating behaviour

Given an automorphism φ it is yet unclear how to determine whether it can be written as a
composition of two involutive negators or not. Young [99] and O’Farrell [73] give a characteri-
zation of such automorphisms by using an appropriate signature concept. Jarczyk [39] already
recognizes some symmetrical behaviour in φ. As argued in Remark 2.19, we also independently
described automorphisms that are the composition of two involutive negators. Our approach
is slightly more elaborated as it focuses more profoundly on the geometrical aspects of such an
automorphism φ and provides an easy method for constructing two involutive negators gener-
ating φ.
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Definition 2.20 Let A ⊂ [0, 1]. A number x ∈ A is a fixpoint of an A → [0, 1] function f if
f(x) = x.

It is obvious that every strict negator N has a unique fixpoint. Every automorphism φ has at
least two fixpoints: 0 and 1. Denote the set of all fixpoints of an automorphism φ by FΦ. The
continuity of an automorphism φ ensures that Fφ is the union of closed disjoint subintervals of
[0, 1]. As the total number of these intervals can never exceed the cardinality of Q, we know that
their number is countable. Note that intervals containing only a single point are also possible.
Let Bφ be the set containing all the endpoints of the intervals constituting Fφ:

Bφ :=
{
x ∈ Fφ | (∀ε ∈ ]0,min(x, 1 − x)])(∃ y ∈ [x− ε, x+ ε])(y 6∈ Fφ)

}
.

Note that {0, 1} ⊆ Bφ. The following properties will be crucial for the overall structure of
automorphisms that are the composition of two involutive negators.

Property 2.21 For an automorphism φ the following properties hold:

(A1) |Bφ| 6 ℵ0(= |N|).
(A2) φ|Bφ = id|Bφ.
(A3) The mutual position of φ and id is fixed on ]x, y[, for every pair of consecutive elements

(x, y) ∈ B2
φ.

(A4) inf(A) ∈ Bφ and sup(A) ∈ Bφ, for every set A ⊆ Bφ.
(A5) [0, 1] is the union of Bφ and all open intervals ]x, y[, with (x, y) a pair of consecutive

elements of Bφ.

Proof (A1)&(A2): As Bφ ⊆ Fφ, the cardinality of Bφ must be countable and φ|Bφ = id|Bφ .

(A3): Let x and y be two consecutive elements in Bφ (x < y) and suppose that the mutual
position of φ and id is not fixed on ]x, y[. Then, due to the continuity of φ there exists a
subinterval ]u, v[ ⊂ ]x, y[ such that ]u, v[ ∩ Fφ = ∅ and (u, v) ∈ F2

φ. The latter is only possible
if either u ∈ ]x, y[ ∩ Bφ or v ∈ ]x, y[ ∩ Bφ, a contradiction.

(A4): Consider a set A ⊆ Bφ and suppose that x := inf(A) 6∈ Bφ. Then, by definition,
x 6∈ {0, 1} and there must exist a number ε ∈ ]0,min(x, 1 − x)] such that [x − ε, x + ε] ⊆ Fφ.
Hence, ]x− ε, x + ε[ ∩ Bφ = ∅ which contradicts x = inf(A). In a similar way it is shown that
sup(A) ∈ Bφ.

(A5): Take arbitrary z ∈ [0, 1]\Bφ ⊆ ]0, 1[. We now need to prove that there exists a couple of
consecutive elements (x, y) ∈ Bφ such that z ∈ ]x, y[. Suppose that the latter does not hold, then
there must exist an increasing or decreasing sequence (ai)i∈N in Bφ such that limi→∞ ai = z.
From property (A4) we obtain the contradiction z ∈ Bφ. �

Note that property (A1) also states that Bφ can never contain an interval.

Definition 2.22 An automorphism φ has an alternating behaviour if there exists an involutive
Bφ → Bφ antimorphism N such that, for any pair of consecutive elements (x, y) ∈ B2

φ, it holds

that the mutual position of φ and id is fixed on ]x, y[ ∪ ]yN , xN [.
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Figure 2.4: An N -symmetrical automorphism φ (solid line).

In Fig. 2.4 we give an example of such an automorphism φ that has an alternating behaviour. Its
set Bφ contains four accumulation points: 0, 1

3 , 2
3 and 1. In general, the alternating behaviour

of an automorphism partitions Bφ in two sets.

Theorem 2.23 An automorphism φ has an alternating behaviour if and only if we can select
from Bφ two sequences (αi)i∈Iφ and (βi)i∈Iφ that fulfill the following conditions:

(B1) All elements of (αi)i∈Iφ, resp. (βi)i∈Iφ , are different.
(B2) Bφ = {αi | i ∈ Iφ} ∪ {βi | i ∈ Iφ}.
(B3) sup{αi | i ∈ Iφ} 6 inf{βi | i ∈ Iφ}.
(B4) αi < αj ⇔ βj < βi, for every i, j ∈ Iφ.
(B5) The mutual position of φ and id is fixed on ]αi, αj [ ∪ ]βj , βi[ whenever ]αi, αj [ ∩ Bφ = ∅.

Proof ⇒ Let N be an involutive Bφ → Bφ antimorphism as in Definition 2.22. Denote
L := {x ∈ Bφ | x 6 xN} and U := {x ∈ Bφ | xN 6 x}. The involutivity of N ensures that x ∈ L
if and only if xN ∈ U . Consider now an arbitrary index set Iφ such that |Iφ| = |L| = |U | =
⌈|Bφ|/2⌉ (i.e. |Iφ| must be the smallest integer that is larger or equal than |Bφ|/2). By means
of this index set we form with all elements of L a sequence (αi)i∈Iφ . Defining βi = αNi , for every
i ∈ Iφ, we obtain a second sequence (βi)i∈Iφ containing all elements of U . As N is involutive and
satisfies the conditions stated in Definition 2.22, both sequences (αi)i∈Iφ and (βi)i∈Iφ must fulfill
conditions (B1), (B2), (B4) and (B5). Condition (B3) follows from the observation that
x 6 y, for every (x, y) ∈ L× U . Indeed, y < x would yield the contradiction yN 6 y < x 6 xN .
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⇐ Suppose that we can select from Bφ two sequences (αi)i∈Iφ and (βi)i∈Iφ satisfying condi-
tions (B1)–(B5). From property (A4) and condition (B2) we know that sup{αi | i ∈ Iφ}
equals either αj or βj , for some j ∈ Iφ. In case sup{αi | i ∈ Iφ} = βj , it must hold that
βj 6 βi, for every i ∈ Iφ (condition (B3)). Condition (B4) then implies that αi 6 αj , for
every i ∈ Iφ, and thus, sup{αi | i ∈ Iφ} = αj . Invoking condition (B4) it also holds that
inf{βi | i ∈ Iφ} = βj . Therefore, without loss of generality, we may assume that 0 ∈ Iφ,
α0 = sup{αi | i ∈ Iφ} and β0 = inf{βi | i ∈ Iφ}. It suffices now to define N as follows: αNi = βi
and βNi = αi, for every i ∈ Iφ. Note that βNi = αi < α0 = βN0 6 αN0 = β0 < βi = αNi , for every
i ∈ Iφ \ {0}. N is by definition involutive and, hence, bijective. Its decreasingness is implied
by conditions (B3) and (B4). For two consecutive fixpoints (x, y) ∈ B2

φ (x < y) it necessarily

holds that either (x, y) = (α0, β0), (x, y) = (αi, αj) or (x, y) = (βj , βi), for some (i, j) ∈ I2
φ

such that ]αi, αj [ ∩ Bφ = ∅. Note that, due to condition (B4), the latter ensures that also
]βi, βj [ ∩Bφ = ∅. Property (A3) and condition (B5) yield that the mutual position of φ and id
is then fixed on ]x, y[ ∪ ]xN , yN [. �

Using both sequences (αi)i∈Iφ and (βi)i∈Iφ we will show in the proof of the following theorem how
to construct an involutive negator N that forms a symmetrical pair with a given automorphism φ
that has an alternating behaviour.

Theorem 2.24 An automorphism φ is symmetrical w.r.t. an involutive negator if and only if
it has an alternating behaviour.

Proof ⇒ Consider an automorphism φ that is symmetrical w.r.t. an involutive negator N
(i.e. φ = N ◦ φ−1 ◦N). It is easily verified that the N -symmetry of φ implies that

φ(x) < x ⇔ φ(xN ) < xN , (2.2)

φ(x) = x ⇔ φ(xN ) = xN , (2.3)

φ(x) > x ⇔ φ(xN ) > xN , (2.4)

for every x ∈ [0, 1]. Combining property (A3) with Eqs. (2.2)–(2.4) we immediately obtain that
x ∈ Bφ ⇔ xN ∈ Bφ and that the mutual position of φ and id is fixed on ]x, y[ ∪ ]yN , xN [,
for any pair of consecutive fixpoints (x, y) ∈ B2

φ. Therefore, N |Bφ is an involutive Bφ → Bφ
antimorphism and Definition 2.22 states that φ has indeed an alternating behaviour.

⇐ Suppose that φ has an alternating behaviour and let N be the involutive Bφ → Bφ antimor-
phism from Definition 2.22. We will now extend N to an involutive negator that forms a sym-
metrical pair with φ. Use N to select from Bφ two sequences (αi)i∈Iφ and (βi)i∈Iφ as described

in the proof of Theorem 2.23. Recall that αNi = βi and βNi = αi, for every i ∈ Iφ. Furthermore,
we may assume that 0 ∈ Iφ, α0 = sup{αi | i ∈ Iφ} and β0 = inf{βi | i ∈ Iφ}. The definition of
both sequences ensures that, for two consecutive fixpoints (x, y) ∈ B2

φ (x < y) one can always

find (i, j) ∈ I2
φ such that ]αi, αj [ ∩ Bφ = ∅ and (x, y) ∈ {(αi, αj), (α0, β0), (βj , βi)}. Due to prop-

erty (A5) it then suffices to define N on ]α0, β0[ and on all open sets ]αi, αj [ ∪ ]βj , βi[, where
]αi, αj [ ∩ Bφ = ∅. If α0 < β0, we first deal with the interval ]α0, β0[. Rescale φ|[α0,β0] to the unit
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interval by means of a [α0, β0] → [0, 1] isomorphism σ. As the mutual position of φ and id is fixed
on ]α0, β0[ (property (A3)), the mutual position of the rescaled automorphism σ ◦φ|[α0,β0] ◦σ−1

and id is fixed on ]0, 1[. Applying Theorem 2.16, there exists an involutive negator N1 such that
σ ◦ φ|[α0,β0] ◦ σ−1 = N1 ◦ σ ◦ φ−1|[α0,β0] ◦ σ−1 ◦ N1 . If we define N |[α0,β0] := σ−1 ◦ N1 ◦ σ, the

latter implies that φ(x) = (φ−1(xN ))N , for every x ∈ [α0, β0]. The involutivity of N1 ensures
that (xN )N = σ−1[((σ[x])N1)N1 ] = x, for every x ∈ [α0, β0]. Note that, as required, αN0 = β0

and that N |[α0,β0] is a [α0, β0] → [α0, β0] antimorphism.

Consider two arbitrary indices (i, j) ∈ I2
φ such that ]αi, αj [ ∩ Bφ = ∅. Recall from condition (B5)

that in this case the mutual position of φ and id is fixed on ]αi, αj [ ∪ ]βj , βi[. If φ(x) = x, for
every x ∈ [αi, αj ] ∪ [βj , βi], then it suffices to take for N |[αi,αj ] an arbitrary [αi, αj ] → [βj , βi]

antimorphism N1. If we put N |[βj ,βi] = N−1
1 , then (xN )N = x and φ(x) = x = (φ−1(xN ))N

is trivially fulfilled for every x ∈ [αi, αj ] ∪ [βj , βi]. Suppose now that x < φ(x), for every x ∈
]αi, αj [ ∪ ]βj , βi[. Take arbitrary (a, b) ∈ ]αi, αj [ × ]βj , βi[ and let N1 be a [a, φ(a)] → [φ−1(b), b]
antimorphism. Recall that αj 6 βj (condition (B3)). In Figure 2.5 we illustrate how to build
N |[αi,αj ]∪[βj ,βi] from N1. Part I depicts N1. Two operations are possible: reflecting part I
about the first bisector yields part II and drawing the φ-inverse of part I results in part III. On
parts II and III we can apply once again both operations. However, in each case one action
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Figure 2.5: Construction of a [αi, αj ]∪ [βj , βi] → [αi, αj ]∪ [βj , βi] antimorphism N (dashed line)
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only will provide new information. Part IV is the reflection of part III and part V is obtained
by expressing that it must be the φ-inverse of part II. Repeating this procedure (part VI is the
reflection of part V, etc.), we construct N |[αi,αj ]∪[βj ,βi]. Mathematically, N |[αi,αj ]∪[βj ,βi] can be
expressed as follows:

xN =





βi, if x = αi ,

φ−k ◦N1 ◦ φ−k(x), if x ∈ [φk(a), φk+1(a)], with k ∈ Z ,

βj , if x = αj ,

αj , if x = βj ,

φk ◦N−1
1 ◦ φk(x), if x ∈ [φ−(k+1)(b), φ−k(b)], with k ∈ Z ,

αi, if x = βi .

As a < φ(a) and φ−1(b) < b, the strict increasingness of φ and φ−1 imply that φk(a) < φk+1(a)
and φ−(k+1)(b) < φ−k(b), for every k ∈ Z. Denote L = limk→−∞ φk(a). Due to the continuity
of φ, we obtain from φ(φk(a)) = φk+1(a) that φ(L) = L. Taking into account αi 6 φk(a) < a,
for every k ∈ Z−

0 it holds that αi 6 L 6 a < αj . As αi and αj are the only fixpoints of
φ|[αi,αj ] we conclude that L = αi. In a similar way it can be shown that limk→∞ φk(a) = αj ,

limk→−∞ φk(b) = βj and limk→∞ φk(b) = βi. Hence, N is indeed defined for every x ∈ [αi, αj ]∪
[βj , βi]. Furthermore, N |[αi,αj ]∪[βj ,βi] is a decreasing bijection. Taking into account that

xN ∈





[βi, βi], if x = αi ,

[φ−(k+1)(b), φ−k(b)], if x ∈ [φk(a), φk+1(a)], with k ∈ Z ,

[βj , βj ], if x = αj ,

[αj , αj ], if x = βj ,

[φk(a), φk+1(a)], if x ∈ [φ−(k+1)(b), φ−k(b)], with k ∈ Z ,

[αi, αi], if x = βi ,

it follows that (xN )N = x and φ(x) = (φ−1(xN ))N , for every x ∈ [αi, αj ] ∪ [βj , βi]. Repeating
this construction for every pair of indices (i, j) ∈ I2

φ such that ]αi, αj [ ∩ Bφ = ∅, we obtain a

strict negator N that satisfies N ◦N = id and φ = N ◦ φ−1 ◦N . �

Combining Theorems 2.14 and 2.24 leads to the following result.

Corollary 2.25 An automorphism φ is composed of two involutive negators if and only if it has
an alternating behaviour.



CHAPTER 3

Invariance of monotone functions

3.1 Introduction

Monotone [0, 1] → [0, 1] bijections can be used to transform a monotone [0, 1]n → [0, 1] function F
into a new monotone function. Although there are several ways to perform this transformation,
properties such as monotonicity, commutativity, assocociativity, etc., of the original function
are preserved if we first apply a monotone [0, 1] → [0, 1] bijection Φ to the arguments of F
and then use Φ−1 to adjust the image. For a fixed bijection Φ there always exists a monotone
function F that remains invariant under this transformation. In this chapter we mainly focus
on those monotone functions that are invariant under a given involutive negator N . These
functions ensure that complementary inputs result in a complementary output and are therefore
extremely suited to be used in real life applications. In preference modeling for example, [0, 1]-
valued binary relations R can be used to render the individual intensity of preference. Consider a
finite set of alternatives A = {a1, . . . , am} and n experts. The opinion of expert k is represented
by a relation Rk : A2 → [0, 1], such that Rk(ai, aj) expresses the degree to which expert k prefers
alternative ai to alternative aj (see e.g. [8, 31, 32]). In order to rule out incomparability, it is
often required that the degree to which ai is preferred to aj is in some sense complementary
to the degree to which aj is preferred to ai. This naturally leads to the use of reciprocal
preference relations Rk, i.e. Rk(ai, aj) + Rk(aj , ai) = 1. In this setting, two alternatives ai
and aj are indifferent if Rk(ai, aj) = Rk(aj , ai) = 1

2 . These individual preferences can be
merged by means of an increasing [0, 1]n → [0, 1] function F . The relation R is defined by
R(ai, aj) = F (R1(ai, aj), . . . , Rn(ai, aj)) and represents the collective preference. It was soon
noticed that R is reciprocal provided F fulfills 1 − F (x1, . . . , xn) = F (1 − x1, . . . , 1 − xn) for
every (x1, . . . , xn) ∈ [0, 1]n [31, 33]. The latter expresses that F must be invariant under the
standard negator N .

Unless stated differently, we work in this section with some fixed dimension n ∈ N0.
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3.2 Invariant monotone functions

By means of a monotone [0, 1] → [0, 1] bijection Φ we reshape a monotone [0, 1]n → [0, 1]
function F in the following way.

Definition 3.1 Let Φ be a monotone [0, 1] → [0, 1] bijection and consider a monotone [0, 1]n →
[0, 1] function F . The Φ-transform of F is the monotone [0, 1]n → [0, 1] function FΦ defined by

FΦ(x1, . . . , xn) = Φ−1(F (Φ(x1), . . . ,Φ(xn))) .

Obviously, FΦ must have the same type of monotonicity as the original function F . The id-
transform of a monotone [0, 1]n → [0, 1] function is trivially the function itself. Trillas [87] has
proven that every involutive negator is a transformed standard negator.

Theorem 3.2 [87] A strict negator N is involutive if and only if there exits an automorphism φ
such that N = Nφ.

The following theorem states that transforming a monotone function F by means of a bijection
that is composed out of two bijections entails two consecutive tranformations.

Theorem 3.3 [7] Consider two monotone [0, 1] → [0, 1] bijections Φ and Ψ. For every monotone
[0, 1]n → [0, 1] function F it holds that FΦ◦Ψ = (FΦ)Ψ.

Definition 3.4 Let Φ be a monotone [0, 1] → [0, 1] bijection. A monotone [0, 1]n → [0, 1]
function F is Φ-invariant if FΦ = F . In case FΦ = F holds for every monotone bijection Φ we
call F invariant .

In measurement theory a Φ-invariant function F is also called stable for the monotone bijec-
tion Φ [27, 82]. A monotone [0, 1]n → [0, 1] function F is then called ordinally stable if it is
stable for all automorphisms (i.e. if it is invariant under all automorphisms). Due to the gener-
ating character of involutive negators (Theorem 2.18), we are able to reduce the conditions for
calling a monotone [0, 1]n → [0, 1] function invariant.

Theorem 3.5 Consider a monotone [0, 1]n → [0, 1] function F . There exists a monotone
[0, 1]n → [0, 1] function G such that FN = G holds for every involutive negator N if and only
if F is invariant under all automorphisms. In this case it also holds that FN = G, for every
strict negator N .

Proof Suppose that FN = G holds for every involutive negator N . In particular, we obtain
that FM1 = FM2 , for every pair of involutive negators (M1,M2). Due to Theorem 3.3 and
the involutivity of M2 this implies that FM1◦M2 = (FM1)M2 = (FM2)M2 = FM2◦M2 = F , for
every pair of involutive negators (M1,M2). Now consider an arbitrary automorphism φ. From
Theorem 2.18 we know that there exist four involutive negators N1, N2, N3 and N4 such that
φ = N1 ◦ N2 ◦ N3 ◦ N4. Invoking Theorem 3.3 once again leads to Fφ = FN1◦N2◦N3◦N4 =
(FN1◦N2)N3◦N4 = FN3◦N4 = F .



3.2. Invariant monotone functions 47

Conversely, assuming that F is invariant under all automorphisms, we know that FM1◦N = F
holds for every strict negator M1. Based on Theorem 3.3, the latter implies FM1 = FM1◦N◦N =
(FM1◦N )N = FN . It now suffices to denote FN as G. �

Hence, a monotone function F is invariant if and only if it is invariant under all involutive
negators. Studying N -transforms, with N an involutive negator, it suffices to consider in-
creasing [0, 1]n → [0, 1] functions only. The N -transform GN of a decreasing [0, 1]n → [0, 1]
function G can be understood as the negation N ◦ F of the increasing function F , defined
by F (x1, . . . , xn) = G(xN1 , . . . , x

N
n ). If there exists a function H such that GN = H holds

for every involutive negator N then FN = K holds for every involutive negator N , with
K(x1, . . . , xn) = H(xN1 , . . . , x

N
n ). Also the converse is true and, hence, G is invariant under

all automorphisms if and only if F is invariant under all automorphisms (Theorem 3.5). Fur-
thermore, G is N -invariant if and only if F is N -invariant.

In various fields such as fuzzy logic, fuzzy set-theory, decision making and preference modeling
a special type of increasing [0, 1]n → [0, 1] functions is used to combine different input values
into a single output value.

Definition 3.6 [7] An n-ary aggregation operator F is an increasing [0, 1]n → [0, 1] function
that satisfies the following boundary conditions:

(AO1) F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1.
(AO2) F = id if n = 1.

It is evident that the Φ-transform of an n-ary aggregation operator is again an n-ary aggregation
operator [7]. In the literature, the N -transform FN of F is known as the dual of F (see e.g. [7]).
An aggregation operator F is called self-dual if it is N -invariant. Several other terms are used for
expressing self-duality: neutrality [32], reciprocity [31, 33], etc. Examples of self-dual aggregation
operators are [7]:

• The arithmetic mean M(x1, . . . , xn) =
∑n

i=1 xi/n;

• Quasi-arithmetic means Mf (x1, . . . , xn) = f−1(
∑n

i=1 f(xi)/n) for which the strictly monotone
continuous function f : [0, 1] → [−∞,∞] is reciprocal (i.e. f(1 − x) = 1 − f(x));

• Weighted means W(x1, . . . , xn) =
∑n

i=1wi · xi, where
∑n

i=1wi = 1 and wi > 0;

• OWA operators W′(x1, . . . , xn) =
∑n

i=1wi ·x′i, with (x′1, . . . , x
′
n) an increasing permutation

of (x1, . . . , xn),
∑n

i=1wi = 1, wi > 0 and (w1, . . . , wn) = (wn, . . . , w1).

Mesiar and Rückschlossová [69] showed that invariant aggregation operators are exactly those
self-dual aggregation operators that are invariant under all automorphisms. These aggregation
operators can be described by means of the Choquet integral [9, 69, 76] and are tedious patch-
works of the constant functions 0 and 1 and of the projections Pi : [0, 1]n → [0, 1] : (x1, . . . , xn) →
xi, i ∈ {1, . . . , n}. Theorem 3.5 puts these results in a more general framework.

Corollary 3.7 An n-ary aggregation operator is invariant if and only if it is invariant under
all involutive negators.
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3.3 N-Invariant increasing functions

Given a monotone [0, 1] → [0, 1] bijection Φ, it remains an intriguing problem how to characterize
all Φ-invariant monotone [0, 1]n → [0, 1] functions F . Clearly, a first subset of solutions consists
of all invariant functions. As indicated in the previous section, it suffices to study increasing
functions F only. In view of Theorems 2.18 and 3.5 we will focus here on the characterization
of all N -invariant increasing [0, 1]n → [0, 1] functions, where N is a given involutive negator.
Explicitly, the N -invariance of an aggregation operator F means that

F (x1, . . . , xn) = F (xN1 , . . . , x
N
n )N , (3.1)

for every (x1, . . . , xn) ∈ [0, 1]n. Let β be the unique fixpoint of N . From a geometrical point
of view, Eq. (3.1) enforces some kind of point symmetry w.r.t. (β, . . . , β) upon the aggrega-
tion operator F . For the point of symmetry (β, . . . , β) it holds that F (β, . . . , β) = β. Once
F (x1, . . . , xn) is known, Eq. (3.1) fixes F (xN1 , . . . , x

N
n ).

Two alternative characterizations for self-dual aggregation operators are available in the lit-
erature. The symmetric sums of Sivert [86] have been the source of inspiration for Calvo et
al. [7]. In general, symmetric sums are continuous, commutative, binary, self-dual aggregation
operators [18, 27, 86].

Proposition 3.8 [7] An n-ary aggregation operator F is self-dual if and only if there exists an
n-ary aggregation operator G such that

F (x1, . . . , xn) =
G(x1, . . . , xn)

G(x1, . . . , xn) +G(1 − x1, . . . , 1 − xn)
, (3.2)

with 0
0+0 := 1

2 .

Whenever F is self-dual it is enough to choose G = F to obtain Eq. (3.2). Besides the approach
of Calvo et al., Garćıa–Lapresta and Marques Pereira provided a different characterization based
on the arithmetic mean.

Proposition 3.9 [33] An n-ary aggregation operator F is self-dual if and only if there exists
an n-ary aggregation operator G such that

F (x1, . . . , xn) =
G(x1, . . . , xn) +GN (x1, . . . , xn)

2
. (3.3)

For each self-dual F we can again choose G = F . Rewriting Eq. (3.2) as

F (x1, . . . , xn) =
G(x1, . . . , xn)

G(x1, . . . , xn) + 1 −GN (x1, . . . , xn)
, (3.4)

it strikes that both expressions Eqs. (3.3) and (3.4) are of the form

F (x1, . . . , xn) = C
(
G(x1, . . . , xn), GN (x1, . . . , xn)

)
, (3.5)
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for some [0, 1]2 → [0, 1] function C and a given involutive negator N . The first two plots
of Fig. 3.1 illustrate C for Eqs. (3.3) and (3.4). The third plot in the figure visualizes the
[0, 1]2 → [0, 1] function Ĉ, defined by

Ĉ(x, y) =





max(x, y), if x+ y < 1
2 ,

min(x, y), if 3
2 < x+ y ,

1
2 , elsewhere .

As will be shown further, also Ĉ is a valid choice for C. Eq. (3.5) can be used to embed
Propositions 3.8 and 3.9 into a much more general framework. In particular, we intend to sift
out those functions C that allow to characterize the class of N -invariant increasing [0, 1]n → [0, 1]
functions.
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Figure 3.1: Possible choices for C if N = N . The black solid lines reflect that C(x, xN ) = β.
The dashed black lines visualize the curve C(f(x), f(xN )N ).

Definition 3.10 Let N be an involutive negator. We say that a [0, 1]2 → [0, 1] function C
enables a full characterization of all N -invariant, increasing [0, 1]n → [0, 1] functions if the
following equivalence holds:

A [0, 1]n → [0, 1] function F is increasing and N -invariant if and only if there exists an
increasing [0, 1]n → [0, 1] function G such that Eq. (3.5) holds for every (x1, . . . , xn) ∈ [0, 1]n.

Before continuing the search for suitable C’s we would like to remark that our starting point
slightly differs from Propositions 3.8 and 3.9 as we do not assume F to be increasing from the
beginning. Let CG be the [0, 1]n → [0, 1] function determined by the right-hand side of Eq. (3.5):

CG(x1, . . . , xn) := C
(
G(x1, . . . , xn), GN (x1, . . . , xn)

)
.

Then C enables a full characterization of all N -invariant increasing [0, 1]n → [0, 1] functions if
and only if the following properties hold:
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(C1) CG is increasing for every increasing [0, 1]n → [0, 1] function G.
(C2) CG is N -invariant for every increasing [0, 1]n → [0, 1] function G.
(C3) For every N -invariant, increasing [0, 1]n → [0, 1] function F there exists an increasing

[0, 1]n → [0, 1] function G such that F = CG.

The following three lemmata tackle these conditions.

Lemma 3.11 Consider an involutive negator N and a [0, 1]2 → [0, 1] function C. CG is in-
creasing for every increasing [0, 1]n → [0, 1] function G if and only if C is increasing.

Proof Suppose that CG is increasing for every increasing function G. It is well know that the
increasingness of C is equivalent with the increasingness of all its partial functions C(x, •) and
C(•, x) (i.e. the functions obtained by fixing the first, resp. the second argument of C). We will
prove that the partial functions C(x, •) are indeed increasing. A similar reasoning applies to the
partial functions C(•, x). Consider arbitrary (x, y, z) ∈ [0, 1]3 such that y 6 z. Let β be the
fixpoint of N and choose (u, v) ∈ ]0, β[2 such that u < v. We distinguish three cases:

1. If x 6 zN 6 yN , then take an arbitrary increasing [0, 1]n → [0, 1] function G satisfying
G(u, β, . . . , β) = x, G(v, β, . . . , β) = x, G(vN , β, . . . , β) = zN and G(uN , β, . . . , β) = yN .
We obtain the following chain of inequalities:

C(x, y) = C
(
G(u, β, . . . , β), GN (u, β, . . . , β)

)
= CG(u, β, . . . , β)

6 CG(v, β, . . . , β) = C
(
G(v, β, . . . , β), GN (v, β, . . . , β)

)
= C(x, z) .

2. If zN 6 yN 6 x, then take an arbitrary increasing [0, 1]n → [0, 1] function G satisfying
G(u, β, . . . , β) = zN , G(v, β, . . . , β) = yN , G(vN , β, . . . , β) = x and G(uN , β, . . . , β) = x.
We obtain the following chain of inequalities:

C(x, y) = C
(
G(vN , β, . . . , β), GN (vN , β, . . . , β)

)
= CG(vN , β, . . . , β)

6 CG(uN , β, . . . , β) = C
(
G(uN , β, . . . , β), GN (uN , β, . . . , β)

)
= C(x, z) .

3. If zN 6 x 6 yN , then in particular zN 6 (xN )N = x and x = (xN )N 6 yN . We
know from the first two cases that C(x, xN ) 6 C(x, z) and C(x, y) 6 C(x, xN ). Therefore,
C(x, y) 6 C(x, z).

Conversely, as GN and G must have the same type of monotonicity it is clear that the increas-
ingness of C is passed on to CG. �

Lemma 3.12 Consider an involutive negator N and a [0, 1]2 → [0, 1] function C. CG is N -
invariant for every increasing [0, 1]n → [0, 1] function G if and only if

C(x, y) = C(yN , xN )N (3.6)

holds for every (x, y) ∈ [0, 1]2.
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Proof Suppose that CG is N -invariant for every increasing [0, 1]n → [0, 1] function G. Let β be
the unique fixpoint of N . For each couple (x, y) ∈ [0, 1]2, there exists an increasing function G
such that x = G(u, β, . . . , β) and yN = G(uN , β, . . . , β), with u ∈ ]0, β[ whenever x 6 yN and
u ∈ ]β, 1[ whenever yN < x. Expressing the N -invariance of CG then leads to

C(yN , xN ) = C
(
G(uN , β, . . . , β), G(u, β, . . . , β)N

)

= CG(uN , β, . . . , β) = CG(u, β, . . . , β)N

= C
(
G(u, β, . . . , β), GN (u, β, . . . , β)

)N
= C(x, y)N .

Given Eq. (3.6), the N -invariance of CG is trivially obtained by expressing CG(xN1 , . . . , x
N
n ) and

CG(x1, . . . , xn)N in terms of C �

Putting y = xN in Eq. (3.6), we see that C(x, xN ) = β. The black solid lines in Figure 3.1 reflect
this property. Geometrically, Eq. (3.6) expresses a kind of symmetry of C w.r.t. the involutive
negator N . Once C(x, y) is known, Eq. (3.6) fixes the value of C in (yN , xN ), the N -inverse
of the point (x, y) (see also Section 4.3). If C is commutative (i.e. C(x, y) = C(y, x), for every
(x, y) ∈ [0, 1]2), Eqs. (3.1) (n = 2) and (3.6) are identical and hence Eq. (3.6) will be trivially
fulfilled when considering a commutative, N -invariant [0, 1]2 → [0, 1] function C. If C is not
commutative, Eq. (3.6) substantially differs from Eq. (3.1) (n = 2).

Definition 3.13 Let F be a monotone [0, 1]n → [0, 1] function. A number x ∈ [0, 1] is called
an idempotent element of F if F (x, . . . , x) = x holds. F is idempotent if all numbers x ∈ [0, 1]
are idempotent elements of F .

Idempotent N -invariant functions will allow us to reformulate property (C3).

Lemma 3.14 Consider an involutive negator N and a [0, 1]2 → [0, 1] function C. For every
N -invariant increasing [0, 1]n → [0, 1] function F there exists an increasing [0, 1]n → [0, 1]
function G such that F = CG if and only if there exists an increasing [0, 1] → [0, 1] function f
satisfying

C(f(x), fN (x)) = x , (3.7)

for every x ∈ [0, 1].

Proof Suppose that for every N -invariant, increasing [0, 1]n → [0, 1] function F it is possible
to find an increasing [0, 1]n → [0, 1] function G such that F = CG. As N is an involutive
negator, we know from Theorem 3.2 that there exists an automorphism φ such that N = Nφ.
If we use φ to transform the arithmetic mean M into Mφ then it follows from Theorem 3.3
that (Mφ)N = (Mφ)φ−1◦N◦φ = MN◦φ = (MN )φ. Recall that M is self-dual. Hence, MN = M
and (Mφ)N = Mφ which expresses the N -invariance of Mφ. Further, consider an arbitrary
increasing [0, 1]n → [0, 1] function G such that Mφ = CG. Since for every x ∈ [0, 1] it holds that

x = Mφ(x, . . . , x) = C
(
G(x, . . . , x), GN (x, . . . , x)

)
,
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it suffices to define f(x) := G(x, . . . , x), for every x ∈ [0, 1]. Clearly, f is increasing and fulfills
Eq. (3.7).

Conversely, suppose that there exists an increasing function f , fulfilling the conditions of this
lemma. For each F it is then sufficient to define G as follows

G(x1, . . . , xn) = f(F (x1, . . . , xn)) .

The increasingness of both f and F ensure that G is an increasing [0, 1]n → [0, 1] function.
Replacing x by F (x1, . . . , xn) in Eq. (3.7) and taking into account that F is N -invariant, imme-
diately leads to F = CG. �

The dashed black lines in Figure 3.1 visualize C(f(x), f(xN )N ) = x for some suitable increasing
function f . For Figs. 3.1(a) and 3.1(b) we used f = id. The function f used in the Fig. 3.1(c)
is given by f(x) = x whenever x ∈ [12 , 1] and f(x) = 0 elsewhere. The proof of Lemma 3.14 also
ensures that, for every suitable f and every N -invariant increasing function F , f(F (x1, . . . , xn))
defines an increasing function G that generates F . The three increasing functions G1, G2 and G3

depicted in Figs. 3.2(a)–3.2(c) were created as such and generate the arithmetic mean (n = 2).
They correspond to the different settings in Fig. 3.1 (e.g. ĈG3 = M for N = N and n = 2).
Note that G1 = G2 = M (n = 2). For aesthetic reasons we have always rotated the unit cube
in Fig. 3.2 60 degrees to the right in comparison with the plots in Fig. 3.1. Joining the previous
lemmata finally leads to the following theorem.

Theorem 3.15 Consider an involutive negator N . A [0, 1]2 → [0, 1] function C enables a
full characterization of all N -invariant, increasing [0, 1]n → [0, 1] functions if and only if the
following assertions hold

1. C is an aggregation operator.
2. C(x, y) = C(yN , xN )N holds for every (x, y) ∈ [0, 1]2.
3. The graph of C contains an increasing (w.r.t. the three space coordinates) curve whose

Z-coordinate reaches every number of [0, 1].

Proof From Lemmata 3.11–3.14 and properties (C1)–(C3) we know that a [0, 1]2 → [0, 1]
function C enables a full characterization of all N -invariant increasing [0, 1]n → [0, 1] functions
if and only if

1. C is increasing.
2. C(x, y) = C(yN , xN )N holds for every (x, y) ∈ [0, 1]2.
3. C(f(x), fN (x)) = x holds for some increasing [0, 1] → [0, 1] function f and for every
x ∈ [0, 1].

The third property requires that C reaches every number of [0, 1]. In combination with the first
property this means that C(0, 0) = 0 and C(1, 1) = 1. Hence, C must be a [0, 1]2 → [0, 1] aggre-
gation operator. As f , fN and C are increasing, we can extend {

(
f(x), fN (x),C(f(x), fN (x))

)
|
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Figure 3.2: Increasing [0, 1]2 → [0, 1] functions generating the arithmetic mean M (n = 2)
by means of the resp. functions C from Fig. 3.1 (N = N ). In particular, the left subfigures
correspond to Fig. 3.1(a), the middle subfigures correspond to Fig. 3.1(b) and the right subfigures
correspond to Fig. 3.1(c).
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x ∈ [0, 1]} to an increasing (w.r.t. the three space coordinates) curve on the graph of C. Invok-
ing that C(f(x), fN (x)) = x, for every x ∈ [0, 1], the Z-coordinate of this curve reaches every
number of [0, 1].

Conversely, suppose that the three assertions of the theorem hold, then C is clearly increasing.
It remains to prove that there exists an increasing function f such that C(f(x), fN (x)) = x,
for every x ∈ [0, 1]. Consider an increasing (w.r.t. the three space coordinates) curve whose
Z-coordinate reaches every number of [0, 1]. Mathematically, the graph of this curve contains
a set of points {

(
g(x), h(x), x

)
| x ∈ [0, 1]}, with g and h two increasing [0, 1] → [0, 1] functions

and C(g(x), h(x)) = x, for every x ∈ [0, 1]. The second assertion in the theorem ensures that
also C(hN (x), gN (x)) = x, for every x ∈ [0, 1]. Let β be the unique fixpoint of N . If we
define f(x) := g(x), for every x ∈ [0, β[, and f(x) := hN (x), for every x ∈ ]β, 1], then
C(f(x), fN (x)) = x holds for every x ∈ [0, 1] \ {β}. Since C(x, xN ) = β whenever x ∈ [0, 1],
we know that g(x) < h(x)N , for every x ∈ [0, β[. Indeed, h(x)N 6 g(x) would imply the
contradiction β = C(h(x)N , h(x)) 6 C(g(x), h(x)) = x. Choose arbitrarily

f(β) ∈
[

lim
xրβ

g(x), lim
xրβ

h(x)N
]

=

[
lim
xրβ

g(x), lim
xցβ

hN (x)

]
=

[
lim
xրβ

f(x), lim
xցβ

f(x)

]
.

We obtain that x = C(f(x), f(xN )N ) 6 C(f(β), f(β)N ) 6 C(f(xN ), f(x)N ) = xN , for every
x ∈ [0, β[. Hence, C(f(β), fN (β)) = β. �

It is now easily checked that the third plot in Figure 3.1 indeed enables a full characterization of
all N -invariant aggregation operators. Unfortunately, no binary aggregation operator C enables
for every involutive negator N a full characterization of all N -invariant increasing [0, 1]n → [0, 1]
functions. For example, consider the two involutive negators N1 and N2 defined by

xN1 =
√

1 − x2 and xN2 =




− x

3
+ 1, x ∈ [0, 3

4 ] ,

− 3x+ 3, x ∈ [34 , 1] ,

and with fixpoints β1 =
√

1
2 and β2 = 3

4 . Obviously, (3
5)N1 = (3

5)N2 = 4
5 and therefore

C
(

3
5 , (

3
5)N1

)
= C

(
3
5 , (

3
5)N2

)
. The second assertion of Theorem 3.15, however, implies that

C
(

3
5 , (

3
5)N1

)
= β1 =

√
1
2 <

3
4 = β2 = C

(
3
5 , (

3
5)N2

)
,

a contradiction.

Once C is fixed in accordance with Theorem 3.15, every increasing [0, 1]n → [0, 1] function G
will provide an N -invariant increasing [0, 1]n → [0, 1] function F and, conversely, with every
N -invariant increasing function F there corresponds at least one increasing function G such
that F = CG. Usually, multiple suchlike functions G generate the same F . The set of all
increasing [0, 1]n → [0, 1] functions G can be partitioned into equivalence classes, each containing
those functions determining a given [0, 1]n → [0, 1] function F .
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Example 3.16 The increasing [0, 1]2 → [0, 1] functions depicted in Figs. 3.2(a)–3.2(f) generate
the arithmetic mean M (n = 2) by means of the resp. aggregation operators C from Fig. 3.1 and
with N = N . The functions G4, G5 and G6 depicted in Figs. 3.2(d)–3.2(f) have been obtained
by fixing G4(x, y) = G5(x, y) = G6(x, y) = 1, for every {(x, y) ∈ [0, 1]2 | 1 6 x + y}. The
equalities CG4 = M, CG5 = M and CG6 = M, with C the resp. functions from Fig. 3.1 and
N = N , have been used to compute the values of G4, G5 and G6 on {(x, y) ∈ [0, 1]2 | x+y < 1}.
Due to their maximality w.r.t. the set {(x, y) ∈ [0, 1]2 | 1 6 x+ y}, these three functions can be
used to represent the equivalence class they belong to.

Figs. 3.2(g)–3.2(i) depict three non-monotone [0, 1]2 → [0, 1] functions that generate the arith-
metic mean M (n = 2). Also here we use the resp. aggregation operators C from Fig. 3.1 and
take N = N to compute CG7 , CG8 and CG9 . G9 has been obtained from G3 = G6 by lowering
its values to zero on the diagonal {(x, y) ∈ [0, 1]2 | x + y = 1}. The functions G7 and G8 are
defined as follows:

G7(x, y) =





(x+ y)(3 + x+ y)

8 − 4 (x+ y)
, if x+ y 6 1 ,

5 − (x+ y)

4
, if 1 < x+ y ,

G8(x, y) =





0, if x+ y < 3
4 ,

x+ y − 1, if 5
4 < x+ y ,

min(x+ y, 1), elsewhere . △

As illustrated in the example, G itself does not need to be increasing to generate an N -invariant,
increasing [0, 1]n → [0, 1] function F . The minimal conditions on a [0, 1]n → [0, 1] function G
such that CG yields an N -invariant increasing function are inextricably bound up with the choice
of C and N . Therefore, general results are not to be expected.

It is worthwhile noting that, for every self-dual n-ary aggregation operator F , G = F fulfills
Eqs. (3.2) and (3.3).

Theorem 3.17 Consider an involutive negator N . Then F = CF holds for every N -invariant,
increasing [0, 1]n → [0, 1] function F if and only if C is idempotent.

Proof If C is idempotent, it is trivially verified that F = CF , for every N -invariant function F .
To obtain the converse we consider F = M. Then

x = M(x, . . . , x) = C
(
M(x, . . . , x),M(xN , . . . , xN )N

)
= C(x, x) ,

for every x ∈ [0, 1]. �

Note that the third assertion in Theorem 3.15 is trivially fulfilled whenever C is idempotent. To
conclude this section, we give some general comments on the presented techniques and results.

Remarks 3.18 1. A similar approach (as Theorem 3.15) for describing all Φ-invariant ag-
gregation operators, with Φ a non-involutive monotone [0, 1] → [0, 1] bijection, cannot be
expected. Without the involutivity property, no combination of B, BΦ, BΦ−1 , BΦ◦Φ, etc.,
will yield an expression similar to Eq. (3.6) that ensures Φ-invariance.
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2. Theorem 3.15 remains valid if we consider only n-ary aggregation operators instead of
increasing [0, 1]n → [0, 1] functions. The proofs of Lemmata 3.11 and 3.12 need no ad-
justments when dealing with n-ary aggregation operators G. To ensure the boundary
conditions F (0, . . . , 0) = G(0, . . . , 0) = 0 and F (1, . . . , 1) = G(1, . . . , 1) = 1 in the proof of
Lemma 3.14 we need to require that f(0) = 0 and f(1) = 1. These additional conditions
do not affect the (re)formulation of Theorem 3.15 for n-ary aggregation operators.

3. An increasing [0, 1]n → [0, 1] function F can also be N -invariant on

A = [0, 1]n \ {(x1, . . . , xn) | min(x1, . . . , xn) = 0 ∧ max(x1, . . . , xn) = 1} .

For example, the conjunctive 3 Π–operator E [12, 17, 28, 49], defined by

E(x1, . . . , xn) =





x1 · . . . · xn
x1 · . . . · xn + (1 − x1) · . . . · (1 − xn)

, if (x1, . . . , xn) ∈ A ,

0, elsewhere ,

is an n-ary aggregation operator that is N -invariant on A. The convention E(x1, . . . , xn) =
0

0+0 := 0, whenever (x1, . . . , xn) ∈ [0, 1]n \A prevents E from being self-dual. As indicated

in [7], under the alternative convention 0
0+0 := 1

2 and with G(x1, . . . , xn) := x1 · . . . · xn,
the 3 Π–operator can be constructed by means of Eq. (3.2).

3.4 Shift invariance

Comparing Eq. (3.2) with Eq. (3.3), Garćıa–Lapresta and Marques Pereira [33] argue that their
approach (Eq. (3.3)), in contrast to Eq. (3.2), preserves shift invariance.

Definition 3.19 [55] An increasing [0, 1]n → [0, 1] function F is shift invariant if it holds that

F (x1 + t, . . . , xn + t) = F (x1, . . . , xn) + t , (3.8)

for every t ∈ [0, 1] and all (x1, . . . , xn) ∈ [0, 1 − t]n.

Interpreting the translations in question as [0, 1−t] → [t, 1] isomorphisms Φt (i.e. Φt(x) = x+t),
with t ∈ [0, 1], Eq. (3.8) expresses some kind of ‘Φt-invariance’ of F . In measurement-theoretic
frameworks a shift-invariant function F is called stable for any admissible translation [27, 70].
The arithmetic mean M, the minimum operator TM (TM(x1, . . . , xn) = min(x1, . . . , xn)) and the
maximum operator SM (SM(x1, . . . , xn) = max(x1, . . . , xn)) are all examples of shift-invariant,
increasing [0, 1]n → [0, 1] functions. A full characterization of shift-invariant, binary aggregation
operators can be found in [55]. It is clear that the identity function id is the only shift-invariant,
increasing [0, 1] → [0, 1] function. Hence, every shift-invariant, increasing [0, 1]n → [0, 1] func-
tion F must be idempotent (take x1 = . . . = xn in Eq. (3.8)) [55]. Denoting yi = xi + t in
Eq. (3.8) it also follows that every shift-invariant function F must be invariant under ‘negative
translations’ (i.e. t ∈ [−1, 0]) [33].
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We will contribute to the existing knowledge by further exploring the argument of Garćıa–
Lapresta and Marques Pereira [33]. In particular, we look for those increasing [0, 1]2 → [0, 1]
functions C that enable a full characterization of all N -invariant, increasing functions F and
that, in combination with the standard negator N , preserve shift invariance.

Definition 3.20 Let N be an involutive negator and consider an increasing [0, 1]2 → [0, 1]
function C. If CG is shift invariant for every shift-invariant, increasing [0, 1]n → [0, 1] function G,
we say that, the couple (C, N) preserves shift invariance.

Although it is not explicitly visible, the involutive negator N in this definition is required to
formulate the functions CG.

Theorem 3.21 Consider an involutive negator N and an increasing [0, 1]2 → [0, 1] function C.
If n > 1 and (C, N) preserves shift invariance, then C is shift invariant.

Proof Let N and C be as described in the statement. Recall that TM is a shift-invariant,
increasing [0, 1]2 → [0, 1] function. Take arbitrary (x, y, t) ∈ [0, 1]3 such that (x+t, y+t) ∈ [0, 1]2.
If x 6 y then

C(x+ t, y + t) = C
(

min(x+ t, . . . , x+ t, y + t),min
(
(x+ t)N , . . . , (x+ t)N , (y + t)N

)N)

= CTM
(x+ t, . . . , x+ t, y + t) = CTM

(x, . . . , x, y) + t

= C
(

min(x, . . . , x, y),min
(
xN , . . . , xN , yN

)N)
+ t = C(x, y) + t .

By replacing in the above chain of equalities min by max and TM by SM it is shown that
C(x+ t, y + t) = C(x, y) + t whenever y < x. We conclude that C itself is shift invariant. �

The above theorem does not hold for n = 1. As id is the only shift-invariant, increasing
[0, 1] → [0, 1] function, a couple (C, N) preserves shift invariance if and only if C(x+ t, x+ t) =
C(x, x) + t, for every t ∈ [0, 1] and x ∈ [0, 1 − t]. The latter requires that C itself must be
idempotent. Therefore, for n = 1, preserving shift invariance is equivalent with idempotency.
Furthermore, also the converse of the theorem is not always true. Consider, for example, the
involutive negator N defined by xN =

√
1 − x2 and take C = G = M. Clearly, C is shift

invariant but CG = MM is not:

MM

(
0,

1

2

)
+

1

2
≈ 0.8049 < 0.8257 ≈ MM

(
0 +

1

2
,
1

2
+

1

2

)
.

Nevertheless, if N = N , then the N -transform GN of a shift-invariant, increasing [0, 1]n → [0, 1]
function G is also shift invariant:

GN (x1 + t, . . . , xn + t) = G(1 − x1 − t, . . . , 1 − xn − t)N = (G(1 − x1, . . . , 1 − xn) − t)N

= G(1 − x1, . . . , 1 − xn)N + t = GN (x1, . . . , xn) + t

whenever (x1 + t, . . . , xn + t) ∈ [0, 1]n. Therefore, for every shift-invariant, increasing [0, 1]2 →
[0, 1] function C, the couple (C,N ) preserves shift invariance. If we additionally want that C
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enables a full characterization of all N -invariant, increasing [0, 1]n → [0, 1] functions, the arith-
metic mean is the only good choice for n > 1.

Theorem 3.22 If n > 1, then the arithmetic mean M is the only increasing [0, 1]2 → [0, 1]
function C that enables a full characterization of all N -invariant, increasing [0, 1]n → [0, 1]
functions and for which (C,N ) preserves shift invariance.

Proof From Theorem 3.21 it follows that C must be shift invariant in order to preserve
shift invariance. Aczél [1] showed that the general solution of Eq. (3.8) (n = 2) is given by
C(x, y) = x+ f(y − x), for some function f : [−1, 1] → [0, 1] such that x+ f(y − x) ∈ [0, 1]. Ex-
pressing that Eq. (3.6) must hold for N = N leads to f(y−x) = (y−x)/2. Consequently, C must
be the arithmetic mean. From Theorem 3.15 and from the discussion preceding this theorem
it follows that the arithmetic mean M indeed enables a full characterization of all N -invariant
increasing [0, 1]n → [0, 1] functions and that (M,N ) preserves shift invariance. �

In case n = 1 it follows from the discussion above that every idempotent C satisfying the
assertions of Theorem 3.15 will do.



CHAPTER 4

Traces of orthosymmetry

4.1 Introduction

Functions that fuse multiple input values into a single output value are indispensable tools
for various sciences such as pure and applied mathematics, computer science, economics and
psychology. It is often the case that all inputs as well as the output belong to the same domain.
Usually, also some monotonic behaviour is required. Studying the properties of an increasing
[0, 1]n → [0, 1] function F , with n > 2, requires some basic geometrical insight into the structure
of its partial functions, obtained by fixing n− 2 input values. As shown in the previous chapter,
increasing [0, 1]2 → [0, 1] functions are also indispensable tools for describing the set of N -
invariant monotone [0, 1]n → [0, 1] functions, with N a fixed involutive negator. For these
reasons we now direct our attention to the study of increasing [0, 1]2 → [0, 1] functions satisfying
one or more properties. It is often worthwhile to observe these functions from a different point of
view. Describing an increasing [0, 1]2 → [0, 1] function F in terms of contour lines yields several
new insights into its geometrical structure. Throughout Chapters 7 and 8 contour lines will
prove to be indispensable for the decomposition and construction of rotation-invariant t-norms.
In this chapter, however, we describe some orthosymmetrical aspects of contour lines.

It should be noted that also decreasing [0, 1]2 → [0, 1] functions can be described in terms of
their contour lines. Clearly, for every decreasing [0, 1]2 → [0, 1] function G and every strict
negator N , N ◦G is an increasing [0, 1]2 → [0, 1] function. Therefore, results concerning increas-
ing functions can easily be translated into results for decreasing functions. Since our goal is to
better understand rotation-invariant t-norms (which are increasing), we focus here on increasing
[0, 1]2 → [0, 1] functions.
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4.2 Countour lines

Each increasing [0, 1]2 → [0, 1] function F is totally determined by its horizontal cuts (i.e. the
intersections of its graph by planes parallel to the domain [0, 1]2). The contour lines of F are
those [0, 1] → [0, 1] functions determining the upper, lower, right or left limits of its horizontal
cuts.

Definition 4.1 We associate with an increasing [0, 1]2 → [0, 1] function F four types of contour
lines (a ∈ [0, 1]):

Ca : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | F (x, t) 6 a}
Da : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | F (x, t) > a}
C̃a : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | F (t, x) 6 a}
D̃a : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | F (t, x) > a}

(with sup ∅ = 0 and inf ∅ = 1). It will be clear from the context which function F we are
considering. Considering the ensemble of contour lines, we can associate an additional function
to each type of contour line. For example, the contour lines of the type Ca are totally determined
by the [0, 1]2 → [0, 1] function C that maps a couple (x, a) to Ca(x). Hence, contour lines of
the type Ca are partial functions of C, obtained by fixing its second argument. The partial
functions obtained by fixing the first argument of C will be denoted C•(x), with x ∈ [0, 1]. A
similar argument applies to the other types of contour lines.

Property 4.2 The contour lines of an increasing [0, 1]2 → [0, 1] function F satisfy the following
properties:

(D1) Ca, Da, C̃a and D̃a are decreasing, for every a ∈ [0, 1].
(D2) Da 6 Ca and D̃a 6 C̃a, for every a ∈ [0, 1].
(D3) Ca1 6 Ca2, Da1 6 Da2, C̃a1 6 C̃a2 and D̃a1 6 D̃a2, for every (a1, a2) ∈ [0, 1]2 such that

a1 6 a2.

Proof Properties (D1) and (D3) follow immediately from the definition of the four different
types of contour lines. Thanks to the increasingness of F we know that also

Ca(x) = inf{t ∈ [0, 1] | F (x, t) > a} ,
Da(x) = sup{t ∈ [0, 1] | F (x, t) < a} ,
C̃a(x) = inf{t ∈ [0, 1] | F (t, x) > a} ,
D̃a(x) = sup{t ∈ [0, 1] | F (t, x) < a} ,

for every (x, a) ∈ [0, 1]2. In combination with the definition of contour lines, this yields prop-
erty (D2). �

Before studying the symmetrical aspects of contour lines, we first discuss some continuity con-
ditions that are crucial for our further results. Note that F will be called left continuous, resp.
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right continuous, if all of its partial functions F (x, •) and F (•, x) are left continuous, resp. right
continuous (see e.g. [51]).

Definition 4.3 [6] Two monotone [0, 1] → [0, 1] functions f and g form a Galois connection
(f, g) if f(x) 6 y ⇔ x 6 g(y) holds for every (x, y) ∈ [0, 1]2.

Dealing with an arbitrary increasing [0, 1]2 → [0, 1] function F , we obtain the following charac-
terization.

Theorem 4.4 Consider an increasing [0, 1] → [0, 1] function F . For every x ∈ [0, 1] the follow-
ing assertions hold:

1. F (x, •) is left continuous if and only if

F (x, y) 6 a ⇔ y 6 Ca(x) (4.1)

holds for every (y, a) ∈ [0, 1]2, with 0 < y.

2. F (x, •) is right continuous if and only if

Da(x) 6 y ⇔ a 6 F (x, y) (4.2)

holds for every (y, a) ∈ [0, 1]2, with y < 1.

3. F (•, x) is left continuous if and only if

F (y, x) 6 a ⇔ y 6 C̃a(x) (4.3)

holds for every (y, a) ∈ [0, 1]2, with 0 < y.

4. F (•, x) is right continuous if and only if

D̃a(x) 6 y ⇔ a 6 F (y, x) (4.4)

holds for every (y, a) ∈ [0, 1]2, with y < 1.

Proof We will prove the first case of the theorem only, the other cases being similar. Note that,
by definition, F (x, y) 6 a always implies y 6 Ca(x). Suppose that F (x, •) is left continuous and
consider arbitrary (y, a) ∈ [0, 1]2, 0 < y. If y 6 Ca(x), then for every ε ∈ ]0, y] we know that
F (x, y−ε) 6 a. The left continuity of F (x, •) then ensures that F (x, y) 6 a. Conversely, suppose
that Eq. (4.1) holds and that F (x, •) is not left continuous. Then there exists (y, a) ∈ [0, 1]2,
0 < y, such that F (x, y− ε) 6 a < F (x, y), for every ε ∈ ]0, y]. However, by definition we obtain
that y − ε 6 Ca(x), for every ε ∈ ]0, y], and therefore y 6 Ca(x). Applying Eq. (4.1) leads to
the contradiction F (x, y) 6 a. �

The continuity of F also affects the continuity of its contour lines.
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Property 4.5 Consider an increasing [0, 1]2 → [0, 1] function F and take arbitrary (x, a) ∈
[0, 1]2. If F is left continuous, then Ca(•), C̃a(•) are left continuous and C•(x), C̃•(x) are right
continuous. If F is right continuous, then Da(•), D̃a(•) are right continuous and D•(x), D̃•(x)
are left continuous.

Proof We only prove those properties invoking the [0, 1]2 → [0, 1] function C. Let F be
left continuous. Suppose that there exists a triplet (x, y, a) ∈ [0, 1]3 such that 0 < x, 0 < y
and Ca(x) < y 6 Ca(x − ε) for every ε ∈ ]0, x]. Applying Eq. (4.1), we then know that
F (x − ε, y) 6 a < F (x, y) for every ε ∈ ]0, x]. This contradicts the left continuity of F and,
hence, Ca must be left continuous. Suppose now that there exists a triplet (x, y, a) ∈ [0, 1]3 such
that 0 < y, a < 1 and Ca(x) < y 6 Ca+ε(x), for every ε ∈ ]0, 1 − a]. From Eq. (4.1) it then
follows that a < F (x, y) 6 a + ε, for every ε ∈ ]0, 1 − a]. Taking the limit ε ց 0 leads to the
contradiction a < a. We conclude that C•(x) is right continuous. �

In order to prove the right continuity of C•(x), it is sufficient to invoke the left continuity of
the partial functions F (x, •) only. However, when proving the left continuity of Ca, also the
left continuity of the partial functions F (•, x) is needed. For example, if F (1, y) = 1, for every
y ∈ [0, 1], and F (x, y) = 0, elsewhere, then C0(x) = 1 for every x ∈ [0, 1[ and C0(1) = 0. The
contour line C0 is, in contrast to the vertical sections F (x, •), not left continuous. Note that the
converse implications of Property 4.5 do not hold. If F (1, 1) = 1 and F (x, y) = 0 elsewhere,
then Ca(x) = C̃a(x) = 1, for every (x, a) ∈ [0, 1]2. F is not left continuous, although Ca = C̃a
and C•(x) = C̃•(x) are continuous for every (x, a) ∈ [0, 1]2.

Taking a closer look at Eqs. (4.1)–(4.4), it strikes that only the restrictions on y prevent them
from being fully interpretable as Galois connections. In the following theorem we figure out
under which conditions these restrictions on y become superfluous.

Theorem 4.6 Consider an increasing [0, 1]2 → [0, 1] function F . For every x ∈ [0, 1] we obtain
four groups consisting of four equivalent assertions.

1. a) F (x, •) is left continuous and fulfills F (x, 0) = 0.
b) (F (x, •), C•(x)) is a Galois connection.
c) For every a ∈ [0, 1] it holds that F (x,Ca(x)) 6 a.
d) For every a ∈ [0, 1] it holds that Ca(x) = max{t ∈ [0, 1] | F (x, t) 6 a}.

2. a) F (x, •) is right continuous and fulfills F (x, 1) = 1.
b) (D•(x), F (x, •)) is a Galois connection.
c) For every a ∈ [0, 1] it holds that a 6 F (x,Da(x)).
d) For every a ∈ [0, 1] it holds that Da(x) = min{t ∈ [0, 1] | F (x, t) > a}.

3. a) F (•, x) is left continuous and fulfills F (0, x) = 0.
b) (F (•, x), C̃•(x)) is a Galois connection.
c) For every a ∈ [0, 1] it holds that F (C̃a(x), x) 6 a.
d) For every a ∈ [0, 1] it holds that C̃a(x) = max{t ∈ [0, 1] | F (t, x) 6 a}.

4. a) F (•, x) is right continuous and fulfills F (1, x) = 1.
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b) (D̃•(x), F (•, x)) is a Galois connection.
c) For every a ∈ [0, 1] it holds that a 6 F (D̃a(x), x).
d) For every a ∈ [0, 1] it holds that D̃a(x) = min{t ∈ [0, 1] | F (t, x) > a}.

Proof We will only prove the equivalences in the first group, the other cases being similar.
Taking into account Theorem 4.4, assertion 1a will be equivalent with assertion 1b if we can
show that the boundary condition F (x, 0) = 0 is equivalent with F (x, 0) 6 a ⇔ 0 6 Ca(x),
for every a ∈ [0, 1]. As 0 6 Ca(x) is always true, this amounts to the trivial equivalence
F (x, 0) = 0 ⇔ F (x, 0) 6 a, for every a ∈ [0, 1]. By definition, F (x, y) 6 a always implies
y 6 Ca(x) and y < Ca(x) always implies F (x, y) 6 a. Therefore, assertion 1b is satisfied if and
only if y = Ca(x) implies F (x, y) 6 a. The latter is expressed by assertion 1c. It is evident that
assertion 1c is also equivalent with assertion 1d. �

4.3 Orthosymmetrical contour lines

For a given couple (Φ,Ψ) of monotone [0, 1] → [0, 1] bijections, we will characterize, in terms of
contour lines, those increasing [0, 1]2 → [0, 1] functions F that satisfy

F (x, y) = Ψ
(
F (Φ−1(y),Φ(x))

)
, (4.5)

for every (x, y) ∈ [0, 1]2. In case Φ = Ψ = id, the latter expresses the commutativity of F . For
Φ = Ψ = N , with N an involutive negator, we obtain Eq. (3.6). Due to the structure of Eq. (4.5)
there are, however, some restrictions on the choice of Φ and Ψ. To be compatible with the in-
creasingness of F it is clear that Φ and Ψ must have the same type of monotonicity. Furthermore,
applying Eq. (4.5) twice results in F (x, y) = Ψ(Ψ(F (x, y))). We will strengthen this condition
and require that Ψ is involutive: Ψ ◦ Ψ = id. The observation that the binary aggregation
operator C from Theorem 3.15 should reach every element of [0, 1] also supports this additional
condition on Ψ. The considerations above force us to consider functional equation (4.5) in the
following two cases only:

A. Φ is an automorphism φ and Ψ is the identity function id.
B. Φ is a strict negator M and Ψ is an involutive negator N .

A. (Φ, Ψ) = (φ, id), with φ an automorphism

In this case, Eq. (4.5) can be rewritten as

F (x, y) = F (φ−1(y), φ(x)) , (4.6)

for every (x, y) ∈ [0, 1]2. From the observation that (φ−1(y), φ(x)) is the φ-inverse of the point
(x, y), we obtain a geometrical characterization of all increasing [0, 1]2 → [0, 1] functions F
satisfying Eq. (4.6). It suffices to define F on {(x, y) ∈ [0, 1]2 | y 6 φ(x)} as an arbitrary
increasing function. Eq. (4.6) can then be used to uniquely complete F on {(x, y) ∈ [0, 1] |
φ(x) < y}. The increasingness of F is easily verified. The construction entangles the contour
lines of the types Ca and C̃a and those of the types Da and D̃a.
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Theorem 4.7 Consider an automorphism φ. For an increasing [0, 1]2 → [0, 1] function F
satisfying Eq. (4.6) the following assertions hold:

1. Ca = φ ◦ C̃a ◦ φ, for every a ∈ [0, 1].
2. Da = φ ◦ D̃a ◦ φ, for every a ∈ [0, 1].

Proof We will prove the first assertion, the second one is proven in a similar way. If F satisfies
Eq. (4.6) then, by definition, we obtain that

Ca(x) = sup{t ∈ [0, 1] | F (x, t) 6 a} = sup{t ∈ [0, 1] | F (φ−1(t), φ(x)) 6 a}
= φ(sup{s ∈ [0, 1] | F (s, φ(x)) 6 a}) = φ(C̃a(φ(x))) ,

for every (x, a) ∈ [0, 1]2. �

Furthermore, the symmetry contained in Eq. (4.6) manifests itself in the φ-orthosymmetry, resp.
φ−1-orthosymmetry, of the contour lines Ca and Da, resp. C̃a and D̃a.

Theorem 4.8 Consider an automorphism φ. For an increasing [0, 1]2 → [0, 1] function F
satisfying Eq. (4.6) the following assertions hold:

1. Ca ∈ Q(Ca, φ), for every a ∈ [0, 1].
2. Da ∈ Q(Da, φ), for every a ∈ [0, 1].
3. C̃a ∈ Q(C̃a, φ

−1), for every a ∈ [0, 1].
4. D̃a ∈ Q(D̃a, φ

−1), for every a ∈ [0, 1].

Proof If F satisfies Eq. (4.6) it always holds that C̃a = φ−1 ◦Ca ◦φ−1 and D̃a = φ−1 ◦Da ◦φ−1

(Theorem 4.7). Invoking Theorems 1.11 and 1.13, assertion 3 amounts to Ca ∈ Q(φ−1 ◦ Ca ◦
φ−1, id) = Q(Ca, φ) and assertion 4 amounts to Da ∈ Q(φ−1 ◦Da ◦ φ−1, id) = Q(Da, φ). It is
therefore sufficient to focus on assertions 1 and 2 only. We will present the proof of assertion 1,
the proof of assertion 2 being similar. Take arbitrary a ∈ [0, 1]. By definition, it holds that

Ca
φ(x) = sup{t ∈ [0, 1] | Ca(φ−1(t)) > φ(x)} ,

Ca(x) = sup{t ∈ [0, 1] | F (x, t) 6 a} ,
Caφ(x) = sup{t ∈ [0, 1] | Ca(φ−1(t)) > φ(x)} .

Eq. (4.6) guarantees that

Ca(φ
−1(t)) > φ(x) ⇒ F (x, t) = F (φ−1(t), φ(x)) 6 a ⇒ Ca(φ

−1(t)) > φ(x) ,

which leads to Ca
φ 6 Ca 6 Caφ. It follows from Corollary 2.8 that Ca ∈ Q(Ca, φ). �

Unfortunately, the orthosymmetry conditions in Theorem 4.8 are not sufficient for Eq. (4.6) to
hold. For example, if F (x, 0) = 0, for all x ∈ [0, 1], and F (x, y) = 1, elsewhere, then F is left
continuous but does not fulfill Eq. (4.6) (F (1, 0) = 0 < 1 = F (0, 1)). It is easily verified that
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in this example all contour lines Ca and Da, resp. C̃a and D̃a, are φ-orthosymmetrical, resp.
φ−1-orthosymmetrical. Nevertheless, for a left- or right-continuous, increasing function F one
of the assertions in Theorem 4.7 is sufficient to obtain Eq. (4.6).

Theorem 4.9 Consider an automorphism φ and an increasing [0, 1]2 → [0, 1] function F .

1. If F is left continuous, then the following assertions are equivalent:

a) F satisfies Eq. (4.6).
b) Ca = φ ◦ C̃a ◦ φ, for every a ∈ [0, 1].

2. If F is right continuous, then the following assertions are equivalent:

a) F satisfies Eq. (4.6).
b) Da = φ ◦ D̃a ◦ φ, for every a ∈ [0, 1].

Proof We will prove the first statement. Let F be a left continuous, increasing [0, 1]2 → [0, 1]
function. If F satisfies Eq. (4.6) then assertion 1b follows immediately from Theorem 4.7.
Conversely, take F such that assertion 1b holds and suppose that F (x, y) < F (φ−1(y), φ(x)),
for some (x, y) ∈ [0, 1]2. Clearly, either 0 < x or 0 < y. It follows from Eq. (4.1) that
CF (x,y)(φ

−1(y)) < φ(x), if 0 < x, and from Eq. (4.3) that C̃F (x,y)(φ(x)) < φ−1(y), if 0 < y. Since

CF (x,y) = φ◦C̃F (x,y)◦φ, this leads to C̃F (x,y)(y) < x, if 0 < x, and CF (x,y)(x) < y, if 0 < y. By de-
finition, we obtain in both cases the contradiction F (x, y) < F (x, y). Hence, F (φ−1(y), φ(x)) 6

F (x, y), for every (x, y) ∈ [0, 1]2. From the observation that F (φ−1(y), φ(x)) < F (x, y) can be
reformulated as F (u, v) < F (φ−1(v), φ(u)), with u = φ−1(y) and v = φ(x), we conclude that
F (x, y) = F (φ−1(y), φ(x)) is fulfilled for every (x, y) ∈ [0, 1]2. �

Note that, without the additional continuity conditions, the equivalences in this theorem are not
necessarily satisfied. Define, for example, F on [0, 1[2∪{(1, 0)} as F (x, y) = 0 and put F (x, y) = 1
elsewhere. Then F is not left continuous and Ca = C̃a, for every a ∈ [0, 1]. As Ca(x) ∈ {0, 1},
for every (x, a) ∈ [0, 1]2, it clearly holds that Ca = φ◦C̃a◦φ. However, F (1, 0) = 0 < F (0, 1) = 1
such that Eq. (4.6) is not satisfied. As illustrated in the discussion following Theorem 4.8, to
invert Theorem 4.8, besides continuity conditions, also some additional boundary conditions will
be required.

Theorem 4.10 Consider an automorphism φ and an increasing [0, 1]2 → [0, 1] function F .

1. If F is left continuous and F (0, 1) = F (1, 0) = 0, then the following assertions are equiv-
alent:

a) F satisfies Eq. (4.6).
b) Ca ∈ Q(Ca, φ), for every a ∈ [0, 1].
c) C̃a ∈ Q(C̃a, φ

−1), for every a ∈ [0, 1].

2. If F is right continuous and F (0, 1) = F (1, 0) = 1, then the following assertions are
equivalent:
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a) F satisfies Eq. (4.6).
b) Da ∈ Q(Da, φ), for every a ∈ [0, 1].
c) D̃a ∈ Q(D̃a, φ

−1), for every a ∈ [0, 1].

Proof We only prove the first part of the theorem. Let F be a left continuous, increasing
[0, 1]2 → [0, 1] function satisfying F (0, 1) = F (1, 0) = 0. Note that in that case the increasingness
of F implies that F (x, 0) = F (0, x) = 0, for every x ∈ [0, 1]. From Theorem 4.8 we know that
assertion 1a implies assertions 1b and 1c. Assume that Ca ∈ Q(Ca, φ), for every a ∈ [0, 1]. Then,
equivalently, φ−1 ◦Ca ◦φ−1 ∈ Q(Ca, id), for every a ∈ [0, 1] (Theorem 1.11). The left continuity
of F ensures that every Ca and thus also every φ−1 ◦Ca ◦ φ−1 is left continuous (Property 4.5).
Due to the boundary condition F (0, 1) = 0 it holds that Ca(0) = 1 and φ−1(Ca(φ

−1(0))) =
φ−1(Ca(0)) = φ−1(1) = 1 . Invoking Theorems 1.16 and 1.17 these considerations lead to
φ−1 ◦ Ca ◦ φ−1 = Caid. Since (F (x, •), C•(x)) forms a Galois connection for every x ∈ [0, 1]
(Theorem 4.6), we obtain the following chain of equalities:

φ−1(Ca(φ
−1(x))) = inf{t ∈ [0, 1] | Ca(t) < x} = sup{t ∈ [0, 1] | Ca(t) > x}

= sup{t ∈ [0, 1] | F (t, x) 6 a} = C̃a(x) ,

for every (x, a) ∈ [0, 1]2. We conclude that φ−1 ◦Ca ◦ φ−1 = C̃a, for every a ∈ [0, 1], and thus F
satisfies Eq. (4.6) (Theorem 4.9). In a similar way it can be shown that assertion 1c also implies
assertion 1a. �

As F is increasing, the boundary condition F (0, 1) = F (1, 0) = 0 implies that F has absorbing
element 0. Otherwise, F (0, 1) = F (1, 0) = 1 ensures that 1 is the absorbing element of F .

Definition 4.11 A [0, 1]2 → [0, 1] function F has an absorbing element a ∈ [0, 1] if F (x, a) =
F (a, x) = a, for every x ∈ [0, 1].

In the literature (see e.g. [7]) the term annihilator is also used to refer to an absorbing element.

B. (Φ, Ψ) = (M, N), with M a strict and N an involutive negator

For this particular choice of Φ and Ψ, Eq. (4.5) reads

F (x, y) = F
(
y(M−1), xM

)N
, (4.7)

for every (x, y) ∈ [0, 1]2. Note that by putting y = xM , we obtain F (x, xM ) = F (x, xM )N .
Denoting β the unique fixpoint of N , this leads to F (x, xM ) = β, for every x ∈ [0, 1]. As
(y(M−1), xM ) is the M -inverse of the point (x, y), we are able to give a geometrical character-
ization of all increasing [0, 1]2 → [0, 1] functions F satisfying Eq. (4.7). First, we define F on
{(x, y) ∈ [0, 1]2 | y < xM} as an arbitrary increasing function taking values in [0, β]. Next, we
put F (x, xM ) = β, for every x ∈ [0, 1]. Finally, we use Eq. (4.7) to uniquely complete F on
{(x, y) ∈ [0, 1] | xM < y}. Eq. (4.7) enforces some kind of symmetry on F that clearly affects
the structure of its contour lines.
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Theorem 4.12 Consider a strict negator M and an involutive negator N with fixpoint β. For
an increasing [0, 1]2 → [0, 1] function F satisfying Eq. (4.7) the following assertions hold:

1. CaN = M ◦ D̃a ◦M , for every a ∈ [0, β].
2. DaN = M ◦ C̃a ◦M , for every a ∈ [0, β].
3. C̃aN=M

−1 ◦Da ◦M−1, for every a ∈ [0, β].
4. D̃aN = M−1 ◦ Ca ◦M−1, for every a ∈ [0, β].

Proof If F satisfies Eq. (4.7) then, by definition, we obtain that

CaN (x) = sup{t ∈ [0, 1] | F (x, t) 6 aN} = sup
{
t ∈ [0, 1] | F (t(M

−1), xM )N 6 aN
}

=
(
inf
{
s ∈ [0, 1] | F (s, xM ) > a

})M
=
(
D̃a(x

M )
)M

,

for every (x, a) ∈ [0, 1]2. This proves the first and the fourth assertion. The other two assertions
are proven in a similar way. �

Note that we can merge the first and last assertion and the second and third assertion: CaN =
M ◦D̃a◦M and DaN = M ◦C̃a◦M hold for every a ∈ [0, 1]. However, in contrast to Eq. (4.6), the
involutive negator N in Eq. (4.7) allows us to consider four assertions (Theorem 4.12) instead
of two (Theorem 4.7). Each of these assertions will turn out to be sufficient for Eq. (4.7) to
hold provided that F is continuous (see Theorem 4.14). As shown in the following theorem,
whenever F satisfies Eq. (4.7), CaN can be understood as some ‘M -inverse function’ of Da

and C̃aN as some kind of ‘M−1-inverse function’ of D̃a.

Theorem 4.13 Consider a strict negator M and an involutive negator N with fixpoint β. For
an increasing [0, 1]2 → [0, 1] function F satisfying Eq. (4.7) the following assertions hold:

1. CaN ∈ Q(Da,M), for every a ∈ [0, β].
2. DaN ∈ Q(Ca,M), for every a ∈ [0, β].
3. C̃aN ∈ Q(D̃a,M

−1), for every a ∈ [0, β].
4. D̃aN ∈ Q(C̃a,M

−1), for every a ∈ [0, β].

Proof From Theorem 1.6 we know that CaN ∈ Q(Da,M) is equivalent with Da ∈ Q(CaN ,M)
and that C̃aN ∈ Q(D̃a,M) is equivalent with D̃a ∈ Q(C̃aN ,M), for every a ∈ [0, 1]. Hence,
combining assertion 1 with assertion 2 and assertion 3 with assertion 4, it suffices to prove that
CaN ∈ Q(Da,M) and C̃aN ∈ Q(D̃a,M

−1), for every a ∈ [0, 1]. If F satisfies Eq. (4.7) it always
holds that C̃aN = M−1 ◦ Da ◦ M−1and D̃a = M−1 ◦ CaN ◦ M−1 (Theorem 4.12). Invoking
Theorems 1.11 and 1.13, C̃aN ∈ Q(D̃a,M

−1) amounts to Da ∈ Q(M−1 ◦ CaN ◦ M−1, id) =
Q(CaN ,M). As Da ∈ Q(CaN ,M) is equivalent with CaN ∈ Q(Da,M) (Theorem 1.6), this
allows us to focus only on the combined assertion CaN ∈ Q(Da,M), for every a ∈ [0, 1]. Take
arbitrary a ∈ [0, 1]. By definition it holds that

Da
M

(x) = sup
{
t ∈ [0, 1] | Da(t

(M−1)) < xM
}
,

CaN (x) = sup{t ∈ [0, 1] | F (x, t) 6 aN} ,
DaM (x) = sup

{
t ∈ [0, 1] | Da(t

(M−1)) 6 xM
}
.



68 Traces of orthosymmetry

Eq. (4.7) guarantees that

Da(t
(M−1)) < xM ⇒ F (x, t)N = F

(
t(M

−1), xM
)

> a ⇒ Da(t
(M−1)) 6 xM ,

which leads to Da
M

6 CaN 6 DaM . As Da is decreasing, it follows from Theorem 1.28 that
CaN ∈ Q(Da,M). �

Unfortunately, the assertions of Theorem 4.13 are again not sufficient for Eq. (4.7) to hold. For
example, if F (0, 0) = 0 and F (x, y) = β elsewhere, then Ca = C̃a = 0 whenever a ∈ [0, β[,
Ca = C̃a = 1 whenever a ∈ [β, 1], Da = D̃a = 0 whenever a ∈ [0, β] and Da = D̃a = 1 whenever
a ∈ ]β, 1]. Clearly, these contour lines satisfy the assertions from Theorems 4.12 and 4.13.
However, F can never satisfy Eq. (4.7) as F (1(M−1), 1M ) = F (0, 0) = 0 < β = F (1, 1)N . Also,
in this case some additional continuity conditions are required to retrieve Eq. (4.7) from the
assertions stated in Theorems 4.12 and 4.13. In contrast to Eq. (4.6), the use of strict negators
in Eq. (4.7) prevents F from being solely left or right continuous.

Theorem 4.14 Consider a strict negator M , an involutive negator N with fixpoint β and an
increasing [0, 1]2 → [0, 1] function F . If F is continuous, then the following assertions are
equivalent:

1. F satisfies Eq. (4.7).
2. CaN = M ◦ D̃a ◦M , for every a ∈ [0, β].
3. DaN = M ◦ C̃a ◦M , for every a ∈ [0, β].
4. C̃aN = M−1 ◦Da ◦M−1, for every a ∈ [0, β].
5. D̃aN = M−1 ◦ Ca ◦M−1, for every a ∈ [0, β].

Proof We will only prove the equivalence between the first two assertions. Due to Theorem 4.12
it suffices to prove that assertion 2 implies assertion 1. Take F such that CaN = M ◦ D̃a ◦M
holds for every a ∈ [0, β]. In case F (x, y) 6 β, for (x, y) ∈ [0, 1]2 with x < 1, we obtain from
assertion 2 and Eq. (4.1) that

F (x, y) = F (x, y) ⇒ D̃F (x,y)(y) 6 x ⇔ xM 6 CF (x,y)N (y(M−1))

⇔ F
(
y(M−1), xM

)
6 F (x, y)N . (4.8)

In case β 6 F (x, y), for (x, y) ∈ [0, 1]2 with 0 < y, we obtain from assertion 2 and Eq. (4.4) that

F (x, y) = F (x, y) ⇒ y 6 CF (x,y)(x) ⇔ D̃F (x,y)N (xM ) 6 y(M−1)

⇔ F (x, y)N 6 F
(
y(M−1), xM

)
. (4.9)

Take arbitrary (x, y) ∈ [0, 1]2 such that x < 1, 0 < y and F (x, y) 6 β. It then follows from
Eq. (4.8) that F (y(M−1), xM ) 6 F (x, y)N . Furthermore, F (x, y) 6 β implies that y 6 Cβ(x) =

(D̃β(xM ))M and, hence, β 6 F (y(M−1), xM ) (Eq. (4.4)). Denoting u := y(M−1) and v = xM we
know that β 6 F (u, v), u < 1 and 0 < v. Performing Eq. (4.9) results in

F
(
y(M−1), xM

)N
= F (u, v)N 6 F

(
v(M−1), uM

)
= F (x, y) .
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We conclude that F (x, y) = F (y(M−1), xM )N is satisfied for those couples (x, y) ∈ [0, 1]2 such
that x < 1, 0 < y and F (x, y) 6 β. In a similar way, performing Eq. (4.8) on the outcome of
Eq. (4.9), we get that F (x, y) = F (y(M−1), xM )N is satisfied for those couples (x, y) ∈ [0, 1]2

such that x < 1, 0 < y and β < F (x, y). Hence, Eq. (4.7) is fulfilled for every (x, y) ∈ [0, 1]2

with x < 1 and 0 < y. Invoking the continuity of F , M and N , we obtain that Eq. (4.7) also
holds whenever x = 1 or y = 0. �

To invert Theorem 4.13 we need to impose some additional boundary conditions on F . Suppose
for example that F (x, y) = 1, for every (x, y) ∈ [0, 1]2. Then F is trivially continuous, Ca =
C̃a = 0 whenever a ∈ [0, 1[, C1 = C̃1 = 1 and Da = D̃a = 0 for every a ∈ [0, 1]. The assertions
of Theorem 4.13 hold but F (0, 0) = 1 > 0 = F (1, 1)N . Note that these assertions do not
force F to satisfy F (x, xM ) = β, which is necessary for Eq. (4.7) to hold. Simply, requiring that
F (0, 1) = F (1, 0) = β counters this deficiency.

Theorem 4.15 Consider a strict negator M , an involutive negator N with fixpoint β and an
increasing [0, 1]2 → [0, 1] function F . If F is continuous, then the following assertions are
equivalent:

1. F satisfies Eq. (4.7).
2. CaN ∈ Q(Da,M), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.
3. DaN ∈ Q(Ca,M), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.
4. C̃aN ∈ Q(D̃a,M

−1), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.
5. D̃aN ∈ Q(C̃a,M

−1), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.

Proof We will illustrate the equivalence between the first two assertions. For assertion 1 to hold
it is always necessary that assertion 2 is satisfied (Theorem 4.13) and F (x, xM ) = β, for every
x ∈ [0, 1]. Assume now that CaN ∈ Q(Da,M), for every a ∈ [0, β], and F (0, 1) = F (1, 0) =
β. Then, equivalently, M−1 ◦ CaN ◦ M−1 ∈ Q(Da, id), for every a ∈ [0, β] (Theorem 1.11).
The left continuity of F ensures that every CaN is left continuous (Property 4.5) and thus
every M−1 ◦ CaN ◦ M−1 must be right continuous. As F (0, 1) = F (1, 0) = β it holds that
(CaN (1(M−1)))(M

−1) = (CaN (0))(M
−1) = 1(M−1) = 0 and Da(1) = 0, for every a ∈ [0, β]. Invoking

Theorems 1.16 and 1.17 these considerations lead to M−1 ◦ CaN ◦ M−1 = Da
id. Thanks to

Eq. (4.2) we obtain the following chain of inequalities:

(CaN (x(M−1)))(M
−1) = sup{t ∈ [0, 1] | Da(t) > x} = inf{t ∈ [0, 1] | Da(t) 6 x}

= inf{t ∈ [0, 1] | F (t, x) > a} = D̃a(x) ,

for every (x, a) ∈ [0, 1[×[0, β]. Moreover, F (0, 1) = F (1, 0) = β implies that (CaN (1M
−1

))M
−1

=
0 = D̃a(1) is fulfilled for every a ∈ [0, β]. We conclude that M−1 ◦ CaN ◦M−1 = D̃a whenever
a ∈ [0, β] and thus F satisfies Eq. (4.7) (Theorem 4.14). �
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Rotation-invariant t-norms





CHAPTER 5

A contour view on uninorms

5.1 Introduction

In many mathematical investigations and practical applications, the increasing [0, 1]2 → [0, 1]
functions involved must satisfy several additional properties. Associativity, for example, allows
to straightforwardly extend a [0, 1]2 → [0, 1] function to a more general [0, 1]n → [0, 1] function,
with n > 2. The use of commutative [0, 1]2 → [0, 1] functions puts symmetry into the considered
process or theory. In multi-criteria decision making for example, this amounts to expressing that
all criteria are equally important. Furthermore, introducing some level of satisfaction e ∈ [0, 1]
allows to rule out a certain criterion from the global evaluation. Many fields in mathematics also
require the existence of such an indentity element. In this chapter we provide new insights into
all these properties by examining the contour lines Ca, Da, C̃a and D̃a instead of the original
increasing [0, 1]2 → [0, 1] function F . Conversely, we investigate how properties on contour lines
affect the structure of F . Special attention goes to the study of continuous contour lines. The
results from this chapter pave the way for better understanding the geometrical structure of
left-continuous t-norms (see Chapters 6 and 7).

5.2 Uninorms

Uninorms were introduced by Yager and Rybalov [98] as a generalization of t-norms and t-
conorms [51].

Definition 5.1 [98] A uninorm U is an increasing [0, 1]2 → [0, 1] function that satisfies the
following properties:

(UN1) Neutral element e ∈ [0, 1]: U(x, e) = U(e, x) = x, for every x ∈ [0, 1].
(UN2) Commutativity : U(x, y) = U(x, y), for every (x, y) ∈ [0, 1]2.
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(UN3) Associativity : U(U(x, y), z) = U(x, U(y, z)), for every (x, y, z) ∈ [0, 1]3.

Clearly, uninorms are special binary aggregation operators as F (0, 0) 6 F (0, e) = 0 and 1 =
F (1, e) 6 F (1, 1). They are important from a practical as well as a theoretical point of view.
In multi-criteria decision making, for example, they are used to aggregate the evaluation of
alternatives, taking into account some level of satisfaction e [98]. Uninorms with e ∈ ]0, 1[
convert the structures ([0, 1], sup, U) and ([0, 1], inf, U) into distributive semirings in the sense
of Golan [35].

Definition 5.2 [51] A triangular norm or shortly t-norm T is a uninorm with neutral element
e = 1. A triangular conorm or shortly t-conorm S is a uninorm with neutral element e = 0.

Schweizer and Sklar [85] originally introduced triangular norms in order to generalize the triangle
inequality towards probabilistic metric spaces. Nowadays, they are widely used in fuzzy set
theory.

Example 5.3 The three prototypical continuous t-norms are the minimum operator TM(x, y) =
min(x, y), the algebraic product TP(x, y) = xy and the  Lukasiewicz t-norm TL(x, y) = max(x+
y − 1, 0). The nilpotent minimum

TnM(x, y) =

{
0, if x+ y 6 1 ,

min(x, y), elsewhere ,

has been introduced by Fodor [26] and is a well-known left-continuous t-norm. The drastic
product

TD(x, y) =

{
0, if (x, y) ∈ [0, 1[2 ,

min(x, y), elsewhere ,

is a right-continuous t-norm.

The prototypical continuous t-conorms are the maximum operator SM(x, y) = max(x, y), the
probabilistic sum SP(x, y) = x+ y−x y and the  Lukasiewicz t-conorm SL(x, y) = min(x+ y, 1).
Familiar non-continuous t-conorms are

SnM(x, y) =

{
max(x, y), if x+ y < 1 ,

1, elsewhere ,

and the drastic sum

SD(x, y) =

{
1, if (x, y) ∈ ]0, 1]2 ,

max(x, y), elsewhere . △

For any given [0, e] → [0, 1] isomorphism σ and [e, 1] → [0, 1] isomorphism σ̂, we can extract
from a uninorm U a t-norm T and a t-conorm S such that

(
∀(x, y) ∈ [0, e]2

)(
U(x, y) = σ−1(T (σ(x), σ(y)))

)
, (5.1)

(∀(x, y) ∈ [e, 1]2)(U(x, y) = σ̂−1(S(σ̂(x), σ̂(y)))) . (5.2)
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On the other parts of the unit square it always holds that TM 6 U 6 SM [28]. Furthermore, it
always holds that either U(0, 1) = U(1, 0) = 0 or U(0, 1) = U(1, 0) = 1 [28].

Definition 5.4 [28] A uninorm U is called conjunctive if U(0, 1) = U(1, 0) = 0. In case
U(0, 1) = U(1, 0) = 1 we talk about a disjunctive uninorm.

Invoking the increasingness of a uninorm, every conjunctive uninorm necessarily has absorbing
element 0 and every disjunctive uninorm has absorbing element 1. Given an automorphism φ and
a strict negator N , the φ-transform of a conjunctive uninorm is always a conjunctive uninorm
and its N -transform is a disjunctive uninorm. Similarly, transforming a disjunctive uninorm
by means of φ or N yields, resp., a disjunctive or conjunctive uninorm. In particular, given
t-norm T and a t-conorm S, Tφ and SN are t-norms and TN and Sφ are t-conorms [51].

Important classes of uninorms comprise Umin and Umax [15], the representable uninorms [17, 28]
and the idempotent uninorms [12].

Example 5.5 A typical example of a uninorm is the conjunctive, binary 3 Π–operator E. It is
defined by

E(x, y) =
x y

(1 − x) (1 − y) + x y
,

for every (x, y) 6∈ {(1, 0), (0, 1)}, and E(0, 1) = E(1, 0) = 0. This 3 Π–operator is left continuous
and has neutral element e = 1

2 . Its associativity allows to extend it in a unique way to the
[0, 1]n → [0, 1] function from Remarks 3.18. The solid lines in Fig. 5.1 point out E|[0, 1

2
]2 which is

a rescaled and transformed version of the algebraic product. The dashed lines indicate E|[ 1
2
,1]2

which is a rescaled and transformed version of the probabilistic sum. Explicitly,

(
∀(x, y) ∈ [0, 1

2 ]2
)(
E(x, y) = σ−1(TP(σ(x), σ(y)))

)
,

(
∀(x, y) ∈ [12 , 1]2

)(
E(x, y) = σ̂−1(SP(σ̂(x), σ̂(y)))

)
,

with σ the [0, 1
2 ] → [0, 1] isomorphism defined by σ(x) = x/(1 − x) and σ̂ the [12 , 1] → [0, 1]

isomorphism defined by σ̂(x) = (2x− 1)/x. △

Dealing with a conjunctive uninorm U , the [0, 1]2 → [0, 1] function C, associated with contour
lines of the type Ca (see Section 4.2), can be understood as a generalization of the Boolean
implication. In this case C is usually referred to as the residual implicator of U and is denoted
as IU [14, 27, 83]. If U is disjunctive, then JU := D is known as its residual coimplicator
[11, 14, 27, 83]. Note that Ĉ = C and D̂ = D, due to the commutativity of U (Theorem 4.7).
De Baets and Mesiar [14, 16] proved that a conjunctive uninorm U is left continuous if and only
if it satisfies the generalized modus ponens: U(x, IU (x, a)) 6 a, for every (x, a) ∈ [0, 1]2. Taking
into account that U(x, IU (x, a)) = U(x,Ca(x)) the latter turns out to be a very specific case of
Theorem 4.6. Dually, if U is disjunctive, the inequality a 6 U(x,Da(x)) = U(x, JU (x, a)), for
every (x, a) ∈ [0, 1]2, is equivalent with the right continuity of U (see [14, 16] and, more generaly,
Theorem 4.6).
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Figure 5.1: The conjunctive, binary 3 Π–operator E.

5.3 Uninorm properties

Considering increasing [0, 1]2 → [0, 1] functions, we figure out how the existence of a neutral
element, commutativity and associativity can be expressed in terms of properties on contour
lines. As can be seen from Theorems 4.4 and 4.6, the contour lines, resp. Ca, Da, C̃a, and D̃a are
particularly suited to describe increasing [0, 1]2 → [0, 1] functions F that have, respectively, left-
continuous partial functions F (x, •), right-continuous partial functions F (x, •), left-continuous
partial functions F (•, x) and right-continuous partial functions F (•, x).

A. Neutral element

In the following theorem we investigate, for a fixed x ∈ [0, 1], the conditions F (x, e) = x and
F (e, x) = x.

Theorem 5.6 Consider an increasing [0, 1]2 → [0, 1] function F . For every x ∈ [0, 1] the
following assertions hold:

1. If F (x, •) is left continuous, then F (x, e) = x is satisfied for some e ∈ ]0, 1] if and only if
the equivalence e 6 Ca(x) ⇔ x 6 a holds for every a ∈ [0, 1].

2. If F (x, •) is right continuous, then F (x, e) = x is satisfied for some e ∈ [0, 1[ if and only if
the equivalence Da(x) 6 e ⇔ a 6 x holds for every a ∈ [0, 1].

3. If F (•, x) is left continuous, then F (e, x) = x is satisfied for some e ∈ ]0, 1] if and only if
the equivalence e 6 C̃a(x) ⇔ x 6 a holds for every a ∈ [0, 1].

4. If F (•, x) is right continuous, then F (e, x) = x is satisfied for some e ∈ [0, 1[ if and only if
the equivalence D̃a(x) 6 e ⇔ a 6 x holds for every a ∈ [0, 1].

Proof We prove the first assertion. The necessary condition for F (x, e) = x to hold immedi-
ately follows from Eq. (4.1) (take y = e). Conversely, if e 6 Ca(x) ⇔ x 6 a holds for every
a ∈ [0, 1], then we obtain that e 6 Cx(x). Applying Eq. (4.1) leads to F (x, e) 6 x. In case
F (x, e) < x, there exists ε ∈ ]0, x[ such that F (x, e) 6 x − ε. Hence, e 6 Cx−ε(x), which is
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equivalent with the contradiction x 6 x− ε. �

In the above theorem there are some restrictions on e. The first assertion, for example, deals
with e ∈ ]0, 1] only. For e = 0 the equivalence between F (x, 0) = x and 0 6 Ca(x) ⇔ x 6 a, for
every a ∈ [0, 1], reduces to F (x, 0) = x ⇔ x = 0. The latter is incorrect. For example, it does
not hold for F = SM. A left-continuous (resp. right-continuous) increasing function F will have
a neutral element e ∈ ]0, 1] (resp. e ∈ [0, 1[) if and only if the equivalences in assertions 1 and 3
(resp. assertions 2 and 4) are fulfilled for every x ∈ [0, 1]. In this way conditions on different
types of contour lines get paired. The next theorem will enable us to express the existence of a
neutral element in terms of a single type of contour line.

Theorem 5.7 Consider an increasing [0, 1]2 → [0, 1] function F . For every e ∈ [0, 1] the
following assertions hold:

1. If F (e, •) is left continuous, then F (e, x) = x is satisfied for every x ∈ [0, 1] if and only if
Ca(e) = a holds for every a ∈ [0, 1].

2. If F (e, •) is right continuous, then F (e, x) = x is satisfied for every x ∈ [0, 1] if and only
if Da(e) = a holds for every a ∈ [0, 1].

3. If F (•, e) is left continuous, then F (x, e) = x is satisfied for every x ∈ [0, 1] if and only if
C̃a(e) = a holds for every a ∈ [0, 1].

4. If F (•, e) is right continuous, then F (x, e) = x is satisfied for every x ∈ [0, 1] if and only
if D̃a(e) = a holds for every a ∈ [0, 1].

Proof We prove the first assertion. In case F (e, x) = x is satisfied for every x ∈ [0, 1] then
by definition x 6 Cx(e) and Cx(e) < y whenever x < y. Hence, a = Ca(e), for every a ∈ [0, 1].
Conversely, suppose that the latter is satisfied, then, Eq. (4.1) states that F (e, x) 6 x and
y < F (e, x), for every x ∈ ]0, 1] and y ∈ [0, x[. We conclude that F (e, x) = x, for every x ∈ ]0, 1],
and due to the increasingness of F also for x = 0. �

Combining Theorems 5.6 and Theorems 5.7 yields the following characterization of neutral
elements. From the definition of a neutral element it trivially follows that an increasing function
has at most one neutral element.

Corollary 5.8 Consider an increasing [0, 1]2 → [0, 1] function F . For every e ∈ [0, 1] the
following statements hold:

1. If F is left continuous and e ∈ ]0, 1] then the following assertions are equivalent:

a) F has neutral element e.
b) e 6 Ca(x) ⇔ x 6 a and Ca(e) = a hold for every (x, a) ∈ [0, 1]2.
c) e 6 C̃a(x) ⇔ x 6 a and C̃a(e) = a hold for every (x, a) ∈ [0, 1]2.

2. If F is right continuous and e ∈ [0, 1[ then the following assertions are equivalent:

a) F has neutral element e.
b) Da(x) 6 e ⇔ a 6 x and Da(e) = a hold for every (x, a) ∈ [0, 1]2.
c) D̃a(x) 6 e ⇔ a 6 x and D̃a(e) = a hold for every (x, a) ∈ [0, 1]2.
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B. Commutativity

As pointed out before, an increasing [0, 1]2 → [0, 1] function F is by definition commutative if
it satisfies the functional equation Eq. (4.6) for φ = id. In Section 4.3 we have interrelated
the commutativity of F with the id-orthosymmetry of its contour lines. The following theorem
presents some alternative mathematical formulations of id-orthosymmetry that will be impor-
tant for our further work. Recall that for a commutative function F there only exist two types
of contour lines as C̃a = Ca and D̃a = Da, for every a ∈ [0, 1] (Theorem 4.7). For this reason
we only consider here contour lines of the types Ca and Da.

Theorem 5.9 Consider an increasing [0, 1]2 → [0, 1] function F .

1. If F is left continuous and F (0, 1) = F (1, 0) = 0, then the following assertions are equiv-
alent:

a) F is commutative.
b) All contour lines Ca are id-orthosymmetrical.
c) Ca(x) < y ⇔ Ca(y) < x, for every (x, y, a) ∈ [0, 1]3.
d) id 6 Ca ◦ Ca, for every a ∈ [0, 1].

2. If F is right continuous and F (0, 1) = F (1, 0) = 1, then the following assertions are
equivalent:

a) F is commutative.
b) All contour lines Da are id-orthosymmetrical.
c) y < Da(x) ⇔ x < Da(y), for every (x, y, a) ∈ [0, 1]3.
d) Da ◦Da 6 id, for every a ∈ [0, 1].

Proof We present the proof for the first set of equivalent assertions. The equivalence between
assertions 1a and 1b follows immediately from Theorem 4.10. As F (0, 1) = 0, then Ca(0) = 1,
for every a ∈ [0, 1], and Ca is id-orthosymmetrical if and only if Ca(x) = Caid(x) = inf{t ∈
[0, 1] | Ca(t) < x} holds for every x ∈ [0, 1] (combine Theorems 1.16 and 1.17 with Properties 4.2
and 4.5). The latter is also equivalent with Ca(x) < y ⇔ Ca(y) < x, for every (x, y) ∈ [0, 1]2.
From this equivalence, putting y = Ca(x), it immediately follows that id 6 Ca ◦ Ca. �

Generalizing the involutive negators studied in [87], Esteva and Domingo [21] use the term weak
negation to refer to a decreasing [0, 1] → [0, 1] function f satisfying f(1) = 0 and id 6 f ◦ f .
They showed that weak negations are always left continuous and characterize them as, what
we call, id-orthosymmetrical, left-continuous [0, 1] → [0, 1] functions that map 1 to 0. De
Baets [12] calls a [0, 1] → [0, 1] function f that satisfies f ◦ f 6 id sub-involutive. f is super-
involutive if id 6 f ◦ f . Decreasing sub-involutive functions were used to describe conjunctive,
left-continuous, idempotent uninorms, whereas decreasing super-involutive functions allow to
characterize all disjunctive, right-continuous, idempotent uninorms [12].
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C. Associativity

Assuming some continuity and boundary conditions, we can also use contour lines to express
the associativity of F .

Theorem 5.10 For every increasing [0, 1]2 → [0, 1] function F the following assertions hold:

1. If F (x, •) is left continuous for every x ∈ [0, 1] and F (1, 0) = 0, then F is associative if
and only if

Ca(F (x, y)) = CCa(x)(y) (5.3)

holds for every (x, y, a) ∈ [0, 1]3.
2. If F (x, •) is right continuous for every x ∈ [0, 1] and F (0, 1) = 1, then F is associative if

and only if

Da(F (x, y)) = DDa(x)(y) (5.4)

holds for every (x, y, a) ∈ [0, 1]3.
3. If F (•, x) is left continuous for every x ∈ [0, 1] and F (0, 1) = 0, then F is associative if

and only if

C̃a(F (x, y)) = C̃ eCa(y)(x) (5.5)

holds for every (x, y, a) ∈ [0, 1]3.
4. If F (•, x) is right continuous for every x ∈ [0, 1] and F (1, 0) = 1, then F is associative if

and only if

D̃a(F (x, y)) = D̃ eDa(y)(x) (5.6)

holds for every (x, y, a) ∈ [0, 1]3.

Proof We prove the first assertion. Recall that the boundary condition F (1, 0) = 0 is equivalent
with F (x, 0) = 0, for every x ∈ [0, 1]. This proof makes extensive use of the first group of
equivalent assertions in Theorem 4.6. If F is associative, then we know that

Ca(F (x, y)) = sup{t ∈ [0, 1] | F (F (x, y), t) 6 a} = sup{t ∈ [0, 1] | F (x, F (y, t))) 6 a} ,

for every (x, y, a) ∈ [0, 1]3. Because F (x, F (y, t)) 6 a is equivalent with F (y, t) 6 Ca(x), we can
rewrite this equality as follows:

Ca(F (x, y)) = sup{t ∈ [0, 1] | F (y, t) 6 Ca(x)} = CCa(x)(y) .

Conversely, if Eq. (5.3) holds, we need to prove that F (F (x, y), z) = F (x, F (y, z)), for every
(x, y, z) ∈ [0, 1]3. Since

CCF (F (x,y),z)(x)(y) = CF (F (x,y),z)(F (x, y)) > z ,

we obtain that F (y, z) 6 CF (F (x,y),z)(x) and, hence, F (x, F (y, z)) 6 F (F (x, y), z). In case
F (x, F (y, z)) < F (F (x, y), z), then it follows that CF (x,F (y,z))(F (x, y)) < z. Applying Eq. (5.3)
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yields CCF (x,F (y,z))(x)(y) < z and thus CF (x,F (y,z))(x) < F (y, z). Finally, we obtain the contra-

diction F (x, F (y, z)) < F (x, F (y, z)). �

The continuity and boundary conditions are indispensable in the proof of the above theo-
rem. For example, consider the increasing function F defined by F (x, 1) = 1

2 , for every
x ∈ [0, 1], and F (x, y) = 0, elsewhere. The partial functions F (x, •) are not left continuous,
and for every a ∈ [0, 1] it holds that Ca = 1. Eq. (5.3) is then trivially fulfilled although
F is not associative (e.g. F (F (1, 1), 1) = F (1

2 , 1) = 1
2 > 0 = F (1, 1

2) = F (1, F (1, 1))). To
illustrate the importance of the boundary conditions, consider the increasing function F de-
fined by F (1, y) = 1, for every y ∈ [0, 1], and F (x, y) = 0, elsewhere. All partial functions
F (x, •) are continuous but F (1, 0) = 1. It is easily verified that F is associative. However,
C 1

2
(F (1, 0)) = C 1

2
(1) = 0 < 1 = C0(0) = CC 1

2
(1)(0), which contradicts Eq. (5.3).

Dealing with a commutative F , Eq. (5.3) also implies that CCa(x)(y) = CCa(y)(x) is satisfied for
every (x, y, a) ∈ [0, 1]3. This property can also be used to express associativity. The commuta-
tivity of F allows us to consider contour lines of the types Ca and Da only.

Theorem 5.11 For every commutative, increasing [0, 1]2 → [0, 1] function F the following
assertions hold:

1. If F is left continuous and F (1, 0) = 0, then F is associative if and only if

CCa(x)(y) = CCa(y)(x) (5.7)

holds for every (x, y, a) ∈ [0, 1]3.
2. If F is right continuous and F (0, 1) = 1, then F is associative if and only if

DDa(x)(y) = DDa(y)(x) (5.8)

holds for every (x, y, a) ∈ [0, 1]3.

Proof Assume that F is left continuous and F (1, 0) = 0. If F is associative, then Eq. (5.7)
follows immediately from Eq. (5.3). Conversely, suppose that Eq. (5.7) is satisfied. If F is
commutative but not associative, there exists a triplet (x, y, z) ∈ [0, 1]3 such that

F (y, F (x, z)) = F (F (x, z), y) < F (x, F (z, y)) = F (x, F (y, z)) .

Consider a ∈ ]F (y, F (x, z)), F (x, F (y, z))[. From Theorem 4.6 it then follows that F (x, z) 6

Ca(y) and Ca(x) < F (y, z). Applying Theorem 4.6 a second time leads to z 6 CCa(y)(x) and
CCa(x)(y) < z. We obtain the contradiction CCa(x)(y) < CCa(y)(x). �

Note that the commutativity of F plays a key role in the above theorem. For example, define a
non-commutative F by F (x, 0) = 0, for every x ∈ [0, 1], and F (x, y) = x, elsewhere. Although
F is associative, left continuous and satisfies F (1, 0) = 0, it holds that CC 1

2
(1)(

1
2) = C0(1

2) = 0 <

1 = C1(1) = CC 1
2
( 1
2
)(1).
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To conclude, we involve all characterization results from this section to obtain the following
properties for uninorms. These properties are essential for the description of rotation-invariant
t-norms (see Chapter 6).

Theorem 5.12 Consider a uninorm U .

1. If U is left continuous and conjunctive, then

a) CCa(U(x,y))(z) = CCa(U(x,z))(y), for every (x, y, z, a) ∈ [0, 1]4;
b) U(x, y) 6 Ca(z) ⇔ U(x, z) 6 Ca(y), for every (x, y, z, a) ∈ [0, 1]4.

2. If U is right continuous and disjunctive, then

a) DDa(U(x,y))(z) = DDa(U(x,z))(y), for every (x, y, z, a) ∈ [0, 1]4;
b) Da(z) 6 U(x, y) ⇔ Da(y) 6 U(x, z), for every (x, y, z, a) ∈ [0, 1]4.

Proof We prove the first group of properties. Consider arbitrary (x, y, z, a) ∈ [0, 1]4. As U
is a uninorm it clearly holds that Ca(U(U(x, y), z)) = Ca(U(U(x, z), y)). Applying Eq. (5.3)
immediately leads to assertion 1a. Furthermore, let e be the neutral element of U then the
conjunctivity of U (i.e. U(1, 0) = 0) prevents that e = 0. From Theorem 5.6 it then follows that
e 6 CCa(U(x,y))(z) is equivalent with z 6 Ca(U(x, y)). Similarly, e 6 CCa(U(x,z))(y) is equiva-
lent with y 6 Ca(U(x, z)). Taking into account Theorem 5.9 it follows from assertion 1a that
U(x, y) 6 Ca(z) is equivalent with U(x, z) 6 Ca(y). �

5.4 Uninorms that have a continuous contour line

Depending on the continuity of the partial functions U(x, •) and U(•, x) of a uninorm U , its
contour lines fulfill several of the properties stated in the previous section. Uninorms can have
discontinuous as well as continuous contour lines. For example, as can be seen in Fig. 5.1(b) all
contour lines Ca, with a ∈ ]0, 1], of the conjunctive, binary 3 Π–operator E are continuous:

Ca(x) =
a (1 − x)

x (1 − a) + a (1 − x)
, (5.9)

for every x ∈ [0, 1] such that min(x, a) < 1, and C1(1) = 1. The contour line C0 however, is
discontinuous: C0(0) = 1 and C0(x) = 0 whenever x ∈ ]0, 1]. So far it has not been revealed how
the continuity of its contour lines affects the structure of the uninorm. The continuous contour
lines of a left- or right-continuous uninorm are now characterized in the following way:

Theorem 5.13 Consider a uninorm U with neutral element e ∈ [0, 1]. The following statements
hold:

1. If U is left continuous and conjunctive, then, for every a ∈ [0, 1], the following assertions
are equivalent:
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a) Ca is continuous.
b) Ca is involutive on [Ca(1), 1].
c) U(x, y) = Ca(CCa(x)(y)), for every (x, y) ∈ [0, 1]2 such that Ca(U(x, 1)) < y.
d) Cb(x) = CCa(x)(Ca(b)), for every (x, b) ∈ [0, 1] × [Ca(1), 1].
e) U(x, y) 6 z ⇔ U(x,Ca(z)) 6 Ca(y), for every (x, y, z) ∈ [Ca(1), 1]3.

2. If U is right continuous and disjunctive, then, for every a ∈ [0, 1], the following assertions
are equivalent:

a) Da is continuous.
b) Da is involutive on [0, Da(0)].
c) U(x, y) = Da(DDa(x)(y)), for every (x, y) ∈ [0, 1]2 such that y < Da(U(0, x)).
d) Db(x) = DDa(x)(Da(b)), for every (x, b) ∈ [0, 1] × [0, Da(0)].
e) z 6 U(x, y) ⇔ Da(y) 6 U(x,Da(z)), for every (x, y, z) ∈ [0, Da(0)]3.

Proof We prove the equivalence between the first group of assertions. Consider a conjunctive
left-continuous uninorm U . Then its neutral element e must belong to ]0, 1] and C1 = 1 is
the only constant contour line of U . Assertions 1a–1e are trivially fulfilled if a = 1. Assume
now that a < 1. Throughout the proof we will make extensive use of the decreasingness of Ca
(property (D1)), Corollary 5.8 and Eq. (5.3).

1a⇔1b The commutativity of U implies the id-orthosymmetry of Ca (Theorem 5.9) and the
boundary condition U(0, 1) = 0 is equivalent with Ca(0) = 1, for every a ∈ [0, 1]. Taking into
account Theorem 2.9, we know that a contour line Ca is continuous if and only if it is involutive
on [Ca(1), Ca(0)] = [Ca(1), 1]. Since Ca(Ca(1)) = 1 also ensures that Ca(Ca(Ca(1))) = Ca(1), it
suffices that Ca is involutive on ]Ca(1), 1].

1b⇔1c If y > Ca(U(x, 1)) = Ca(U(1, x)) = CCa(1)(x), then it holds by definition that
U(x, y) > Ca(1). Under the assumption that Ca is involutive on ]Ca(1), 1] it follows that
U(x, y) = Ca(Ca(U(x, y))) = Ca(CCa(x)(y)). Conversely, suppose that assertion 1c holds. Let
x = e, then y = U(e, y) = Ca(CCa(e)(y)) = Ca(Ca(y)), for every y > Ca(1). We conclude that
Ca is involutive on ]Ca(1), 1] and hence, assertion 1b is satisfied.

1b⇔1d Consider (x, b) ∈ [0, 1] × [Ca(1), 1]. If Ca is involutive on [Ca(1), 1], then we obtain
that

Cb(x) = CCa(Ca(b))(x) = Ca(U(Ca(b), x)) = Ca(U(x,Ca(b))) = CCa(x)(Ca(b)) .

Conversely, if assertion 1d holds, then b = Cb(e) = CCa(e)(Ca(b)) = Ca(Ca(b)), for every b ∈
[Ca(1), 1].

1b⇔1e Take arbitrary (x, y, z) ∈ [Ca(1), 1]3 and assume that Ca is involutive on [Ca(1), 1].
From Theorem 4.6 it follows that U(x,Ca(z)) 6 Ca(y) is equivalent with Ca(z) 6 CCa(y)(x).
The latter can be rewritten as Ca(z) 6 Ca(U(y, x)) = Ca(U(x, y)). Whenever Ca(1) 6 U(x, y),
this inequality is equivalent with U(x, y) 6 z. However, if U(x, y) < Ca(1), then Ca(U(x, y)) =
1 (Theorem 5.9). The inequalities Ca(z) 6 Ca(U(x, y)) and U(x, y) 6 z are in that case
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trivially fulfilled. Assertion 1e is indeed true. Conversely, suppose that assertion 1e holds.
As U(Ca(1), 1) = U(1, Ca(1)) 6 a (Theorem 4.6), it holds that Ca(Ca(1)) = 1 and therefore
Ca([Ca(1), 1]) = [Ca(1), 1]. Furthermore, Ca(1) 6 Ca(e) = a. If e 6 Ca(1), we obtain from
Theorem 5.9 the contradiction 1 6 Ca(e) = a. Thus, for every x ∈ [Ca(1), 1] it holds that both
(x,Ca(x), a) and (Ca(Ca(x)), e, x) belong to [Ca(1), 1]3. Applying assertion 1e on U(x,Ca(x)) 6

a and

U(Ca(Ca(x)), Ca(x)) = U(Ca(x), Ca(Ca(x))) 6 a = Ca(e)

(Theorem 4.6) results in two inequalities:

U(x,Ca(a)) 6 Ca(Ca(x)) and Ca(Ca(x)) = U(Ca(Ca(x)), e) 6 x .

From Corollary 5.8 we know that e 6 Ca(a). Weakening the first inequality to x 6 Ca(Ca(x)),
we conclude that x = Ca(Ca(x)), for every x ∈ [Ca(1), 1]. �

Adding a single additional condition on a contour line Ca or Da, we can even give alternative
conditions for its continuity.

Theorem 5.14 Consider a uninorm U with neutral element e ∈ [0, 1]. The following statements
hold:

1. If U is left continuous and conjunctive, then, for every a ∈ [0, 1] fulfilling Ca(a) = e, Ca
is continuous if and only if

Cb(x) = y ⇔ U(x,Ca(b)) = Ca(y) (5.10)

holds for every (x, y, b) ∈ [Ca(1), 1]3 such that Cb(1) < x.
2. If U is right continuous and disjunctive, then, for every a ∈ [0, 1] fulfilling Da(a) = e, Da

is continuous if and only if

Db(x) = y ⇔ U(x,Da(b)) = Da(y) (5.11)

holds for every (x, y, b) ∈ [0, Da(0)]3 such that x < Db(0).

Proof We prove the first statement. Throughout the reasonings we make extensive use of
Eq. (5.3). Let U be a left-continuous, conjunctive uninorm such that Ca(a) = e, for some
a ∈ [0, 1]. If Ca is continuous, then assertion 1c of Theorem 5.13 implies that U(x,Ca(b)) =
U(Ca(b), x) = Ca(CCa(Ca(b))(x)), for every (x, b) ∈ [0, 1]2 such that CCa(Ca(b))(1) = Ca(U(Ca(b), 1)) <
x. Taking into account the involutivity of Ca on [Ca(1), 1] (assertion 1b of Theorem 5.13),
we immediately obtain Eq. (5.10). Note that Ca(1) 6 Ca(U(Ca(b), x)) = Cb(x) follows from
the decreasingness of Ca (property (D1)). Conversely, suppose that Eq. (5.10) is satisfied.
Then also U(x,Ca(b)) = Ca(Cb(x)), for every (x, b) ∈ [Ca(1), 1]2 such that Cb(1) < x. Re-
call that Ca(1) 6 Ca(e) = a (property (D1) and Corollary 5.8). Putting b = a leads to
U(x,Ca(a)) = Ca(Ca(x)), for every x > Ca(1). We obtain that Ca is involutive on ]Ca(1), 1]
by expressing that Ca(a) = e. The latter is equivalent with the involutivity of Ca on [Ca(1), 1].
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Due to Theorem 5.13, this concludes the proof. �

Note that for a = 1 the condition C1(1) = e can be omitted as C1 = 1 and there does not
exist an appropriate (x, y, b) ∈ [C1(1), 1]3 such that 1 = C1(1) = Cb(1) < x = 1. In a similar
way D0(0) = e is superfluous when dealing with the contour line D0. However in all other
cases the additional conditions are absolutely necessary. For example, consider a left-continuous
and conjunctive uninorm U and let a < 1. If we want that U(x,Ca(a)) = Ca(Ca(x)), for every
x > Ca(1), is equivalent with the involutivity of Ca on ]Ca(1), 1] then U(x,Ca(a)) = x must hold
for every x ∈ ]Ca(1), 1]. Because Ca(1) < e (Corollary 5.8) we get that Ca(a) = U(e, Ca(a)) = e.

The 3 Π–operator E is an example of a uninorm satisfying the above theorem. From Eq. (5.9)
it is easily obtained that Ca(a) = 1

2 , for every a ∈ ]0, 1[. Recall that 1
2 is indeed the neutral

element of E and that all its contour lines Ca, with a ∈ ]0, 1], are continuous.



CHAPTER 6

Left-continuous t-norms

6.1 Introduction

Given the typical block structure of a uninorm (see Eqs. (5.1) and (5.2)), revealing the geo-
metrical structure of uninorms that have a continuous contour line usually involves the study
of t-norms or t-conorms that have a continuous contour line. As illustrated in Section 5.2,
every t-conorm can be understood as the N -transform of a t-norm, with N some strict negator.
Therefore, it is essential to first fully understand how the existence of a continuous contour line
affects the geometrical structure of a t-norm.

In most studies dealing with t-norms, it is required that the t-norms in question should be left
continuous. In monoidal t-norm based logic (MTL logic), for example, where the implication is
defined as the residuum of the conjunction, left-continuous t-norms ensure the definability of the
t-norm-based residual implicator [23]. Despite their importance, until recently the knowledge
about the structure of left-continuous t-norms was rather limited. Various construction methods
have been proposed for creating left-continuous t-norms (see e.g. [10, 41, 47, 51, 74]). Most of
these methods start from a known t-norm on which a bunch of operations such as rotations,
annihilations, rescalings and embeddings is performed. In other cases, multiple t-norms are
merged into a brand new t-norm. Unfortunately, these construction methods were only elabo-
rated to create restricted classes of left-continuous t-norms. By studying the contour lines of a
left-continuous t-norm T we will give the description of t-norms a new impetus.

We show that the rotation invariance of a left-continuous t-norm T is equivalent with the conti-
nuity and with the involutivity of its contour line C0. In particular, this contour line coincides
with the residual negator of T and, therefore, rotation-invariant t-norms are of great interest to
people working on involutive monoidal t-norm based logic (IMTL logic) [22, 56] and fuzzy type
theory [72]. Furthermore, we introduce all the necessary machinery for a more profound study
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of the structure of these rotation-invariant t-norms (see Chapters 7 and 8) and reformulate the
known results [42, 43, 45, 46, 47] into our framework. This will further on enable a comparative
study between the new and old approaches.

6.2 Continuous t-norms

Dealing with left-continuous t-norms, only the subclass of continuous t-norms has been fully
characterized (see e.g. [51]). In particular, this class comprises the three prototypical t-norms:
the minimum operator TM, the algebraic product TP and the  Lukasiewicz t-norm TL.

Definition 6.1 Let I be a countable index set, (]ai, ei[)i∈I be a family of non-empty, pairwise
disjoint, open subintervals of [0, 1], (σi)i∈I be a family of isomorphisms (σi : [ai, ei] → [0, 1]) and
(Ti)i∈I be a family of increasing [0, 1]2 → [0, 1] functions satisfying Ti 6 TM. The increasing
[0, 1]2 → [0, 1] function T defined by

T (x, y) =

{
σ−1
i [Ti (σi[x], σi[y])] , if (x, y) ∈ [ai, ei]

2 ,

min(x, y), elsewhere ,

is called the ordinal sum of the summands 〈ai, ei, σi, Ti〉, i ∈ I. It is shortly written as T =
(〈ai, ei, σi, Ti〉)i∈I . In case every isomorphism σi equals the linear rescaling function ςi from
[ai, ei] to [0, 1] (i.e. ςi(x) = (x − ai)/(ei − ai), for every x ∈ [ai, ei]), we use the notation
T = (〈ai, ei, Ti〉)i∈I .

By means of Theorem 3.3, it is easily verified that

〈ai, ei, σi, Ti〉 =
〈
ai, ei, (Ti)σi◦ς−1

i

〉
, (6.1)

for every i ∈ I. Dealing with a family of t-norms (Ti)i∈I , our definition of ordinal sums is
therefore equivalent with the definition presented in [51], where the t-norms Ti are always linearly
rescaled. However, our approach will prove to be indispensable for the construction of De Morgan
triplets (Section 9.2). Because the φ-transform Tφ, with φ an automorphism, of a t-norm T
always is a t-norm (see Section 5.2), the right-hand side of Eq. (6.1) is indeed an ordinal sum of
t-norms.

Theorem 6.2 The ordinal sum of a family of t-norms is always a t-norm.

Proof It is well known (see e.g. [29] and [51]) that, dealing with linear rescaling functions only,
the ordinal sum of a family of t-norms is always a t-norm. From Eq.(6.1) it then follows that
the latter also holds when dealing with an arbitrary family of rescaling functions. �

In the literature, several other types of ordinal sums using a more general family of increasing
[0, 1]2 → [0, 1] functions instead of a family of t-norms have been studied (see e.g. [44], [52]
and [84]). However, to describe the whole class of continuous t-norms the above definition is
sufficient.
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Definition 6.3 [51] A t-norm T is called Archimedean if for every (x, y) ∈ ]0, 1[2 there exists
n ∈ N0 such that

T (. . . T (T (︸ ︷︷ ︸
n times

x, x), x) . . . , x) < y .

Based on the diagonal δT of T (i.e. δT (x) := T (x, x)), we recall in the following theorem a more
practical method for determining whether a t-norm is Archimedean or not.

Theorem 6.4 [51] A t-norm T is Archimedean if and only if δT (x) < x, for every x ∈ ]0, 1[ and
whenever limxցx0 δT (x) = x0 for some x0 ∈ ]0, 1[, there exists y0 ∈ ]x0, 1[ such that δT (y0) = x0.

The Archimedean, continuous t-norms are then nothing else than transformations of the alge-
braic product TP or of the  Lukasiewicz t-norm TL.

Theorem 6.5 [51] A continuous t-norm T is Archimedean if and only if there exists an auto-
morphism φ such that T = (TP)φ or T = (TL)φ.

All continuous t-norms are characterized in the following way.

Theorem 6.6 [51] A t-norm T is continuous if and only if T = TM or T is the ordinal sum of
continuous Archimedean t-norms.

Furthermore, the Archimedean property forces a left-continuous t-norm to be continuous.

Theorem 6.7 [54] Every Archimedean, left-continuous t-norm is continuous.

6.3 The companion and zooms

Every left-continuous, increasing function F that satisfies F (0, 1) = F (1, 0) = 0 (i.e. that has
absorbing element 0) can be fully described by contour lines of the types Ca and C̃a (Theo-
rem 4.6). In particular, it holds that Ca = C̃a whenever F is commutative (Theorem 4.7). As
we intend to describe left-continuous t-norms by means of their contour lines, we mainly con-
sider contour lines of the type Ca only. The results from Section 5.3 can be used to express the
t-norm properties of F . For a left-continuous t-norm T , taking into account the correspondence
between its residual implicator IT and its contour lines Ca, the contour line C0 coincides with the
residual negator NT , defined by NT (x) := IT (x, 0). Furthermore, we recognize some well-known
properties among the results of Section 5.3. Equation (5.3) coincides with the portation law (i.e.
IT (x, IT (y, z)) = IT (T (x, y), z), for every (x, y, z) ∈ [0, 1]3) [40] and Eq. (5.7) coincides with the
exchange principle (i.e. IT (x, IT (y, z)) = IT (y, IT (x, z)), for every (x, y, z) ∈ [0, 1]3) [11, 15, 16].
The associativity of a left-continuous t-norm is therefore established by the portation law as
well as by the exchange principle. Note that contour lines of a (left-)continuous t-norm are also
called level functions [53]. Dealing with a left-continuous t-norm T , Jenei [48] has provided suf-
ficient conditions on its level functions by which T equals the  Lukasiewicz t-norm TL, resp. the
algebraic product TP. From now on, we assume full familiarity with the results from Section 4.2.
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Unfortunately, contour lines are inadequate to give insight into the geometrical structure of
left-continuous t-norms. In this section we present two additional tools that describe F in an
alternative way. They will prove to be indispensable for the decomposition and construction
of rotation-invariant t-norms. As our focus lies on revealing the (underlying) structure of left-
continuous t-norms, we do not give here a full description of the new concepts but merely present
those results that are necessary for further use.

The companion

A first useful tool for studying an increasing [0, 1]2 → [0, 1] function F is its companion Q

Definition 6.8 Let F be an increasing [0, 1]2 → [0, 1] function. The companion of F is the
[0, 1]2 → [0, 1] function Q defined by

Q(x, y) = sup{t ∈ [0, 1] | Ct(x) 6 y} .

The following properties provide better insight into the geometrical structure of Q.

Property 6.9 [64] The companion Q of an increasing [0, 1]2 → [0, 1] function F satisfies the
following properties:

(E1) Q is increasing in both arguments.
(E2) Q(x, y) = inf{F (x, u) | u ∈ ]y, 1]}, with inf ∅ = 1.
(E3) F (x, y) 6 Q(x, y), for every (x, y) ∈ [0, 1]2.
(E4) Q(x, •) is right continuous for every x ∈ [0, 1].
(E5) If F has neutral element 1, then Q(x, y) 6 TM(x, y), for every (x, y) ∈ [0, 1] × [0, 1[.
(E6) If F is a left-continuous t-norm, then Q(x, y) < Ca(F (u, v)) ⇒ Q(v, y) 6 Ca(F (u, x)),

for every (x, y, u, v, a) ∈ [0, 1]5.

Proof (E1): Since Ct is decreasing, the first property is trivially fulfilled.

(E2): It is clear that Q(x, 1) = 1, for every x ∈ [0, 1]. Hence, it suffices to show that

inf{F (x, u) | u ∈ ]y, 1]} = sup{t ∈ [0, 1] | Ct(x) 6 y} = inf{t ∈ [0, 1] | y < Ct(x)} ,

for every (x, y) ∈ [0, 1] × [0, 1[. Whenever u ∈ ]y, 1] it holds that F (x, y) 6 F (x, u), which leads
to y < CF (x,u)(x). We conclude that {F (x, u) | u ∈ ]y, 1]} ⊆ {t ∈ [0, 1] | y < Ct(x)} and hence

inf{t ∈ [0, 1] | y < Ct(x)} 6 inf{F (x, u) | u ∈ ]y, 1]} .

Suppose now that the above inequality is strict, then there exists a t < inf{F (x, u) | u ∈
]y, 1]} such that y < Ct(x). Consequently, one can find a u ∈ ]y, 1] such that F (x, u) 6 t, a
contradiction.

(E3): Clearly, F (x, 1) 6 1 = Q(x, 1), for every x ∈ [0, 1]. Consider arbitrary (x, y) ∈ [0, 1] ×
[0, 1[. From property (E2) it follows that F (x, y) 6 Q(x, y).
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(E4): To prove that Q(x, •) is right continuous for every x ∈ [0, 1], we need to show that for every
(x, y) ∈ [0, 1]×[0, 1[ and every ε ∈ ]0, 1] there exists a δ ∈ ]y, 1] such that 0 6 Q(x, z)−Q(x, y) < ε
whenever z ∈ ]y, δ[. Taking into account property (E2) we know that for every ε ∈ ]0, 1] there
exists a δ ∈ ]y, 1] such that 0 6 F (x, δ) − Q(x, y) < ε. Moreover, every z ∈ ]y, δ[ fulfills
Q(x, y) 6 Q(x, z) 6 F (x, δ) and, hence, 0 6 Q(x, z) −Q(x, y) < ε.

(E5): Take arbitrary (x, y) ∈ [0, 1] × [0, 1[. Then, y < 1 = Cx(x) implies that Q(x, y) 6 x and
y < y + ε = Cy+ε(1) 6 Cy+ε(x), for every ε ∈ ]0, 1 − y], ensures that Q(x, y) 6 y.

(E6): Consider arbitrary (x, y, u, v, a) ∈ [0, 1]5. If Q(x, y) < Ca(F (u, v)), then it holds by defin-
ition that y < CCa(F (u,v))(x). From Theorem 5.12, we know that CCa(F (u,v))(x) = CCa(F (u,x))(v).
Hence, y < CCa(F (u,x))(v) which leads to Q(v, y) 6 Ca(F (u, x)). �

Property (E2) allows to straightforwardly construct the graph of Q (i.e. {(x, y,Q(x, y)) | (x, y) ∈
[0, 1]2}) from the graph of F (i.e. {(x, y, F (x, y)) | (x, y) ∈ [0, 1]2}). First, we need to convert
the partial functions F (x, •) into right-continuous functions by adapting the value in the dis-
continuity points. Further, as Q(x, 1) = 1 must hold for every x ∈ [0, 1], we replace the set
{(x, 1, F (x, 1)) | x ∈ [0, 1]} by the set {(x, 1, 1) | x ∈ [0, 1]}. Clearly, Q(x, y) = F (x, y) whenever
F (x, •) is right continuous in y ∈ [0, 1[. Note that Q(x, 1) = 1 and Q(1, x) = x prevent Q from
being commutative.

Every left-continuous, increasing binary function F that has absorbing element 0 is totally
determined by its companion Q. For a left-continuous t-norm T , the definition of Q is struc-
turally identical to the definition of the residual implicator IT (= C). Both functions map a
pair (x, y) ∈ [0, 1]2 to sup{t ∈ [0, 1] | F (x, t) 6 y}, where F = T when defining IT = C and
F = IT = C when defining Q.

Zooms

Every increasing [0, 1]2 → [0, 1] function F is trivially described by its associated set of (a, b)-
zooms.

Definition 6.10 Let F be an increasing [0, 1]2 → [0, 1] function and take (a, b) ∈ [0, 1]2 such
that a < b and F (b, b) 6 b. Consider an [a, b] → [0, 1] isomorphism σ. The (a, b)-zoom of F is
the [0, 1]2 → [0, 1] function F (a,b) defined by

F (a,b)(x, y) = σ
[
max

(
a, F (σ−1[x], σ−1[y])

)]
.

If b = 1 we simply talk about the a-zoom F a of F .

Geometrically, the graph of F (a,b) is determined by rescaling the set {(x, y, F (x, y)) | (x, y) ∈
[a, b]2 ∧ a < F (x, y)} (zoom in) into the unit cube (zoom out). Figure 6.1 illustrates this
procedure for the three prototypical t-norms TM, TP and TL, with a = 1

4 , b = 3
4 and σ = ς,

where ς is the linear rescaling of [a, b] into [0, 1]. This linear rescaling function is the prototype of
an [a, b] → [0, 1] isomorphism σ. Unless stated differently, we will always use it for our examples.
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Figure 6.1: The (1
4 ,

3
4)-zooms of TM, TP and TL.



6.3. The companion and zooms 91

Note that whenever F (b, b) 6 a the function F is trivially constant: F (a,b)(x, y) = 0, for every
(x, y) ∈ [0, 1]2.

The boundary condition F (b, b) 6 b is absolutely necessary when defining (a, b)-zooms. It ensures
that F (σ−1[x], σ−1[y]) 6 b, for every (x, y) ∈ [0, 1]2. For b = 1 the boundary condition reduces
to F (1, 1) 6 1 such that the a-zoom of F is defined for every a < 1. By definition, F 0 = Fσ−1 ,
where Fσ−1 denotes the σ−1-transform of F . Furthermore, all zooms of the (a, b)-zoom F (a,b)

of F can be interpreted as zooms of the original function F itself.

Theorem 6.11 Consider an increasing [0, 1]2 → [0, 1] function F . Take (a, b, c, d) ∈ [0, 1]4,
such that a < b, c < d and F (b, b) 6 b. Let σ be an arbitrary [a, b] → [0, 1] isomorphism and
σ̃ be an arbitrary [c, d] → [0, 1] isomorphism. If F (σ−1[d], σ−1[d]) 6 σ−1[d], then (F (a,b))(c,d) =
F (σ−1[c],σ−1[d]), where σ is used to compute F (a,b), σ̃ is used to compute (F (a,b))(c,d) and σ̃ ◦ σ is
used to compute F (σ−1[c],σ−1[d]).

Proof Clearly, F (σ−1[d], σ−1[d]) 6 σ−1[d] implies F (a,b)(d, d) = σ[max(a, F (σ−1[d], σ−1[d]))] 6

σ[max(a, σ−1[d])] = d. By definition, we immediately obtain

(F (a,b))(c,d)(x, y) = σ̃
[
max

(
c, F (a,b)

(
σ̃−1[x], σ̃−1[y]

))]

= σ̃
[
σ
[
max

(
σ−1[c],max

(
a, F

(
σ−1[σ̃−1[x]], σ−1[σ̃−1[y]]

)))]]

= σ̃
[
σ
[
max

(
σ−1[c], F

(
σ−1[σ̃−1[x]], σ−1[σ̃−1[y]]

))]]
= F (σ−1(c),σ−1(d))(x, y) ,

for every (x, y) ∈ [0, 1]2 �

Dealing with an increasing function F that satisfies F 6 TM and whose (a, b)-zoom F (a,b) has
neutral element 1, we can use the above theorem to give F (a,c) the structure of an ordinal sum
for every c ∈ ]b, 1].

Corollary 6.12 Consider an increasing [0, 1]2 → [0, 1] function F satisfying F 6 TM. Take
(a, b, c) ∈ [0, 1]2 such that a < b < c. Let σ̃ be an arbitrary [a, b] → [0, 1] isomorphism, σ̂ be an
arbitrary [b, c] → [0, 1] isomorphism and σ be an arbitrary [a, c] → [0, 1] isomorphism. If F (a,b)

has neutral element 1 then

F (a,c) =
(〈

0, σ[b], σ̃ ◦ σ−1, F (a,b)
〉
,
〈
σ[b], 1, σ̂ ◦ σ−1, F (b,c)

〉)
, (6.2)

where σ̃ is used to compute F (a,b), σ̂ is used to compute F (b,c) and σ is used to compute F (a,c).

Proof The boundary condition F 6 TM allows us to use Theorem 6.11. It follows that
(F (a,c))(0,σ[b]) = (F (a,c))(σ[a],σ[b]) = F (a,b) and (F (a,c))(σ[b],1) = (F (a,c))(σ[b],σ[c]) = F (b,c), where
σ̃ ◦ σ−1 is used to compute (F (a,c))(0,σ[b]) and σ̂ ◦ σ−1 is used to compute (F (a,c))(σ[b],1). In
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particular,

F (a,c)(x, y) = max
(

0, F (a,c)(x, y)
)

= σ
[
σ̃−1

[
(F (a,c))(0,σ[b])

(
σ̃[σ−1[x]], σ̃[σ−1[y]]

)]]

= σ
[
σ̃−1

[
F (a,b)

(
σ̃[σ−1[x]], σ̃[σ−1[y]]

)]]
, (6.3)

for every (x, y) ∈ [0, σ(b)]2. As F (a,b) has neutral element 1 the latter implies that

x = σ
[
σ̃−1

[
F (a,b)

(
σ̃[σ−1[x]], 1

)]]
= F (a,c)(x, σ[b])

x = σ
[
σ̃−1

[
F (a,b)

(
1, σ̃[σ−1[x]]

)]]
= F (a,c)(σ[b], x)

for every x ∈ [0, σ(b)]. Furthermore, since F 6 TM it holds that

x = F (a,c)(x, σ[b]) 6 F (a,c)(x, y) 6 σ
[
max

(
a,min

(
σ−1[x], σ−1[y]

))]
= min(x, y) = x (6.4)

x = F (a,c)(σ[b], x) 6 F (a,c)(y, x) 6 σ
[
max

(
a,min

(
σ−1[y], σ−1[x]

))]
= min(x, y) = x (6.5)

for every (x, y) ∈ [0, σ(b)] × [σ(b), 1]. Invoking the equality F (a,c)(σ[b], σ[b]) = σ[b] and Theo-
rem 6.11, we can compute F (a,c)|[σ(b),1]2 :

F (a,c)(x, y) = max
(
σ[b], F (a,c)(x, y)

)
= σ

[
σ̂−1

[
(F (a,c))(σ[b],1)

(
σ̂[σ−1[x]], σ̂[σ−1[y]]

)]]

= σ
[
σ̂−1

[
F (b,c)

(
σ̂[σ−1[x]], σ̂[σ−1[y]]

)]]
, (6.6)

for every (x, y) ∈ [σ(b), 1]2. Combining Eqs. (6.3)–(6.6) yields Eq. 6.2 (Definition 6.1). �

Note that F 6 TM prevents F (a,b) from having a neutral element e < 1. Indeed 1 = F (a,b)(1, e) =
σ̃[max(a, F (b, σ̃−1[e]))] 6 e. For an arbitrary increasing function F , its (a, b)-zoom F (a,b) is
totally determined by F |[a,b]2 . Its contour lines and companion can be computed from the contour

lines and companion of F . In case F (a,b) has neutral element 1, there exists a straightforward
relationship between its contour lines and those of the original function F .

Property 6.13 Consider an increasing [0, 1]2 → [0, 1] function F . Take (a, b) ∈ [0, 1]2, such
that a < b and F (b, b) 6 b. Let σ be an arbitrary [a, b] → [0, 1] isomorphism. If the (a, b)-

zoom F (a,b) has contour lines C
(a,b)
d and companion Q(a,b), then the following properties hold:

(F1) F (a,b) is increasing in both arguments.

(F2) Q(a,b)(x, y) = σ[Q(σ−1[x], σ−1[y])], for every (x, y) ∈ [0, 1]2 such that C
(a,b)
0 (x) 6 y < 1.

(F3) If F is left continuous, then F (a,b) is left continuous.

(F4) C
(a,b)
d (x) = σ[Cσ−1[d](σ

−1[x])] holds if

(F4a) b = 1, F (a,1)(1, 0) = 0 and (x, d) ∈ [0, 1]2;
(F4b) F (a,b) has neutral element 1 and (x, d) ∈ [0, 1]2 such that d < x.

(F5) If F is associative and max(F (a, b), F (b, a)) 6 a, then F (a,b) is also associative.
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Proof (F1): The increasingness of F (a,b) is an immediate consequence of the increasingness
of F .

(F2): Consider arbitrary (x, y) ∈ [0, 1]2 satisfying C
(a,b)
0 (x) 6 y < 1. Using property (E2),

Q(a,b)(x, y) is totally determined as follows

Q(a,b)(x, y) = inf{F (a,b)(x, t) | t ∈ ]y, 1]}
= inf{σ[max(a, F (σ−1[x], σ−1[t]))] | t ∈ ]y, 1]}
= inf{σ[max(a, F (σ−1[x], s))] | s ∈ ]σ−1(y), b]}
= σ[inf{max(a, F (σ−1[x], s)) | s ∈ ]σ−1(y), b]}] .

Since C
(a,b)
0 (x) 6 y implies that σ[a] = 0 < F (a,b)(x, t), for every t ∈ ]y, 1], it holds that

a < F (σ−1[x], s) whenever s ∈ ]σ−1(y), b]. Therefore,

Q(a,b)(x, y) = σ[inf{F (σ−1[x], s) | s ∈ ]σ−1(y), b]}]

= σ[inf{F (σ−1[x], s) | s ∈ ]σ−1(y), 1]}] = σ[Q(σ−1[x], σ−1[y])] ,

which finishes the proof.

(F3): As F (a,b) is composed of F and several increasing continuous functions, the continuity of
F is passed on to F (a,b).

(F4a): Comparing the contour lines of F and F (a,1) we obtain that

C
(a,1)
d (x) = sup{t ∈ [0, 1] | F (a,1)(x, t) 6 d}

= sup{t ∈ [0, 1] | σ[max(a, F (σ−1[x], σ−1[t]))] 6 d}
= sup{t ∈ [0, 1] | F (σ−1[x], σ−1[t]) 6 σ−1[d]}
= σ[sup{s ∈ [a, 1] | F (σ−1[x], s) 6 σ−1[d]}] ,

for every (x, d) ∈ [0, 1]2. As F (σ−1[x], a) 6 F (1, a) 6 σ−1[F (a,1)(1, 0)] = a 6 σ−1[d], we can
rewrite the latter as

C
(a,1)
d (x) = σ[sup{s ∈ [0, 1] | F (σ−1[x], s) 6 σ−1[d]}] = σ[Cσ−1[d](σ

−1[x])] .

(F4b): If F (a,b) has neutral element 1, then max(a, F (σ−1[x], b)) = max(a, F (b, σ−1[x])) =
σ−1[x], for every x ∈ [0, 1]. The latter is clearly equivalent with F (u, b) = F (b, u) = u, for every
u ∈ ]a, b]. Take arbitrary (x, d) ∈ [0, 1]2 satisfying d < x. Following the reasonings in the proof
of property (F4a), we know that

C
(a,b)
d (x) = σ[sup{s ∈ [a, b] | F (σ−1[x], s) 6 σ−1[d]}] .

As F (σ−1[x], a) 6 F (b, a) 6 a 6 σ−1[d] and σ−1[d] < σ−1[x] = F (σ−1[x], b), we can rewrite the
latter as

C
(a,b)
d (x) = σ[sup{s ∈ [0, 1] | F (σ−1[x], s) 6 σ−1[d]}] = σ[Cσ−1[d](σ

−1[x])] .
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(F5): Explicitly, we need to prove that

max
(
a, F

(
max(a, F (σ−1[x], σ−1[y])), σ−1[z]

))
= max

(
a, F

(
σ−1[x],max(a, F (σ−1[y], σ−1[z]))

))

holds for every (x, y, z) ∈ [0, 1]3. Taking into account the increasingness of F we can rewrite
this equality as follows:

max
(
a, F (a, σ−1[z]), F

(
F (σ−1[x], σ−1[y]), σ−1[z]

))

= max
(
a, F (σ−1[x], a), F

(
σ−1[x], F (σ−1[y], σ−1[z])

))
.

The latter is always fulfilled since F is associative, F (a, σ−1[z]) 6 F (a, b) 6 a and F (σ−1[x], a) 6

F (b, a) 6 a. �

In accordance to Definition 6.10 we will usually denote the contour lines of F a(= F (a,1)) by
Ca(= C(a,1)) and its companion by Qa(= Q(a,1)). Zooms are extremely suited to study an
increasing function F that satisfies F 6 TM. The restrictions F (b, b) 6 b (Definition 6.10),
F (1, a) 6 a (property (F4b)) and max(F (a, b), F (b, a)) 6 a (property (F5)) are then trivially
fulfilled.

Definition 6.14 [42] A t-subnorm T is an associative, commutative, increasing [0, 1]2 → [0, 1]
function that satisfies T 6 TM.

Clearly, all t-norms are t-subnorms. The monotonicity and neutral element e of a uninorm U
imply that id 6 U(•, 1) and id 6 U(1, •). Therefore, U can only be a t-subnorm if id = U(•, 1) =
U(1, •) and, hence, U must be a t-norm. Due to its boundary condition we can construct all
(a, b)-zooms (a < b) of every t-subnorm. Moreover, all these (a, b)-zooms are t-subnorms as well.

Corollary 6.15 Consider (a, b) ∈ [0, 1]2 such that a < b. The (a, b)-zoom of a t-subnorm is a
t-subnorm and the a-zoom of a t-norm is a t-norm.

Proof Let σ be the [a, b] → [0, 1] isomorphism used to construct the (a, b)-zoom of a t-
subnorm T . The increasingness of T (a,b) follows from property (F1). The commutativity of
T (a,b) and T a is easily verified. Furthermore, as T 6 TM it holds that

T (a,b)(x, y) 6 σ
[
max

(
a,min(σ−1[x], σ−1[y])

)]
= σ

[
min(σ−1[x], σ−1[y])

]
= TM(x, y) ,

for every (x, y) ∈ [0, 1]2. Taking into account property (F5) it now follows that T (a,b) is a
t-subnorm. In case b = 1 and T is a t-norm, σ[1] = 1 is obviously the neutral element of T a. �

Example 6.16 All three (1
4 ,

3
4)-zooms in Fig. 6.1 are t-subnorms. In contrast to Fig. 6.1(c),

Figs. 6.1(f) and 6.1(i) are are not t-norms. In general, every (a, b)-zoom of the minimum oper-
ator TM equals TM itself. However, no (a, b)-zoom, with b < 1, of the algebraic product TP or
of the  Lukasiewicz t-norm TL can be a t-norm. The latter follows from the observation that the
(a, b)-zoom T (a,b) of a t-subnorm T has neutral element 1 whenever T (x, b) = T (b, x) = x, for
every x ∈ ]a, b]. Dealing with TP or TL this only occurs for b = 1. △
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6.4 A continuous contour line

Equipped with contour lines, the companion and zooms, we can now shed new light on the overall
structure of left-continuous t-norms and in particular of rotation-invariant t-norms. Property 4.5
states that the contour lines of a left-continuous t-norm T must be left continuous. Conversely,
one could wonder how the continuity of a contour line Ca of T affects the structure of the t-norm
itself. T-norms can have continuous as well as discontinuous contour lines. For example, as can
be seen in Fig. 6.1(e), every contour line but C0 of the algebraic product TP is continuous.
The  Lukasiewicz t-norm TL is an example of a t-norm having only continuous contour lines
(see Fig. 6.1(h)). Every contour line but C1 of the minimum operator TM is discontinuous (see
Fig. 6.1(b)). Merging Theorems 5.13 and 5.14 yields five assertions expressing the continuity of
a contour line Ca. Considering the companion Q of T , we can extend this set to seven assertions
ensuring the continuity of Ca.

Theorem 6.17 For a left-continuous t-norm T , the following assertions are equivalent:

(G1) Ca is continuous.
(G2) Ca is involutive on [a, 1].
(G3) T (x, y) = Ca(CCa(x)(y)), for every (x, y) ∈ [0, 1]2 fulfilling Ca(x) < y.
(G4) Cb(x) = CCa(x)(Ca(b)), for every (x, b) ∈ [0, 1] × [a, 1].
(G5) T (x, y) 6 z ⇔ T (x,Ca(z)) 6 Ca(y), for every (x, y, z) ∈ [a, 1]3.
(G6) Cb(x) = y ⇔ T (x,Ca(b)) = Ca(y), for every (x, y, b) ∈ [a, 1]3 such that b < x.
(G7) Q(x, y) < Ca(z) ⇔ Q(x, z) < Ca(y), for every (x, y, z) ∈ [a, 1] × [a, 1[2.
(G8) Q(x, y) = Ca(DCa(y)(x)), for every (x, y) ∈ [0, 1]2 such that Ca(x) 6 y < 1.

Proof Taking into account that T has neutral element 1, the equivalence between asser-
tions (G1)–(G5) is obtained from Theorem 5.13. The neutral element also ensures that
Ca(a) = 1 (Corollary 5.8). Theorem 5.14 then establishes the equivalence between asser-
tions (G1) and (G6). This leaves us to prove that also assertions (G7) and (G8) ensure
the continuity of Ca.

(G2)⇔(G7): Due to the symmetry of assertion (G7) in the variables y and z, it suffices to
prove the equivalence from left to right. Suppose that Ca is involutive on [0, a] and Q(x, y) <
Ca(z) holds for some (x, y, z) ∈ [a, 1] × [a, 1[2. Taking into account the continuity of Ca and
property (E2), we know that there exists ε ∈ ]0,min(1−y, 1−z)[ such that T (x, y+ε) < Ca(z+ε).
Theorem 5.12 ensures that T (x, z + ε) 6 Ca(y + ε). Since every involutive decreasing function
on [a, 1] is necessarily strictly decreasing we get from property (E2) that Q(x, z) 6 T (x, z+ε) 6

Ca(y + ε) < Ca(y). Conversely, if the equivalence Q(x, y) < Ca(z) ⇔ Q(x, z) < Ca(y) holds
for every (x, y, z) ∈ [a, 1] × [a, 1[2, then in particular y = Q(1, y) < Ca(Ca(y)) ⇔ Ca(y) =
Q(1, Ca(y)) < Ca(y), for every y ∈ ]a, 1[. We conclude that Ca(Ca(y)) 6 y, for every y ∈ ]a, 1[
(Ca(y) < 1 due to Corollary 5.8). From Theorem 5.9 we also know that y 6 Ca(Ca(y)), for
every y ∈ [0, 1]. Hence, Ca(Ca(y)) = y, for every y ∈ ]a, 1[. Note that Ca(Ca(a)) = Ca(1) = a
and Ca(Ca(1)) = 1 always hold (Corollary 5.8).
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(G2)⇔(G8): Suppose that Ca is involutive on [0, a] and consider arbitrary (x, y) ∈ [0, 1]2

fulfilling Ca(x) 6 y < 1. From assertion (G4) and Theorem 5.10 it then follows that

Q(x, y) = sup{t ∈ [a, 1] | Ct(x) 6 y} = sup{t ∈ [a, 1] | CCa(x)(Ca(t)) 6 y}
= Ca(inf{s ∈ [a, 1] | CCa(x)(s) 6 y}) = Ca(inf{s ∈ [a, 1] | Ca(T (x, s)) 6 y}) .

Because y < 1, Ca(T (x, s)) 6 y can only hold when a < T (x, s) (Corollary 5.8). Also, a =
Ca(1) 6 Ca(x) 6 y. Hence, applying assertion (G2), the inequalities Ca(T (x, s)) 6 y and
Ca(y) 6 T (x, s) become equivalent. Note that Ca(y) 6 T (x, s) implies a 6 s as a 6 Ca(y) and
T (x, s) 6 s. Therefore,

Q(x, y) = Ca(inf{s ∈ [0, 1] | Ca(y) 6 T (x, s)}) = Ca(DCa(y)(x)) .

Conversely, suppose that Q(x, y) = Ca(DCa(y)(x)) holds for every (x, y) ∈ [0, 1]2 such that
Ca(x) 6 y < 1. Putting x = 1 leads to y = Q(1, y) = Ca(DCa(y)(1)) = Ca(Ca(y)), for every
y ∈ [a, 1[. Invoking Corollary 5.8 it also holds that 1 = Ca(a) = Ca(Ca(1)). �

In case a = 0, it is easily verified that the additional conditions C0(x) < y in assertion (G3), b <
x in assertion (G6), max(y, z) < 1 in assertion (G7) and C0(x) 6 y < 1 in assertion (G8) can
be omitted. To obtain the latter, the involutivity of C0 is at our disposal. Moreover, as C = IT ,
we recognize among the assertions of Theorem 6.17 three known properties. Assertion (G4) is
referred to as the contrapositive symmetry of IT : IT (x, y) = IT (NT (y), NT (x)), for every (x, y) ∈
[0, 1]2 [15, 40]. Assertion (G5) expresses the rotation invariance of T w.r.t. NT : T (x, y) 6

z ⇔ T (y,NT (z)) 6 NT (x), for every (x, y, z) ∈ [0, 1]3 [40]. Assertion (G6) is known as the
self quasi-inverse property of T : IT (x, y) = z ⇔ T (x,NT (y)) = NT (z), for every (x, y, z) ∈
[0, 1]3 [40]. Note that assertion (G3) is closely related to the portation law. Jenei [40] has shown
that, for a left-continuous t-norm, the involutivity of the residual negator NT = C0 is equivalent
with the self quasi-inverse property of T and with the rotation invariance of T w.r.t. NT . He
has also proved that the involutivity of NT implies the contrapositive symmetry of IT .

Theorem 6.18 If a left-continuous t-norm T has a continuous contour line Ca, with a ∈ [0, 1[,
then its a-zoom T a has a continuous contour line Ca0 .

Proof The proof follows immediately from property (F4a). �

To better comprehend the structure of t-norms that have a continuous contour line Ca, with
a ∈ [0, 1[, we thus need to focus first on the structure of left-continuous t-norms that have a
continuous contour line C0. In the following chapters we will extensively study these t-norms.

Example 6.19 Recall that the algebraic product TP has only one discontinuous contour line: C0.
Therefore every t-norm (TP)a, with a ∈ ]0, 1[, has a continuous contour line Ca0 . Moreover, due
to the continuity of TP, every (TP)a must also be continuous. Let σ be the linear rescaling func-
tion ς of [a, 1] into [0, 1]. From Fig. 6.2(c) it is observed that (TP)a is a transformed  Lukasiewicz
t-norm. Explicitly, (TP)a(x, y) = (TL)φa(x, y) holds for every (x, y) ∈ [0, 1]2 and with φa the
automorphism defined by φa(x) = 1 − ln(ς−1(x))/ ln(a). The family t-norms ((TL)φa)a∈ ]0,1[

totally determines the algebraic product TP. △
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Figure 6.2: The 1
2 -zoom of TP.

Note also that the contour line C0 determines the set of zero divisors of T .

Definition 6.20 A number x ∈ ]0, 1[ is a zero divisor of a t-norm T if there exists y ∈ ]0, 1[
such that T (x, y) = 0.

Hence, x ∈ ]0, 1[ is a zero-divisor of a t-norm T if and only if 0 < C0(x). In case T is rotation
invariant, the involutivity of C0 (assertion (G2)) ensures that every x ∈ ]0, 1[ is a zero-divisor.

6.5 Rotation-invariant t-norms

Definition 6.21 [40] Let N be an involutive negator. An increasing [0, 1]2 → [0, 1] function F
is called rotation invariant w.r.t. N if for every (x, y, z) ∈ [0, 1]3 it holds that

F (x, y) 6 z ⇔ F (y, zN ) 6 xN . (6.7)

This property has been first described by Fodor [25]. Jenei emphasized its geometrical interpre-
tation by referring to it as the rotation invariance of T w.r.t. N [40].

Property 6.22 Consider an involutive negator N and an increasing [0, 1]2 → [0, 1] function F .
If F is rotation invariant w.r.t. N , then the following properties hold:

(H1) F is left continuous.
(H2) If F is a t-subnorm then N 6 C0.
(H3) If F is a t-norm then N = C0.

Proof The first and last property have been proven by Jenei [40]. If a t-subnorm F is rotation
invariant w.r.t. N then F (xN , 0N ) = F (xN , 1) 6 xN implies that F (x, xN ) 6 0. The latter leads
to xN 6 C0(x), for every x ∈ [0, 1]. �
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Dealing with a t-norm T that is rotation invariant w.r.t. an involutive negator N , Eq. (6.7) then
coincides with assertion (G5), where a = 0. Moreover, it becomes superfluous to mention the
negator N explicitly. For a left-continuous t-norm T , its rotation invariance is also equivalent
with the continuity of the contour line C0 (Theorem 6.17). Herein lies the true meaning of the
rotation invariance property. Supported by the above considerations, we briefly call a t-norm
rotation invariant if it is left continuous and has a continuous contour line C0. Note that the
continuity of C0 does not imply the left continuity of T . For example, converting the left-
continuous nilpotent minimum TnM into a right-continuous [0, 1]2 → [0, 1] function, we obtain

the right-continuous t-norm T̃nM, defined by

T̃nM(x, y) =

{
0, if x+ y < 1 ,

min(x, y), elsewhere .

The contour line C0 of T̃nM coincides with the standard negator N and is, hence, continuous.

Studying rotation-invariant t-norms, Jenei provided a real breakthrough by introducing his
rotation and rotation-annihilation construction [42, 43, 46, 47] which he uses to describe all
‘decomposable’ rotation-invariant t-norms [45].

Definition 6.23 [45] Let T be a rotation-invariant t-norm and β be the fixpoint of its contour
line C0. T is called decomposable if its set of decomposition points

DT = {t ∈ [β, 1[ | (∀x ∈ [β, t])(C0(t) 6 Q(x,C0(x)))}

is not empty. If β ∈ DT , then T is called totally decomposable.

Jenei [45] refers to the [0, 1] → [0, 1] function defined by Q(x,C0(x)) = Q(x,NT (x)) as the
skeleton function χT of T . Not being familiar with contour lines he used property (E2) to
define this skeleton function. By means of property (E5) and assertions (G2) and (G7), we
can equivalently describe DT as follows:

DT = {t ∈ [β, 1[ | (∀x ∈ [β, t])(Q(x, t) = x)} . (6.8)

Since T has neutral element 1, Property (E2) then implies that T (x, y) = min(x, y), for every
(x, y) ∈ ([β, α] × ]α, 1]) ∪ (]α, 1] × [β, α]), with α ∈ DT .

Example 6.24 The nilpotent minimum TnM is an example of a totally decomposable, rotation-
invariant t-norm. Its contour line C0 coincides with the standard negator N and is obviously
continuous. Because β = 1

2 and QnM(x, t) = min(x, t) whenever (x, t) ∈ [12 , 1[2 it follows that
DTnM = [12 , 1[. The  Lukasiewicz t-norm TL is an example of a non-decomposable, rotation-
invariant t-norm. Its contour line C0 is also given by the standard negator N but QL(1

2 , t) =
TL(1

2 , t) = t− 1
2 <

1
2 , for every t ∈ [12 , 1[. △

Although Jenei did not consider contour lines, the companion or zooms, his work concerning
rotation-invariant t-norms has given the impulse for our investigations. To make his and our
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approach comparable we now reformulate his results in our framework, hereby anticipating
the formulation of our theorems in Chapters 7 and 8. As a welcome side effect, this whole
translation process allows a very concise formulation of Jenei’s rotation and rotation-annihilation
construction.

A. Decomposition

Consider a decomposable, rotation-invariant t-norm T and fix α ∈ DT . In the domain [0, 1]2

of T we partition the set D := {(x, y) ∈ [0, 1]2 | C0(x) < y} into six parts as depicted in Fig. 6.3:

DA := {(x, y) ∈ ]α, 1]2} ,
DB := {(x, y) ∈ ]0, C0(α)]× ]α, 1] | C0(x) < y} ,
DC := {(x, y) ∈ ]α, 1]× ]0, C0(α)] | C0(x) < y} ,
DD := {(x, y) ∈ ]C0(α), α]2 | C0(x) < y} ,
DE := ]C0(α), α]× ]α, 1] ,

DF := ]α, 1]× ]C0(α), α] .

Note that in case α equals the fixpoint β of C0 (T must then be totally decomposable), areas DD,
DE and DF are empty. Based on this partition and anticipating on Theorem 7.1, we obtain the
following theorem that summarizes multiple results of Jenei [45].

D
A

D
D

D
B

a

b

0 1
0

1

C (x)0

D
C

a

D
F

D
E

b

C0( )a

C0( )a

Figure 6.3: The partition D = DA ∪ DB ∪ DC ∪ DD ∪ DE ∪ DF.
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Theorem 6.25 [45] Consider a decomposable, rotation-invariant t-norm T . Let β be the fix-
point of C0 and take α ∈ DT . Consider an [α, 1] → [0, 1] isomorphism σ̂ and, in case α 6= β,
a [C0(α), α] → [0, 1] isomorphism σ̆. Then there exists a left-continuous t-norm T̂ (with contour
lines Ĉb) and, in case α 6= β, there also exists a left-continuous t-subnorm T̆ that is rotation
invariant w.r.t. σ̆ ◦ C0 ◦ σ̆−1 such that

T (x, y) =





σ̂−1
[
T̂ (σ̂[x], σ̂[y])

]
, if (x, y) ∈ DA ,

C0

(
σ̂−1

[
Ĉσ̂[C0(x)](σ̂[y])

])
, if (x, y) ∈ DB ,

C0

(
σ̂−1

[
Ĉσ̂[C0(y)](σ̂[x])

])
, if (x, y) ∈ DC ,

σ̆−1
[
T̆ (σ̆[x], σ̆[y])

]
, if (x, y) ∈ DD ,

min(x, y), if (x, y) ∈ DE ∪ DF ,

0, if (x, y) 6∈ D .

(6.9)

In particular, T̂ = Tα, T̆ = T (C0(α),α) (if α 6= β) and the following properties hold:

(I1) If α = β, then there exists d ∈ [0, 1[ such that Ĉ0(x) = d whenever x ∈ ]0, d] and Ĉ0(x) = 0
whenever x ∈ ]d, 1].

(I2) If α 6= β and T̂ has zero divisors, then T̆ is a t-norm.

In this theorem we assume that σ̂ is used to compute the α-zoom Tα of T and, in case α 6= β,
σ̆ is used to compute the (C0(α), α)-zoom T (C0(α),α) of T . If DT is not a singleton, multiple
choices for α are possible. Jenei [45] talks about the maximal decomposition if the smallest
decomposition point is considered. In this case area DA gets maximized. Jenei [45] has showed
that the smallest decomposition point always exists (i.e. inf DT ∈ DT ). Note that Figure 6.4
depicts the maximal decomposition of the nilpotent minimum (α = β = 1

2).

Taking into account property (H2) it is not difficult to verify that Eq. (6.9) can never be satisfied
for multiple left-continuous t-norms T̆ or multiple left-continuous t-subnorms T̆ that are rotation
invariant w.r.t. σ̆ ◦ C0 ◦ σ̆−1. For T̂ = Tα and T̆ = T (C0(α),α) (if α 6= β), Eq. (6.9) even easily
follows from our previous results:

• [0, 1] \ D : The definition of C0 ensures that T (x, y) = 0 whenever (x, y) 6∈ D.
• DE ∪ DF : From the discussion of Eq. (6.8) we know that T (x, y) = min(x, y), for every

(x, y) ∈ (DE ∪ DF) ∩ [β, 1]2. Hence, Ca(x) = a, for every (x, a) ∈ ]α, 1] × [β, α[. Invoking
the involutivity of C0 (assertion (G2)), for every (x, y) ∈ DE \ [β, 1]2 it holds that C0(x) ∈
]β, α[ and y ∈ ]α, 1]. Consequently, CC0(x)(y) = C0(x). Due to the involutivity of C0

and assertion (G3) the latter can be rewritten as T (x, y) = x = min(x, y), for every
(x, y) ∈ DE \ [β, 1]2. As T is commutative and (x, y) ∈ DF ⇔ (y, x) ∈ DE, we finally
conclude that T (x, y) = min(x, y), for every (x, y) ∈ DE ∪ DF.

• DA : From the preceding result it follows that α = T (x, α) 6 T (x, y), for every (x, y) ∈
DA, which leads to Tα(x, y) = σ̂[max(α, T (σ̂−1[x], σ̂−1[y]))] = σ̂[T (σ̂−1[x], σ̂−1[y])], for
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Figure 6.4: Decomposition of TnM.

every (x, y) ∈ ]0, 1]2. Rewriting T in terms of Tα the latter yields T |DA
. Corollary 6.15

states that Tα is a t-norm and property (F3) yields the left continuity of Tα.
• DB ∪ DC : For every (x, y) ∈ DB it holds that (C0(x), y) ∈ [α, 1]2 and for every (x, y) ∈
DC it holds that (C0(y), x) ∈ [α, 1]2. Since Cb(z) = σ̂−1[Cασ̂[b](σ̂[z])], for every (z, b) ∈ [α, 1]2

(property (F4a)), we obtain that CC0(x)(y) = σ̂−1[Cασ̂[C0(x)](σ̂[y])] whenever (x, y) ∈ DB

and CC0(y)(x) = σ̂−1[Cασ̂[C0(y)](σ̂[x])] whenever (x, y) ∈ DC. Using assertion (G3) and the

commutativity of T , this allows us to express T |DB∪DC
in terms of the contour lines Cαb

of Tα.
• DD : Further, if α 6= β we know from the definition of DT and property (E2) that
C0(α) 6 Q(x,C0(x)) 6 T (x, t), for every (x, t) ∈ [β, α]× ]C0(x), α]. For every (t, x) ∈
]C0(α), β[× ]C0(t), α] it holds that (x, t) ∈ ]β, α]× ]C0(x), β[ due to the involutivity of C0.
Invoking the commutativity of F , we obtain that C0(α) 6 T (t, x). Hence, C0(α) 6

T (x, y), for every (x, y) ∈ DD, which leads to T (C0(α),α)(x, y) = σ̆[T (σ̆−1[x], σ̆−1[y])], for
every (x, y) ∈ ]0, 1]2 satisfying C0(σ̆−1[x]) < σ̆−1[y]. Rewriting T in terms of T (C0(α),α)

yields T |DD
. Recall that T (C0(α),α) must be a left-continuous t-subnorm (property (F3),

Corollary 6.15 and property (F3)). Moreover, as T is rotation invariant w.r.t. its con-
tour line C0 (property (H1)), C0 is involutive, T (C0(α),α)(x, y) = 0 whenever σ̆−1[y] 6

C0(σ̆−1[x]) and T (C0(α),α)(x, y) = σ̆[T (σ̆−1[x], σ̆−1[y])] whenever C0(σ̆−1[x]) < σ̆−1[y], it is
a trivial exercise to verify that T (C0(α),α) is rotation invariant w.r.t. σ̆ ◦ C0 ◦ σ̆−1 (Defini-
tion 6.21).

B. Construction

Jenei [42, 43, 46, 47] also used Eq. (6.9) to construct rotation-invariant t-norms. In our frame-
work, to ensure that the [0, 1]2 → [0, 1] function T given by Eq. (6.9) is well defined, we need to
assume the following setting:

• T̂ : an arbitrary left-continuous t-norm (with contour lines Ĉb).
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• T̆ : an arbitrary left-continuous t-subnorm.
• C0: an arbitrary involutive negator with fixpoint β.
• α: an arbitrary number in [β, 1[.
• σ̂: an arbitrary [α, 1] → [0, 1] isomorphism.
• σ̆: an arbitrary [C0(α), α] → [0, 1] isomorphism (if α 6= β).

Theorem 6.26 [42, 43] If, in case α 6= β, T̆ is rotation invariant w.r.t. σ̆ ◦ C0 ◦ σ̆−1, then the
[0, 1]2 → [0, 1] function T defined by Eq. (6.9) is a rotation-invariant t-norm if and only if T̂
and T̆ satisfy properties (I1) and (I2). In this case α ∈ DT , Tα = T̂ and T (C0(α),α) = T̆ (if
α 6= β).

Note that Eq. (6.9) does not require a t-subnorm T̆ whenever α = β. Jenei [42, 46, 47] then
uses the term rotation construction to denote the method described by Theorem 6.26. If α 6= β
he refers to it as the rotation-annihilation construction [43, 46, 47]. As will become clear from
the following example, for this naming Jenei has been inspired by the geometrical interpretation
of both constructions. We will briefly use R(T̂ , C0) to denote a t-norm obtained by the rota-
tion construction and RA(T̂ , T̆ , C0, α) to denote a t-norm obtained by the rotation-annihilation
construction.

Example 6.27 Figure 6.5 illustrates both the rotation and rotation-annihilation construction.
The bold black lines visualize the partition D = DA ∪ DB ∪ DC ∪ DD ∪ DE ∪ DF. As in our
previous examples we only work with linear rescaling functions.

The increasing [0, 1]2 → [0, 1] function T̂ in Fig. 6.1(a) is obtained from TM by lowering its
values on [0, 1

2 ]2 to zero. It is easily verified that T̂ is a t-norm satisfying property (I1) (with

d = 1
2). Theorem 6.26 now ensures that R(T̂ ,N ) is also a t-norm. R(T̂ ,N )|DB

is geometrically

obtained by rotating R(T̂ ,N )|DA
120 degrees to the left around the axis {(x, y, z) ∈ [0, 1]2 | y =

x ∧ z = 1− x}. Similarly, rotating R(T̂ ,N )|DA
120 degrees to the right around this axis yields

R(T̂ ,N )|DC
.

The two t-subnorms in Figs. 6.5(d) and 6.5(g) are obviously rotation invariant w.r.t. N . The
minimum operator TM has no zero-divisors and, hence, applying Theorem 6.26 (with T̂ = TM,
C0 = N and α = 3

4) yields the t-norms in Figs. 6.5(e) and 6.5(h). Denote T := RA(TM, T̃ ,N , 3
4).

Geometrically, T |DD
is a rescaled and annihilated version of T̃ . In this context annihilation

means that some parts of the graph of T̃ have been lowered. It strikes that T |DB
and T |DC

are again determined by, resp., the left and right rotation of T |DA
. Also RA(TM, TL,N , 3

4) is
obtained by performing a double rotation and an annihilation on rescalings of, resp., TM and TL.
The t-norm RA(TM, TL,N , 3

4) is a member of the Jenei t-norm family (T J
λ )λ∈[0,1/2],

T J
λ (x, y) =





0, if x+ y 6 1 ,

x+ y − 1 + λ, if x+ y > 1 and (x, y) ∈ ]λ, 1 − λ]2 ,

min(x, y), elsewhere .

(6.10)
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Figure 6.5: The rotation and rotation-annihilation construction.
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This family consists of rotation-invariant t-norms, obtained by applying the rotation-annihilation
construction on TM (rotation) and TL (annihilation) [41]. Note that T J

0 = TL and T J
1/2 =

TnM. △

In general, if C0 = N , the graphs of the t-norms obtained by either the rotation construction
or the rotation-annihilation construction remain in some sense invariant under a left and right
rotation. In case C0 differs from the standard negator some reshaping may occur during the
rotation process (see Section 8.3).



CHAPTER 7

Decomposing rotation-invariant t-norms

7.1 Introduction

Despite all efforts, the class of rotation-invariant t-norms is not yet fully understood. The
decomposition method presented by Jenei [45] only acts on decomposable, rotation-invariant
t-norms. Being non-decomposable, the  Lukasiewicz t-norm TL falls outside this setting. Fur-
thermore, there are as many decompositions of a decomposable, rotation-invariant t-norm T
as there are decomposition points. To obtain a standard method, Jenei [45] uses the smallest
decomposition point α for decomposing T . If T is decomposable but not totally decomposable,
Jenei [45] expresses T in terms of its contour line C0, and two zooms: Tα and T (C0(α),α). The
t-subnorm T (C0(α),α) is rotation invariant w.r.t. a rescaled part of C0. In contrast to t-norms,
there is, however, little information concerning rotation-invariant t-subnorms. Finally, we would
like to point out once again that we rephrased Jenei’s results (Section 6.5) into our framework
based on contour lines, the companion and zooms. The original formulation of his work is far
more complex.

We present a more natural procedure for decomposing a given rotation-invariant t-norm T .
Except for a single rescaling function, the new method does not permit any degree of freedom
and rewrites T in terms of its contour line C0 and β-zoom T β , with β the unique fixpoint of C0.
Depending on the structure of the contour line Cβ0 of T β , the method allows either a full or a
partial decomposition of T . Our approach is capable of decomposing the  Lukasiewicz t-norm TL

and provides also a better insight into the structure of the algebraic product TP. Throughout
the reasonings, we assume full familiarity with the results from Section 4.2.
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7.2 Decomposition revisited

Let T be a rotation-invariant t-norm and β be the unique fixpoint of C0. First, we repartition
the area D = {(x, y) ∈ [0, 1]2 | C0(x) < y} into four parts as pictured in Figure 7.1:

DI := {(x, y) ∈ ]β, 1]2 | Cβ(x) < y} ,
DII := {(x, y) ∈ ]0, β]× ]β, 1] | C0(x) < y} ,
DIII := {(x, y) ∈ ]β, 1]× ]0, β] | C0(x) < y} ,
DIV := {(x, y) ∈ ]β, 1[2| y 6 Cβ(x)} .

In contrast to Fig. 6.3 this partition exists for any rotation-invariant t-norm and not just for the
decomposable ones. Furthermore, it allows no degree of freedom. Besides the contour line C0,
it is based on the (fixed) contour line Cβ and not on an arbitrary decomposition point α ∈ DT .
Due to the left continuity of T it is obvious that T (x, y) = 0 holds for every (x, y) 6∈ D. As will
become clear, area DI is crucial in the decomposition of rotation-invariant t-norms.

Theorem 7.1 Consider a rotation-invariant t-norm T . Let σ be an arbitrary [β, 1] → [0, 1]
isomorphism with β the fixpoint of C0. Then there exists a left-continuous t-norm T̂ (with
contour lines Ĉa) such that

T (x, y) =





σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

0, if (x, y) 6∈ D .

(7.1)

In particular, T̂ = T β.

Proof First we prove that Eq. (7.1) holds for T̂ = T β . By definition, σ−1[T β(σ[x], σ[y])] =
max(β, T (x, y)), for every (x, y) ∈ [β, 1]2. If in particular (x, y) ∈ DI, then β < T (x, y) which
leads to T (x, y) = σ−1[T β(σ[x], σ[y])]. The rotation invariance of T implies that T (x, y) =
T (y, x) = C0(CC0(x)(y)) = C0(CC0(y)(x)), for every (x, y) ∈ D (assertion (G3)). To obtain

Eq. (7.1) for T̂ = T β , it suffices to recall that Cb(z) = σ−1[Cβσ[b](σ[z])], for every (z, b) ∈ [β, 1]2

(property (F4a)). Note that (C0(x), y) ∈ [β, 1]2 whenever (x, y) ∈ DII and that (C0(y), x) ∈
[β, 1]2 whenever (x, y) ∈ DIII. The last case, T (x, y) = 0, for (x, y) 6∈ D, is trivially fulfilled.

We now need to prove that every left-continuous t-norm T̂ satisfying Eq. (7.1) must equal T β . For
every (x, y) ∈ DI it holds that T (x, y) = σ−1[T β(σ[x], σ[y])] = σ−1[T̂ (σ[x], σ[y])]. Invoking prop-
erty (F4a) and denoting σ[x] and σ[y] by, resp., u and v, this implies that T̂ (u, v) = T β(u, v), for

every (u, v) ∈ ]0, 1]2 such that Cβ0 (u) < v. Moreover, it follows from property (F4a), Eqs. (5.3)

and (7.1) and the involutivity of C0 (assertion (G2)) that σ−1[Cβ0 (σ[x])] = Cβ(x) = CC0(β)(x) =
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D
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D
IV

D
II

D
III

b

b

0 1
0

1

C (x)0

C (x)b

Figure 7.1: The partition D = DI ∪ DII ∪ DIII ∪ DIV.

C0(T (β, x)) = σ−1[Ĉ0(σ[x]), for every x ∈ ]β, 1]. Denoting σ[x] by u yields that Ĉ0(u) = Cβ0 (u),

for every u ∈ ]0, 1]. By definition, we obtain that T̂ (u, v) = T β(u, v) = 0, for every (u, v) ∈ ]0, 1]2

such that v 6 Cβ0 (u). Taking into account that T̂ (u, v) = T β(u, v) = 0 always holds whenever

u = 0 or v = 0, we conclude that T̂ = T β . �

T |DI
is a rescaled version of T β |Dβ , where Dβ = {(x, y) ∈ [0, 1]2 | Cβ0 (x) < y}. Once T |DI

is
known, it can be used to construct T |DII

, which in turn can be used to construct T |DIII
. As can

be seen from the proof of the Theorem 7.1, we use σ to compute the β-zoom T β of T .

Example 7.2 Figure 7.2 depicts our decomposition of two different rotation-invariant t-norms
T and T̆ . Both t-norms are constructed from the nilpotent minimum TnM by lowering its values
on the area E = {(x, y) ∈ [0, 1]2 | 1 < x+y ∧ max(x, y) 6 3

4}. In particular, for every (x, y) ∈ E
it holds that T (x, y) = 1

2 whenever min(x, y) > 1
2 and T (x, y) = 1

4 elsewhere. For T̆ it holds

that T̆ (x, y) = 1
4 , for every (x, y) ∈ E . The bold black lines in the figures indicate the partition

D = DI ∪ DII ∪ DIII ∪ DIV. T and T̆ satisfy C0 = C̆0 = N , β = 1
2 and T

1
2 = T̆

1
2 (σ = σ̆ = ς,

with ς the linear rescaling function). For such a pair of t-norms we know from Theorem 7.1
that T |DI

= T̆ |DI
, T |DII

= T̆ |DII
and T |DIII

= T̆ |DIII
. In Examples 6.27 and Fig. 6.5 we have

illustrated that T can be constructed by the rotation construction of Jenei and T̆ by means of
his rotation-annihilation construction. Consequently, these t-norms are also decomposable (in
the sense of Jenei [45]): DT = {1

2} ∪ [34 , 1[ and DT̆ = [34 , 1[. △
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(e) Contour plot of T̆
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Figure 7.2: Decomposition of two left-continuous t-norms T and T̆ for which T
1
2 = T̆

1
2 .

Geometrically, T |DII
is determined by rotating T |DI

120 degrees to the left around the axis
{(x, y, z) ∈ [0, 1]3 | y = x ∧ z = 1−x}. Similarly, rotating T |DI

120 degrees to the right around
this axis determines T |DIII

. As will be illustrated in Fig. 7.3, these rotations sometimes have to
be reshaped to fit into the areas DII and DIII, respectively. The contour lines C0 and Cβ are
responsible for this reshaping.

If T β has no zero divisors, then area DIV is empty and Eq. (7.1) totally determines T . Since,

in this case Cβ0 (x) = 0, for every x ∈ ]0, 1], it holds that T (β, x) = C0(σ−1[Cβ0 (σ[x])]) = β, for
every x ∈ ]β, 1]. Taking the limit x ց β, we obtain that Q(β, β) = β (property (E2)). The
t-norm T must be totally decomposable (in the sense of Jenei [45]) and Eq. (7.1) coincides with
Eq. (6.9) (α = β).
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7.3 Two continuous contour lines

For a rotation-invariant t-norm T , Theorem 7.1 expresses how its contour line C0 together with
its associated t-norm T β totally fixes T |DI

, T |DII
and T |DIII

. As illustrated in Fig. 7.2, T |DIV
is

in general not uniquely determined by C0 and T β . Examining numerous examples, we noticed
that the filling-in of area DIV is uniquely fixed whenever besides C0 also Cβ is continuous. The
following property gives a first clue how to express T |DIV

in terms of C0 and T β .

Property 7.3 Consider a rotation-invariant t-norm T for which Cβ is continuous, with β the
unique fixpoint of C0. Then

C0(T (x, y)) < T (Cβ(x− ε), Cβ(y − ε)) (7.2)

holds for every (x, y) ∈ ]β, 1]2 and every ε ∈ ]0,min(x− β, y − β)].

Proof Suppose that the converse holds: T (Cβ(x − ε), Cβ(y − ε)) 6 C0(T (x, y)), for some
(x, y) ∈ ]β, 1]2 and some ε ∈ ]0,min(x− β, y − β)]. The latter implies that

T
(
Cβ(x− ε), T (x, T (y, Cβ(y − ε)))

)
= T

(
T (Cβ(x− ε), Cβ(y − ε)), T (x, y)

)
= 0 .

From the involutivity of C0 on [0, 1] and the involutivity of Cβ on [β, 1] (assertion (G2)), we
know that C0(Cβ(x−ε)) < C0(Cβ(x)). Assertion (G3) yields that C0(Cβ(x)) = C0(CC0(β)(x)) =
T (β, x) = T (x, β). Therefore,

T (x, T (y, Cβ(y − ε))) 6 C0(Cβ(x− ε)) < C0(Cβ(x)) = T (x, β) .

This inequality can only hold when T (y, Cβ(y−ε)) < β. We obtain the contradiction Cβ(y−ε) 6

Cβ(y). �

If a rotation-invariant t-norm T has a continuous contour line Cβ , then the involutivity of Cβ
on [β, 1] (assertion (G2)) ensures that

{(Cβ(x), Cβ(y)) | (x, y) ∈ DIV} = {(Cβ(x), Cβ(y)) | (x, y) ∈ ]β, 1[2 ∧ y 6 Cβ(x)}
= {(Cβ(x), Cβ(y)) | (x, y) ∈ ]β, 1[2 ∧ x 6 Cβ(y)}
= {(u, v) | (Cβ(u), Cβ(v)) ∈ ]β, 1[2 ∧ Cβ(u) 6 v}
= {(u, v) ∈ ]β, 1[2| Cβ(u) 6 v} .

(7.3)

Denoting {(x, y) ∈ ]β, 1[2| Cβ(x) 6 y} as DI, Eq. (7.2) establishes for (x, y) ∈ DIV and ε ∈
]0,min(x−β, y−β)[ a link between T |DIV

and T |DI
. In the following theorem we will refine this

connection and express T |DIV
in terms of Q|DI

.

Theorem 7.4 Consider a rotation-invariant t-norm T for which Cβ is continuous, with β the
unique fixpoint of C0. Then T (x, y) = C0(Q(Cβ(x), Cβ(y))) holds for every (x, y) ∈ DIV.
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Proof As C0 is involutive, showing that Q(Cβ(x), Cβ(y)) = C0(T (x, y)) holds for every
(x, y) ∈ DIV, will prove the theorem. Throughout the proof we will make extensive use of
the involutivity of C0 and Cβ (assertion (G2)). Also, C0(Cβ(x)) = T (x, β), for every x ∈ ]β, 1],
(assertion (G3)), will be frequently used. Furthermore, it should be noted that the orthosym-
metry of Cβ (Theorem 5.9) ensures that (x, y) ∈ DIV ⇔ (y, x) ∈ DIV. We distinguish four
subproblems.

I. Q(Cβ(x), Cβ(y)) 6 C0(T (x, y)), for every (x, y) ∈ DIV

By definition β 6 Q(x,Cβ(x)), for every x ∈ [0, 1]. Take (x, y) ∈ DIV, then T (x, y) 6 β
and β 6 Q(y, Cβ(y)) 6 Q(Cβ(x), Cβ(y)) (property (E1)). If Q(Cβ(x), Cβ(y)) = β, it holds
that Q(Cβ(x), Cβ(y)) = β = C0(β) 6 C0(T (x, y)). Suppose now that β < Q(Cβ(x), Cβ(y)).
Applying assertion (G5) to

T
(
Cβ(x), C0(C0(T (x, y)))

)
= T (T (y, x), Cβ(x)) = T (y, T (x,Cβ(x))) 6 T (y, β) = C0(Cβ(y))

leads to T (Cβ(x), Cβ(y)) 6 C0(T (x, y)). From property (E3) we know that T (Cβ(x), Cβ(y)) 6

Q(Cβ(x), Cβ(y)). In case T (Cβ(x), Cβ(y)) = Q(Cβ(x), Cβ(y)) we immediately obtain that
Q(Cβ(x), Cβ(y)) 6 C0(T (x, y)). If T (Cβ(x), Cβ(y)) < Q(Cβ(x), Cβ(y)), the definition of Q en-
sures that Ck(Cβ(x)) = Cβ(y) holds for every k ∈ [max(β, T (Cβ(x), Cβ(y))), Q(Cβ(x), Cβ(y))[.
As Q(Cβ(x), Cβ(y)) 6 Cβ(x) (property (E5)), such a k fulfills k < Cβ(x). From assertion (G3)
we obtain that

T (Cβ(k), Cβ(x)) = Cβ
(
CCβ(Cβ(k))(Cβ(x))

)
= Cβ(Ck(Cβ(x))) = Cβ(Cβ(y)) = y .

Note that we could invoke the involutivity of Cβ as β < y and β 6 k. The above equalities allow
to bound T (y, k) from above:

T (y, k) = T
(
T (Cβ(k), Cβ(x)), k

)
= T

(
Cβ(x), T (Cβ(k), k)

)

6 T (Cβ(x), β) = C0(Cβ(Cβ(x))) = C0(x) .

Taking the limit k ր Q(Cβ(x), Cβ(y)) leads to T (y,Q(Cβ(x), Cβ(y))) 6 C0(x). It now suffices
to apply assertion (G5) a second time to conclude that T (x, y) 6 C0(Q(Cβ(x), Cβ(y))).

II. Q(x, Cβ(x)) = C0(T (x, Cβ(x))), for every x ∈ ]β, 1[

For every x ∈ ]β, 1[ it holds that (Cβ(x), x) ∈ DIV. Invoking Part I we know that Q(x,Cβ(x)) 6

C0(T (Cβ(x), x)) = C0(T (x,Cβ(x))). Suppose that Q(x,Cβ(x)) < C0(T (x,Cβ(x))), for some
x ∈ ]β, 1[. In this case property (E2) ensures that there exists a ∈ ]Cβ(x), 1] such that
T (x, a) ∈ [Q(x,Cβ(x)), C0(T (x,Cβ(x)))[. Taking into account that T (x,Cβ(x)) 6 β < x, it fol-
lows from assertion (G3) that T (C0(T (x,Cβ(x))), x) = C0(CT (x,Cβ(x))(x)). Combining Cβ(x) 6

CT (x,Cβ(x))(x) (definition of contour lines) and T (x,Cβ(x)) 6 β, we know that CT (x,Cβ(x))(x) =
Cβ(x) and, hence, T (C0(T (x,Cβ(x))), x) = C0(Cβ(x)) = T (x, β). Consequently,

T
(
T (x, a), C0(T (x,Cβ(x)))

)
= T

(
a, T (x,C0(T (x,Cβ(x)))

)
= T (a, T (x, β)) = T (T (x, a), β) .
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Because β 6 Q(x,Cβ(x)) 6 T (x, a) < C0(T (x,Cβ(x))), it holds that

T (T (x, a), β) 6 T
(
C0(T (x,Cβ(x))), β

)
6 T

(
C0(T (x,Cβ(x))), T (x, a)

)
= T (T (x, a), β) .

We conclude that T (T (x, a), β) = T (C0(T (x,Cβ(x))), β). This equality can be rewritten as
C0(Cβ(T (x, a))) = C0(Cβ(C0(T (x,Cβ(x))))). As C0 is involutive on [0, 1] and Cβ is involutive
on [β, 1] this leads to the contradiction T (x, a) = C0(T (x,Cβ(x))). Therefore, Q(x,Cβ(x)) =
C0(T (x,Cβ(x))) holds for every x ∈ ]β, 1[.

III. Q is commutative on DI

Reconsidering Eq. (7.3), we must prove that Q(Cβ(x), Cβ(y)) = Q(Cβ(y), Cβ(x)), for every
(x, y) ∈ DIV. Take (x, y) ∈ DIV and suppose that Q(Cβ(x), Cβ(y)) 6= Q(Cβ(y), Cβ(x)). Without
loss of generality we can assume that Q(Cβ(x), Cβ(y)) < Q(Cβ(y), Cβ(x)). From Part II we
know that

Q(x,Cβ(x)) = C0(T (x,Cβ(x))) = C0(T (Cβ(x), x)) = C0

(
T (Cβ(x), Cβ(Cβ(x)))

)
= Q(Cβ(x), x)

and therefore y < Cβ(x). Consider t ∈ ]Q(Cβ(x), Cβ(y)), Q(Cβ(y), Cβ(x))[. Combining Part I
with Property 7.3, it follows that t < T (Cβ(x−ε), Cβ(y−ε)), for every ε ∈ ]0,min(x−β, y−β)].
As β 6 Q(Cβ(x), Cβ(y)) < t, we can apply assertion (G5) and rewrite the latter inequality
as y − ε < T (Cβ(t), Cβ(x − ε)). Due to the strict decreasingness of Cβ on [β, 1], taking the
limit ε ց 0 ensures that Cβ(x − ε) ց Cβ(x) such that it follows from property (E2) that
y 6 Q(Cβ(t), Cβ(x)). Furthermore, since (y, t) ∈ ]β, 1[2, we know that Q(Cβ(x), Cβ(y)) < t is
equivalent with Q(Cβ(x), Cβ(t)) < y (assertion (G7)). Summarizing the above reasoning leads
to

Q(Cβ(x), Cβ(t)) < y 6 Q(Cβ(t), Cβ(x)) ,

for every t ∈ ]Q(Cβ(x), Cβ(y)), Q(Cβ(y), Cβ(x))[. Fix t and take u ∈ ]Q(Cβ(x), Cβ(t)), y[ ⊆
]Q(Cβ(x), Cβ(t)), Q(Cβ(t), Cβ(x))[. Then β < t < y 6 Cβ(x) such that (x, t) ∈ DIV. Repeating
the procedure described above, we obtain that

Q(Cβ(x), Cβ(u)) < t 6 Q(Cβ(u), Cβ(x)) .

For every v ∈ ] max(Q(Cβ(x), Cβ(y)), Q(Cβ(x), Cβ(u))), t[ it holds by definition of Q that
Cβ(u) < Cv(Cβ(x)). Furthermore, as v < t 6 Q(Cβ(u), Cβ(x)), we also know that Cv(Cβ(u)) 6

Cβ(x). Due to the orthosymmetry of Cβ (Theorem 5.9), both inequalities Cβ(u) < Cv(Cβ(x))
and Cv(Cβ(u)) 6 Cβ(x) can be equivalently written as Cβ(Cv(Cβ(x))) < u and x 6 Cβ(Cv(Cβ(u))).
Applying assertion (G3) results in T (Cβ(v), Cβ(x)) < u and x 6 T (Cβ(v), Cβ(u)). Note that
this assertion is indeed applicable since

β 6 Q(Cβ(x), Cβ(y)) < v < Q(Cβ(u), Cβ(x)) 6 min(Cβ(u), Cβ(x)) .

Furthermore, we know that T (Cβ(v), Cβ(x)) < u implies T (Cβ(v), Cβ(u)) 6 x (assertion (G5)).
In combination with x 6 T (Cβ(v), Cβ(u)), this leads to T (Cβ(v), Cβ(u)) = x. In a similar
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way it follows from Q(Cβ(x), Cβ(y)) < v < t < Q(Cβ(y), Cβ(x)) that T (Cβ(v), Cβ(y)) = x. In
particular, we obtain that

T (x, y) = T (T (Cβ(u), y), Cβ(v)) = T (T (Cβ(y), y), Cβ(v)) .

Moreover, as t < Q(Cβ(y), Cβ(x)) 6 Cβ(x), it holds that β 6 Q(t, Cβ(t)) 6 Q(Cβ(x), Cβ(t)) <
u < y and hence, Cβ(y) < Cβ(u). The latter inequality implies that T (Cβ(y), y) 6 β <
T (Cβ(u), y) and therefore also T (β,Cβ(v)) = T (x, y), for every v ∈ ] max(Q(Cβ(x), Cβ(y)),
Q(Cβ(x), Cβ(u))), t[. Taking into account property (E2) and the involutivity of Cβ on [β, 1], we
get the following chain of equalities:

Q(β,Cβ(t)) = inf{T (β, s) | s ∈ ]Cβ(t), 1]} = inf{T (β,Cβ(v)) | Cβ(v) ∈ ]Cβ(t), 1]}
= inf{T (β,Cβ(v)) | v ∈ [β, t[} = T (x, y) .

Since Cβ(t) < 1, we know from property (E3) that

T (Cβ(t), β) = T (β,Cβ(t)) 6 Q(β,Cβ(t)) = T (x, y) .

Taking the limit tց Q(Cβ(x), Cβ(y)) of the latter inequality results in

C0

(
Q(Cβ(x), Cβ(y))

)
= T

(
Cβ(Q(Cβ(x), Cβ(y))), β

)
6 T (x, y) .

Recall from Part I that T (x, y) 6 C0(Q(Cβ(y), Cβ(x))). It must hold that Q(Cβ(y), Cβ(x)) 6

Q(Cβ(x), Cβ(y)), which contradicts our assumption Q(Cβ(x), Cβ(y)) < Q(Cβ(y), Cβ(x)).

IV. Q(Cβ(x), Cβ(y)) = C0(T (x, y)), for every (x, y) ∈ DIV

Considering Parts I and II it suffices to prove the inequality C0(T (x, y)) 6 Q(Cβ(x), Cβ(y)), for
every (x, y) ∈ DIV satisfying y < Cβ(x). Fix such a pair (x, y) and suppose that the converse
holds, i.e. Q(Cβ(x), Cβ(y)) < C0(T (x, y)). From property (E6) and Part II it follows that
Q(y, Cβ(y)) 6 C0(T (x,Cβ(x))) = Q(x,Cβ(x)). Due to the commutativity of Q on DI (Part III),
we can interchange the role of x and y in the above inequality. Hence, Q(x,Cβ(x)) = Q(y, Cβ(y)).
The right continuity of Q(Cβ(x), •) (property (E4)) and the continuity of Cβ on [β, 1] ensure
the existence of a α ∈ ]β, y[ such that

Q(Cβ(x), Cβ(y)) 6 Q(Cβ(x), Cβ(t)) < C0(T (x, y)) 6 C0(T (x, t)) ,

for every t ∈ ]α, y[. In particular, (Cβ(x), Cβ(t)) ∈ DI and Q(Cβ(x), Cβ(t)) < C0(T (x, t)).
Repeating the above reasoning, it then follows that Q(x,Cβ(x)) = Q(t, Cβ(t)), for every t ∈
]α, y[. Furthermore, considering property (E6) and Part II, Q(Cβ(x), Cβ(t)) < C0(T (x, y))
implies that Q(y, Cβ(t)) 6 Q(x,Cβ(x)). Because Cβ(y) < Cβ(t), Q(x,Cβ(x)) = Q(y, Cβ(y))
is also a lower bound of Q(y, Cβ(t)). We conclude that Q(y, Cβ(t)) = Q(x,Cβ(x)), for every
t ∈ ]α, y[. Fix t ∈ ]α, y[. Then, for every u ∈ ]t, y[ it follows from Part II, property (E2) and
property (E3) that

Q(x,Cβ(x)) = Q(t, Cβ(t)) = Q(Cβ(t), t) 6 T (Cβ(t), u)

6 Q(u,Cβ(t)) 6 Q(y, Cβ(t)) = Q(x,Cβ(x)) .
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Note that T (u,Cβ(t)) = Q(x,Cβ(x) is equivalent with Ct(u) = Cβ(Q(x,Cβ(x))) (assertion
(G3)) and therefore T (Cβ(Q(x,Cβ(x))), u) 6 t. As this latter inequality holds for every
u ∈ ]t, y[, it implies that also Q(Cβ(Q(x,Cβ(x))), u) 6 t (property (E2)). Furthermore, as
u ∈ ]t, y[ ⊂ ]α, y[, we already know that Q(u,Cβ(u)) = Q(x,Cβ(x)). This equality is equiv-
alently rewritten as Cβ(Cβ(Q(x,Cβ(x)))) = Q(u,Cβ(u)). Note that Cβ(u) < Cβ(t) implies
that β < T (u,Cβ(t)) = Q(x,Cβ(x)) and hence, Cβ(Q(x,Cβ)) < 1 (Corollary 5.8). Apply-
ing assertion (G7) to Q(u,Cβ(u)) = Cβ(Cβ(Q(x,Cβ(x)))) then leads to u = Cβ(Cβ(u)) 6

Q(u,Cβ(Q(x,Cβ(x)))). Summarizing the previous results, we obtain the following chain of in-
equalities:

Q
(
Cβ(Q(x,Cβ(x))), u

)
6 t < u 6 Q(u,Cβ(Q(x,Cβ(x)))) . (7.4)

As β < Q(x,Cβ(x)) = T (u,Cβ(t)) 6 u < 1 and Cβ(Cβ(Q(x,Cβ(x)))) = Q(u,Cβ(u)) 6 u,
the pair (Cβ(Q(x,Cβ(x))), u) must belong to DI. Eq. (7.4) therefore contradicts the commuta-
tivity of Q on DI (Part III). Our assumption Q(Cβ(x), Cβ(y)) < C0(T (x, y)) can never hold. �

Due to property (E2), Q|DI
is totally determined by T |DI

. Taking into account Theorem 7.1, this

means that we can rewrite T |DIV
in terms of Qβ , the companion of T β . Combining Theorems 7.1

and 7.4 yields the following decomposition of left-continuous t-norms T that have continuous
contour lines C0 and Cβ , where β is the unique fixpoint of C0.

Theorem 7.5 Consider a rotation-invariant t-norm T for which Cβ is continuous, with β the
unique fixpoint of C0. Let σ be an arbitrary [β, 1] → [0, 1] isomorphism. Then there exists a
rotation-invariant t-norm T̂ (with contour lines Ĉa and companion Q̂) such that

T (x, y) =





σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(σ[y])

)])
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D .

(7.5)

In particular, T̂ = T β and Q̂ must be commutative on [0, 1[2.

Proof Invoking Theorem 7.1, it suffices to prove that T β is rotation invariant, that Qβ is
commutative on ]0, 1[2 and that T (x, y) = C0(σ−1[Qβ(Cβ0 (σ[x]), Cβ0 (σ[y]))]), for every (x, y) ∈
DIV. Take such a pair (x, y) ∈ DIV. From properties (F4a) and (F2) we know that Cβ(u) =

σ−1[Cβ0 (σ[u])] holds for every u ∈ [β, 1] and that Q(u, v) = σ−1[Qβ(σ[u], σ[v])] holds for every
(u, v) ∈ [β, 1[2 satisfying Cβ(u) 6 v. Furthermore, (Cβ(x), Cβ(y)) ∈ ]β, 1[2 and Cβ(Cβ(y)) =
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y 6 Cβ(x). Invoking Theorem 7.4, we obtain that

T (x, y) = C0

(
Q(Cβ(x), Cβ(y))

)
= C0

(
σ−1

[
Qβ
(
σ[Cβ(x)], σ[Cβ(y)]

)])

= C0

(
σ−1

[
Qβ
(
Cβ0 (σ[x]), Cβ0 (σ[y])

)])
.

Furthermore, as Cβ is continuous it is clear that Cβ0 = σ ◦ Cβ ◦ σ−1 is also continuous.
Hence, T β must be rotation invariant (assertion (G5)). As T is commutative, C0 is involu-
tive (asertion (G2)) and (x, y) ∈ DIV ⇔ (y, x) ∈ DIV (Theorem 5.9), it must hold that

Qβ(Cβ0 (σ[x]), Cβ0 (σ[y])) = Qβ(Cβ0 (σ[y]), Cβ0 (σ[x])), for every (x, y) ∈ DIV. Taking into account

the involutivity of Cβ0 (assertion (G2)) and denoting Cβ0 (σ[x]) and Cβ0 (σ[y]) as, resp., u and

v, the latter expresses that Qβ(u, v) = Qβ(v, u), for every (u, v) ∈ ]0, 1[2 satisfying Cβ0 (u) 6 v.

Obviously, Qβ(u, v) = Qβ(v, u) = 0 whenever v < Cβ0 (u). Recall also that Qβ(0, v) = 0 and

0 < Cβ0 (u), for every (u, v) ∈ [0, 1[2 (involutivity of Cβ0 ). This concludes the proof. �

Note that the continuity of Cβ entails the rotation invariance of T β . This observation enables us

to rewrite the formulas for T |DII
and T |DIII

(Eq. (7.5)) as formulas containing T β(= T̂ ) explicitly.

Corollary 7.6 Consider a rotation-invariant t-norm T for which Cβ is continuous, with β the
unique fixpoint of C0. Let σ be an arbitrary [β, 1] → [0, 1] isomorphism. Then there exists a
rotation-invariant t-norm T̂ (with contour lines Ĉa and companion Q̂) such that

T (x, y) =





σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉ0

(
T̂
(
Ĉ0(σ[C0(x)]), σ[y]

))])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉ0

(
T̂
(
σ[x], Ĉ0(σ[C0(y)])

))])
, if (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(σ[y])

)])
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D .

(7.6)

In particular, T̂ = T β and Q̂ must be commutative on [0, 1[2.

Proof Follows immediately from Theorem 7.5 and assertions (G2) and (G3). �

We now dispose of a method for decomposing a rotation-invariant t-norm T that has a continuous
contour line Cβ . The knowledge of the contour line C0 and of the t-norm T β totally determines T .
Moreover, we are able to give a full geometrical interpretation of the structure of T . The
geometrical construction of T |DII

and T |DIII
remains intact: these parts are determined by a

transformed left rotation, resp. right rotation, of T |DI
. As can be seen in Figure 7.3(a), area

T |DIV
is obtained by rotating T |DI

180 degrees to the front around the axis {(x, y, z) ∈ [0, 1]3 |
x+ y = 1 + β ∧ z = β}. Depending on the structure of C0 and Cβ some additional reshaping
may occur.
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Figure 7.3: Decomposition of the  Lukasiewicz t-norm TL and (TL)φ.

Example 7.7 Theorem 7.5 is applicable to the  Lukasiewicz t-norm TL. Figure 7.3(a) depicts

its decomposition. In particular, it holds that C0 = N , β = 1
2 and (TL)

1
2 = TL. As usual the

bold black lines indicate the partition D = DI ∪ DII ∪ DIII ∪ DIV and we use a linear rescaling
function. These new insights into the structure of the  Lukasiewicz t-norm TL als help us to
better understand the structure of the algebraic product TP as every (TP)a, with a ∈ ]0, 1[, is a
transformed  Lukasiewicz t-norm TL (see Example 6.19).

Let φ be the automorphism defined by

φ(x) =

{
1
2 −

√
1
4 − x2, if x 6 1

2 ,
1
2 + 1

2 (2x− 1)2, elsewhere .

Transforming TL by means of φ yields a t-norm (TL)φ (see Section 5.2). Such a transformation
does not affect the continuity of the contour lines. Hence, (TL)φ is also rotation invariant with

(Cφ)0 = φ−1 ◦ N ◦ φ, βφ = φ−1(1
2) = 1

2 and ((TL)φ)
1
2 = (T

1
2
L )ς◦φ◦ς−1 = (TL)ς◦φ◦ς−1 , where ς is
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the linear rescaling function from [12 , 1] to [0, 1]. The order-preserving [0, 1] → [0, 1] bijection

ς ◦ φ ◦ ς−1 transforms TL into ((TL)φ)
1
2 . As this transformation preserves the continuity of the

contour lines, we conclude that ((TL)φ)
1
2 must be a rotation-invariant t-norm. Therefore, (TL)φ

can be fully decomposed by means of Eqs. (7.5) and (7.6). △

7.4 Full decomposition

To conclude this chapter, we merge and slightly extend our decomposition results: Theorems 7.1
and 7.5. Instead of requiring the continuity of Cβ as in Theorem 7.5, we decompose those
rotation-invariant t-norms whose contour line Cβ is continuous on the interval ]β, 1] only. The
following theorem is crucial to insert the results from Theorem 7.5 into the new setting.

Theorem 7.8 Consider a left-continuous t-norm T and take a ∈ [0, 1] such that a < α :=
inf{t ∈ [0, 1] | Ca(t) = a}. Then the following assertions are equivalent:

(J1) Ca is continuous on ]a, 1].
(J2) Ca is involutive on ]a, α[.
(J3) Ca(]a, α[) = ]a, α[.
(J4) T (a,α) is a rotation-invariant t-norm.

Proof Let σ̃ be the [a, α] → [0, 1] isomorphism that is used to construct T (a,α).

(J1)⇒(J4): We already know from property (F3) and Corollary 6.15 that T (a,α) is a left-
continuous t-subnorm. T (a,α) will be a t-norm if we can show that it has neutral element 1.
Explicitly, T (a,α)(x, 1) = σ̃[max(a, T (σ̃−1[x], α))] = x needs to be fulfilled for every x ∈ [0, 1].
This is equivalent with T (u, α) = u, for every u ∈ ]a, α]. We prove the latter. The continuity
of Ca and Corollary 5.8 ensure that then [a, limxցaCa(x)[ = [Ca(1), limxցaCa(x)[ ⊆ Ca(]a, 1]).
Suppose that limxցaCa(x) < α, then there exists ε ∈ ]0, α[ such that Ca(x) < α − ε, for
every x ∈ ]a, 1]. Due to the orthosymmetry of Ca (Theorem 5.9) it holds that a = Ca(1) 6

Ca(α − ε) < x. Taking the limit x ց a, this leads to Ca(α − ε) = a, which contradicts the
definition of α. We conclude that [a, α[ ⊆ Ca(]a, 1]). Since a < α, assertion (J1) also ensures
that Ca(α) = a. Therefore, CCa(α)(x) = Ca(x), for every x ∈ ]a, 1], and it follows from Eq. (5.7)
that also CCa(x)(α) = Ca(x). Invoking that [a, α[ ⊆ Ca(]a, 1]), this implies that Cy(α) = y,
for every y ∈ [a, α[. If a < y, then T (α, y) < y ensures the existence of ε ∈ ]0, y − a] such
that T (α, y) < y − ε. This leads to the contradiction y 6 Cy−ε(α) = y − ε and we conclude
that T (y, α) = T (α, y) = y, for every y ∈ ]a, α[. The left continuity of T guarantees that also
T (α, α) = α.

T (a,α) will be rotation invariant if its contour line C
(a,α)
0 is continuous (assertions (G1) and (G5)).

As C
(a,α)
0 is decreasing, it will be continuous if it reaches every element of [0, 1]. By definition

it holds that C
(a,α)
0 (0) = 1 such that it suffices to show the inclusion [0, 1[ ⊆ C

(a,α)
0 (]0, 1]).

For arbitrary y ∈ [a, α[, we know from the discussion above that there exists x ∈ ]a, 1] such
that Ca(x) = y. Due to Ca(α) = a, it even suffices to consider x ∈ ]a, α]. Denoting σ̃[x] and
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σ̃[y] by, resp., u and v, we obtain that for every v ∈ [0, 1[ there exists u ∈ ]0, 1] such that

C
(a,α)
0 (u) = σ̃[Ca(σ̃

−1[u])] = v (property (F4b)).

(J4)⇒(J2): Since property (F4b) yields Ca(x) = σ̃−1[C
(a,α)
0 (σ̃[x])], for every x ∈ ]a, α], the

involutivity of C
(a,α)
0 (assertion (G2)) immediately implies the involutivity of Ca on ]a, α[.

(J2)⇒(J3): By definition of α and Corollary 5.8, it holds that a < Ca(x), for every x ∈
]a, α[. Furthermore, suppose that α < Ca(x), for some x ∈ ]a, α[, then α + ε < Ca(x), with
ε ∈ ]0, Ca(x) − α[. Invoking once again the definition of α, we obtain the contradiction x =
Ca(Ca(x)) 6 Ca(α+ ε) = a. Therefore, Ca(]a, α[) ⊆ ]a, α[. Due to the involutivity of Ca it then
also holds that ]a, α[ ⊆ Ca(]a, α[).

(J3)⇒(J1): Combining assertion (J3) with the decreasingness of Ca, it follows that Ca is
continuous on ]a, α[. The left continuity of Ca then ensures that Ca(α) = limxրαCa(x) = a.
Because also Ca(1) = a (Corollary 5.8), we immediately obtain assertion (J1). �

Theorem 7.9 Consider a rotation-invariant t-norm T for which Cβ is continuous on ]β, 1],
with β the unique fixpoint of C0. Let σ be an arbitrary [β, 1] → [0, 1] isomorphism. Then there
exists a left-continuous t-norm T̂ (with contour lines Ĉa and companion Q̂) such that Ĉ0 is
continuous on ]0, 1] and

T (x, y) =





σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(σ[y])

)])
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D .

(7.7)

In particular, T̂ = T β and Q̂ must be commutative on [0, α̂[2, with α̂ = inf{t ∈ [0, 1] | Ĉ0(t) = 0}.

Proof Taking into account Theorem 7.1, it suffices to prove that Cβ0 is continuous on ]0, 1],

that Qβ is commutative on [0, α̂[2 and that T (x, y) = C0(σ−1[Qβ(Cβ0 (σ[x]), Cβ0 (σ[y]))]), for every

(x, y) ∈ DIV. As Cβ0 = σ ◦Cβ ◦σ−1 (property (F4a)), it immediately follows from the continuity

of Cβ on ]β, 1] that Cβ0 is continuous on ]0, 1]. Suppose that α̂ = 0, then Cβ(x) = σ−1[Cβ0 (σ[x])] =
σ−1(0) = β, for every x ∈ ]β, 1]. Hence, DIV = ∅ and the theorem holds. Assume now that
0 < α̂. We first show that T̆ := T (C0(α),α), with α := inf{t ∈ [0, 1] | Cβ(t) = β}, is a rotation-

invariant t-norm satisfying Theorem 7.5. Next, we translate the properties of T̆ into properties
of T . The [C0(α), α] → [0, 1] isomorphism σ̆ is used to construct T̆ . Its contour lines and
companion are denoted by, resp., C̆a and Q̆.
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I. T̆ is a rotation-invariant t-norm

Invoking Corollary 5.8 and property (F4a) it follows that

α = inf{t ∈ [β, 1] | Cβ(t) = β} = inf{σ−1[s] ∈ [β, 1] | Cβ0 (s) = σ[β]}
= σ−1[inf{s ∈ [0, 1] | Cβ0 (s) = 0}] = σ−1[α̂]

and, hence, β < α. From the proof of Theorem 7.8 we know that T (α, x) = T (x, α) = x, for
every x ∈ ]β, α]. Consequently, Cx(α) = x, for every x ∈ ]β, α[. Note that also Cβ(α) = β
as Cβ is continuous on ]β, 1] and β < α. Hence, C0(CC0(x)(α)) = C0(C0(x)) = x, for every
x ∈ ]C0(α), β]. Applying assertion (G3) this leads to T (α, x) = T (x, α) = x, for every x ∈
]C0(α), β]. Equation (5.3) and the observation that T (α, x) = T (x, α) = x holds for every
x ∈ ]C0(α), α] ensure that CC0(α)(x) = C0(T (α, x)) = C0(x), for every x ∈ ]C0(α), α]. Invoking
the involutivity of C0 (assertion (G2)) and CC0(α)(α) = C0(α) = CC0(α)(1) (Corollary 5.8),
this leads to inf{t ∈ [0, 1] | CC0(α)(t) = C0(α)} = α. Taking into account the continuity of C0

(assertion (G1)), it now follows that CC0(α) is continuous on ]C0(α), 1]. Assertion (J4) states

that T̆ := T (C0(α),α) must be a rotation-invariant t-norm.

II. C̆σ̆[β] is continuous, with σ̆[β] the fixpoint of C̆0

From property (F4b) and the proof of Part I we obtain that C̆0(x) = σ̆[CC0(α)(σ̆
−1[x])] =

σ̆[C0(σ̆−1[x])], for every x ∈ ]0, 1]. Trivially, C̆0(0) = 1 = σ̆[C0(C0(α))] = σ̆[C0(σ̆−1[0])] and
we conclude that C̆0 = σ̆ ◦ C0 ◦ σ̆−1. It is easily verified that σ̆[β] is the unique fixpoint of C̆0.
Because contour lines are decreasing and C̆σ̆[β](1) = σ̆[β] < 1 = C̆σ̆[β](σ̆[β]) (Corollary 5.8),

the continuity of C̆σ̆[β] is implied by C̆σ̆[β](]σ̆(β), 1[) = ]σ̆(β), 1[. The latter follows immediately

from C̆σ̆[β][x] = σ̆[Cβ(σ̆−1[x])], for every x ∈ ]σ̆(β), 1] (property (F4b)), and the fact that
Cβ(]β, α[) = ]β, α[ (assertion (J3)).

III. max(C0(α), T (x, y)) = CC0(α)(Q(Cβ(x), Cβ(y))), for every (x, y) ∈ DIV

From Parts I and II we know that Theorem 7.4 is applicable. For every (u, v) ∈ ]σ̆(β), 1[2

satisfying v 6 C̆σ̆[β](u) it then holds that T̆ (u, v) = C̆0(Q̆(C̆σ̆[β](u), C̆σ̆[β](v))) . Denote σ̆−1[u]

by x and σ̆−1[v] by y. Applying (F2) and (F4b) the former can be rewritten as T̆ (σ̆[x], σ̆[y]) =
C̆0(σ̆[Q(Cβ(x), Cβ(y))]) whenever (x, y) ∈ ]β, α[2 satisfies y 6 Cβ(x). Note that from Corol-

lary 5.8 and Part II it indeed follows that C̆σ̆[β](u) < 1, C̆σ̆[β](v) < 1 and C̆0(C̆σ̆[β](u)) 6

C̆0(σ̆[β]) = σ̆[β] 6 C̆σ̆[β](v). The involutivity of C̆0 (assertion (G2)) ensures that

0 < σ̆[β] = C̆0(σ̆[β]) 6 C̆0(T̆ (u, v)) = C̆0(T̆ (σ̆[x], σ̆[y])) = σ̆[Q(Cβ(x), Cβ(y))] . (7.8)

Therefore, we can invoke property (F4b) a second time, which leads to σ̆−1[T̆ (σ̆[x], σ̆[y])] =
CC0(α)(Q(Cβ(x), Cβ(y))), for every (x, y) ∈ ]β, α[2 such that y 6 Cβ(x). Invoking the definition

of T̆ = T (C0(α),α), we conclude that max(C0(α), T (x, y)) = CC0(α)(Q(Cβ(x), Cβ(y))). Because
Cβ(α) = β, the pair (x, y) must belong to area DIV.
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IV. T (x, y) = C0(σ
−1[Qβ(Cβ

0 (σ[x]), C
β
0 (σ[y]))]), for every (x, y) ∈ DIV

Recall from the proof of Part I that CC0(α)(x) = C0(x), for every x ∈ ]C0(α), α]. Furthermore,
it follows from Eq. (7.8), Cβ(]β, α[) = ]β, α[ (assertion (J3)) and property (E5) that

C0(α) < β 6 Q(Cβ(x), Cβ(y)) 6 Cβ(x) < α ,

for every (x, y) ∈ ]β, α[2 satisfying y 6 Cβ(x). Therefore, we obtain CC0(α)(Q(Cβ(x), Cβ(y))) =
C0(Q(Cβ(x), Cβ(y))) > C0(α) and Part III can be rewritten as T (x, y) = C0(Q(Cβ(x), Cβ(y))),
for every (x, y) ∈ DIV. Following the reasonings in the proof of Theorem 7.5 and taking into
account that Cβ is involutive on ]β, α[ (assertion (B2)), Cβ(]β, α[) = ]β, α[ (assertion (B3)) and

σ(α) = α̂, it is not difficult to show that T (x, y) = C0(σ−1[Qβ(Cβ0 (σ[x]), Cβ0 (σ[y]))]), for every

(x, y) ∈ DIV, that Cβ0 is continuous on ]0, 1] and that Qβ is commutative on [0, α̂[2. �

For α̂ = 0, we get that α = σ−1[α̂] = β and DIV = ∅. The above theorem then coincides with
Theorem 7.1. In case α̂ = 1, then α = 1 such that Cβ must be involutive on ]β, 1[ (assertion (J2))

and, hence, also on [β, 1] as Ĉβ(β) = 1 and Ĉβ(1) = β (Corollary 5.8). Theorem 7.9 now
coincides with Theorem 7.5. Taking a closer look at the proof of Theorem 7.9, it strikes that,
in case α̂ ∈ ]0, 1[, T (•, α)|]C0(α),α] = id|]C0(α),α] implies that Q(x, α) = x, for every x ∈ ]C0(α), α]
(property (E2)). From Eq. (6.8) we then know that T is decomposable in the sense of Jenei [45]
and that α ∈ DT . Considering α as a decomposition point it holds that DIV ⊂ DD. In Fig. 7.4
we depict our decomposition of the Jenei t-norm T J

1/4. We use a linear rescaling function ς to

compute (T J
1/4)

1
2 . It is easily verified that α̂ = 1

2 and α = ς−1(α̂) = 3
4 is a decomposition point

of T J
1/4 (see also Figs. 6.5(h) and 6.5(i)). Geometrically, the filling-in of area DIV is obtained

by rotating T |DI∩ ]β,α]2 180 degrees to the front around the axis {(x, y, z) ∈ [0, 1]3 | x + y =
β + α ∧ z = β}. The contour lines C0 and Cβ can cause some additional reshaping.
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CHAPTER 8

The triple rotation method

8.1 Introduction

Reversing the full decomposition method from Section 7.4 yields a tool for constructing rotation-
invariant t-norms. Given an involutive negator N and a left-continuous t-norm T whose contour
line C0 is continuous on ]0, 1], we build a rotation-invariant t-norm from a rescaled version of T
and its left, right and front rotation. Depending on the involutive negator N and the set of zero
divisors of T , some reshaping of the rescaled T may occur during the rotation process. There
is, however, one important restriction: the companion Q of T must be commutative on ]0, α[2,
with α = inf{t ∈ [0, 1] | C0(t) = 0}.

Unfortunately, the mathematical proofs supporting our construction method are quite elaborated
and technical. Therefore, we have assembled them in Section 8.2. As in the previous chapter,
we assume full familiarity with the results from Section 4.2. In Section 8.3 we reformulate the
construction tool in a more straightforward way and illustrate it by means of numerous examples.
Also, its applicability and limitations are briefly addressed.

8.2 Mathematical approach

Straightforwardly transforming the full decomposition from Theorem 7.9 into a tool for con-
structing rotation-invariant t-norms, may lead to some notational flaws. To ensure that the
[0, 1]2 → [0, 1] function T from Eq. (7.7) is well defined, we need to assume the following setting:

• T̂ : an arbitrary left-continuous t-norm with contour lines Ĉa and companion Q̂;
• C0: an arbitrary involutive negator with fixpoint β;
• σ: an arbitrary [β, 1] → [0, 1] isomorphism;
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• Cβ : the decreasing [0, 1] → [0, 1] function defined by Cβ(x) = 1 whenever x ∈ [0, β[ and

Cβ(x) = σ−1[Ĉ0(σ[x])] whenever x ∈ [β, 1].

By definition, Cβ(β) = σ−1[Ĉ0(0)] = 1, Cβ(x) < σ−1[Ĉ0(0)] = 1, for every x ∈ ]β, 1], and

Cβ(1) = σ−1[Ĉ0(1)] = β. Areas DI, DII, DIII and DIV in the domain of T are therefore well
defined. Note that, at this point, C0 and Cβ do not have an interpretation in terms of contour
lines. To avoid this confusion we reformulate our construction tool in Section 8.2 by means of
a more robust terminology. However, as the proofs in the present section frequently use results
from Chapters 6 and 7, we opt to work with the original notations first. For the sake of brevity,
the above setting will not be recalled in the formulation of the theorems and properties.

As Eq. (7.7) comprises Eq. (7.1), we first examine the properties of an increasing [0, 1]2 →
[0, 1] function T that is defined on [0, 1]2 \ DIV by Eq. (7.1). This equation largely fixes the
monotonicity, continuity and commutativity of T . Furthermore, it pinpoints its absorbing and
neutral element.

Property 8.1 If a [0, 1]2 → [0, 1] function T is defined on [0, 1]2 \ DIV by Eq. (7.1), then the
following properties hold:

(K1) T is increasing on [0, 1]2 \ DIV.
(K2) T is left continuous on [0, 1]2 \ DIV.
(K3) T has absorbing element 0 and neutral element 1.
(K4) T is commutative on [0, 1]2 \ DIV.

Proof (K1): The increasingness of T̂ , the decreasingness of its contour lines and the increas-
ingness of the partial functions Ĉ•(x) ensure that T is increasing on [0, 1]2 \ (DI ∪ DIV) and
on DI. Furthermore, (x, y) ∈ DI whenever (x, y) ∈ ]β, 1]2 and Ĉ0(σ[x]) < σ[y]. The latter
ensures that 0 < T̂ (σ[x], σ[y]) from which it follows that β < T (x, y), for (x, y) ∈ DI. Otherwise,
the inequality T (x, y) 6 β holds for every (x, y) ∈ [0, 1]2 \ (DI ∪ DIV) since T (β, β) = 0 and

T (β, x)
T (x, β)

∣∣∣∣ = C0

(
σ−1[Ĉ0(σ[x])]

)
6 C0(σ−1[0]) = C0(β) = β ,

for every x ∈ ]β, 1]. We conclude T is indeed increasing on [0, 1]2 \ DIV.

(K2): Clearly, T is left continuous on [0, 1]2 \D. The left continuity of T on DI trivially follows
from the left continuity of T̂ and from the continuity of σ. Moreover, for every (x, a) ∈ [0, 1]2,
Ĉa(x) is left continuous in x and right continuous in a (Properties 4.5). As C0 and σ are
monotone bijections, we conclude that T is also left continuous on DII ∪ DIII.

(K3): As T (0, 1) = T (1, 0) = 0 it follows from property (K1) that 0 is the absorbing element
of T . Take now arbitrary x ∈ ]0, β]. The strict decreasingness of C0 ensures that (x, 1) ∈ DII

and C0(1) = 0 ensures that (1, x) ∈ DIII. Therefore, Corollary 5.8 ensures that

T (x, 1)
T (1, x)

∣∣∣∣ = C0

(
σ−1

[
Ĉσ[C0(x)](1)

])
= C0

(
σ−1 [σ[C0(x)]]

)
= C0(C0(x)) = x .
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If x ∈ ]β, 1], then Cβ(x) < 1 implies that (x, 1) ∈ DI and Cβ(1) = β implies that also (1, x) ∈ DI.
We obtain that

T (x, 1)
T (1, x)

∣∣∣∣ = σ−1
[
T̂ (σ[x], 1)

]
= σ−1[σ[x]] = x .

We conclude that 1 is indeed the neutral element of T .

(K4): Due to the involutivity of C0 it holds that (x, y) 6∈ D ⇔ (y, x) 6∈ D and (x, y) ∈
DII ⇔ (y, x) ∈ DIII. The commutativity of T on [0, 1]2 \ (DI ∪ DIV) then follows immediately
from Eq. (7.1). Suppose now that (x, y) ∈ DI, i.e. (x, y) ∈ ]β, 1]2 and Ĉ0(σ[x]) < σ[y]. The
orthosymmetry of Ĉ0 ensures that Ĉ0(σ[y]) < σ[x] (Theorem 5.9). Hence, (y, x) ∈ DI. The
commutativity of T on DI is then implied by the commutativity of T̂ . �

Remark that property (K4) implies that necessarily (x, y) ∈ DIV ⇔ (y, x) ∈ DIV. Requiring
that T is increasing on DIV and satisfies T (x,Cβ(x)) 6 β, for every x ∈ ]β, 1[, the decreasing
functions C0 and Cβ can be interpreted as contour lines of T . From that moment we use the
standard notation Ca to denote all contour lines of T . Moreover, in this case the associativity
property manifests itself in terms of Eq. (5.3).

Property 8.2 If a [0, 1]2 → [0, 1] function T is defined on [0, 1]2\DIV by Eq. (7.1), is increasing
and satisfies T (x,Cβ(x)) 6 β, for every x ∈ ]β, 1[, then the following properties hold:

(K5) C0 and Cβ are contour lines of T .

(K6) T β = T̂ .
(K7) Ca(T (x, y)) = CCa(x)(y) = CCa(y)(x) holds for every

(K7a) (x, y) ∈ [0, 1]2 \ DIV and a = 0;
(K7b) (x, y) ∈ [0, 1]2 \ (DI ∪ DIV) and a ∈ ]0, β[;
(K7c) (x, y) ∈ [0, 1]2 and a ∈ [β, 1].

Proof It is trivial to see that Property 8.1 applies to T . Properties (K1)–(K4) will be
frequently used throughout this proof. Note also that the existence of the neutral element 1,
combined with the increasingness of T , ensures that Ca(1) = a and Ca(x) = 1, for every
(x, a) ∈ [0, 1]2 such that x 6 a.

(K5)&(K6): Whenever (x, y) ∈ DII, it holds that Ĉσ[C0(x)](σ[y]) < 1 (Corollary 5.8). From
Eq. (7.1), we then obtain that 0 < T (x, y). Due to the commutativity of T on [0, 1]2 \ DIV,
this inequality also holds for every (x, y) ∈ DIII. As T (x, y) = 0, for every (x, y) 6∈ D, the
involutive negator C0 is indeed a contour line of T . Next, we attribute a similar interpretation
to the function Cβ . Recall from the proof of property (K1) that β < T (x, y) holds for every
(x, y) ∈ DI and T (x, y) 6 β holds for every (x, y) ∈ [0, 1]2 \ (DI ∪ DIV). In combination with
T (x,Cβ(x)) 6 β, for every x ∈ ]β, 1[, and taking into account the increasingness of T , we obtain

that Cβ is indeed a contour line of T and that T β = T̂ .

(K7c): Consider (x, y) ∈ DI and let a ∈ [β, 1]. Taking into account that Ĉb(T̂ (u, v)) = Ĉ bCb(u)(v)

holds for every (u, v, b) ∈ [0, 1]3 (Theorem 5.10) and Ĉb = σ◦Cσ−1[b]◦σ−1 holds for every b ∈ [0, 1]
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(properties (K6) and (F4a)), we can derive the following chain of equalities:

Ca(T (x, y)) = Ca

(
σ−1

[
T̂ (σ[x], σ[y])

])
= σ−1

[
Ĉσ[a]

(
T̂ (σ[x], σ[y])

)]

= σ−1
[
Ĉ bCσ[a](σ[x])

(σ[y])
]

= σ−1
[
σ
[
C
σ−1[ bCσ[a](σ[x])](y)

]]
= CCa(x)(y) .

The commutativity of T on DI ensures that also Ca(T (x, y)) = CCa(y)(x). Whenever (x, y) ∈
[0, 1]2 \DI it holds that T (x, y) 6 β (property (K5)). Since it also holds that (y, x) ∈ [0, 1]2 \DI

(proof of property (K4)), we obtain max(T (x, y), T (y, x)) 6 β 6 a. Hence, y 6 Ca(x) and
x 6 Ca(y). It then follows that Ca(T (x, y)) = CCa(x)(y) = CCa(y)(x) = 1.

(K7a): From properties (K6) and (F4a) we know that Cx(y) = σ−1[Ĉσ[x](σ[y])] holds for
every (x, y) ∈ [β, 1]2. Take arbitrary (x, y) ∈ DII. Then (C0(x), y) ∈ [β, 1]2 and it follows from
Eq. (7.1) that C0(T (x, y)) = CC0(x)(y). We now have to verify that also C0(T (x, y)) = CC0(y)(x)
holds. It follows from the decreasingness of CC0(x) that C0(x) = CC0(x)(1) 6 CC0(x)(y). Due
to the increasingness of C•(x) we know that C0(x) 6 CC0(y)(x). Taking into account that
C0(x) < C0(0) = 1, we obtain that

CC0(x)(y) = sup{t ∈ ]C0(x), 1] | T (y, t) 6 C0(x)} ,
CC0(y)(x) = sup{t ∈ ]C0(x), 1] | T (x, t) 6 C0(y)}

(with sup ∅ = C0(x)). Because t ∈ ]C0(x), 1] expresses that (x, t) ∈ DII, we can use Eq. (7.1) to
rewrite T (x, t). Recall that T̂ = T β (property (K6)).

CC0(y)(x) = sup
{
t ∈ ]C0(x), 1] | C0

(
σ−1

[
Ĉσ[C0(x)](σ[t])

])
6 C0(y)

}

= sup
{
t ∈ ]C0(x), 1] | Ĉσ[C0(x)](σ[t]) > σ[y]

}

= sup{t ∈ ]C0(x), 1] | T̂ (σ[t], σ[y]) 6 σ[C0(x)]}
= sup{t ∈ ]C0(x), 1] | σ−1[T̂ (σ[y], σ[t])] 6 C0(x)}
= sup{t ∈ ]C0(x), 1] | max(β, T (y, t)) 6 C0(x)}
= sup{t ∈ ]C0(x), 1] | T (y, t) 6 C0(x)} = CC0(x)(y) = C0(T (x, y)) .

The commutativity of T on DII ∪ DIII ensures that property (K7a) is also valid for every
(x, y) ∈ DIII.

Now take arbitrary (x, y) ∈ DI. Considering the commutativity of T on DI it suffices to prove the
equality C0(T (x, y)) = CC0(x)(y). Note that Cβ(x) < y and C0(y) < β. Because (x, β) ∈ DIII,
it follows from the above discussion that CC0(x)(β) = CC0(β)(x) = Cβ(x) < y. Hence, C0(x) <
T (β, y) = T (y, β) from which we conclude that CC0(x)(y) 6 β. Recall that C0(y) 6 CC0(x)(y).
In this case CC0(x)(y) can be expressed explicitly in the following way:

CC0(x)(y) = sup{t ∈ ]C0(y), β] | T (y, t) 6 C0(x)} = sup{t ∈ ]C0(y), β] | x 6 C0(T (y, t))}
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(with sup ∅ = C0(y)). Because t ∈ ]C0(y), β] states that (y, t) ∈ DIII, the latter can be rewritten
as follows:

CC0(x)(y) = sup
{
t ∈ ]C0(y), β] | x 6 σ−1

[
Ĉσ[C0(t)](σ[y])

]}

= sup{t ∈ ]C0(y), β] | T̂ (σ[y], σ[x]) 6 σ[C0(t)]}
= sup

{
t ∈ ]C0(y), β] | t 6 C0

(
σ−1[T̂ (σ[x], σ[y])]

)}

= sup{t ∈ ]C0(y), β] | t 6 C0(T (x, y))} = C0(T (x, y)) .

Note that in the last step properties (K3) and (K5) ensure that β < T (x, y) 6 y, which leads
to C0(y) 6 C0(T (x, y)) < β.

For every (x, y) ∈ [0, 1]2 \ D it holds that y 6 C0(x) and T (x, y) = 0. Invoking We immediately
obtain that CC0(x)(y) = C0(T (x, y)) = 1. From the commutativity of T on [0, 1]2 \ D (proof of
property (K4)) it then follows that also C0(T (x, y)) = CC0(y)(x) = 1.

(K7b): Take arbitrary (x, y) ∈ DII. Then T (x, y) 6 x 6 β and for every a ∈ [T (x, y), β] =
[T (y, x), β] it holds that y 6 Ca(x) and x 6 Ca(y). In this case Ca(T (x, y)) = CCa(x)(y) =
CCa(y)(x) = 1. Now let a = C0(C0(a)) < T (x, y) 6 β. Then (C0(a), T (x, y)) ∈ DIII and
applying property (K7a) twice leads to

Ca(T (x, y)) = CC0(C0(a))(T (x, y)) = CC0(T (x,y))(C0(a)) = CCC0(x)(y)(C0(a)) . (8.1)

Moreover, as C0(x) ∈ [β, 1[ it follows from property (K7c) that Ca(T (x, y)) = CCC0(x)(C0(a))(y).

Note that C0(C0(a)) = a < T (x, y) 6 x 6 β from which we can derive that also (C0(a), x) ∈ DIII.
Hence, CC0(x)(C0(a)) = Ca(x) (property (K7a)) and we conclude that Ca(T (x, y)) = CCa(x)(y).
This leaves us to prove the equality CCa(y)(x) = Ca(T (x, y)). Clearly, C0(x) 6 CCa(y)(x) such
that

CCa(y)(x) = sup{t ∈ ]C0(x), 1] | T (x, t) 6 Ca(y)} (8.2)

(with sup ∅ = C0(x)). Since a < T (x, y) 6 T (β, y) = C0(C0(T (β, y))) and (β, y) ∈ DII, it
holds that a < C0(Cβ(y)) (property (K7a)). The latter is equivalent with Cβ(y) < C0(a)
and thus (y, C0(a)) ∈ DI. From property (K7a) it then follows that Ca(y) = C0(T (y, C0(a))).
Furthermore, for every t ∈ ]C0(x), 1] it holds that T (x, t) = C0(CC0(x)(t)) (property (K7a)).
Eq. (8.2) can then be rewritten as follows

CCa(y)(x) = sup{t ∈ ]C0(x), 1] | C0(CC0(x)(t)) 6 C0(T (y, C0(a)))}
= sup{t ∈ ]C0(x), 1] | T (y, C0(a)) 6 CC0(x)(t)} .

Recall that (y, C0(a)) ∈ DI and (C0(x), t) ∈ [β, 1]2, for every t ∈ ]C0(x), 1]. Taking into account
properties (K6) and (F4a), this allows us to rewrite the above expression as follows:

CCa(y)(x) = sup
{
t ∈ ]C0(x), 1] | σ−1

[
T̂
(
σ[y], σ[C0(a)]

)]
6 σ−1

[
Ĉσ[C0(x)](σ[t])

]}
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Applying Theorem 5.12 and invoking properties (K6) and (F4a) leads to the following chain
of equalities:

CCa(y)(x) = sup
{
t ∈ ]C0(x), 1] | σ−1

[
T̂
(
σ[C0(a)], σ[t]

)]
6 σ−1

[
Ĉσ[C0(x)](σ[y])

]}

= sup{t ∈ ]C0(x), 1] | max(β, T (C0(a), t)) 6 CC0(x)(y)} .

Because β 6 C0(x) 6 C0(T (x, y)) = CC0(x)(y) and considering Eq. (8.1), the latter reduces to

CCa(y)(x) = sup{t ∈ ]C0(x), 1] | T (C0(a), t) 6 CC0(x)(y)} = CCC0(x)(y)(C0(a)) = Ca(T (x, y)) .

Note that indeed C0(x) = CC0(x)(1) 6 CC0(x)(y) = CCC0(x)(y)(1) 6 CCC0(x)(y)(C0(a)). The

commutativity of T on DII ∪DIII implies that property (K7b) also holds for every (x, y) ∈ DIII.

Furthermore, for arbitrary (x, y) ∈ [0, 1]2 \ D we know that y 6 C0(x) 6 Ca(x), x 6 C0(y) 6

Ca(y) and T (x, y) = 0 6 a, for every a ∈ [0, β]. Hence, CCa(x)(y) = CCa(y)(x) = Ca(T (x, y)) =
1. �

Suppose now that DIV = ∅, then DI = ]β, 1]2 and Eq. (7.1) determines T on the whole unit
square [0, 1]2. By definition we know that Cβ(x) = β, for every x ∈ ]β, 1], is equivalent with

Ĉ0(x) = 0, for every x ∈ ]0, 1]. Hence, DIV = ∅ holds if and only if T̂ has no zero divisors.

Theorem 8.3 If T̂ has no zero divisors, then the [0, 1]2 → [0, 1] function T defined by Eq. (7.1)
is a rotation-invariant t-norm satisfying T β = T̂ .

Proof Property 8.1 is applicable and due to the non-existence of area DIV we immediately
conclude that T is increasing, left continuous, has neutral element 1 and is commutative.
Therefore, T (x,Cβ(x)) = T (x, β) 6 T (1, β) = β holds for every x ∈ ]β, 1]. Property 8.2

then provides the following characteristics: β < T (x, y) ⇔ (x, y) ∈ DI, T
β = T̂ and

Ca(T (x, y)) = CCa(x)(y) = CCa(y)(x) holds for every (x, y) ∈ [0, 1]2 if a ∈ {0} ∪ [β, 1] and
for every (x, y) ∈ [0, 1]2 \ DI if a ∈ ]0, β[. Take a ∈ ]0, β[ and (x, y) ∈ DI. Denote C0(a) as z,
then also (y, z) ∈ DI. Hence, T (x, y) ∈ ]β, 1] and T (y, z) ∈ ]β, 1] such that (T (x, y), z) ∈ DI and
(x, T (y, z)) ∈ DI. Making use of property (K7a), Eq. (7.1) and the associativity of T̂ , we obtain
the following chain of equalities:

Ca(T (x, y)) = CC0(z)(T (x, y)) = C0(T (T (x, y), z))

= C0

(
σ−1

[
T̂
(
T̂ (σ[x], σ[y]), σ[z]

)])
= C0

(
σ−1

[
T̂
(
σ[x], T̂ (σ[y], σ[z])

)])

= C0(T (x, T (y, z))) = CC0(T (y,z))(x) = CCC0(z)(y)(x) = CCa(y)(x) .

Taking into account the commutativity of T , we conclude that Ca(T (x, y)) = CCa(x)(y) =
CCa(y)(x) holds for every (x, y, a) ∈ [0, 1]3. The associativity of T now immediately follows from
Theorem 5.10. Therefore, T is a left-continuous t-norm. Theorem 6.17 states that T must be
rotation invariant as its contour line C0 is involutive. �
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Note that in case DIV = ∅ (i.e. T̂ has no zero-divisors), property (I1) is trivially satisfied and
the construction method from the previous theorem coincides with the rotation construction
of Jenei (Theorem 6.26). His approach is slightly more general, as he also allows t-norms T̂
whose set of zero-divisors fills up a sub-square of [0, 1]2 (property (I1)). However, working with
our partition D = DI ∪ DII ∪ DIII ∪ DIV, the zero divisors of T̂ determine area DIV. Starting
from Eq. (7.1) the question remains how to define T |DIV

when DIV 6= ∅. Recall from Fig. 7.2

that the filling-in of this area is not always uniquely fixed by T̂ and C0. In case the contour
line Ĉ0 of T̂ is continuous on ]0, 1], however, Theorem 7.9 states that there exists at most one
appropriate choice for T |DIV

. Recall that Theorem 7.9 originates from merging Theorem 7.5
with Theorem 7.8. For the construction process, we use a similar approach. First we invert
Theorem 7.5 into a construction theorem. That result is then used to invert Theorem 7.9.

Examining Eq. (7.5) more carefully, we have shown in Theorem 7.5 that the companion Q̂ of the
β-zoom T̂ (= T β) of T must be commutative on [0, 1[2. When constructing rotation-invariant
t-norms, this property restricts the possible choices for T̂ . In the following theorem we present
three assertions, each establishing the commutativity of Q̂ on [0, 1[2.

Theorem 8.4 For every rotation-invariant t-norm T the following assertions are equivalent:

(L1) Q is commutative on [0, 1[2.
(L2) T (x, y) < T (x + ε, y + ε), for every (x, y, ε) ∈ ]0, 1[3 satisfying C0(x) < y and ε 6

1 − max(x, y).
(L3) Q (C0(x), C0(T (y, z))) = Q (C0(z), C0(T (y, x))), for every (x, y, z) ∈ [0, 1]3 satisfying

C0(y) < min(x, z).

Proof (L1)⇔(L2): Consider a rotation-invariant t-norm T whose companionQ is commutative
on [0, 1[2. Suppose that there exist (x, y, ε) ∈ ]0, 1[3 satisfying C0(x) < y and ε 6 1 − max(x, y)
such that T (x, y) = T (x+ε, y+ε). Denote z := C0(T (x, y)). Then, z ∈ ]0, 1[ as 0 < T (x, y) < 1.
The increasingness and commutativity of T ensure that

C0(z) = T (y, x) = T (y + δ, x+ ε) = T (y + ε, x+ ε) ,

for every δ ∈ ]0,min(ε, 1−z)]. Considering the involutivity of C0 (assertion (G2)) and applying
assertion (G5) on T (y + δ, x+ ε) = C0(z) and on C0(z + δ) < T (y, x) leads to

T (z, y + δ) = T (y + δ, z) 6 C0(x+ ε) < C0(x) < T (y, z + δ) ,

for every δ ∈ ]0,min(ε, 1 − z)]. From property (E2) we obtain the contradiction Q(z, y) 6

C0(x+ ε) < C0(x) 6 Q(y, z). Hence, assertion (L2) is implied by assertion (L1).

Conversely, let T be a rotation-invariant t-norm satisfying assertion (L2) and suppose that
Q(x, y) < Q(y, x), for some (x, y) ∈ [0, 1[2. Note that in particular (x, y) ∈ ]0, 1[2 as Q(t, 0) =
Q(0, t) = 0, for every t ∈ [0, 1[. Furthermore, the involutivity of C0 and property (E2) ensure
the existence of a couple (z, ε) ∈ ]0, 1[2 such that

Q(x, y) 6 T (x, y + ε) 6 C0(z + ε) < C0(z) < Q(y, x) .
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Clearly, ε 6 1 − max(y, z). Invoking property (E2) once more, Q(y, x) can be bounded from
above by T (y, x + δ), for any δ ∈ ]0, 1 − x]. Next, we apply assertion (G5) to the inequalities
T (x, y + ε) 6 C0(z + ε) and C0(z) < T (y, x+ δ). This results in

C0(x+ δ) < T (y, z) 6 T (y + ε, z + ε) 6 C0(x) ,

for every δ ∈ ]0, 1−x]. Taking the limit δ ց 0 yields the contradiction T (y, z) = T (y+ ε, z+ ε).
Note that indeed C0(z) < Q(y, x) 6 y (property (E5)).

(L1)⇔(L3): In case y = 1, assertion (L3) states that Q (C0(x), C0(z)) = Q (C0(z), C0(x))
whenever (x, z) ∈ ]0, 1]2. Denoting u := C0(x) and v := C0(z), the latter expresses the com-
mutativity of Q on [0, 1[2, i.e. Q (u, v) = Q (v, u) for every (u, v) ∈ [0, 1[2. Hence, we only need
to prove that assertion (L1) implies assertion (L3). Suppose that assertion (L1) is true and
assertion (L3) is false. We may assume that Q (C0(x), C0(T (y, z))) < Q (C0(z), C0(T (y, x))), for
some (x, y, z) ∈ [0, 1]3 satisfying C0(y) < min(x, z). This particular triplet (x, y, z) fulfills 0 <
min(z, T (y, x)) and hence, max(C0(z), C0(T (y, x)) < 1, implying that Q(C0(z), C0(T (y, x)) =
Q(C0(T (y, x), C0(z)). Now take arbitrary

t ∈
]
Q
(
C0(x), C0(T (y, z))

)
, Q
(
C0(T (y, x)), C0(z)

)[
. (8.3)

Using the definition of Q, t must satisfy the following inequalities:

C0(T (y, z)) < Ct(C0(x)) ∧ Ct(C0(T (y, x))) 6 C0(z) .

Due to the involutivity of C0 and assertion (G3), we can rewrite the above inequalities in the
following way

T (C0(t), C0(x)) = C0(Ct(C0(x))) < T (y, z) , (8.4)

z 6 C0

(
Ct(C0(T (y, x)))

)
= T

(
C0(t), C0(T (y, x))

)
. (8.5)

Applying assertion (G5), Eq. (8.4) is equivalent with

C0(z) < T
(
y, C0(T (C0(t), C0(x)))

)
. (8.6)

Also, from assertion (G5) and T (C0(t), C0(x)) = T (C0(t), C0(x)) we obtain that

T
(
C0(t), C0(T (C0(t), C0(x)))

)
6 x .

Consequently,

T (C0(t), C0(z)) 6 T
(
C0(t), T

(
y, C0(T (C0(t), C0(x)))

))

= T
(
y, T

(
C0(t), C0(T (C0(t), C0(x)))

))
6 T (y, x) . (8.7)

Applying assertion (G5) once more on the left- and right-hand side of the above chain of
inequalities, we obtain a lower bound for z: T (C0(t), C0(T (y, x))) 6 z. In combination with
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Eq. (8.5), we conclude that z = T (C0(t), C0(T (y, x))). Substituting this expression for z in
Eq. (8.6) and using the involutivity of C0 and assertion (G3) leads to the following inequality:

CT (y,x)(C0(t)) = C0

(
T
(
C0(t), C0(T (y, x))

))
< T

(
y, C0(T (C0(t), C0(x)))

)
.

Based on the definition of contour lines, this inequality implies that

T (y, x) < T
(
C0(t), T

(
y, C0(T (C0(t), C0(x)))

))
,

which contradicts Eq. (8.7). �

If the companion Q̂ of a rotation-invariant t-norm T̂ is commutative on [0, 1[2, Eq. (7.5) can be
invoked to construct a rotation-invariant t-norm that has contour line C0 and β-zoom T̂ .

Theorem 8.5 If T̂ is rotation invariant, then the [0, 1]2 → [0, 1] function T defined by Eq. (7.5)
is a rotation-invariant t-norm if and only if Q̂ is commutative on [0, 1[2. In this case T β = T̂ .

Proof As in the proof of Theorem 8.3, Properties 8.1 and 8.2 will provide most of the t-norm
properties of T . Because T is on [0, 1]2 \DIV also given by Eq. (7.1), Property 8.1 is immediately
applicable. The rotation invariance of T̂ implies that its contour line Ĉ0 is involutive on [0, 1]
(assertion (G2)). By definition, the involutivity of Ĉ0 implies that Cβ is involutive on [β, 1].
Therefore, (x,Cβ(x)) ∈ DIV and T (x,Cβ(x)) 6 C0(σ−1[0]) = C0(β) = β, for every x ∈ ]β, 1[. To
show the validity of Property 8.2 we have to prove that T is increasing. Property (K1) and the
increasingness of Q̂ (property (E1)) imply the increasingness of T on [0, 1]2 \ DIV and on DIV.
We only have to verify what happens on the borders between areas [0, 1]2 \ (DI ∪DIV) and DIV

and between areas DI and DIV. Recall from the proof of property (K1) that T (x, y) > β
whenever (x, y) ∈ DI. Together with T (x,Cβ(x)) 6 β, for every x ∈ ]β, 1[, this implies that T

is increasing on DI ∪ DIV. Making use of Q̂|[0,1[2 6 TM|[0,1[2 (property (E5)) and the fact that
(x, y) ∈ DIV ⇔ (y, x) ∈ DIV (property (K4)), we get that

T (x, β)
T (β, x)

∣∣∣∣ = C0

(
σ−1[Ĉ0(σ[x])]

)
6

∣∣∣∣
T (x, y)
T (y, x)

,

for every (x, y) ∈ DIV. We conclude that T is indeed increasing on [0, 1]2.

By definition, the continuity of Ĉ0 (assertion (G1)) is passed on to Cβ . Property (K5) then
ensures that Cβ is a continuous contour line of T . If T is a rotation-invariant t-norm, it follows

from Theorem 7.5 that Q̂ is commutative on [0, 1[2. Conversely, assume that Q̂ is commutative
on [0, 1[2. We now need to show that T is a rotation-invariant t-norm. The left continuity
of T follows immediately from property (K2), the continuity of C0, the involutivity of Ĉ0 and
the right continuity of Q̂. Note that Q̂ is indeed right continuous as it is right continuous in
its second argument (property (E4)) and commutative on [0, 1[2. This commutativity of Q̂
combined with property (K4) implies the commutativity of T . Property (K3) states that 1 is
the neutral element of T and property (K6) states that T β = T̂ . Unfortunately, the associativity
of T cannot be straightforwardly obtained. We must show that Ca(T (x, y)) = CCa(x)(y) holds
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for every (x, y, a) ∈ [0, 1]3 (Theorem 5.10). Considering properties (K7a)–(K7c), it suffices to
prove that Ca(T (x, y)) = CCa(x)(y) holds for every (x, y) ∈ DIV whenever a = 0 and for every
(x, y) ∈ DI ∪ DIV = ]β, 1]2 whenever a ∈ ]0, β[. Like in the proofs of Properties 8.1 and 8.2, the
key is to translate the properties of the t-norm T̂ into properties of T . In this respect, we make
extensive use of Property 6.13 and Corollary 6.15.

Take (x, y) ∈ DIV. We will first prove that C0(T (x, y)) = CC0(x)(y). From y 6 Cβ(x) we derive
that T (x, β) = C0(Cβ(x)) 6 C0(y) (assertions (G2) and (G3)). Consequently, β 6 CC0(y)(x).
Furthermore, as y ∈ ]β, 1[, we get that C0(y) < β. The latter implies that CC0(y)(x) 6 Cβ(x)
and we obtain that

CC0(y)(x) = sup{t ∈ ]β,Cβ(x)] | T (x, t) 6 C0(y)}
= sup

{
t ∈ ]β,Cβ(x)] | C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(σ[t])

)])
6 C0(y)

}

= sup
{
t ∈ ]β,Cβ(x)] | σ[y] 6 Q̂

(
Ĉ0(σ[x]), Ĉ0(σ[t])

)}
,

(with sup ∅ = β). Taking into account assertion (G7) and the involutivity of Ĉ0 this leads to

CC0(y)(x) = sup
{
t ∈ ]β,Cβ(x)] | σ[t] 6 Q̂

(
Ĉ0(σ[x]), Ĉ0(σ[y])

)}

= sup
{
t ∈ ]β,Cβ(x)] | t 6 σ−1

[
Q̂
(
σ[Cβ(x)], σ[Cβ(y)]

)]}

= σ−1
[
Q̂
(
σ[Cβ(x)], σ[Cβ(y)]

)]
= C0(T (x, y)) .

Note that indeed σ−1[Q̂(σ[Cβ(x)], σ[Cβ(y)])] ∈ [β,Cβ(x)] as σ−1[0] = β and Q̂|[0,1[2 6 TM|[0,1[2 .
Due to the commutativity of T on DIV, we obtain that C0(T (x, y)) = CC0(x)(y) = CC0(y)(x)
holds for every (x, y) ∈ DIV. In combination with property (K7a) we conclude that the latter
chain of equalities must even hold for every (x, y) ∈ [0, 1]2.

Take arbitrary a ∈ ]0, β[ and (x, y) ∈ ]β, 1]2. As C0(T (x, y)) = CC0(x)(y) holds for every
(x, y) ∈ [0, 1]2 we get that Ca(T (x, y)) = CC0(C0(a))(T (x, y)) = C0(T (C0(a), T (x, y))) and

CCa(x)(y) = CCC0(C0(a))(x)(y) = CC0(T (C0(a),x))(y) = C0

(
T (T (C0(a), x), y)

)
.

Hence, proving that Ca(T (x, y)) = CCa(x)(y) holds becomes then equivalent with proving that
T (C0(a), T (x, y)) = T (T (C0(a), x), y). If we denote (C0(a), x, y) as (x′, y′, z′), the latter will
be satisfied if T (T (x′, y′), z′) = T (x′, T (y′, z′)) holds for arbitrary (x′, y′, z′) ∈ ]β, 1]3. To prove
this we will make extensive use of property (K5) and the involutivity of Cβ on [β, 1]. Take
(x, y, z) ∈ ]β, 1]3. Suppose that Cβ(T (x, y)) < z. Then, because Cβ(T (x, y)) < 1, it must hold
that β < T (x, y) (Corollary 5.8), meaning that (x, y) ∈ DI. From Eq. (7.5) and Theorem 5.12 it
then follows that

Cβ(T (x, y)) < z ⇔ Cβ(z) < T (x, y) ⇔ Ĉ0(σ[z]) < T̂ (σ[x], σ[y])

⇔ Ĉ0(σ[x]) < T̂ (σ[y], σ[z]) ⇔ Cβ(x) < T (y, z) . (8.8)
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Note that indeed (y, z) ∈ DI since Cβ(y) 6 Cβ(T (x, y)) < z. In particular, Eq. (8.8) expresses
that {(T (x, y), z), (x, T (y, z))} ⊂ DI:

T (T (x, y), z) = σ−1
[
T̂
(
T̂ (σ[x], σ[y]), σ[z]

)]
= σ−1

[
T̂
(
σ[x], T̂ (σ[y], σ[z])

)]
= T (x, T (y, z)) .

Taking into account Eq. (8.8) and the chain of equivalences

T (T (x, y), z) = 0 ⇔ (T (x, y), z) ∈ [0, 1]2 \ D ⇔ z 6 C0(T (x, y)) = CC0(x)(y)

⇔ T (y, z) 6 C0(x) ⇔ (x, T (y, z)) ∈ [0, 1]2 \ D ⇔ T (x, T (y, z)) = 0 ,

we only need to show that T (T (x, y), z) = T (x, T (y, z)) holds for every (x, y, z) ∈ ]β, 1]3 fulfilling
C0(T (x, y)) < z 6 Cβ(T (x, y)). Note that

C0(T (x, y)) < z 6 Cβ(T (x, y)) ⇔ (T (x, y), z) ∈ DII ∪ DIV

⇔ (x, T (y, z)) ∈ DIII ∪ DIV ⇔ C0(x) < T (y, z) 6 Cβ(x) .

For such a triplet (x, y, z) we distinguish four cases:

I. (x, y) ∈ DI ∧ (y, z) ∈ DI

The location of (x, y) and (y, z) in the domain of T implies that β < min(T (x, y), T (y, z)),
leading to {(T (x, y), z), (x, T (y, z))} ⊂ DIV. Invoking the commutativity of T on DI and
DIV, we need to prove that T (z, T (y, x)) = T (x, T (y, z)), with {(z, T (y, x)), (x, T (y, z))} ⊂
DIV:

T (z, T (y, x)) = C0

(
σ−1

[
Q̂
(
Ĉ0(σ[z]), Ĉ0(T̂ (σ[y], σ[x]))

)])
;

T (x, T (y, z)) = C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(T̂ (σ[y], σ[z]))

)])
.

Denote u := σ[x], v := σ[y] and w := σ[z]. Then {(y, x), (y, z)} ⊂ DI becomes equivalent
with Ĉ0(v) < min(u,w) and assertion (L3) implies that

T (z, T (y, x)) = C0

(
σ−1

[
Q̂
(
Ĉ0(w), Ĉ0(T̂ (v, u))

)])

= C0

(
σ−1

[
Q̂
(
Ĉ0(u), Ĉ0(T̂ (v, w))

)])
= T (x, T (y, z)) .

II. (x, y) ∈ DI ∧ (y, z) ∈ DIV

Like in the previous case it holds that (T (x, y), z) ∈ DIV. Furthermore, from T (y, z) 6 β
it follows that (x, T (y, z)) ∈ DIII. Denoting u := σ[x], v := σ[y] and w := σ[z], (x, y) ∈ DI

becomes equivalent with Ĉ0(u) < v, (y, z) ∈ DIV becomes equivalent with 0 < v 6 Ĉ0(w) <
1 and

T (T (x, y), z) = C0

(
σ−1

[
Q̂
(
Ĉ0(T̂ (u, v)), Ĉ0(w)

)])
;

T (x, T (y, z)) = C0

(
σ−1

[
Ĉσ[C0(T (y,z))](σ[x])

])
= C0

(
σ−1

[
Ĉ bQ( bC0(v), bC0(w))

(u)
])

.
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It now suffices to prove that Q̂
(
Ĉ0(T̂ (u, v)), Ĉ0(w)

)
= Ĉ bQ( bC0(v), bC0(w))

(u). As Ĉ•(u) is

increasing, we know that Ĉ0(u) 6 Ĉ bQ( bC0(v), bC0(w))
(u), which leads to

Ĉ bQ( bC0(v), bC0(w))
(u) = sup{t ∈ ]Ĉ0(u), 1] | T̂ (u, t) 6 Q̂(Ĉ0(v), Ĉ0(w))} (8.9)

(with sup ∅ = Ĉ0(u)). Observe that 0 < T̂ (u, v) and 0 6 Ĉ0(u) < min(v, t) whenever t ∈
]Ĉ0(u), 1]. Next, we rewrite Eq. (8.9) using the involutivity of Ĉ0 and resp. assertion (G7),
assertion (L3), the commutativity of Q̂ on [0, 1[2 and once again assertion (G7):

Ĉ bQ( bC0(v), bC0(w))
(u) = sup

{
t ∈ ]Ĉ0(u), 1] | w 6 Q̂

(
Ĉ0(v), Ĉ0(T̂ (u, t))

)}

= sup
{
t ∈ ]Ĉ0(u), 1] | w 6 Q̂

(
Ĉ0(t), Ĉ0(T̂ (u, v))

)}

= sup
{
t ∈ ]Ĉ0(u), 1] | w 6 Q̂

(
Ĉ0(T̂ (u, v)), Ĉ0(t)

)}

= sup
{
t ∈ ]Ĉ0(u), 1] | t 6 Q̂

(
Ĉ0(T̂ (u, v)), Ĉ0(w)

)}

= Q̂
(
Ĉ0(T̂ (u, v)), Ĉ0(w)

)
.

Note that indeed Ĉ0(u) 6 Q̂(Ĉ0(T̂ (u, v)), Ĉ0(w)). For u = 1 this is trivial. In case
u < 1, this inequality is obtained by applying assertion (G7) on T̂ (u, v) 6 T̂ (u, Ĉ0(w)) =
T̂ (Ĉ0(w), u) 6 Q̂(Ĉ0(w), u) (property (E3)) and taking into account the involutivity of Ĉ0

and the commutativity of Q̂ on [0, 1[2.

III. (x, y) ∈ DIV ∧ (y, z) ∈ DI

In this case (T (x, y), z) ∈ DII and (x, T (y, z)) ∈ DIV. Invoking the commutativity of T
on DI, on DII∪DIII and on DIV, we need to prove that T (z, T (y, x)) = T (T (z, y), x), where
(z, T (y, x)) ∈ DIII and (T (z, y), x) ∈ DIV. The latter follows immediately from case II.

IV. (x, y) ∈ DIV ∧ (y, z) ∈ DIV

In this case (T (x, y), z) ∈ DII and (x, T (y, z)) ∈ DIII. Invoking the commutativity of T
on DII ∪ DIII and on DIV, we need to prove that T (T (x, y), z) = T (T (z, y), x), where
{(T (x, y), z), (T (z, y), x)} ⊂ DII. Denoting u := σ[x], v := σ[y] and w := σ[z], then
{(x, y), (y, z)} ⊂ DIV becomes equivalent with 0 < max(u,w) 6 Ĉ0(v) < 1 and

T (T (x, y), z) = C0

(
σ−1

[
Ĉ bQ( bC0(u), bC0(v))

(w)
])

;

T (T (z, y), x) = C0

(
σ−1

[
Ĉ bQ( bC0(w), bC0(v))

(u)
])

.

It then suffices to show that Ĉ bQ( bC0(u), bC0(v))
(w) = Ĉ bQ( bC0(w), bC0(v))

(u). Clearly, Ĉ0(w) 6

Ĉ bQ( bC0(u), bC0(v))
(w) and

T̂ (w, Ĉ0(u)) 6 T̂ (Ĉ0(v), Ĉ0(u)) = T̂ (Ĉ0(u), Ĉ0(v)) 6 Q̂(Ĉ0(u), Ĉ0(v))
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(property (E3)) implies that Ĉ0(u) 6 Ĉ bQ( bC0(u), bC0(v))
(w). Since max(Ĉ0(u), Ĉ0(w)) =

Ĉ0(min(u,w)), we obtain that

Ĉ bQ( bC0(u), bC0(v))
(w) = sup{t ∈ ]Ĉ0(min(u,w)), 1] | T̂ (w, t) 6 Q̂(Ĉ0(u), Ĉ0(v))} (8.10)

(with sup ∅ = Ĉ0(min(u,w))). Taking into account the involutivity of Ĉ0 and successively
applying assertions (G7), (L3) and once again (G7), enables us to rewrite Eq. (8.10) in
the following way:

Ĉ bQ( bC0(u), bC0(v))
(w) = sup

{
t ∈ ]Ĉ0(min(u,w)), 1] | v 6 Q̂

(
Ĉ0(u), Ĉ0(T̂ (t, w))

)}

= sup
{
t ∈ ]Ĉ0(min(u,w)), 1] | v 6 Q̂

(
Ĉ0(w), Ĉ0(T̂ (t, u))

)}

= sup{t ∈ ]Ĉ0(min(u,w)), 1] | T̂ (u, t) 6 Q̂(Ĉ0(w), Ĉ0(v))}
= Ĉ bQ( bC0(w), bC0(v))

(u) .

From Ĉ0(u) 6 Ĉ bQ( bC0(w), bC0(v))
(u) and T̂ (u, Ĉ0(w)) 6 T̂ (Ĉ0(w), Ĉ0(v)) 6 Q̂(Ĉ0(w), Ĉ0(v))

(property (E3)) it indeed follows that Ĉ0(min(u,w)) 6 Ĉ bQ( bC0(w), bC0(v))
(u).

Summarizing the above reasonings, we conclude that T satisfies all t-norm properties, is left
continuous and T β = T̂ . Furthermore, we showed that C0 is a continuous contour line of T
(property (K5)). Hence, it follows from assertion (G1) that T must be a rotation-invariant
t-norm. �

Finally, we use Theorem 8.5 to invert Theorem 7.9 into a construction theorem. This procedure
yields a single theorem covering both Theorems 8.3 and 8.5. The commutativity of Q̂ on some
half-open sub-square of [0, 1]2 is required.

Theorem 8.6 If the contour line Ĉ0 of T̂ is continuous on ]0, 1], then the [0, 1]2 → [0, 1]
function T defined by Eq. (7.7) is a rotation-invariant t-norm if and only if Q̂ is commutative
on [0, α̂[2, with α̂ = inf{t ∈ [0, 1] | Ĉ0(t) = 0}. In this case, T β = T̂ .

Proof In case α̂ = 0, then T̂ has no zero-divisors and the continuity of Ĉ0 on ]0, 1] is trivially
fulfilled. This theorem then coincides with Theorem 8.3. From now on we assume that 0 < α̂.
Due to the correspondence between Eqs. (7.7) and (7.1), it is clear that Property 8.1 applies to T .
From assertion (J2) we know that Ĉ0 is involutive on ]0, α̂[. Then, by definition, Cβ must be
involutive on ]β, σ−1(α̂)[ and Cβ(x) = σ−1[0] = β, for every x ∈ [σ−1(α̂), 1]. We shortly denote
σ−1[α̂] by α (β < α). The above observations imply that (x, y) ∈ DIV if and only if (x, y) ∈ ]β, α[2

such that y 6 Cβ(x). Note that β < Cβ(x), for every x ∈ ]β, α[. It then follows from Eq. (7.7)
that T (x,Cβ(x)) 6 C0(σ−1[0]) = β, for every x ∈ ]β, α[ and T (x,Cβ(x)) = T (x, β) 6 β, for
every x ∈ [α, 1] (property (K3)). Similar reasonings as those used in the first paragraph of the
proof of Theorem 8.5 yield the increasingness of T . We conclude that Property 8.2 also applies
to T .



134 The triple rotation method

Property (K5) states that Cβ is a contour line of T . Furthermore, Cβ is continuous on ]β, 1].

If T is a rotation-invariant t-norm, it follows from Theorem 7.9 that Q̂ is commutative on [0, α̂[2.
Conversely, assume that Q̂ is commutative on [0, α̂[2. We then need to show that T is a rotation-
invariant t-norm. As in Theorem 8.5, the left continuity, commutativity and the neutral element
of T follow immediately from Properties 8.1 and 8.2, the involutivity of Ĉ0 on ]0, α̂[ and the
properties of Q̂. Furthermore, property (K6) states that T β = T̂ . To retrieve the associativity
of T it is enough to prove that Ca(T (x, y)) = CCa(x)(y) holds for every (x, y) ∈ DIV whenever
a = 0 and for every (x, y) ∈ DI∪DIV = ]β, 1]2 whenever a ∈ ]0, β[ (Eq. 5.3 and properties (K7a)–
(K7c)). To this end we will show that T (C0(α),α) satisfies Theorem 8.5, and then translate the
associativity properties of T (C0(α),α) to properties of T . Table 8.1 gives an overview of the zooms
involved in the translation procedure. We distinguish 5 consecutive subproblems.

Table 8.1: Zooms used in the proof of Theorem 8.6.

T-norm Rescaling function Contour lines Companion

T̂ := T β σ : [β, 1] → [0, 1] Ĉa Q̂

T̆ := T (C0(α),α) σ̆ : [C0(α), α] → [0, 1] C̆a Q̆

T := T̂ (0,α̂) σ̄ : [0, α̂] → [0, 1] Ca Q

I. T (x, y) = min(x, y), for every (x, y) ∈ (]C0(α), α] × [α, 1]) ∪ ([α, 1], × ]C0(α), α])

The continuity of Ĉ0 on ]0, 1] implies that T is a rotation-invariant t-norm (assertion (J4)).
By definition, T (x, y) = σ̄[T̂ (σ̄−1[x], σ̄−1[y])]. Hence, T has neutral element 1 if and only
if T̂ (x, α̂) = T̂ (α̂, x) = x, for every x ∈ σ̄−1([0, 1]) = [0, α̂]. Because T̂ is a t-norm, this
leads to T̂ (x, y) = min(x, y), for every (x, y) ∈ ([0, α̂] × [α̂, 1]) ∪ ([α̂, 1] × [0, α̂]). Recall that
(x, y) ∈ DI whenever (x, y) ∈ (]β, α] × [α, 1]) ∪ ([α, 1]× ]β, α]). From Eq. (7.7) and α = σ−1[α̂]
it follows for such a pair (x, y) that T (x, y) = min(x, y). Moreover, T̂ (x, y) = min(x, y), for
every (x, y) ∈ ([0, α̂] × [α̂, 1]) ∪ ([α̂, 1] × [0, α̂]), also implies that Ĉa(x) = a whenever (x, a) ∈
[α̂, 1] × [0, α̂[. Consider arbitrary (x, y) ∈ ]C0(α), β] × [α, 1]. Then (x, y) ∈ DII, σ[C0(x)] ∈ [0, α̂[
and σ[y] ∈ [α̂, 1]. Consequently, T (x, y) = C0(σ−1[σ[C0(x)]]) = x = min(x, y). Due to the
commutativity of T the latter also holds if (x, y) ∈ [α, 1]× ]C0(α), β].

II. Ca(x) = C0(x), for every (x, a) ∈ ]C0(α), α] × [0, C0(α)]

Because C0(x) 6 Ca(x) 6 CC0(α)(x), it is enough to prove that CC0(α)(x) = C0(x), for every
x ∈ ]C0(α), α]. The latter will be satisfied if we can show that C0(α) < T (x, y), for every (x, y) ∈
]C0(α), α]× ]C0(x), α[. Invoking the involutivity of C0 and the increasingness, commutativity
and left continuity of T , it even suffices to prove that C0(α) < T (x, y), for every (x, y) ∈
]C0(α), β]× ]C0(x), α[. For such a pair (x, y) it clearly holds that (x, y) ∈ DII, σ[C0(x)] ∈ [0, α̂[
and σ[y] ∈ ]σ(C0(x)), α̂[. Since σ[C0(x)] < σ[y] = T̂ (σ[y], α̂) (proof of Part I), it must hold that
Ĉσ[C0(x)](σ[y]) < α̂. Therefore, C0(α) = C0(σ−1[α̂]) < T (x, y).
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III. T̆ is a rotation-invariant t-norm

We first show that T̆ has neutral element 1. From Part I it follows that

T̆ (x, 1) = σ̆
[
max

(
C0(α), T (σ̆−1[x], α)

)]

T̆ (1, x) = σ̆
[
max

(
C0(α), T (α, σ̆−1[x])

)]
∣∣∣∣∣ = σ̆[σ̆−1[x]] = x ,

for every x ∈ ]0, 1]. The increasingness of T̆ (property (F1)) ensures that also T̆ (0, 1) = T̆ (1, 0) =
0. We conclude that 1 is indeed the neutral element of T̆ . The increasingness and commutativity
of T are by definition passed on to T̆ . To prove the associativity of T̆ , we invoke Theorem 8.5.
In this respect it is necessary to show that T̆ and Eq. (7.5) structurally coincide.

From property (K5) we know that C0 and Cβ are contour lines of T . Furthermore, invoking
Part II and the definition of Cβ , property (F4b) implies the following formulae:

C̆0(x) = σ̆
[
CC0(α)(σ̆

−1[x])
]

= σ̆
[
C0(σ̆−1[x])

]
, (8.11)

C̆σ̆[β](y) = σ̆
[
Cβ(σ̆−1[y])

]
= σ̆

[
σ−1

[
Ĉ0

(
σ
[
σ̆−1[y]

])]]
, (8.12)

for every x ∈ ]0, 1] and every y ∈ ]σ̆(β), 1]. Because C0 is involutive, Eq. (8.11) ensures that C̆0

is involutive on ]0, 1[. Furthermore, C̆0(0) = 1 and C̆0(1) = 0. Therefore, C̆0 is involutive, with
fixpoint σ̆[β]. Equations (8.11) and (8.12) also yield the inclusions below.

D̆I := {(x, y) ∈ ]σ̆(β), 1]2 | C̆σ̆[β](x) < y} ⊆ {(x, y) ∈ [0, 1]2 | (σ̆−1[x], σ̆−1[y]) ∈ DI} ,
D̆II := {(x, y) ∈ ]0, σ̆(β)]× ]σ̆(β), 1] | C̆0(x) < y} ⊆ {(x, y) ∈ [0, 1]2 | (σ̆−1[x], σ̆−1[y]) ∈ DII} ,
D̆III := {(x, y) ∈ ]σ̆(β), 1]× ]0, σ̆(β)] | C̆0(x) < y} ⊆ {(x, y) ∈ [0, 1]2 | (σ̆−1[x], σ̆−1[y]) ∈ DIII} ,
D̆IV := {(x, y) ∈ ]σ̆(β), 1[2| y 6 C̆σ̆[β](x)} ⊆ {(x, y) ∈ [0, 1]2 | (σ̆−1[x], σ̆−1[y]) ∈ DIV} .

As T̆ has neutral element 1 areas D̆I, D̆II, D̆III and D̆IV partition area D̆ := {(x, y) ∈ [0, 1]2 |
C̆0(x) < y}. By definition, it holds that T̆ (x, y) = 0, for every (x, y) ∈ [0, 1]2 \ D̆. If (x, y) ∈ D̆,
then 0 < T̆ (x, y) such that T̆ (x, y) = σ̆[T (σ̆−1[x], σ̆−1[y])]. Recall that T is defined by Eq. (7.7)
and, hence,

T̆ (x, y) =





σ̆
[
σ−1

[
T̂
(
σ[σ̆−1[x]], σ[σ̆−1[y]]

)]]
, if (x, y) ∈ D̆I ,

σ̆
[
C0

(
σ−1

[
Ĉσ[C0(σ̆−1[x])](σ[σ̆−1[y]])

])]
, if (x, y) ∈ D̆II ,

σ̆
[
C0

(
σ−1

[
Ĉσ[C0(σ̆−1[y])](σ[σ̆−1[x]])

])]
, if (x, y) ∈ D̆III ,

σ̆
[
C0

(
σ−1

[
Q̂
(
Ĉ0(σ[σ̆−1[x]]), Ĉ0(σ[σ̆−1[y]])

)])]
, if (x, y) ∈ D̆IV ,

0, if (x, y) 6∈ D̆ .

(8.13)
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Next, we express the contour line C0 in Eq. (8.13) in terms of C̆0. From the involutivity of C0

and 0 < T̆ (x, y) whenever (x, y) ∈ D̆, it follows that C0(σ̆−1[T̆ (x, y)]) < C0(C0(α)) = α. If
in particular (x, y) ∈ D̆II ∪ D̆III ∪ D̆IV, then also y 6 C̆σ̆[β](x) from which we obtain that

C0(α) < β 6 C0(σ̆−1[T̆ (x, y)]). By means of Eq. (8.11) we are now able to rewrite Eq. (8.13) in
the following way:

T̆ (x, y) =





σ̆
[
σ−1

[
T̂
(
σ[σ̆−1[x]], σ[σ̆−1[y]]

)]]
, if (x, y) ∈ D̆I ,

C̆0

(
σ̆
[
σ−1

[
Ĉσ[σ̆−1[C̆0(x)]](σ[σ̆−1[y]])

]])
, if (x, y) ∈ D̆II ,

C̆0

(
σ̆
[
σ−1

[
Ĉσ[σ̆−1[C̆0(y)]](σ[σ̆−1[x]])

]])
, if (x, y) ∈ D̆III ,

C̆0

(
σ̆
[
σ−1

[
Q̂
(
Ĉ0(σ[σ̆−1[x]]), Ĉ0(σ[σ̆−1[y]])

)]])
, if (x, y) ∈ D̆IV ,

0, if (x, y) 6∈ D̆ .

(8.14)

Finally, we express T̂ , Ĉ and Q̂ in terms of the (0, α̂)-zoom T , C and Q. By definition,
T̂ (x, y) = σ̄−1[T (σ̄[x], σ̄[y])], for every (x, y) ∈ [0, α̂]2. From property (F4b) it follows that
Ĉa(x) = σ̄−1[C σ̄[a](σ̄[x])], for every (x, a) ∈ [0, α̂]2 such that a < x. Property (F2) then implies

that Q̂(x, y) = σ̄−1[Q(σ̄[x], σ̄[y])], for every (x, y) ∈ ]0, α̂[2 such that Ĉ0(x) 6 y. These three
properties allow us to remove T̂ , Ĉ and Q̂ from Eq. (8.14). To not overload the notation, we
briefly use γ to denote the [σ̆(β), 1] → [0, 1] isomorphism σ̄ ◦ σ ◦ σ̆−1. Note that the involu-
tivity of C̆0 ensures that C̆0(x) < y is equivalent with C̆0(y) < x. For every (x, y) ∈ D̆IV,
Ĉ0(]0, α̂[) =]0, α̂[ (assertion (J3)) ensures that (Ĉ0(σ[σ̆−1[x]]), Ĉ0(σ[σ̆−1[y]])) ∈ ]0, α̂[2 and
Eq. (8.12) enables us to derive Ĉ0(Ĉ0(σ[σ̆−1[x]])) 6 Ĉ0(σ[σ̆−1[y]]) from y 6 C̆σ̆[β](x). At last,
we get that

T̆ (x, y) =





γ−1
[
T (γ[x], γ[y])

]
, if (x, y) ∈ D̆I ,

C̆0

(
γ−1

[
Cγ[C̆0(x)](γ[y])

])
, if (x, y) ∈ D̆II ,

C̆0

(
γ−1

[
Cγ[C̆0(y)](γ[x])

])
, if (x, y) ∈ D̆III ,

C̆0

(
γ−1

[
Q
(
C0(γ[x]), C0(γ[y])

)])
, if (x, y) ∈ D̆IV ,

0, if (x, y) 6∈ D̆ .

(8.15)

Equation (8.15) is structurally identical to Eq. (7.5). Moreover, T is a rotation-invariant t-norm
(assertion (J4)), C̆0 is an involutive negator with fixpoint σ̆[β] and γ is a [σ̆(β), 1] → [0, 1]
isomorphism. From Eq. (8.12) and Ĉ0(x) = σ̄−1[C0(σ̄[x])], for every x ∈ ]0, α̂], it follows that
C̆σ̆[β](x) = γ−1[C0(γ[x])], for every x ∈ ]σ̆(β), 1]. Since T̆ and T have neutral element 1 we

also know (Corollary 5.8) that C̆σ̆[β](σ̆[β]) = 1 = γ−1[C0(γ[σ̆[β]])] and C̆σ̆[β](x) = 1, for every

x ∈ [0, σ̆(β)[. Finally, the commutativity of Q̂ on [0, α̂[2 yields the commutativity of Q on [0, 1[2.
Indeed, the correspondence between Q̂ and Q, between Ĉ0 and C0, and the involutivity of C0
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(assertion (G2)) ensure that Q(x, y) = Q(y, x), for every (x, y) ∈ ]0, 1[2 satisfying C0(x) 6 y.
Note that trivially Q(x, y) = Q(y, x) = 0, for every (x, y) ∈ [0, 1[2 satisfying y < C0(x). We
conclude from Theorem 8.5 that T̆ must be a rotation-invariant t-norm.

IV. C0(T (x, y)) = CC0(x)(y), for every (x, y) ∈ DIV

Consider (x, y) ∈ DIV. Recall that (x, y) ∈ DIV if and only if (x, y) ∈ ]β, α[2 and y 6 Cβ(x).
Then CC0(α)(x) = C0(x) < β < y (Part II). The latter inequality is equivalent with C0(α) <

T (x, y) 6 x < α. By definition, T̆ (σ̆[x], σ̆[y]) = σ̆[max(C0(α), T (x, y))] = σ̆[T (x, y)]. From
property (F4b) we know that CC0(x)(y) = σ̆−1[C̆σ̆[C0(x)](σ̆[y])]. Invoking also Eq. (8.11), these
observations allow us to rewrite C0(T (x, y)) = CC0(x)(y) as

σ̆−1[C̆0(T̆ (σ̆[x], σ̆[y]))] = σ̆−1[C̆C̆0(σ̆[x])(σ̆[y])] .

Since T̆ is a left-continuous t-norm (Part III), it follows from Eq. (5.3) that this latter equality
is always satisfied.

V. Ca(T (x, y)) = CCa(x)(y), for every (x, y) ∈ ]β, 1]2 and every a ∈ ]0, β[

As y 6 Ca(x) is equivalent with T (x, y) 6 a, it follows from Corollary 5.8 that Ca(T (x, y)) =
1 = CCa(x)(y). From now on we assume that Ca(x) < y. Depending on the values of x, y and a
we distinguish the following cases:

1. If x ∈ ]β, α[ and a ∈ [0, C0(α)], then Ca(x) = C0(x) and CC0(α)(x) = C0(x) < β < y
(Part II). Therefore, C0(α) < T (x, y) 6 x < α. and applying Part II once more results in
Ca(T (x, y)) = C0(T (x, y)). Due to property (K7a) and part IV, C0(T (x, y)) = CC0(x)(y)
always holds.

2. If max(x, y) ∈ ]β, α[ and a ∈ ]C0(α), β[, then property (F4b) and Eq. (5.3) imply that

CCa(x)(y) = Cσ̆−1[C̆σ̆[a](σ̆[x])](y) = σ̆−1
[
C̆C̆σ̆[a](σ̆[x])(σ̆[y])

]
= σ̆−1

[
C̆σ̆[a]

(
T̆ (σ̆[x], σ̆[y])

)]
.

Because a < T (x, y) (Ca(x) < y), we know that T̆ (σ̆[x], σ̆[y]) = σ̆[max(C0(α), T (x, y))] =
σ̆[T (x, y)]. Hence, CCa(x)(y) = σ̆−1[C̆σ̆[a](σ̆[T (x, y)])]. Invoking property (F4b) once more
lead to CCa(x)(y) = Ca(T (x, y)).

3. If x ∈ ]β, α[, y ∈ [α, 1] and a ∈ ]C0(α), β[, then T (x, y) = x (Part I) and C0(α) 6

CC0(α)(x) = C0(x) 6 Ca(x) (Corollary 5.8 and Part II). From the first paragraph of the
proof we know that Cβ(]β, α[) = ]β, α[. Therefore, Ca(x) 6 Cβ(x) < α. From Part I and
Ca(x) ∈ [C0(α), α[ it follows that CCa(x)(y) = Ca(x) = Ca(T (x, y)).

4. If x ∈ [α, 1] and y ∈ ]β, α[, then T (x, y) = y (Part I). In case a ∈ ]0, C0(α)], then
Ca(x) 6 Ca(α) = C0(α) (Part II). As max(a,Ca(x)) ∈ [0, C0(α)] we know from Part II
that Ca(T (x, y)) = Ca(y) = C0(y) = CCa(x)(y). Otherwise, for a ∈ ]C0(α), β[ we have that
Ca(x) = a (Part I) which leads to Ca(T (x, y)) = Ca(y) = CCa(x)(y).
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5. If min(x, y) ∈ [α, 1] and a ∈ ]0, C0(α)], then (x, y, C0(a)) ∈ [α, 1]3, α = T (α, α) 6

min(T (x, y), T (C0(a), x) (Part I). Recall that every (u, v) ∈ [α, 1]2 must belong to DI.
Invoking property (K7a), Eq. (7.7) and the associativity of T̂ , we immediately get that

Ca(T (x, y)) = CC0(C0(a))(T (x, y)) = C0

(
T
(
C0(a), T (x, y)

))

= C0

(
σ−1

[
T̂
(
σ[C0(a)], T̂ (σ[x], σ[y])

)])
= C0

(
σ−1

[
T̂
(
T̂ (σ[C0(a)], σ[x]), σ[y]

)])

= C0

(
T
(
T (C0(a), x), y

))
= CC0(T (C0(a),x))(y) = CCC0(C0(a))(x)(y) = CCa(x)(y) .

6. If min(x, y) ∈ [α, 1] and a ∈ ]C0(α), β[, then Part I implies that Ca(x) = a = Ca(y),
α = T (α, α) 6 T (x, y) and, hence, also Ca(T (x, y)) = a. The equality Ca(T (x, y)) = a =
CCa(x)(y) then trivially holds.

From the reasonings above, we conclude that T is a left-continuous t-norm that satisfies T β =
T̂ and whose contour line C0 is involutive. Hence, T is a rotation-invariant t-norm (asser-
tion (G2)). �

Suppose that Ĉ0 is indeed continuous on ]0, 1]. If α̂ = 0, then T̂ has no zero-divisors and
Theorem 8.6 coincides with Theorem 8.3. For α̂ = 1 we know from property (J2), Ĉ0(0) = 1
and Ĉ0(1) = 0 that Ĉ0 must be involutive. In this case Theorem 8.6 coincides with Theorem 8.5.
Assume now that α̂ ∈ ]0, 1[. The correspondence between Cβ and Ĉ0 yields that Cβ is continuous
on ]β, 1]. Therefore, Theorem 7.9 is applicable on any t-norm T procured by Theorem 8.6.
In the discussion succeeding Theorem 7.9 we have illustrated that T is then decomposable
in the sense of Jenei [45] (α ∈ DT ). Furthermore, Theorem 6.26 states that such a t-norm
can always be reconstructed by means of the rotation-annihilation construction of Jenei [47].
In the setting of the present section and the proof of Theorem 8.6, the rotation-annihilation
construction requires the prior knowledge of the involutive negator C0, the left-continuous t-
norm T̂ α̂(= (T β)α̂ = Tα (Theorem 6.11)) and the rotation-invariant t-norm T̆ (= T (C0(α),α)).
For our approach it is, however, enough to consider only C0 and T̂ (= T β).

To conclude this section we briefly discuss the class of left-continuous t-norms T̂ that are appro-
priate for Theorem 8.6 to hold in case α̂ ∈ ]0, 1[. There are only two requirements: The contour
line Ĉ0 of T̂ must be continuous on ]0, 1] and the companion Q̂ must be commutative on [0, α̂[2.
From property (J4) it follows that the continuity condition on Ĉ0 is equivalent with T̂ (0,α̂) being
a rotation-invariant t-norm. Invoking Corollary 6.12, T̂ must be an ordinal sum:

T̂ =
(〈

0, α̂, σ̄, T̂ (0,α̂)
〉
,
〈
α̂, 1, σ̂, T̂ α̂

〉)
, (8.16)

where σ̄ is the [0, α̂] → [0, 1] isomorphism used to compute T (0,α̂) and σ̂ the [α̂, 1] → [0, 1]
isomorphism used to compute T α̂. By means of property (E2) it is not difficult to verify that
the commutativity of Q̂ on [0, α̂[2 is equivalent with the commutativity of Q̂(0,α̂) on [0, 1[2.
Consequently, the left-continuous t-norms T̂ (α̂ ∈ ]0, 1[) on which Theorem 8.6 is applicable are
exactly those ordinal sums (〈0, α̂, σ̄, T1〉 , 〈α̂, 1, σ̂, T2〉), with α̂ ∈ ]0, 1[, T1 a rotation-invariant
t-norm whose companion is commutative on [0, 1[2 and T2 an arbitrary left-continuous t-norm.
Recall that an ordinal sum of t-norms is always a t-norm (Theorem 6.2).
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8.3 Visualization

This final section visualizes the construction methods from Section 8.2. We first reformulate and
summarize the requisite mathematical results. Although the notations used in Chapter 7 and
Section 8.2 turned out to be extremely convenient for proving and comprehending the theorems
and properties, they impede a smooth formulation of a practical ‘construction tool’. As C0

and Cβ initially do not have a contour line interpretation, we denote them here as, resp. N and
M . The setting of Chapter 7 and Section 8.2 then transforms as follows:

1. T : an arbitrary left-continuous t-norm (with contour lines Ca and companion Q)
such that C0 is continuous on ]0, 1] and Q is commutative on [0, α[2, with α = inf{t ∈
[0, 1] | C0(t) = 0};

2. N : an arbitrary involutive negator with fixpoint β;
3. σ: an arbitrary [β, 1] → [0, 1] isomorphism;
4. M : the decreasing [0, 1] → [0, 1] function defined by xM = 1 whenever x ∈ [0, β[ and

by xM = σ−1[C0(σ[x])] whenever x ∈ [β, 1];
5. D: the area {(x, y) ∈ [0, 1]2 | xN < y} = DI ∪ DII ∪ DIII ∪ DIV, with

DI = {(x, y) ∈ ]β, 1]2 | xM < y} ,
DII = {(x, y) ∈ ]0, β]× ]β, 1] | xN < y} ,
DIII = {(x, y) ∈ ]β, 1]× ]0, β] | xN < y} ,
DIV = {(x, y) ∈ ]β, 1[2| y 6 xM} .

Note that the choice of T , N and σ fixes M and D. Considering Theorems 7.9 and 8.6, we then
obtain the following tool for constructing rotation-invariant t-norms:

The [0, 1]2 → [0, 1] function R3(T,N) defined by

R3(T,N)(x, y) =





σ−1 [T (σ[x], σ[y])] , if (x, y) ∈ DI ,

(
σ−1

[
Cσ[xN ](σ[y])

])N
, if (x, y) ∈ DII ,

(
σ−1

[
Cσ[yN ](σ[x])

])N
, if (x, y) ∈ DIII ,

(
σ−1

[
Q
(
C0(σ[x]), C0(σ[y])

)])N
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D .

(8.17)

is a rotation-invariant t-norm. Furthermore, R3(T,N) is the only left-cotninuous t-norm
that has N as a contour line (a = 0) and that has β-zoom R3(T,N)β = T .
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In Chapter 7 we showed that R3(T,N)|DII
and R3(T,N)|DIII

are determined by the (trans-
formed) left and right rotation of R3(T,N)|DI

around the axis through the points (0, 0, 1) and
(1, 1, 0). R3(T,N)|DIV

is determined by the (transformed) front rotation ofR3(T,N)|DI∩ ]β,σ−1(α)]2

around the axis through the points (β, σ−1[α], β) and (σ−1[α], β, β). Note also that R3(T,N)|DI

is a rescaled version of ‘the non-zero part’ of T . Inspired by these geometrical observations,
we briefly call R3(T,N) the triple rotation of T based on N . The construction method itself
is referred to as the triple rotation method . Repeatedly performing the triple rotation method
based on a fixed involutive negator N is briefly denoted as follows:

R3n(T,N) := R3(. . . R3(R3(︸ ︷︷ ︸
n times

T,N), N) . . . , N)︸ ︷︷ ︸
n times

.

In case T is rotation invariant, assertions (G2) and (G3) allow us to rewrite Eq. (8.17) in a
more feasible form (cf Corollary 7.6):

R3(T,N)(x, y) =





σ−1 [T (σ[x], σ[y])] , if (x, y) ∈ DI ,

(
σ−1

[
C0

(
T
(
C0(σ[xN ]), σ[y]

))])N
, if (x, y) ∈ DII ,

(
σ−1

[
C0

(
T
(
σ[x], C0(σ[yN ])

))])N
, if (x, y) ∈ DIII ,

(
σ−1

[
Q
(
C0(σ[x]), C0(σ[y])

)])N
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D .

(8.18)

For the following examples we use the linear rescaling function ς : x 7→ (x − β)/(1 − β). Any
other rescaling function will entail a transformation of the procured t-norm.

In Fig. 8.1, we apply the triple rotation method to the minimum TM. The triple rotation
R3(TM,N ) of TM based on the standard negator N coincides with the nilpotent minimum TnM.
The companion of TnM is clearly commutative on [0, 1[2. Hence, the triple rotationR3(TnM,N ) =
R32(TM,N ) of TnM based on the standard negator N is a rotation-invariant t-norm once again.
As the companion of this latter t-norm is also commutative on [0, 1[2 we can perform a third
triple rotation. The bold black lines in Figs. 8.1(a), 8.1(d) and 8.1(g) indicate the contour lines
obtained by intersecting these t-norms with a plane that has height 0. The bold black lines in
all other subfigures visualize the partition D = DI ∪ DII ∪ DIII ∪ DIV.

Similarly to Fig. 8.1, we performed in Fig. 8.2 the triple rotation method on the algebraic
product TP. The t-norms depicted in Figs. 8.2(b), 8.2(e) and 8.2(h) have a finite number
of discontinuity points. Figures. 8.1(b) and 8.2(b) can also be constructed by means of the
rotation construction of Jenei [42, 46]. As indicated in Section 8.2, it holds in general that
R3(T,N) = R(T,N) whenever T has no zero-divisors. On the other hand, Figs. 8.1(e), 8.1(h),
8.2(e) and 8.2(h) visualize t-norms that cannot be described by the rotation construction nor
by the rotation-annihilation construction of Jenei [43, 45, 47]. His constructions only result in
decomposable (in the sense of Jenei [45]) t-norms. The four t-norms depicted here are clearly
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(b) R3(TM,N ) = TnM
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(c) Contour plot of R3(TM,N )
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(d) R3(TM,N )
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(e) R32(TM,N )
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(f) Contour plot of R32(TM,N )
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(g) R32(TM,N )
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(h) R33(TM,N )
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(i) Contour plot of R33(TM,N )

Figure 8.1: The triple rotation of TM based on N .
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(a) TP
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(b) R3(TP,N )
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(c) Contour plot of R3(TP,N )
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(d) R3(TP,N )
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(e) R32(TP,N )
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(f) Contour plot of R32(TP,N )
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(g) R32(TP,N )
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(h) R33(TP,N )
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(i) Contour plot of R33(TP,N )

Figure 8.2: The triple rotation of TP based on N .
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non-decomposable: their companions QR3 always satisfy the inequality QR3(1
2 , t) <

1
2 , for every

t ∈ [12 , 1[.

The triple rotation R3(TL,N ) of the  Lukasiewicz t-norm TL yields the  Lukasiewicz t-norm TL

once again (see Fig. 8.3). Therefore, R3n(TL,N ) = TL holds for every n ∈ N \ {0}.
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(a) TL
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(b) R3(TL,N ) = TL
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(c) Contour plot of R3(TL,N )

Figure 8.3: The triple rotation of TL based on N .

For an arbitrary left-continuous t-norm T , the triple rotation method, however, does not always
yield a t-norm. Fig. 8.4 depicts the triple rotation of the ordinal sum (〈1

3 , 1, TL〉) [51]. It
is clear that R3

(
(〈1

3 , 1, TL〉),N
)

is a rotation-invariant t-norm. Its left continuity, however,
prevents its companion QR3 from being commutative on [0, 1[2. For example, QR3(1

3 ,
2
3) = 0 <

1
3 = QR3(2

3 ,
1
3). The latter prevents F := R32

(
(〈1

3 , 1, TL〉),N
)

from being commutative and
associative:

F

(
4

6
,
5

6

)
=

1

3
<

1

2
= F

(
5

6
,

4

6

)
;

F

(
F

(
4

6
,

5

6

)
,
4

6

)
= 0 <

1

6
= F

(
4

6
, F

(
5

6
,

4

6

))
.

Note that if the companion Q of a rotation-invariant t-norm T is not commutative on [0, 1[2,
there can never exist a rotation-invariant t-norm with β-zoom T (see Theorem 7.5). For our
example this means that it is impossible to construct a rotation-invariant t-norm with contour
line N and 1

2 -zoom R3
(
(〈1

3 , 1, TL〉),N
)
.

Figures. 8.1–8.3 illustrate that if the involutive negator N and the contour line C0 of T both
equal the standard negator N , then R3(T,N )|DII

, R3(T,N )|DIII
and R3(T,N )|DIV

are as good
as perfect rotations of R3(T,N )|DI

. There does not occur any reshaping. Dealing with an
arbitrary involutive negator N and a contour line C0 6= N , the left rotation, right rotation
and front rotation of R3(T,N)|DI

have to be reshaped to fit into the areas DII, DIII and DIV

respectively. The involutive negator N and the contour line C0 of T are responsible for this



144 The triple rotation method

0 0.2
0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (



1
3
, 1, TL

�
)

0 0.2
0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) R3
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(c) Contour plot of
R3
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(d) R3
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(e) R32
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(f) Contour plot of
R32
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(〈 1
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, 1, TL〉),N

�
Figure 8.4: The triple rotation of (〈1

3 , 1, TL〉) based on N . R32
(
(〈1

3 , 1, TL〉),N
)

is not a t-norm.

reshaping. Figure 8.5 illustrates this phenomenon for the involutive negator N∗ defined by

xN
∗

=





2
3 +

√
1
9 − x2, if x ∈ [0, 1

3 ] ,

1
3 +

√
1
9 − (x− 1

3)2, if x ∈ [13 ,
2
3 ] ,

√
1
9 − (x− 2

3)2, if x ∈ [23 , 1] .

(8.19)

We applied the triple rotation method based on N∗ to the φ-transforms of the triple rotations
R3(TM,N ), R3(TP,N ) and R3(TL,N ), with φ the automorphism defined by φ(x) := x3/5. Note
that in general R3(T,N)(•, β) = N ◦M = R3(T,N)(β, •). Therefore, the t-norms R3(T,N∗)
visualized in Figs. 8.5(b), 8.5(e) and 8.5(h) have identical partial functions R3(T,N∗)(•, β) =
R3(T,N∗)(β, •), with β = 1

3 + 1√
18

the fixpoint of N∗. Indeed, their associated functions M

(C0 = Nφ) and N = N∗ are identical.



8.3. Visualization 145

(a) R3(TM,N )φ (b) R3(R3(TM,N )φ, N
∗)
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(c) Contour plot of
R3(R3(TM,N )φ, N
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(d) R3(TP,N )φ (e) R3(R3(TP,N )φ, N
∗)
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(f) Contour plot of
R3(R3(TP,N )φ, N
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(g) R3(TL,N )φ (h) R3(R3(TL,N )φ, N
∗)
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(i) Contour plot of
R3(R3(TL,N )φ, N
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Figure 8.5: The triple rotation of R3(TM,N )φ, R3(TP,N )φ and R3(TL,N )φ based on N∗.
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(a) Ta (b) R3(Ta, N
∗)
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(c) Contour plot of R3(Ta, N
∗)

(d) Tb (e) R3(Tb, N
∗)
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(f) Contour plot of R3(Tb, N
∗)

(g) Tc (h) R3(Tc, N
∗)
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(i) Contour plot of R3(Tc, N
∗)

Figure 8.6: The triple rotation of Ta, Tb and Tc based on N∗.
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So far, we have only presented examples of the ‘triple rotation’ of left-continuous t-norms T that
either have no zero-divisors (α = 0) or are rotation invariant (α = 1). As discussed at the end
of Section 8.2, if α ∈ ]0, 1[, then T is necessarily an ordinal sum of a rotation-invariant t-norm
whose companion is commutative on [0, 1[2 and an arbitrary left-continuous t-norm. In Fig. 8.6
we present the triple rotation of the ordinal sums

Ta :=
(〈

0, 1
2 , R3(TM,N )φ

〉
,
〈

1
2 , 1, TM

〉)

Tb :=
(〈

0, 1
2 , R3(TP,N )φ

〉
,
〈

1
2 , 1, TP

〉)

Tc :=
(〈

0, 1
2 , R3(TL,N )φ

〉
,
〈

1
2 , 1, TL

〉)
,

based on the involutive negator N∗. Note that here α = 1
2 . For the t-norms R3(T,N∗) vi-

sualized in Figs. 8.6(b), 8.6(e) and 8.6(h) it clearly holds that R3(T,N∗)|DIV
can be under-

stood as a reshaped front rotation of R3(T,N∗)|DI∩ ]β,ς−1( 1
2
)]2 , with β the fixpoint of N∗. The

dashed lines in the figures indicate the area DI∩ ]β, ς−1(1
2)]2. Being based on the same func-

tions M and N , the three t-norms R3(T,N∗) (with T ∈ {Ta, Tb, Tc}) have identical partial
functions R3(T,N∗)(•, β) = R3(T,N∗)(β, •). Finally, it can also be observed that their zooms

(R3(T,N∗))((ς
−1[ 1

2
])N

∗
,ς−1[ 1

2
]) are rotation-invariant t-norms, obtained by performing the triple

rotation method on the rotation-invariant t-norms (R3(T,N∗))(β,ς
−1[ 1

2
]) = T (0, 1

2
). For this latter

construction the involutive negator ς̆ ◦N∗ ◦ ς̆−1 is used, with ς̆ the linear rescaling function from
[(ς−1(1

2))N
∗

, ς−1(1
2)] to [0, 1]. The theoretical reasonings supporting these latter observations

can be found in the proof of Theorem 8.6.





Part III

Fuzzified normal forms





CHAPTER 9

Facts and figures

9.1 Introduction

A Boolean expression is an expression involving variables each of which can take either the value
true or false. These variables are combined using Boolean operations such as conjunction (∧),
disjunction (∨) and negation (′). It is common knowledge that each Boolean function can be
represented by a well-formed formula (wff) in Boolean propositional logic. Moreover, there are
two special forms, the disjunctive and conjunctive normal form, which are of great interest, for
each of these forms defines the Boolean function in a unique way.

In fuzzy logic, it is generally accepted to work with t-norms and t-conorms. Fuzzifying the
Boolean normal forms of a given (Boolean) wff by interpreting ∧ as a t-norm T , ∨ as a t-conorm S
and ′ as an involutive negator N leads to what Türkşen calls disjunctive and conjunctive fuzzy
normal forms [88, 89]. However, given their origin, we prefer and insist to talk about fuzzified
normal forms. In general, the disjunctive and conjunctive fuzzified normal forms are [0, 1]n →
[0, 1] functions, with n ∈ N0. They are sometimes used as a kind of standard fuzzification
procedure. The reason for this lies in the observation that the crisp concepts themselves are
often mathematically expressed by means of their disjunctive or conjunctive normal form. For
example, when constructing fuzzy preference structures (P, I, J), researchers have made intensive
use of the disjunctive fuzzified normal forms of the original crisp binary relations expressing
preference (P ), indifference (I) and incomparability (J) [13].

Until now, little is known about the relationships between the fuzzified normal forms. All
attention so far has focused on their comparability, in particular for {0, 1}2 → {0, 1} functions
[5, 34, 88, 89, 94, 95]. We contribute to the existing knowledge on this comparability. As in the
crisp case the De Morgan laws are (sometimes) used to establish a link between the disjunction,
the conjunction and the negation. The chapter starts with a brief survey on De Morgan triplets.
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We do not intend to give here a full description of all relationships between the two types of
fuzzified normal forms. We merely present some remarkable results that provide more insight
into their true nature. In this way a framework is created in which a family of rotation-invariant
t-norms surfaces as a solution of a system of functional equations (Chapter 10).

9.2 De Morgan triplets

For a t-norm T , a t-conorm S and two strict negators N1 and N2, the two laws of De Morgan [27]
are given by

S(x, y)N1 = T (xN1 , yN1) , (9.1)

T (x, y)N2 = S(xN2 , yN2) , (9.2)

for every (x, y) ∈ [0, 1]2. In particular, Eq. (9.1) expresses that S = TN1 and Eq. (9.2) expresses
that T = SN2 . If a triplet (T, S,N1) satisfies Eq. (9.1) then (T, S,N−1

1 ) satisfies Eq. (9.2).
Conversely, whenever a triplet (T, S,N2) satisfies Eq. (9.2) then (T, S,N−1

2 ) satisfies Eq. (9.1).
Dealing with an involutive negator N , a triplet (T, S,N) satisfies Eq. (9.1) with N1 = N if and
only if it satisfies Eq. (9.2) with N2 = N .

Definition 9.1 [27] A De Morgan triplet (T, S,N) consists of a t-norm T , a t-conorm S and a
strict negator N such that Eq. (9.1) is satisfied with N1 = N .

Given a t-norm T and a strict negator N , Eq. (9.1) can be used to construct the unique t-
conorm S that forms a De Morgan triplet with T and N . Some basic De Morgan triplets are
(TM, SM,N ), (TP, SP,N ) and (TL, SL,N ). Note that for a (left-)continuous t-norm T , the
t-conorm in a De Morgan triplet must be (right) continuous. Moreover, if T is continuous we
talk about a continuous De Morgan triplet (T, S,N).

Transforming a De Morgan triplet (T, S,N) by means of a triplet (φ, ψ, ϑ) of automorphisms
does not necessarily yield a De Morgan triplet (Tφ, Sψ, Nϑ). In the following theorem we look
for those triplets (φ, ψ, ϑ) that preserve the De Morgan property (Eq. (9.1)).

Theorem 9.2 Consider a De Morgan triplet (T, S,N) and a triplet (φ, ψ, ϑ) of automorphisms.
Then (Tφ, Sψ, Nϑ) is a De Morgan triplet if and only if T is γ-invariant, with

γ := N ◦ ψ ◦ ϑ−1 ◦N−1 ◦ ϑ ◦ φ−1 . (9.3)

Proof Before we start we would like to point out that (N−1)θ = (Nθ)
−1. We briefly use the

notation N−1
θ . By definition, (Tφ, Sψ, Nϑ) satisfies the first De Morgan law (Eq. (9.1)) if and

only if

(
ψ−1 [S (ψ[x], ψ[y])]

)Nϑ = (Sψ(x, y))Nϑ = Tφ
(
xNϑ , yNϑ

)
= φ−1

[
T
(
φ[xNϑ ], φ[yNϑ ]

)]
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holds for every (x, y) ∈ [0, 1]2. Denote u := φ[xNϑ ] and v := φ[yNϑ ], then the above expression
is equivalent with

T (u, v) = φ

[(
ψ−1

[
S
(
ψ
[
(φ−1[u])(N

−1
ϑ )
]
, ψ
[
(φ−1[v])(N

−1
ϑ )
])])Nϑ]

= φ ◦Nϑ ◦ ψ−1
[
S
(
ψ ◦N−1

ϑ ◦ φ−1[u], ψ ◦N−1
ϑ ◦ φ−1[v]

)]
,

for every [u, v] ∈ [0, 1]2. As (T, S,N) is a De Morgan triplet and γ = N ◦ ψ ◦ N−1
ϑ ◦ φ−1, the

latter can be rewritten as

T (u, v) = φ ◦Nϑ ◦ ψ−1
[(
T
(
(ψ ◦N−1

ϑ ◦ φ−1[u])N , (ψ ◦N−1
ϑ ◦ φ−1[v])N

))(N−1)
]

= γ−1[T (γ(u), γ(v))] = Tγ(u, v) ,

for every (u, v) ∈ [0, 1]2. This finishes the proof. �

It is well known that the minimum operator TM is the only t-norm that is invariant under all
automorphisms γ. Therefore, any transformation ((TM)φ, (SM)ψ,Nϑ) of (TM, SM,N ) is a De
Morgan triplet. If φ = ψ = ϑ then, necessarily, γ = id and (Tφ, Sφ, Nφ) will be a De Morgan
triplet if and only if (T, S,N) is a De Morgan triplet (see also [30]). In general, given a De
Morgan triplet (T, S,N) and two automorphisms φ and ϑ, we can always select ψ such that also
(Tφ, Sψ, Nϑ) satisfies the first De Morgan law. It suffices to take γ = id and solve Eq. (9.3) for
ψ: ψ = N−1 ◦ φ ◦ ϑ−1 ◦N ◦ ϑ = N−1 ◦ φ ◦Nϑ.

Let T be the ordinal sum (〈ai, ei, σi, Ti〉)i∈I and consider a strict negator N . Then S will form
a De Morgan triplet with T and N if

S(x, y) =





(
σ−1
i

[
Ti
(
σi[x

N ], σi[y
N ]
)])(N−1)

, if (xN , yN ) ∈ [ai, ei]
2 , ,

(min(xN , yN ))(N
−1), elsewhere ,

=





(σi)
−1
N [(Ti)N ((σi)N [x], (σi)N [y])] , if (x, y) ∈ [e

(N−1)
i , a

(N−1)
i ]2 ,

max(x, y), elsewhere ,
(9.4)

holds for every (x, y) ∈ [0, 1]2. Inspired by this observation we can dualize our definition of
ordinal sum.

Definition 9.3 Let I be a countable index set, (]ei, ai[)i∈I be a family of non-empty, pairwise
disjoint open subintervals of [0, 1], (σi)i∈I a family of isomorphisms (σi : [ei, ai] → [0, 1]) and
(Si)i∈I a family of increasing [0, 1]2 → [0, 1] functions satisfying SM 6 Si. The increasing
[0, 1]2 → [0, 1] function S defined by

S(x, y) =

{
σ−1
i [Si (σi[x], σi[y])] , if (x, y) ∈ [ei, ai]

2 ,

max(x, y), elsewhere ,
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is called the ordinal sum of the summands 〈ei, ai, σi, Si〉, i ∈ I. It is shortly written as S =
(〈ei, ai, σi, Si〉)i∈I . In case every isomorphism σi equals the linear rescaling function ςi from
[ei, ai] to [0, 1], we use the notation S = (〈ei, ai, Si〉)i∈I .

Note that this definition complements our previous definition of ordinal sums (Definition 6.1)
as no increasing [0, 1]2 → [0, 1] function F can satisfy both F 6 TM and SM 6 F . Thanks to
Definition 9.3 we can more compactly rewrite Eq. (9.4) as

S =
(〈
e
(N−1)
i , a

(N−1)
i , (σi)N , (Ti)N

〉)

i∈I
. (9.5)

Such an elegant formulation is not possible if we only consider linear rescalings of Ti and Si.
Indeed, (ςi)N is rarely a linear rescaling of [(ei)

(N−1), (ai)
(N−1)] into [0, 1]. For example, let

ai = 0, ei = 1√
2

and define N by xN =
√

1 − x2. It then follows that

(ςi)N
(

3
4

)
=
√

1
8 6= 3

√
2

4 − 1√
2 − 1

=
3
4 − e

(N−1)
i

a
(N−1)
i − e

(N−1)
i

.

In the trivial cases [ai, ei] = [0, 1] and N = N , however, (ςi)N linearly ‘rescales’ [e
(N−1)
i , a

(N−1)
i ].

Nevertheless, taking into account that

〈ai, ei, σi, Si〉 =
〈
ai, ei, ςi, (Si)σi◦ς−1

i

〉

holds for every i ∈ I, it is technically possible to rewrite Eq. (9.5) as an ordinal sum that uses
linear rescaling functions only. Unfortunately, this procedure will yield a more complex formula.

9.3 Fuzzified normal forms of {0, 1}2 → {0, 1} functions

In the Boolean algebra ({0, 1},∨,∧,′ , 0, 1) every {0, 1}2 → {0, 1} function F can be represented
by its disjunctive (DB(F )) and conjunctive (CB(F )) normal form. There exist exactly sixteen
different {0, 1}2 → {0, 1} functions F . Their Boolean normal forms are listed in Table 9.1.

One can fuzzify the Boolean normal forms by replacing (∧,∨,′ ) by a triplet (T, S,N), with T
a t-norm, S a t-conorm and N an involutive negator. For each {0, 1}2 → {0, 1} function F its
disjunctive and conjunctive fuzzified normal form are [0, 1]2 → [0, 1] functions. We denote them
by DF (F ) and CF (F ), respectively. In order to be unequivocally defined, these fuzzified normal
forms should indeed be constructed by means of an involutive negator N . Involving a strict
negator N in the fuzzification process, it would remain unclear which occurrences of ′ have to be
replaced by N and which by N−1. Note also that the associativity of T and S allows to extend
them in a unique way to [0, 1]n → [0, 1] functions (n > 2):

T (x1, . . . , xn) := T (. . . T (T (x1, x2), x3) . . . , xn) (9.6)

S(x1, . . . , xn) := S(. . . S(S(x1, x2), x3) . . . , xn) . (9.7)
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Table 9.1: Disjunctive and conjunctive Boolean normal forms for the 16 different {0, 1}2 → {0, 1}
functions

No DB(F ) = CB(F ) Concept

1 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) = 1 Complete affirmation

2 0 = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) Complete negation

3 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) = x ∨ y Disjunction

4 x′ ∧ y′ = (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) Conjunctive negation

5 (x′ ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′) = x′ ∨ y′ Incompatibility

6 x ∧ y = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) Conjunction

7 (x ∧ y) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) = x′ ∨ y Implication

8 x ∧ y′ = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y′) Non-implication

9 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′) = x ∨ y′ Inverse implication

10 x′ ∧ y = (x ∨ y) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) Non-inverse implication

11 (x ∧ y) ∨ (x′ ∧ y′) = (x ∨ y′) ∧ (x′ ∨ y) Equivalence

12 (x ∧ y′) ∨ (x′ ∧ y) = (x ∨ y) ∧ (x′ ∨ y′) Exclusion

13 (x ∧ y) ∨ (x ∧ y′) = (x ∨ y) ∧ (x ∨ y′) Affirmation

14 (x′ ∧ y) ∨ (x′ ∧ y′) = (x′ ∨ y) ∧ (x′ ∨ y′) Negation

15 (x ∧ y) ∨ (x′ ∧ y) = (x ∨ y) ∧ (x′ ∨ y) Affirmation

16 (x ∧ y′) ∨ (x′ ∧ y′) = (x ∨ y′) ∧ (x′ ∨ y′) Negation

Table 9.2 lists the 16 disjunctive and conjunctive fuzzified normal forms retrieved from the
Boolean normal forms in Table 9.1. Until now most authors have restricted themselves to
fuzzified normal forms of {0, 1}2 → {0, 1} functions. In Section 9.3 we will give a more formal
definition of fuzzified normal forms based on an arbitrary {0, 1}n → {0, 1} function F , with
n ∈ N0.

The main point of study so far has been the relationship between DF (F ) and CF (F ). On the one
hand, Bilgiç [5] showed that DF (F ) can never equal CF (F ) for every {0, 1}2 → {0, 1} function F .
On the other hand, Türkşen [88, 89] discovered that some particular triplets (T, S,N) ensure
that

DF (F )(x, y) 6 CF (F )(x, y) , (9.8)

for every {0, 1}2 → {0, 1} function F and every (x, y) ∈ [0, 1]2. We will use the shorthand
DF 62 CF to express Eq. (9.8).

Theorem 9.4 [5] For any De Morgan triplet (T, S,N) with involutive negator N , DF 62 CF
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Table 9.2: Disjunctive and conjunctive fuzzified normal forms for the 16 different {0, 1}2 → {0, 1}
functions

No DF (F ) CF (F )

1 S
(
T (x, y), T (x, yN ), T (xN , y), T (xN , yN )

)
1

2 0 T
(
S(x, y), S(x, yN ), S(xN , y), S(xN , yN )

)

3 S
(
T (x, y), T (x, yN ), T (xN , y)

)
S(x, y)

4 T (xN , yN ) T
(
S(x, yN ), S(xN , y), S(xN , yN )

)

5 S
(
T (xN , y), T (x, yN ), T (xN , yN )

)
S(xN , yN )

6 T (x, y) T
(
S(x, y), S(x, yN ), S(xN , y)

)

7 S
(
T (x, y), T (xN , y), T (xN , yN )

)
S(xN , y)

8 T (x, yN ) T
(
S(x, y), S(x, yN ), S(xN , yN )

)

9 S
(
T (x, y), T (x, yN ), T (xN , yN )

)
S(x, yN )

10 T (xN , y) T
(
S(x, y), S(xN , y), S(xN , yN )

)

11 S
(
T (x, y), T (xN , yN )

)
T
(
S(x, yN ), S(xN , y)

)

12 S
(
T (x, yN ), T (xN , y)

)
T
(
S(x, y), S(xN , yN )

)

13 S
(
T (x, y), T (x, yN )

)
T
(
S(x, y), S(x, yN )

)

14 S
(
T (xN , y), T (xN , yN )

)
T
(
S(xN , y), S(xN , yN )

)

15 S
(
T (x, y), T (xN , y)

)
T
(
S(x, y), S(xN , y)

)

16 S
(
T (x, yN ), T (xN , yN )

)
T
(
S(x, yN ), S(xN , yN )

)

is equivalent with the following system of inequalities:

S
(
T (x, y), T (x, yN ), T (xN , y)

)
6 S(x, y) , (9.9)

S
(
T (x, y), T (xN , yN )

)
6 T

(
S(x, yN ), S(xN , y)

)
, (9.10)

S
(
T (x, y), T (x, yN )

)
6 T

(
S(x, y), S(x, yN )

)
, (9.11)

for every (x, y) ∈ [0, 1]2.

Inequalities (9.9)–(9.11) were obtained from rows 3, 11 and 13 of Table 9.2. They correspond to
the {0, 1}2 → {0, 1} functions modeling Disjunction, Equivalence and Affirmation. For the three
De Morgan triplets (TM, SM,N ), (TP, SP,N ) and (TL, SL,N ) it readily follows that Eqs. (9.9)–
(9.11) are true. Consequently, DF 62 CF . Figure 9.1 depicts for these triplets the difference
between their conjunctive and disjunctive fuzzified normal form.

C. and E. Walker [94] pointed out that if DF 62 CF is satisfied for a De Morgan triplet, then
it holds for all isomorphic De Morgan triplets.

Theorem 9.5 [94] If DF 62 CF holds for some De Morgan triplet (T, S,N) with involutive
negator N , then it also holds for all De Morgan triplets (Tφ, Sφ, Nφ), with φ an arbitrary auto-
morphism.
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Figure 9.1: CF (F ) − DF (F ) for the Disjunction (Eq. (9.9)), the Equivalence (Eq. (9.10)) and
the Affirmation (Eq. (9.11)).
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C. and E. Walker [94, 95] also illustrated that (even for De Morgan triplets containing a contin-
uous Archimedean t-norm) a more general transformation (Tφ, Sψ, Nθ) of the De Morgan triplet
(T, S,N) does not necessarily preserve the inequality DF 62 CF .

Example 9.6 Transforming the De Morgan triplets (TP, SP,N ) and (TL, SL,N ) by means of
the triplet of automorphisms (id,N ◦Nφ, φ), with

φ(x) :=





7− 4√2401−10000 x4

14 , if x 6 7
10 ,

6−( 4√3− 4√10x−7)
4

6 , elsewhere ,
(9.12)

yields, resp., the continuous De Morgan triplets (TP, (SP)N◦Nφ ,Nφ) = (TP, (TP)Nφ ,Nφ) and
(TL, (SL)N◦Nφ ,Nφ) = (TL, (TL)Nφ ,Nφ). Unfortunately, as illustrated in Figs. 9.2(a)–9.2(f) this
transformation does not preserve the inequality DF 62 CF . Note that, although it is not visible,
also DF (F ) 66 CF (F ) in Fig. 9.2(d).

Even continuous De Morgan triplets (T, S,N ) based on an ordinal sum T = (〈ai, ei, Ti〉)i∈I ,
where every Ti ∈ {TP, TL}, do not necessarily yield DF 62 CF . Figures 9.2(g)–9.2(i) visualize
this for the De Morgan triplet (T, TN ,N ), with T the ordinal sum (〈0, 1

3 , TP〉, 〈1
3 , 1, TL〉). △

Let us now focus on inequalities Eqs. (9.9)–(9.11). The question arises whether some of these
inequalities can be turned into equalities, as in the Boolean case.

Proposition 9.7 Consider a De Morgan triplet (T, S,N) with involutive negator N . Equality
in Eq. (9.9) can never hold for all (x, y) ∈ [0, 1]2.

Proof Suppose the converse: S(T (x, y), T (x, yN ), T (xN , y)) = S(x, y) holds for every (x, y) ∈
[0, 1]2. Let β be the unique fixpoint of N . For (x, y) = (β, 1), we obtain that S(β, β) = 1.
Because of the De Morgan law (Eq. (9.1)) it then holds that T (β, β) = 0. This leads to the
contradiction 0 = S

(
T (β, β), T (β, β), T (β, β)

)
= S(β, β) = 1. �

Proposition 9.8 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N with fixpoint β. If T (x, β) = x 6 xN = S(xN , β), for every x ∈ [0, β], then
equality in Eq. (9.10) holds for every (x, y) ∈ [0, 1]2.

Proof The conditions imposed on T and S can be rewritten as

T (x, y) ∈ [0, β] and S(x, y) ∈ [0, β], if (x, y) ∈ [0, β]2

T (x, y) ∈ [β, 1] and S(x, y) ∈ [β, 1], if (x, y) ∈ [β, 1]2

T (x, y) = min(x, y) and S(x, y) = max(x, y), if (min(x, y),max(x, y)) ∈ [0, β] × [β, 1] .

(9.13)

In case (x, y) ∈ [0, β]2, it holds that

S
(
T (x, y), T (xN , yN )

)
= max

(
T (x, y), T (xN , yN )

)
= T (xN , yN )
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Figure 9.2: CF (F ) − DF (F ) for the Disjunction (Eq. (9.9)), the Equivalence (Eq. (9.10)) and
the Affirmation (Eq. (9.11)).
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and
T
(
S(x, yN ), S(xN , y)

)
= T

(
max(x, yN ),max(xN , y)

)
= T (xN , yN ) .

In the same way one can prove the equality in case (x, y) ∈ [0, β] × [β, 1], (x, y) ∈ [β, 1] × [0, β]
and (x, y) ∈ [β, 1]2. �

Proposition 9.9 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N . Equality in Eq. (9.11) can never hold for all (x, y) ∈ [0, 1]2.

Proof Suppose the converse: S(T (x, y), T (x, yN )) = T (S(x, y), S(x, yN )) holds for every
(x, y) ∈ [0, 1]2. Let β be the fixpoint of N . For (x, y) = (0, β), resp., (x, y) = (1, β), we obtain
that T (β, β) = 0, resp., S(β, β) = 1. This leads to the contradiction 0 = S(T (β, β), T (β, β)) =
T (S(β, β), S(β, β)) = 1. �

Let (T, S,N) be a De Morgan triplet with involutive negator N . Propositions 9.7 and 9.9
imply that equality for all (x, y) ∈ [0, 1]2 cannot occur in Eqs. (9.9) and (9.11). Taking
into account Eqs. (9.1), (9.13) and Corollary 6.15, the conditions of Proposition 9.8 express
that T (0,β) must be a t-norm. Therefore, Eq. (9.10) becomes an equality if T is an ordinal
sum (〈0, β, σ1, T1〉, 〈β, 1, σ2, T2〉), with T1 and T2 two t-norms (Corollary 6.12). Figure 9.1(b)

illustrates this phenomenon for the triplet (TM, SM,N ) (β = 1
2 and (TM)(0,

1
2
) = TM). From

Theorem 6.6 it follows that the (0, β)-zoom T (0,β) of a continuous t-norm T will be a t-norm if
and only if β is an idempotent element of T .

9.4 Fuzzified normal forms of {0, 1}n → {0, 1} functions

Consider n ∈ N0. Also every {0, 1}n → {0, 1} function F can be represented by its disjunctive
and conjunctive (Boolean) normal form. Counting all {0, 1}n → {0, 1} functions, we know that
there are 2(2n) different disjunctive and 2(2n) different conjunctive normal forms.

Definition 9.10 Let n ∈ N0 and consider the Boolean algebra ({0, 1},∨,∧,′ , 0, 1). The dis-
junctive and conjunctive normal forms of a {0, 1}n → {0, 1} function F are given by

DB(F )(x1, ..., xn) =
∨

F (e1,...,en)=1

xe11 ∧ ... ∧ xenn , (9.14)

CB(F )(x1, ..., xn) =
∧

F (e1,...,en)=0

x
e′1
1 ∨ ... ∨ xe′nn , (9.15)

where xe = x if e = 1 and xe = x′ if e = 0.

As in the binary case, replacing (∧,∨,′ ) by a triplet (T, S,N), with T a t-norm, S a t-conorm
and N an involutive negator, results in a straightforward fuzzification of Eqs. (9.14) and (9.15).
For this procedure we invoke Eqs. (9.6) and (9.7). By convention, we put T (x) := x and
S(x) := x, for every x ∈ [0, 1]. Taking into account that T has neutral element 1 and S has
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neutral element 0, we obtain the definition below. To make the formulae readable, the vector
notation ~x is used to denote the n-tuples (x1, . . . , xn) ∈ [0, 1]n.

Definition 9.11 Let n ∈ N0 and consider a triplet (T, S,N) consisting of a t-norm T , a t-
conorm S and an involutive negator N . The disjunctive and conjunctive fuzzified normal forms
of a {0, 1}n → {0, 1} function F are given by

DF (F )(~x) = S
{
F (~e) T (~x~e)

∣∣ ~e ∈ {0, 1}n
}
, (9.16)

CF (F )(~x) = T

{(
(1 − F (~e)) S

(
~x(~e

~0)
)N)N ∣∣∣∣ ~e ∈ {0, 1}n

}
, (9.17)

where ~x ∈ [0, 1]n, ~0 = (0, . . . , 0), ~x~e = (xe11 , . . . , x
en
n ), xe = x if e = 1 and xe = xN if e = 0.

Clearly, Eq. (9.16) coincides with Eq. (9.14), and Eq. (9.17) coincides with Eq. (9.15), whenever
~x ∈ {0, 1}n. In case (T, S,N) is a De Morgan triplet, Eq. (9.17) can be rewritten as

CF (F )(~x) =

(
S

{
(1 − F (~e)) T

((
~x(~e

~0)
)~0) ∣∣∣∣ ~e ∈ {0, 1}n

})N

=
(
S
{

(1 − F (~e)) T
(
~x((~e

~0)
~0)
) ∣∣ ~e ∈ {0, 1}n

})N

=
(
S
{

(1 − F (~e)) T (~x~e)
∣∣ ~e ∈ {0, 1}n

})N
. (9.18)

In view of Section 9.3 it remains an intriguing problem to figure out which triplets (T, S,N)
ensure that DF (F )(~x) 6 CF (F )(~x) is satisfied for every {0, 1}n → {0, 1} function F and every
~x ∈ [0, 1]n. We use DF 6n CF to express the latter inequality. It is easily verified that
CF (f)(x)−DF (f)(x) ∈ {0, T (x, xN ), 1−S(xN , x)} in case n = 1. Hence, DF 61 CF is satisfied
for every triplet (T, S,N) with involutive negator N . As illustrated in Section 9.3 this is not
true when working in 2 dimensions. For a given triplet (T, S,N) and n ∈ N0 it is therefore
not guaranteed that DF 6n CF implies DF 6n+1 CF . Nevertheless, the converse implication is
always fulfilled.

Theorem 9.12 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N . If DF 6n CF holds for some n ∈ N0, then DF 6m CF is satisfied for
every m ∈ N0 such that m 6 n.

Proof It suffices to prove that DF 6n CF implies DF 6n−1 CF , for every n > 2. Consider
an arbitrary {0, 1}n−1 → {0, 1} function F and suppose that DF 6n CF . Define the {0, 1}n →
{0, 1} function G as follows:

G(e1, . . . , en) =

{
0, if en = 0 ,

F (e1, . . . , en−1), elsewhere .
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Since T has neutral element 1 and S has neutral element 0, we obtain from Eq. (9.16) that

DF (G)(x1, . . . , xn−1, 1) = S
{
G(e1, . . . , en−1, 1) T (xe11 , . . . , x

en−1

n−1 , 1) | (e1, . . . , en−1) ∈ {0, 1}n−1
}

= S
{
F (e1, . . . , en−1) T (xe11 , . . . , x

en−1

n−1 ) | (e1, . . . , en−1) ∈ {0, 1}n−1
}

= DF (F )(x1, . . . , xn−1) ,

for every (x1, . . . , xn−1) ∈ [0, 1]2. Recall that S has absorbing element 1. It then follows in
a similar way from Eq. (9.17) that CF (G)(x1, . . . , xn−1, 1) = CF (F )(x1, . . . , xn−1), for every
(x1, . . . , xn−1) ∈ [0, 1]2. Taking into account that DF (G) 6 CF (G) this concludes the proof. �

This theorem puts the results from Example 9.6 and Figs 9.1 and 9.2 in a new light. On the one
hand, the De Morgan triplets (TP, (TP)Nφ ,Nφ) and (TL, (TL)Nφ ,Nφ), with φ the automorphism
defined by Eq. (9.12), never yield the inequality DF 6n CF , for some n ∈ N0 \{1}. On the other
hand, the De Morgan triplets (TM, SM,N ), (TP, SP,N ) and (TL, SL,N ) ensure that DF 62 CF .
It is not inconceivable that, when dealing with these triplets, DF 6n CF is also satisfied for
dimensions n > 2. In the following propositions we further explore this conjecture. We use the
notation DF 6 CF to denote that DF 6n CF holds for every n ∈ N0.

Proposition 9.13 DF 6 CF holds for the triplet (TM, SM,N ).

Proof Take arbitrary n ∈ N0. As (TM, SM,N ) is a De Morgan triplet we express CF (F )(~x)
by means of Eq. (9.18). We have to prove that

0 6 CF (F )(~x) −DF (F )(~x)

=
(

max
{

(1 − F (~e)) min(~x~e)
∣∣ ~e ∈ {0, 1}n

})N
− max

{
F (~e) min(~x~e)

∣∣ ~e ∈ {0, 1}n
}

holds for every {0, 1}n → {0, 1} function F and every ~x ∈ [0, 1]n. The above inequality is
equivalent with

max
{
F (~e) min(~x~e)

∣∣ ~e ∈ {0, 1}n
}

+ max
{

(1 − F (~e)) min(~x~e)
∣∣ ~e ∈ {0, 1}n

}
6 1 . (9.19)

Case 1 : Suppose there exists an index i ∈ {1, ..., n} such that xi = 1
2 . Consequently xeii = 1

2 ,
for all ei ∈ {0, 1}, and

max
{
F (~e) min(~x~e)

∣∣ ~e ∈ {0, 1}n
}

+ max
{

(1 − F (~e)) min(~x~e)
∣∣ ~e ∈ {0, 1}n

}
6 1

2 + 1
2 = 1 .

Case 2 : If for every index i it holds that xi 6= 1
2 , then there exists a unique n-tuple ~ε for which

1
2 < xεkk = min(~x ~ε). For each n-tuple ~e 6= ~ε one can find an index j ∈ {1, . . . , n} such that

x
ej
j = x

(ε0j )

j = (x
εj
j )N 6 (xεkk )N < 1

2 and hence, min(~x~e) 6 (xεkk )N . Consequently we distinguish
the following cases:

max
{
F (~e) min(~x~e)

∣∣ ~e ∈ {0, 1}n
}

+max
{

(1 − F (~e)) min(~x~e)
∣∣ ~e ∈ {0, 1}n

}
6 xεkk +(xεkk )N = 1 ,
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whenever F (~ε) = 1 and

max
{
F (~e) min(~x~e)

∣∣ ~e ∈ {0, 1}n
}

+max
{

(1 − F (~e)) min(~x~e)
∣∣ ~e ∈ {0, 1}n

}
6 (xεkk )N +xεkk = 1 ,

whenever F (~ε) = 0. �

Next, we want to prove a similar theorem for the triplet (TP, SP,N ). We need to recall first the
definition of a multiset.

Definition 9.14 A multiset is a set-like object where the elements can occur more than once.
A multiset can be formally defined as a pair (A,m) where A is some set and m is an A → N0

function that associates to each a ∈ A its multiplicity in the multiset. The set A is called the
underlying set of elements.

The following set-theoretical result will be crucial to compute a lower bound for CF (F )−DF (F ).

Lemma 9.15 For every multiset (A,m) with A ⊂ [0, 1] and |(A,m)| ∈ N0 it holds that

1 −
∑

x∈(A,m)

x 6
∏

x∈(A,m)

(1 − x) . (9.20)

Proof If |(A,m)| = 1, Eq. (9.20) is a trivial equality. We continue the proof by induction on the
cardinality of (A,m). Suppose that Eq. (9.20) holds for all multisets that contain only elements
from [0, 1] and have cardinality n > 1. Let (A,m) be an arbitrary multiset with A ⊂ [0, 1] and
|(A,m)| = n+ 1. Take arbitrary α ∈ (A,m). Then

1 −
∑

x∈(A,m)

x 6 1 + α×
∑

x∈(A,m)\{α}
x−

∑

x∈(A,m)

x = (1 − α) ×


1 −

∑

x∈(A,m)\{α}
x




6 (1 − α) ×
∏

x∈(A,m)\{α}
(1 − x) =

∏

x∈(A,m)

(1 − x) .

Hence, Eq. (9.20) also holds for every multiset (A,m) with A ⊂ [0, 1] and |(A,m)| = n+ 1. This
finishes the proof. �

Proposition 9.16 DF 6 CF holds for the triplet (TP, SP,N ).

Proof Take arbitrary n ∈ N0. Recall that TP(~x) =
∏n
i=1 xi and SP(~x) = 1 −∏n

i=1(1 − xi), for
every ~x ∈ [0, 1]n. Based on Eqs.(9.16) and (9.18), DF 6 CF becomes equivalent with


1 −

∏

~e∈{0,1}n

(
1 − F (~e)TP(~x~e)

)

+


1 −

∏

~e∈{0,1}n

(
1 − (1 − F (~e))TP(~x~e)

)

 6 1 , (9.21)
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for every {0, 1}n → {0, 1} function F and every ~x ∈ [0, 1]n. All numbers F (~e)T (~x~e) and
(1−F (~e))T (~x~e), with ~e ∈ {0, 1}n, constitute a multiset for which the underlying set of elements
belongs to [0, 1] and that has cardinality |{0, 1}n| = 2n. Applying Lemma 9.15 we obtain that

∑

~e∈{0,1}n
F (~e)TP(~x~e) +

∑

~e∈{0,1}n
(1 − F (~e))TP(~x~e) =

∑

~e∈{0,1}n
TP(~x~e)

forms an upper bound for the the left-hand side of Eq. (9.21). To conclude the proof, we show
that

∑
~e∈{0,1}n TP(~x~e) = 1. By regrouping the terms of the summation we get

∑

~e∈{0,1}n
TP(~x~e) =

∑

~e∈{0,1}n

n∏

i=1

xeii = xn ×




∑

~ε∈{0,1}n−1

n−1∏

i=1

xεii


+ xNn ×




∑

~ε∈{0,1}n−1

n−1∏

i=1

xεii




=
∑

~ε∈{0,1}n−1

n−1∏

i=1

xεii .

Repeating this procedure (n− 1) times results in
∑

~e∈{0,1}n TP(~x~e) = x1 + 1 − x1 = 1. �

As is shown in the next theorem, also for the triplet (TL, SL,N ) we can prove that DF 6 CF .

Proposition 9.17 DF 6 CF holds for the triplet (TL, SL,N ).

Proof Take arbitrary n ∈ N0. Recall that TL(~x) = max((
∑n

i=1 xi) − (n − 1), 0) and SL(~x) =
min(

∑n
i=1 xi, 1), for every ~x ∈ [0, 1]n. Again, taking into account Eqs. (9.16) and (9.18), we get

that

CF (F )(~x) −DF (F )(~x)

= 1 − min




∑

~e∈{0,1}n
(1 − F (~e))TL(~x~e), 1


− min




∑

~e∈{0,1}n
F (~e)TL(~x~e), 1




= 1 − min




∑

~e∈{0,1}n
TL(~x~e), 1 +

∑

~e∈{0,1}n
F (~e)TL(~x~e), 1 +

∑

~e∈{0,1}n
(1 − F (~e))TL(~x~e), 2


 ,

(9.22)

for every {0, 1}n → {0, 1} function F and every ~x ∈ [0, 1]n. For DF 6 CF to hold it is then
necessary and sufficient that ∑

~e∈{0,1}n
TL(~x~e) 6 1 . (9.23)

The proof of Eq. (9.23) goes by induction on the dimension n.

Case 1 : For n = 1, we get
∑

e∈{0,1} TL(xe1) = x1 + xN1 = 1.
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Case 2 : If n = 2, we rewrite the left-hand side of Eq. (9.23) as

∑

~e∈{0,1}2

TL(~x~e) = max(x1 + x2 − 1, 0) + max(1 − x1 − x2, 0) + max(x1 − x2, 0) + max(x2 − x1, 0)

= max (2x1 − 1, 2x2 − 1, 1 − 2x1, 1 − 2x2) 6 1 .

Case 3 : Consider now the case n > 3 and suppose that Eq. (9.23) holds for dimension n − 2.
Let ~x ∈ [0, 1]n, then for each ~ε ∈ {0, 1}n−2 we denote

G~ε(~x) := n− 2 −
n−2∑

i=1

xεii .

It follows that
∑

~e∈{0,1}n
TL(~x~e) =

∑

~ε∈{0,1}n−2

(
max (xn−1 + xn −G~ε(~x) − 1, 0) + max (2 − xn−1 − xn −G~ε(~x) − 1, 0)

+ max (1 − xn−1 + xn −G~ε(~x) − 1, 0) + max (xn−1 + 1 − xn −G~ε(~x) − 1, 0)
)
,

which can also be written as
∑

~e∈{0,1}n
TL(~x~e) =

∑

~ε∈{0,1}n−2

(
− 4G~ε(~x) + max(xn−1 + xn − 1, G~ε(~x)) + max(1 − xn−1 − xn, G~ε(~x))

+ max(−xn−1 + xn, G~ε(~x)) + max(xn−1 − xn, G~ε(~x))
)
.

Taking into account that G~ε(~x) > 0, for any ~ε ∈ {0, 1}n−2, leads to

∑

~e∈{0,1}n
TL(~x~e) =

∑

~ε∈{0,1}n−2

(
− 2G~ε(~x) + max(|xn−1 +xn− 1|, G~ε(~x)) + max(|xn−1 −xn |, G~ε(~x))

)
.

We then combine the three terms from the latter summation. Since

|xn−1 + xn − 1| + |xn−1 − xn| 6 1

we finally get that

∑

~e∈{0,1}n
TL(~x~e) 6

∑

~ε∈{0,1}n−2

max(1 − 2G~ε(~x), 1 −G~ε(~x), 0) 6
∑

~ε∈{0,1}n−2

max(1 −G~ε(~x), 0)

=
∑

~ε∈{0,1}n−2

max

((
n−2∑

i=1

xεii

)
− (n− 3), 0

)
=

∑

~ε∈{0,1}n−2

TL(~x ~ε) .

By invoking the induction hypothesis, this completes the proof. �

Studying the proof of the above proposition more carefully it strikes that we can compute
CF (F )(~x) −DF (F )(~x) explicitly from Eqs. (9.22) and (9.23).
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Corollary 9.18 Consider n ∈ N0 For the triplet (TL, SL,N ) it holds that:

CF (F )(~x) −DF (F )(~x) = 1 −
∑

~e∈{0,1}n
TL(~x~e) , (9.24)

for every {0, 1}n → {0, 1} function F and every ~x ∈ [0, 1]n.

The right-hand side of Eq. (9.24) does not depend on the Boolean function F . This independence
can also be recognized in Figs. 9.1(g)–9.1(i). In two dimensions and working with the triplet
(TL, SL,N ), the difference between both fuzzified normal forms always seems to be a pyramid.
We will study this phenomenon more profoundly in Chapter 10.

As in the binary case (Theorem 9.5), transforming a De Morgan triplet (T, S,N) by means of
an automorphism φ does not affect the (in)validity of the inequality DF 6n CF .

Theorem 9.19 Consider an automorphism φ. DF 6n CF , with n ∈ N0, holds for some triplet
(T, S,N) consisting of a t-norm T , a t-conorm S and an involutive negator N if and only if it
holds for the triplet (Tφ, Sφ, Nφ).

Proof Consider an arbitrary automorphism φ and an arbitrary {0, 1}n → {0, 1} function F .
In order to distinguish the normal forms constructed from the triplet (T, S,N) and those corre-
sponding to the triplet (Tφ, Sφ, Nφ), we denote the normal forms constructed from (Tφ, Sφ, Nφ)

by Dφ
F (F ) and CφF (F ). It now suffices to prove that DF (F ) 6n CF (F ) holds if and only if

Dφ
F (F ) 6n C

φ
F (F ). Note that DF (F ) 6n CF (F ) is satisfied if and only if

(DF (F ))φ(~x) = φ−1[DF (F )(φ[x1], ..., φ[xn])] 6n φ
−1[CF (F )(φ[x1], ..., φ[xn])] = (CF (F ))φ(~x) ,

holds for every ~x ∈ [0, 1]n. We now prove that Dφ
F (F ) = (DF (F ))φ and CφF (F ) = (CF (F ))φ.

By definition,

Dφ
F (F )(~x) = Sφ

{
F (~e) Tφ(~x~e)

∣∣ ~e ∈ {0, 1}n
}

= φ−1
[
S
{
φ
[
F (~e) φ−1 [T (φ[xe11 ], . . . , φ[xenn ])]

]
| ~e ∈ {0, 1}n

}]
,

with xeii = xi if ei = 1 and xeii = x
Nφ
i if ei = 0. As F (~e) ∈ {0, 1}, xi = φ−1[φ[xi]] and

x
Nφ
i = φ−1[(φ[x])N ] we can rewrite the above equation as follows

Dφ
F (F )(~x) = φ−1

[
S
{
F (~e) φ

[
φ−1

[
T
(
φ[φ−1[φ[x1]e1 ]], . . . , φ[φ−1[φ[xn]en ]]

)]]
| ~e ∈ {0, 1}n

}]

= φ−1 [S {F (~e) T (φ[x1]e1 , . . . , φ[xn]en) | ~e ∈ {0, 1}n}] ,

with φ[xi]
ei = φ[xi] if ei = 1 and φ[xi]

ei = (φ[xi])
N if ei = 0. We conclude that Dφ

F (F ) =

(DF (F ))φ. In a similar way it is shown that CφF (F ) = (CF (F ))φ. �

In combination with Propositions 9.13, 9.16 and 9.17, and invoking Theorem 9.2, the above
theorem straightforwardly yields the following corollary.
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Corollary 9.20 Consider an automorphism φ. DF 6 CF holds for all triplets (TM, SM,Nφ),
((TP)φ, (SP)φ,Nφ) and ((TL)φ, (SL)φ,Nφ).

Taking into account the characterization of involutive negators by Trillas (Theorem 3.2), this
corollary states in particular that DF 6 CF is satisfied for every triplet (TM, SM, N) with
involutive negator N .

Remarks 9.21 1. In case we work with the triplet (TM, SM,N ), the inequality DF 6

CF also follows from the work of Gehrke et al. [34]. For a finite set of propositional
variables, they showed that the evaluation of a well-formed formula w in the proposi-
tional logic over the Kleene algebra ([0, 1], TM, SM,N , 0, 1) is comprised in the interval
[DF (F ), CF (F )], with F the Boolean function obtained by evaluating w in the Boolean
algebra ({0, 1},∨,∧,′ , 0, 1). Their findings are largely due to the idempotence of the con-
junction and disjunction involved and the distributivity of the disjunction over the con-
junction [34]. Considering general t-norms T and t-conorms S, we loose this idempotence
and distributivity (TM is the only idempotent t-norm and (TM, SM) is the only distrib-
utive pair [51]). Due to the lack of both properties, a generalization of the approach of
Gehrke et al. [34] is unrealistic.

2. As fuzzified normal forms rarely coincide (Propositions 9.7–9.9) they cannot be seen as
true normal forms in a [0, 1]-valued algebra ([0, 1], TM, SM, T, S,N, 0, 1) where TM and SM

are the lattice operators defining the order on [0, 1] and the t-norm T , the t-conorm S and
involutive negator N are used to model, resp., disjunction, conjunction and negation.
Depending on what is deemed crucial to the concept of normal forms, different approaches
have been proposed to generalize the classical Boolean normal forms to normal forms in
algebras based on the distributive lattice ([0, 1], TM, SM). Gehrke et al. [34] focus merely
on the underlying propositional logic. They use pairwisely incomparable join and meet
irreducibles to construct disjunctive and conjunctive normal forms. Truth table methods
were developed to recover these normal forms. Perfilieva intensively studied normal forms
as real standard function representations in BL-algebras [77, 78, 79, 80]. She defines
(infinite) disjunctive and conjunctive normal forms based on the lattice operators and
aggregation operator of the BL-algebra. She also uses a fuzzy equivalence relation to
incorporate the neighbourhood of points. Discretising these infinite normal forms finally
transforms them into (more manageable) approximations of the original function. Truth
table methods are not available for this approach.





CHAPTER 10

Rotation-invariant t-norms solving a system of functional equations

10.1 Introduction

Knowing that DF 6 CF holds for a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and
an involutive negator N , it remains an intriguing problem, from a mathematical point of view, to
understand to what extent CF (F )(~x) −DF (F )(~x) depends on the {0, 1}n → {0, 1} function F .
Inspired by Corollary 9.18, we wonder for which triplets it holds that CF (F )(~x) −DF (F )(~x) is
only a function of the variable ~x ∈ [0, 1]n (i.e. independent of the {0, 1}n → {0, 1} function F ).
The latter amounts to solving a system of functional equations for T , S and N .

First, we equivalently rewrite the system of functional equations as a system consisting of only
3 functional equations. Given its complexity, additional assumptions on the triplet (T, S,N)
are needed to actually solve this (reduced) system. We use the first De Morgan law (Eq. (9.1))
to compress the system into a single functional equation. Imposing some additional continuity
conditions on the partial functions T (x, •) allows us to characterize multiple solution triplets,
each containing a rotation-invariant t-norm. For this purpose our results from Chapters 7 and 8
are essential.

10.2 A system of functional equations

Let n ∈ N0. By definition, the difference between both fuzzified normal forms is given by

CF (F )(~x) −DF (F )(~x)

= T

{(
(1 − F (~e))S

(
~x(~e

~0)
)N)N ∣∣∣∣ ~e ∈ {0, 1}n

}
− S{F (~e)T (~x~e) | ~e ∈ {0, 1}n} , (10.1)
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for any {0, 1}n → {0, 1} function F and any ~x ∈ [0, 1]n. For a fixed Boolean function F , we
use CF (F ) − DF (F ) to denote the [0, 1]n → [0, 1] function determined by Eq. (10.1). The
shortening CDn is used when the difference between both fuzzified normal forms is independent
of F . The triplets (T, S,N) for which CDn exists, are solutions of the system of functional
equations, obtained by putting, for every ~x ∈ [0, 1]n, the 2(2n) different expressions Eq. (10.1)
on a par (one for every Boolean function F ).

As a first step in our search for suitable triplets (T, S,N), we have to narrow the class of t-norms
to the subclass fulfilling the law of contradiction w.r.t. N . Similarly, we are forced to consider
t-conorms that fulfill the law of the excluded middle w.r.t. N .

Definition 10.1 [81] Let N be a strict negator. A t-norm T fulfills the law of contradiction
w.r.t. N if T (x, xN ) = 0 holds for every x ∈ [0, 1]. A t-conorm S fulfills the law of the excluded
middle w.r.t. N if S(x, xN ) = 1 holds for every x ∈ [0, 1].

Fodor and Roubens [27] gave the following characterization for continuous t-norms satisfying
the law of contradiction and continuous t-conorms satisfying the law of the excluded middle.

Theorem 10.2 [27] Consider a strict negator N . A continuous t-norm T fulfills the law of
contradiction w.r.t. N if and only if there exists an automorphism φ such that T = (TL)φ and
N 6 Nφ. A continuous t-conorm S fulfills the law of the excluded middle w.r.t. N if and only if
there exists an automorphism ψ such that S = (SL)ψ and Nψ 6 N .

In general, for a left-continuous t-norm T the law of contradiction expresses that N 6 C0

(with C0 a contour line of T ). For a right-continuous t-conorm S the law of the excluded middle
holds if and only if D1 6 N (with D1 a contour line of S) (Theorem 4.6).

Theorem 10.3 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N . Let n ∈ N0. If CF (F ) − DF (F ) is independent of the {0, 1}n → {0, 1}
function F , then T fulfills the law of contradiction w.r.t. N and S fulfills the law of the excluded
middle w.r.t. N .

Proof Consider arbitrary x ∈ [0, 1] and let ~x = (x, 1, ..., 1). Then T (~x~e) = 0 and S(~x(~e
~0)) = 1

if ~e differs from (0, 1, ..., 1) and from (1, 1, ..., 1). For this particular ~x, the system of functional
equations defined by Eq. (10.1) reduces to

CDn(~x) = S(x, 0, ..., 0) − T (x, 1, ..., 1) = 0

= S(xN , 0, ..., 0) − T (xN , 1, ..., 1) = 0

= T
(
S(x, 0, ..., 0), S(xN , 0, ..., 0)

)
= T (x, xN )

= 1 − S
(
T (xN , 1, ..., 1), T (x, 1, ..., 1)

)
= 1 − S(x, xN ) .

Therefore S(x, xN ) = 1 and T (x, xN ) = 0. As x has been arbitrarily chosen in [0, 1] this finishes
the proof. �
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In the particular case n = 1, the necessary condition in the previous theorem also provides a
sufficient condition.

Corollary 10.4 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N . Let n = 1. Then CF (f) − DF (f) is independent of the [0, 1] → [0, 1]
function f if and only if T fulfills the law of contradiction w.r.t. N and S fulfills the law of the
excluded middle w.r.t. N .

Proof Follows immediately from Theorem 10.3 and the observation that CF (f)(x)−DF (f)(x)
can only take as values 0, T (x, xN ) or 1 − S(x, xN ). �

As a second step, taking into account some well-chosen n-tuples ~x, we are able to derive from
Eq. (10.1) a system consisting of only three functional equations. This reduction does not affect
the set of solutions.

Theorem 10.5 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N with fixpoint β. Let n ∈ N, n > 1. Then CF (F ) −DF (F ) is independent
of the {0, 1}n → {0, 1} function F if and only if for all ~x ∈ [0, β]n, x1 6 x2 6 ... 6 xn, the
following expressions are equal to each other

S(x1, . . . , xn−1, xn) − T (xN1 , . . . , x
N
n−1, xn) , (10.2)

S(x1, . . . , xn−1, x
N
n ) − T (xN1 , . . . , x

N
n−1, x

N
n ) , (10.3)

T
(
S(x1, . . . , xn−1, xn), S(x1, . . . , xn−1, x

N
n )
)
, (10.4)

1 − S
(
T (xN1 , . . . , x

N
n−1, x

N
n ), T (xN1 , . . . , x

N
n−1, xn)

)
. (10.5)

Proof We denote the index set {1, . . . , n} by I. Suppose that CF (F ) −DF (F ) is independent
of the {0, 1}n → {0, 1} function F . From Theorem 10.3 we already know that T (x, y) = 0 if
y 6 xN and that S(x, y) = 1 if xN 6 y. In particular, consider an arbitrary vector ~x ∈ [0, β]n,
x1 6 x2 6 . . . 6 xn, then 0 6 T (xi, xj) 6 T (β, β) = 0 and 0 6 T (xi, x

N
j ) 6 T (xj , x

N
j ) = 0, for

any (i, j) ∈ I2, i < j. Analogously, it also holds that S(xNi , x
N
j ) = 1 and that S(xNi , xj) = 1,

for any (i, j) ∈ I2, i < j. Since 0, resp. 1, is the absorbing element for t-norms, resp. t-conorms,
there exist only two n-tuples, namely ~e = (0, . . . , 0, 0) and ~e = (0, . . . , 0, 1), for which T (~x~e)

might differ from 0 or S
(
~x(~e

~0)
)

might differ from 1. Consequently, the system of functional
equations defined by Eq. (10.1) implies that CDn(~x) = (10.2) = (10.3) = (10.4) = (10.5).

Conversely, suppose (10.2) = (10.3) = (10.4) = (10.5) holds for every ~x ∈ [0, β]n, x1 6 x2 6 . . . 6
xn. Consider now an arbitrary {0, 1}n → {0, 1} function F and an arbitrary vector ~x ∈ [0, 1]n.
We first rewrite CF (F )(~x) − DF (F )(~x) as CF (G)(~y) − DF (G)(~y), with G a {0, 1}n → {0, 1}
function determined by F and ~x, and with ~y an element of [0, β]n, determined by ~x and satisfying
y1 6 y2 6 . . . 6 yn. One can always find an n-tuple ~ε ∈ {0, 1}n such that xεii 6 β, for every
index i. Further, let ι : I → I : i 7→ ι(i) = k be a permutation such that yi := xεkk is the ith
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smallest value in ~x ~ε. Remark that xi = (xεii )εi = (yι−1(i))
εi , for any index i. Consequently,

T (xe11 , . . . , x
en
n ) = T

((
(yι−1(1))

ε1
)e1 , . . . ,

(
(yι−1(n))

εn
)en)

= T
((
y
ει(1)
1

)eι(1)
, . . . ,

(
y
ει(n)
n

)eι(n)
)

= T

(
y
((ει(1))

eι(1))
1 , . . . , y

((ει(n))
eι(n))

n

)

and analogously

S
(
x

(e01)
1 , . . . , x(e0n)

n

)
= S

(
y

�
((ει(1))

eι(1))
0
�

1 , . . . , y

�
((ει(n))

eι(n))
0
�

n

)
,

for any n-tuple ~e ∈ {0, 1}n. Next, denote for every index i the exponent (ει(i))
eι(i) by ξi, then

T (xe11 , . . . , x
en
n ) = T (yξ11 , . . . , y

ξn
n ) and S

(
x

(e01)
1 , . . . , x(e0n)

n

)
= S

(
y

(ξ01)
1 , . . . , y(ξ0n)

n

)
.

Relying on the meaning of the exponential notation, we can rewrite ei as

ei = ((ei)
εi)εi = ((εi)

ei)εi = (ξι−1(i))
εi ,

for any index i. Remark that, because ~ε is a fixed n-tuple, if ~e passes through {0, 1}n, also ~ξ will
reach every element of {0, 1}n. Finally, we introduce a new {0, 1}n → {0, 1} function G, based
on the function F and the fixed n-tuple ~ε:

G(ξ1, . . . , ξn) := F
(
(ξι−1(1))

ε1 , . . . , (ξι−1(n))
εn
)

= F (e1, . . . , en) .

Applying the previous results, we obtain:

CF (F )(~x) −DF (F )(~x)

= T

{(
(1 −G(~ξ))S

(
~y(~ξ

~0)
)N)N ∣∣∣ ~ξ ∈ {0, 1}n

}
− S

{
G(~ξ)T

(
~y
~ξ
) ∣∣ ~ξ ∈ {0, 1}n

}
, (10.6)

Moreover, due to the construction and our special choice of the n-tuple ~ε, we also know that
~y ∈ [0, β]n and that y1 6 y2 6 . . . 6 yn. Therefore (10.2) = (10.3) = (10.4) = (10.5) will hold for
the vector ~y. Note that, for every vector (0, . . . , 0, x), with x ∈ [0, β], this system of functional
equalities reduces to 0 = T (x, xN ) = 1 − S(xN , x). Denoting xN by y we also obtain that
0 = T (yN , y) = 1 − S(y, yN ), for every y ∈ [β, 1]. Therefore, T satisfies the law of contradiction
w.r.t. N and S satisfies the law of the excluded middle w.r.t. N . The latter allows us to reduce
Eq. (10.6) to one of the following equalities

CF (F )(~x) −DF (F )(~x) = S(y1, . . . , yn−1, yn) − T (yN1 , . . . , y
N
n−1, yn) ,

CF (F )(~x) −DF (F )(~x) = S(y1, . . . , yn−1, y
N
n ) − T (yN1 , . . . , y

N
n−1, y

N
n ) ,

CF (F )(~x) −DF (F )(~x) = T
(
S(y1, . . . , yn−1, yn), S(y1, . . . , yn−1, y

N
n )
)
,

CF (F )(~x) −DF (F )(~x) = 1 − S
(
T (yN1 , . . . , y

N
n−1, y

N
n ), T (yN1 , . . . , y

N
n−1, yn)

)
,
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depending on the Boolean function F . The right-hand of the latter four equalities are assumed
to be equal to each other. Consequently, the difference CF (F )(~x) − DF (F )(~x) between both
fuzzified normal forms is in fact a single expression in the variable ~y. Because ~y depends only
on ~x, this completes the proof. �

For a De Morgan triplet (T, S,N ) containing the standard negator N , the system of functional
equations (10.2) = (10.3) = (10.4) = (10.5) can be replaced by a single functional equation:

S
(
T (xN1 , . . . , x

N
n−1, x

N
n ), T (xN1 , . . . , x

N
n−1, xn)

)
= T (xN1 , . . . , x

N
n−1, xn) + T (xN1 , . . . , x

N
n−1, x

N
n ) .

For this functional equality it is even sufficient to consider two dimensions only.

Theorem 10.6 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N with fixpoint β. Let n ∈ N, n > 1. If T fulfills the law of contradiction
w.r.t. N , then the equality

S
(
T (xN1 , . . . , x

N
n−1, x

N
n ), T (xN1 , . . . , x

N
n−1, xn)

)
= T (xN1 , . . . , x

N
n−1, xn) + T (xN1 , . . . , x

N
n−1, x

N
n )

(10.7)
holds for every ~x ∈ [0, β]n, x1 6 x2 6 . . . 6 xn, if and only if it holds for n = 2.

Proof Suppose that Eq. (10.7) holds for every ~x ∈ [0, β]n, with x1 6 x2 6 . . . 6 xn. In
particular, for ~x = (0, . . . , 0, xn−1, xn), we immediately get the desired result:

S
(
T (xNn−1, x

N
n ), T (xNn−1, xn)

)
= T (xNn−1, xn) + T (xNn−1, x

N
n ) .

Conversely, suppose that Eq. (10.7) holds in the binary case and that n > 2. Consider an
arbitrary vector ~x ∈ [0, β]n, with x1 6 x2 6 . . . 6 xn. If T (xN1 , . . . , x

N
n−1) 6 xNn , then 0 6

T (xN1 , . . . , x
N
n−1, xn) 6 T (xNn , xn) = 0 and consequently Eq. (10.7) is trivially true. On the other

hand, if xNn < T (xN1 , . . . , x
N
n−1), then 0 6 u := T (xN1 , . . . , x

N
n−1)N < xn 6 β. Making use of our

assumption, we know that

S
(
T
(
uN , xNn

)
, T (uN , xn)

)
= T (uN , xn) + T (uN , xNn ) .

Replacing u by its explicit form, we retrieve Eq. (10.7). �

When considering a De Morgan triplet (T, S,N ), Eq. (10.7) (n = 2) provides a necessary and
sufficient condition for the existence of the function CDn.

Corollary 10.7 Consider a De Morgan triplet (T, S,N ). Let n ∈ N, n > 1. Then CF (F ) −
DF (F ) is independent of the {0, 1}n → {0, 1} function F if and only if

S
(
T (xN , yN ), T (xN , y)

)
= T (xN , y) + T (xN , yN ) (10.8)

holds for every (x, y) ∈ [0, 1
2 ]2, x 6 y.
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Proof For such a triplet (10.2) = (10.3) = (10.4) = (10.5) is equivalent with Eq. (10.7)
(N = N ). Combining Theorems 10.3, 10.5 and 10.6 leads to the desired result. Note hereby
that whenever a De Morgan triplet (T, S,N ) satisfies Eq. (10.8), then S must fulfill the law of
the excluded middle w.r.t. N (put x = 0). Due to the first De Morgan law (Eq. (9.1)), the latter
ensures that T fulfills the law of contradiction w.r.t. N . �

10.3 Solutions

Figures 9.1(g)–9.1(i) visualize that the continuous De Morgan triplet (TL, SL,N ) solves the
system of functional equations generated by Eq. (10.1) (Corollary 9.18). The question arises
now whether this is the only appropriate De Morgan triplet or whether there exist also other
solution triplets.

Consider the equalities (10.2) = (10.3) = (10.4) = (10.5). If we put x1 = . . . = xn−2 = 0 and
denote xn−1 by x and xn by y, we can extract a more manageable necessary condition for the
existence of CDn: equality must hold between the following expressions

S(x, y) − T (xN , y) , (10.9)

S(x, yN ) − T (xN , yN ) , (10.10)

T
(
S(x, y), S(x, yN )

)
, (10.11)

1 − S
(
T (xN , yN ), T (xN , y)

)
, (10.12)

for any (x, y) ∈ [0, β]2, x 6 y. Taking a closer look at these expressions we see that the t-norm T ,
the t-conorm S and the involutive negator N get entangled. Moreover, despite all efforts,
the geometrical structure of t-norms and t-conorms is not yet fully understood. Without any
further assumptions it becomes as good as impossible to further tackle the system of functional
equations.

As a first restriction, we focus on De Morgan triplets only. If we are able to derive from the
reduced system (10.9) = (10.10) = (10.11) = (10.12) that N = N , then we are sure, in view
of Corollary 10.7, that the De Morgan triplet (T, S,N ) solves the original system of functional
equations generated by Eq. (10.1). Studying more profoundly Eqs. (10.11) and (10.12), it strikes
that the range of T (and hence also the range of S) will determine to a considerable extent for
which x ∈ [0, 1] it holds that xN = xN . More precisely, if CDn exists and if the range of
the diagonal δT of T (i.e. δT (x) := T (x, x)) is sufficiently large, then N must be the standard
negator.

Lemma 10.8 Consider a De Morgan triplet (T, S,N) with involutive negator N that has fix-
point β. Let n ∈ N, n > 1. If CF (F ) −DF (F ) is independent of the {0, 1}n → {0, 1} function
F and ]β, 1] ⊆ δT ([0, 1]), then N = N .
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Proof Due to the first De Morgan law, Eq. (10.11) equals (S(T (xN , yN ), T (xN , y)))N . Because
(10.11) = (10.12), it must hold that

(
S
(
T (xN , yN ), T (xN , y)

))N
= 1 − S

(
T (xN , yN ), T (xN , y)

)
, (10.13)

for every (x, y) ∈ [0, β]2, x 6 y. Let y = x. If we take into account that T fulfills the law of con-
tradiction and denote xN as u, then Eq. (10.13) reduces to δT (u)N = T (u, u)N = 1 − T (u, u) =
1 − δT (u), for every u ∈ [β, 1]. Moreover, since ]β, 1] ⊆ δT ([0, 1]) and T (β, β) = 0 6 β, we know
that δT reaches on ]β, 1] every value of ]β, 1]. This leads to xN = 1 − x, for every x ∈ ]β, 1]. If
x ∈ [0, β[, it follows that xN ∈ ]β, 1] and therefore x = (xN )N = 1 − xN . The continuity of N
ensures that also β = βN = 1 − β, from which it follows that β = 1

2 . �

Having a closer look at (10.10) = (10.11), for a De Morgan triplet (T, S,N ) one could notice
that T structurally resembles the  Lukasiewicz t-norm TL in the points (S(x, y), S(x, yN )), with
(x, y) ∈ [0, β]2 and x 6 y: T (S(x, y), S(x, yN )) = S(x, yN ) + S(x, y) − 1. In case T is rotation
invariant with C0 = N and has a continuous Archimedean t-norm as a-zoom (a ∈ [12 , 1[), then
the upper part of T must equal the  Lukasiewicz t-norm TL.

Lemma 10.9 Consider a De Morgan triplet (T, S,N ) with left-continuous t-norm T . Let n ∈ N,
n > 1 and take a ∈ [12 , 1[. If CF (F ) − DF (F ) is independent of the {0, 1}n → {0, 1} function
F , C0 = N and T a is a continuous Archimedean t-norm, then T (x, y) = TL(x, y), for every
(x, y) ∈ ]a, 1]2 satisfying Ca(x) < y.

Proof We partition the domain [0, 1]2 of T as depicted in Fig. 7.1. The requirement C0 = N
implies that T must be rotation invariant (assertion (G2)). Therefore, invoking Eq. (5.3),
T (x, y) = x+ y − 1 holds for every (x, y) ∈ ]a, 1]2 satisfying Ca(x) < y if and only if

Cb(x) = CC0(bN )(x) = C0(T (x, bN )) = T (x, bN )N = 1 − x+ b

is fulfilled for every (x, b) ∈ ]a, 1] × [0, aN [ such that a < T (x, bN ) (i.e. Ca(x) < bN ). As-
sertion (G5) implies that a < T (x, bN ) is equivalent with b < T (x, aN ). Hence, it suffices
to show that Cb(x) = b + 1 − x, for every (x, b) ∈ ]a, 1] × [0, T (x, aN )[. The latter is true if
T (x, y) = TL(x, y), for every (x, y) ∈ DIII such that y 6 aN .

Firstly, we show that for every (b, d) ∈ ]0, 1[2 satisfying b < d, there always exists (x, y) ∈ ]b, 1[2

such that y < x, T a(x, y) = b and Cay (x) = d. From the observation that either T a = (TP)φ or
T a = (TL)φ, for some automorphism φ (Theorem 6.5), we derive that, for every (x, y, b) ∈ [0, 1]3

satisfying 0 < b < x, T a(x, y) = b is equivalent with Cab (x) = y and that Cab (x) = b can only occur
for x = 1. Note hereby that always Cab (x) < 1 (Corollary 5.8). Take now arbitrary (b, d) ∈ ]0, 1[2

such that b < d then Cab (d) ∈ ]b, 1[. The continuity of T a ensures the existence of x ∈ ]b, 1[ for
which Cab (d) = T a(x, x) and hence T a(x, T a(x, d)) = T a(d, T a(x, x)) = b. Defining y := T a(x, d)
allows us to rewrite the latter as T a(x, y) = b. From Cab (d) = T a(x, x) < T a(x, 1) = x it follows
that 0 < b < T a(x, d) = y. Furthermore, y = T a(x, d) < T a(x, 1) = x. Hence, b < y < x and
T a(d, x) = y is equivalent with Cay (x) = d.
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Secondly, we prove that T (x, y) = TL(x, y), for every (x, y) ∈ DII∪DIII such that min(x, y) 6 aN .
We present the proof for (x, y) ∈ DII. The case (x, y) ∈ DIII then follows immediately from
the commutativity of T . Let σ be the [a, 1] → [0, 1] isomorphism used to construct the a-
zoom T a of T . Take arbitrary (x, y) ∈ DII such that x = min(x, y) < aN and y < 1 (i.e.
x ∈ ]0, aN [ and y ∈ ]xN , 1[). Then, (σ[xN ], σ[y]) ∈ ]0, 1[2 and σ[xN ] < σ[y]. From the previous
paragraph we know that there exists (u, v) ∈ ]σ(xN ), 1[2 such that v < u, T a(u, v) = σ[xN ]
and Cav (u) = σ[y]. Taking into account property (F4a) and introducing x1 := (σ−1[u])N and
y1 := (σ−1[v])N , it follows that (x1, y1) ∈ ]0, aN [2, x1 < y1, σ[T (xN1 , y

N
1 )] = T a(u, v) = σ[xN ]

and CyN1
(xN1 ) = σ−1[Cav (u)] = y. Clearly, T (xN1 , y

N
1 ) = xN and from assertion (G3) we obtain

that T (xN1 , y1) = C0(CC0(y1)(x
N
1 )) = (CyN1

(xN1 ))N = yN . To conclude, it now suffices to express

(10.10) = (10.11):

T (x, y) = T
(
T (xN1 , y

N
1 )N , T (xN1 , y1)N

)
= T (xN1 , y1)N − T (xN1 , y

N
1 ) = x+ y − 1 .

Note that (x, y) has been arbitrarily chosen in DII and fulfills x < aN and y < 1. As 1 is the
neutral element of T and T is left continuous, this finishes the proof. �

Note that for every De Morgan triplet (T, S,N ) satisfying this lemma it necessarily holds that
Ca(x) = min(a+ 1 − x, 1). As indicated by Lemmata 10.8 and 10.9, the first De Morgan law is
inadequate to fully solve the system of functional equations generated by Eq. (10.1). Additional
continuity conditions are required to sift out those triplets for which CDn exists. Given the
importance of left-continuous t-norms (see Section 6.1), it is not so restrictive to invoke only
those De Morgan triplets based on a left-continuous t-norm T and on an involutive negator with
fixpoint β. Despite all our efforts in Chapters 6–8, the structure of such a left-continuous t-norm
is, however, not yet fully understood. Therefore, also other continuity conditions are needed. In
particular, we invoke two properties that allow us to involve our results from Chapters 7 and 8:
T (•, β) is continuous on [β, 1] or T (•, β) is continuous on ]β, 1].

A. T (•, β) is continuous on [β, 1]

From Corollary 9.18 we know that the De Morgan triplet (TL, SL,N ) solves the system of
functional equations generated by Eq. (10.1). Clearly, β = 1

2 is the fixpoint of N , TL is continuous
and, hence, also the partial function TL(•, 1

2) is continuous. In order to compute all De Morgan
triplets (T, S,N) that solve the system of functional equations and are based on a left-continuous
t-norm T whose partial function T (•, β) is continuous on [β, 1] and on an involutive negator N
with fixpoint β, we need to consider two lemmata first.

In Section 6.2 we drew attention to the importance of the Archimedean property as a transitional
means from left continuity to continuity (Theorem 6.7). In the first lemma, we show that for
those triplets (T, S,N) that fulfill (10.9) = (10.10) = (10.11) = (10.12) it is enough that T (•, β)
and S(•, β) are continuous on, resp., [β, 1] and [0, β], to obtain the Archimedean property.

Lemma 10.10 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N with fixpoint β. Let n ∈ N, n > 1. If CF (F ) −DF (F ) is independent of
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the {0, 1}n → {0, 1} function F and the partial functions T (•, β) and S(•, β) are continuous on,
resp., [β, 1] and [0, β], then T is Archimedean.

Proof We know already that (10.9) = (10.10) = (10.11) = (10.12) must hold for every (x, y) ∈
[0, β]2, x 6 y. Putting y = β in (10.9) = (10.11) leads to

T (S(x, β), S(x, β)) = S(x, β) − T (xN , β) , (10.14)

for every x ∈ [0, β]. Remark that (10.9) = (10.12) implies that if T (xN , β) = 0, then necessarily
S(x, β) = 1. Consequently, T (S(x, β), S(x, β)) < S(x, β), if S(x, β) 6= 1. Since S(•, β) is con-
tinuous on [0, β] and S fulfills the law of the excluded middle w.r.t. N (Theorem 10.3), S(x, β)
reaches every value of [β, 1] when x goes through [0, β]. Therefore, if we denote S(x, β) by u, the
above inequality implies that δT (u) = T (u, u) < u, for every u ∈ [β, 1[. The t-norm T fulfills the
law of contradiction w.r.t. N (Theorem 10.3) such that 0 = δT (x) < x, for every x ∈ ]0, β]. Since
T (•, β) is continuous on [β, 1], S(•, β) is continuous on [0, β] and T (β, β) = 0 < 1 = S(β, β) (The-
orem 10.3), it also follows from Eq. (10.14) that δT ([β, 1]) = [0, 1]. We conclude that δT (x) < x,
for every x ∈ ]0, 1[ and that δT reaches every element of [0, 1]. Both properties finally imply the
Archimedean property (Theorem 6.4). �

Note that for a De Morgan triplet (T, S,N) with involutive negator N , the continuity condition
on S in the previous lemma is a trivial consequence of the continuity condition on T . The second
lemma partially solves (10.9) = (10.10) = (10.11) = (10.12) when dealing with triplets (T, S,N)
consisting of a continuous t-norm T , a continuous t-conorm S and an involutive negator N . The
solution triplets are necessarily transformations of the known solution (TL, SL,N ).

Lemma 10.11 Consider a triplet (T, S,N) consisting of a continuous t-norm T , a continuous
t-conorm S and an involutive negator N . Let n ∈ N, n > 1. If CF (F ) −DF (F ) is independent
of the {0, 1}n → {0, 1} function F , then there exist two automorphisms φ and ψ such that
T = (TL)φ, S = (SL)ψ and Nφ = Nψ = N .

Proof Because T fulfills the law of contradiction w.r.t. N and S fulfills the law of the excluded
middle w.r.t. N (Theorem 10.3), there exist two automorphisms φ and ψ such that T = (TL)φ,
S = (SL)ψ and Nψ 6 N 6 Nφ (Theorem 10.2). It is then sufficient to prove that these latter
inequalities are, in fact, equalities.

Let β be the fixpoint of N and consider arbitrary y ∈ ]0, β] and x ∈ ]0, y]. Then it holds that

T (xN , yN ) = φ−1
[
max

(
φ[xN ] + φ[yN ] − 1, 0

)]
< yN ,

yN < ψ−1
[
min

(
ψ[x] + ψ[yN ], 1

)]
= S(x, yN ) .

Due to the existence of the function CDn, it holds for such x and y that (10.10) = (10.11) =
(10.12). The above strict inequalities imply that

0 < S(x, yN ) − T (xN , yN )

= T (S(x, y), S(x, yN )) = φ−1
[
max

(
φ[S(x, y)] + φ[S(x, yN )] − 1, 0

)]

= 1 − S(T (xN , yN ), T (xN , y)) = 1 − ψ−1
[
min

(
ψ[T (xN , yN )] + ψ[T (xN , y)], 1

)]
.
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Due to the strict positivity of the expressions above, we can eliminate max and min:

0 < φ−1
[
φ[S(x, y)] + φ[S(x, yN )] − 1

]
= 1 − ψ−1

[
ψ[T (xN , yN )] + ψ[T (xN , y)]

]
.

Thanks to the continuity of (T, S,N) we can take the limit for xց 0. This results in

0 6 φ−1[φ[y] + φ[yN ] − 1] = 1 − ψ−1[ψ[yN ] + ψ[y]] 6 1 − ψ−1[ψ[yNψ ] + ψ[y]] = 0 ,

or, equivalently, yNφ = yN = yNψ . Remark that the variable y was arbitrarily chosen in ]0, β].
If y ∈ [β, 1[, then yN ∈ ]0, β] and [yN ]Nφ = [yN ]N = [yN ]Nψ . As all negators involved are
involutive we get that yNφ = yN = yNψ , for all y ∈ ]0, 1[. Including the trivial cases y = 0 and
y = 1 finally leads to the desired result. �

In the following theorem we show that successively executing the previous lemmata on a De
Morgan triplet with left-continuous t-norm T and involutive negator N yields a unique triplet
solving the system of functional equations: (TL, SL,N ).

Theorem 10.12 Consider a De Morgan triplet (T, S,N) with left-continuous t-norm T and
involutive negator N that has fixpoint β. Let n ∈ N, n > 1. If T (•, β) is continuous on
[β, 1], then CF (F ) − DF (F ) is independent of the {0, 1}n → {0, 1} function F if and only if
(T, S,N) = (TL, SL,N ).

Proof When working with the triplet (TL, SL,N ) the difference between both fuzzified normal
forms is of course independent of the Boolean function F (Corollary 9.18). Conversely, sup-
pose that CDn exists. As S(x, β) = T (xN , β)N , for every x ∈ [0, 1] (Eq. (9.1)), it follows from
the involutivity of N and the continuity of T (•, β) on [β, 1] that S(•, β) is continuous on [0, β].
Applying Lemma 10.10, we conclude that T is Archimedean. In combination with the left conti-
nuity of T we can even state that T must be continuous (Theorem 6.7). Hence, δT ([0, 1]) = [0, 1]
and the first De Morgan law (Eq. (9.1)) ensures that also S is continuous. Invoking Lem-
mata 10.11 and 10.8, and Theorem 3.3, it follows that there exists an automorphism φ such
that T = (TL)φ, N = N = Nφ and S = ((TL)φ)N = ((TL)φ)Nφ = (TL)N◦φ = (SL)φ. In

this case β = 1
2 . Note that T

1
2 is continuous and T

1
2 (x, x) = σ[max(1

2 , T (σ−1[x], σ−1[x]))] <

σ[max(1
2 , T (σ−1[x], σ−1[1]))] = x, for every x ∈ ]0, 1[. Hence, T

1
2 is Archimedean (Theorem 6.4).

Furthermore, the contour line C0 of T = (TL)φ is given by Nφ = N . Lemma 10.9 is applicable.
We get that T (x, y) = TL(x, y), for every (x, y) ∈ ]12 , 1]2 satisfying C 1

2
(x) < y. As there only ex-

ists at most one left-continuous t-norm that has contour line N (a = 0) and that has 1
2 -zoom TL

(Theorem 7.5) it necessarily holds that T = TL. �

Let N be an involutive negator with fixpoint β. We briefly figure out on which De Mor-
gan triplets (T, S,N) the above theorem is applicable (i.e. for which left-continuous t-norms
T the partial function T (•, β) is continuous on [β, 1]). By definition, all partial functions of
a continuous t-norm are continuous. Hence, (TL, SL,N ) is the only continuous De Morgan
triplet (T, S,N) solving the system of functional equations generated by Eq. (10.1) (Theo-
rem 10.12). Furthermore, for a left-continuous t-norm T , the law of contradiction expresses
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that N 6 C0. In the case of equality, then T is necessarily rotation invariant (assertion (G2))
and T (x, β) = T (β, x) = C0(CC0(β)(x)) = C0(Cβ(x)), for every x ∈ [0, 1] (assertion (G3)).
The left-continuity of T ensures that T (β, β) = 0 (Theorem 10.3). Therefore, invoking the in-
volutivity of C0, T (•, β) is continuous on [β, 1] if and only if Cβ is continuous on [β, 1]. The

latter is equivalent with the continuity of Cβ0 (property (F4a)) which expresses the rotation
invariance of T β (assertion (G1)). We conclude that the partial function T (•, β) of a rotation-
invariant t-norm T , with C0 = N , is continuous on [β, 1] if and only if T is the triple rotation
T = R3(T̂ , N) based on N of a rotation-invariant t-norm T̂ (Section 8.3). From Theorem 10.12
it then follows that (TL, SL,N ) = (R3(TL,N ), R3(TL,N )N ,N ) is the only member in this class
of De Morgan triplets (R3(T̂ , N), R3(T̂ , N)N , N), with T̂ a rotation-invariant t-norm and N an
involutive negator, that solves the system of functional equations generated by Eq. (10.1).

B. T (•, β) is continuous on ]β, 1]

In the previous section we already considered t-norms T whose partial function T (•, β) is con-
tinuous on [β, 1]. Therefore, it suffices now to consider only t-norms T whose partial function
T (•, β) is continuous on ]β, 1] but not on [β, 1]. Invoking property (E2) and T (β, β) = 0 (The-
orem 10.3), the latter can only occur if 0 < Q(β, β).

Lemma 10.13 Consider a triplet (T, S,N) consisting of a t-norm T , a t-conorm S and an
involutive negator N with fixpoint β. Let n ∈ N, n > 1. If CF (F ) −DF (F ) is independent of
the {0, 1}n → {0, 1} function F , 0 < Q(β, β) and the partial functions T (•, β) and S(•, β) are
continuous on, resp., ]β, 1] and [0, β[, then Q(β, β) = β.

Proof Suppose the converse, i.e. Q(β, β) 6= β. Then necessarily Q(β, β) < β due to prop-
erty (E5). Using equality (10.10)=(10.11) with y = β, we get

S(x, β) − T (xN , β) = T (S(x, β), S(x, β)) ,

for every x ∈ [0, β[. The continuity of the partial functions T (•, β) and S(•, β) on, resp., ]β, 1]
and [0, β[, then yields that T (S(x, β), S(x, β)) reaches for x ∈ [0, β[ every element of [0, ω[, with
ω = limxրβ S(x, β)−T (xN , β). Because β 6 S(x, β) and limxրβ T (xN , β) = limxրβ T (β, xN ) =
Q(β, β) < β (property (E2)), it holds that 0 < ω. Hence, there exists x ∈ [0, β[ such that
0 < T (S(x, β), S(x, β)) < Q(β, β). Denoting S(x, β) by y and invoking that T (β, β) = 0 (Theo-
rem 10.3), we conclude that y ∈ ]β, 1] and T (y, y) < Q(β, β). From property (E2) however, we
also know that Q(β, β) 6 T (β, y) 6 T (y, y), a contradiction. �

Similarly as for Lemma 10.10, the continuity condition on S can be omitted when considering
De Morgan triplets with an involutive negator. If T is left continuous and C0 = N , then the
continuity of T (•, β) on ]β, 1] is due to T (x, β) = T (β, x) = C0(Cβ(x)) (assertion (G3)) and
the involutivity of C0 equivalent with the continuity of Cβ on ]β, 1]. Hence, rotation-invariant
t-norms satisfying C0 = N and whose partial function T (•, β) is continuous on ]β, 1] are exactly
the triple-rotations based on N that have been discussed in Section 8.3. In case 0 < Q(β, β), then
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the previous lemma states that necessarily Q(β, β) = β which is equivalent with C0(Cβ(x)) =
C0(T (β, x)) = C0(β) = β, for every x ∈ ]β, 1] (assertion (G3) and property (E2)). The latter
is on its turn equivalent with Cβ(x) = β, for every x ∈ ]β, 1], which expresses that T β has no
zero-divisors. From Section 8.3 it then follows that the companion Q of a rotation-invariant
t-norm T , with C0 = N , satisfies Q(β, β) = β if and only if T is the triple-rotation R3(T̂ , N)
based on N of a left-continuous t-norm T̂ that has no zero-divisors. Note that since Q(β, β) = β
implies T (x, β) = β, for every x ∈ ]β, 1], we immediately obtain the required continuity for the
partial functions T (•, β).

Our characterization in Subsection A was largely due to the continuity of T and Lemma 10.9.
Unfortunately, if 0 < Q(β, β), then T is necessarily discontinuous and it becomes doubtful
whether Lemma 10.9 remains applicable. To solve (10.9) = (10.10) = (10.11) = (10.12) we have
to impose some further restrictions on the t-norms considered. In particular, we assume that
the partial functions T (•, x) are continuous on ]xN , 1] whenever x ∈ ]0, β] and on [x, 1] whenever
x ∈ ]β, 1[. Note that these continuity conditions comprise the continuity of T (•, β) on ]β, 1].
They are visualized in Figure 10.1.

b0 1
0

b

1

x
N

Figure 10.1: Domain of a left-continuous t-norm T where the continuity conditions are indicated
by the horizontal and vertical lines

For a left-continuous t-norm T that has contour line C0 = N , the proposed continuity conditions,
in combination with the typical geometrical structure for rotation-invariant t-norms (Eq. (7.1)),
are quite restrictive and ensure the continuity of the β-zoom T β .
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Lemma 10.14 Consider a rotation-invariant t-norm T , with β the unique fixpoint of its contour
line C0. Then T β is continuous if and only if the partial functions T (•, x) are continuous on
]C0(x), 1], whenever x ∈ ]0, β], and on [x, 1], whenever x ∈ ]β, 1[.

Proof Let σ be the [β, 1] → [0, 1] isomorphism used to construct T β . It follows from Eq. (7.1)
that, for every x ∈ ]0, β], T (•, x) = T (x, •) is continuous on ]C0(x), 1] if and only if, for every

x ∈ ]0, β], Cβσ[C0(x)](σ[y]) is continuous in y whenever y ∈ ]C0(x), 1]. Denoting σ[C0(x)] by u the

latter expresses that, for every u ∈ [0, 1[, Cβu must be continuous on ]u, 1]. Therefore, we need to
prove that T β is continuous if and only if each partial function T (x, •), x ∈ ]β, 1[, is continuous

on [x, 1] and each contour line Cβu , u ∈ [0, 1[, is continuous on ]u, 1].

If T β is continuous, then we know from the characterization of continuous t-norms (Theorem 6.6)

that each contour line Cβu , u ∈ [0, 1[, is continuous on ]u, 1]. Furthermore, Qβ(x, y) = T β(x, y),

for every (x, y) ∈ [0, 1]2 such that y < 1, and Qβ(x,Cβ0 (x)) = 0, for every x ∈ ]0, 1]. As Cβ0 is
continuous on ]0, 1], it follows from property (F4a) that Cβ must be continuous on ]β, 1]. Hence,
Eq. (7.7) holds. Take arbitrary x ∈ ]β, 1[. Then, for y ∈ ]Cβ(x), 1], T (x, y) = σ−1[T β(σ[x], σ[y])]

is continuous in y and, for y ∈ ]β,Cβ(x)], T (x, y) = C0(σ−1[T β(Cβ0 (σ[x]), Cβ0 (σ[y]))]) is also
continuous in y. Note that due to properties (F4a) and (F2) it holds that T (x,Cβ(x)) =

T (x, σ−1[Cβ0 (σ[x])]) = C0(σ−1[0]) = β and

Q(x,Cβ(x)) = σ−1[Qβ(σ[x], σ[Cβ(x)])] = σ−1[T β(σ[x], Cβ0 (σ[x]))] = σ−1[0] = β .

Invoking property (E2), we conclude that T (•, x) = T (x, •) is continuous on ]β, 1] and thus also
on [x, 1].

Conversely, assume that each partial function T (x, •), x ∈ ]β, 1[, is continuous on [x, 1] and that

each contour line Cβu , u ∈ [0, 1[, is continuous on ]u, 1]. Recall that by definition, T β(v, w) =
σ[max(β, T (σ−1[v], σ−1[w]))], for every (v, w) ∈ [0, 1]2. Take arbitrary v ∈ ]0, 1[. From the con-
tinuity of T (σ−1[v], •) on [σ−1(v), 1], it then follows that T β(v, •) is continuous on [v, 1]. Clearly,
T β(0, •) and T β(1, •) are continuous on [0, 1]. To illustrate the continuity of T β , it then suffices
to show that T β(v, •), v ∈ ]0, 1[, is continuous on [0, v]. Because of the left continuity of T β

(property (F3)) it is enough to prove the right continuity of T β(v, •) on [0, v[. Suppose the con-
verse, then there exist (v, w) ∈ [0, 1[2 such that w < v and T β(v, w) < Qβ(v, w) (property (E2)).
Because 0 = T β(v, 0) 6 Qβ(v, 0) 6 min(v, 0) = 0 (properties (E3) and (E5)), we may assume

that 0 < w. By definition, it holds for every a ∈ ]T β(v, w), Qβ(v, w)[ that w 6 Cβa (v) 6 w.
As T β(•, w) is continuous on [w, 1] and Qβ(v, w) 6 w (property (E5)), we are sure that there

exists z ∈ ]v, 1[ such that T β(z, w) = a and, hence, w 6 Cβa (z) 6 Cβa (v) = w. Finally, we use

the orthosymmetry of Cβa (Theorem 5.9) to retrieve from w = Cβa (z) = Cβa (v) < w + ε that

Cβa (w + ε) < v < z 6 Cβa (w), for every ε ∈ ]0, 1 − w]. We conclude that Cβa is not continuous

in w. Since a < Qβ(v, w) 6 w, this contradicts the continuity of Cβa on ]a, 1]. �

Figure 10.2 presents two rotation-invariant t-norms that have a continuous β-zoom. As can be
seen in Fig. 10.2(c), the continuity of the β-zoom does not ensure the continuity of the t-norm
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Figure 10.2: CD2 for two De Morgan triplets (Tλ, Sλ,N ).

on area D = {(x, y) ∈ [0, 1]2 | C0(x) < y}. Both t-norms belong to the same family of t-norms
(Tλ)λ∈[0, 1

2
[. For λ ∈ ]0, 1

2 [, Tλ is the triple rotation R3((〈1 − 2λ, 1, TL〉),N ) of the ordinal sum

(〈1 − 2λ, 1, TL〉) and based on the standard negator N . As for the considered ordinal sum,
a linear rescaling function is used to construct Tλ. The limit case T0 is the triple rotation of
limλց0(〈1−2λ, 1, TL〉) = TM based on N . Therefore, T0 = R3(TM,N ) = TnM (see Fig. 8.1(b)).
Note that for λ ∈ ]0, 1

2 [, the ordinal sum (〈1−2λ, 1, TL〉) has no zero-divisors. Hence, each t-norm
in this family can be fully decomposed by means of Theorem 7.1. A more explicit formulation
for Tλ, with λ ∈ [0, 1

2 [, can be found below:

Tλ(x, y) =





0, if x+ y 6 1 ,

min(x, y), if x+ y > 1 ∧ min(x, y) ∈ ]λ, 1 − λ] ,

x+ y − 1, if x+ y > 1 ∧
(
x+ y > 2 − λ ∨ min(x, y) ∈ [0, λ]

)
,

1 − λ, if x+ y 6 2 − λ ∧ min(x, y) ∈ ]1 − λ, 1] .
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The family of dual t-conorms (Sλ)λ∈[0, 1
2
[ = ((Tλ)N )λ∈[0, 1

2
[ is given by

Sλ(x, y) =





1, if x+ y > 1 ,

max(x, y), if x+ y < 1 ∧ max(x, y) ∈ [λ, 1 − λ[ ,

x+ y, if x+ y < 1 ∧
(
x+ y < λ ∨ max(x, y) ∈ [1 − λ, 1]

)
,

λ, if x+ y > λ ∧ max(x, y) ∈ [0, λ[ .

By construction (Tλ, Sλ,N ) fulfills the De Morgan laws for every λ ∈ [0, 1
2 [.

Proposition 10.15 Let n ∈ N, n > 1. For every De Morgan triplet (Tλ, Sλ,N ), with λ ∈ [0, 1
2 [,

it holds that CF (F ) −DF (F ) is independent of the {0, 1}n → {0, 1} function F .

Proof It is sufficient (Corollary 10.7) to show that

Sλ
(
Tλ(xN , y), Tλ(xN , yN )

)
= Tλ(xN , y) + Tλ(xN , yN ) , (10.15)

for every λ ∈ [0, 1
2 [ and every (x, y) ∈ [0, 1

2 ]2, x 6 y. We distinguish two cases:

1. Tλ(xN , y) + Tλ(xN , yN) > 1

Since Tλ 6 TM it holds that Tλ(xN , y) + Tλ(xN , yN ) 6 y + yN = 1. Consequently, we
obtain that Tλ(xN , y) + Tλ(xN , yN ) = 1, in which case Eq. (10.15) follows immediately
from the definition of Sλ.

2. Tλ(xN , y) + Tλ(xN , yN) < 1

For y = x it holds that Tλ(xN , y) = 0 and therefore Eq. (10.15) is trivially fulfilled. If
x < y, then 1 < xN + y 6 xN + yN . Suppose that λ < y, then y ∈ ]λ, 1 − λ[ and
yN ∈ ]λ, 1 − λ[. Thus

λ < min(xN , y) = y 6 yN = min(xN , yN ) < 1 − λ .

Invoking the definition of Tλ, it holds that Tλ(xN , y) = min(xN , y) = y and Tλ(xN , yN ) =
min(xN , yN ) = yN . Finally, we sum these expressions side by side and get the contra-
diction Tλ(xN , y) + Tλ(xN , yN ) = y + yN = 1. We conclude that y 6 λ and 1 − λ 6

yN 6 xN . By definition of Tλ it then follows that 1 − λ 6 Tλ(xN , yN ) and thus
max(Tλ(xN , y), Tλ(xN , yN )) ∈ [1−λ, 1], in which case Eq. (10.15) is automatically fulfilled
(see definition of Sλ). �

Figures 10.2(b) and 10.2(d) illustrate for n = 2 the difference CD2 between both fuzzified normal
forms when dealing with the De Morgan triplets (T0, S0,N ) and (T 1

3
, S 1

3
,N ).

Theorem 10.16 Consider a De Morgan triplet (T, S,N), with T a left-continuous t-norm and
N an involutive negator with fixpoint β. Let n ∈ N, n > 1. If 0 < Q(β, β) and the partial
functions T (•, x) are continuous on ]xN , 1], whenever x ∈ ]0, β], and on [x, 1], whenever x ∈
]β, 1[, then CF (F ) − DF (F ) is independent of the {0, 1}n → {0, 1} function F if and only if
(T, S,N) = (Tλ, Sλ,N ), for some λ ∈ [0, 1

2 [.
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Proof Due to Proposition 10.15 we only need to prove that every De Morgan triplet (T, S,N)
fulfilling the conditions of the theorem and for which CDn exists must belong to the family
((Tλ, Sλ,N ))λ∈[0, 1

2
[. To improve the readability of the proof, we distinguish six consecutive

subproblems.

I. T (x, y) = σ−1[T β(σ[x], σ[y])], for every (x, y) ∈ [β, 1]2 \ {(β, β)}

Let σ be the [β, 1] → [0, 1] isomorphism that is used to construct T β . By definition, max(β, T (x, y)) =
σ−1[T β(σ[x], σ[y])], for every (x, y) ∈ [β, 1]2. Hence, T (x, y) = σ−1[T β(σ[x], σ[y])], will hold for
every (x, y) ∈ [β, 1]2 \{(β, β)} if and only if T (x, β) = T (β, x) = β, for every x ∈ ]β, 1]. We need
to prove that Q(β, β) = β (property (E2)). The latter follows immediately from Lemma 10.13.

II. C0 = N = N

Because T satisfies the law of contradiction w.r.t. N (Theorem 10.3), we know that N 6 C0.
Suppose that N < C0 then there exists a couple (x, y) ∈ [0, 1]2 fulfilling xN < y and such that
T (x, y) = 0 (i.e. y 6 C0(x)). Without loss of generality, we may assume that x 6 β as T is
commutative and β 6 T (x, y) whenever (x, y) ∈ ]β, 1]2 (Part I). Furthermore, consider arbitrary
y1 ∈ ]yN , x[. The monotonicity of T implies that T (u, v) = 0, for every (u, v) ∈ [0, x] × [0, y]. In
particular, T (y1, y) = 0. The continuity conditions on T then ensure the existence of x1 ∈ ]0, yN [
for which T (xN1 , y1) ∈ [yN , y1[ and T (xN1 , y

N
1 ) ∈ [xN , yN1 ] or for which T (xN1 , y1) ∈ [yN , y1] and

T (xN1 , y
N
1 ) ∈ [xN , yN1 [. Indeed, we know that there exists x2 ∈ ]0, yN [ such that T (y1, x

N
2 ) = yN .

If T (xN2 , y
N
1 ) ∈ [xN , yN1 ], we put x1 = x2. Else, in case T (xN2 , y

N
1 ) < xN , we know that there

exists x3 ∈ ]0, x2[ such that T (xN3 , y
N
1 ) = xN . It is then sufficient to put x1 = x3. Expressing

that (10.10) = (10.11) leads to the contradiction

0 = yN1 − yN1 < T (xN1 , y1)N − T (xN1 , y
N
1 ) = T

(
T (xN1 , y

N
1 )N , T (xN1 , y1)N

)
6 T (x, y) = 0 .

Hence, C0 = N such that T is a rotation-invariant t-norm (assertion (G2)). The continu-
ity conditions on the partial functions T (•, x) yield that the β-zoom T β of T is continuous
(Lemma 10.14). From Part I it then follows that T is continuous on ]β, 1]2. In particular,
δT is continuous on ]β, 1] and δT (x) = T (x, x) = σ−1[T β(σ[x], σ[x])], for every x ∈ ]β, 1].
The diagonal T β(u, u) is continuous and reaches on ]0, 1] every element of ]0, 1]. Therefore,
]β, 1] = σ−1(]0, 1]) ⊆ δT (]β, 1]) and from Lemma 10.8 it follows that N = N and β = 1

2

III. Q(y, yN) ∈ {0, y}, for all y ∈ ]0, 1
2
]

For y = 1
2 this property follows from Part I. Take y ∈ ]0, 1

2 [. Property (E5) ensures that always
Q(y, yN ) 6 y. Suppose that Q(y, yN ) ∈ ]0, y[. We consider the following cases:

1. If T (yN , yN ) < yN , then B(x) := T (xN , yN )N is continuous on [0, y] and reaches on
this interval every number in [y, T (yN , yN )N ]. Analogously, since Q(y, yN ) < y, A(x) :=
T (xN , y)N is continuous on [0, y[ and reaches on [0, y[ every number in [yN , Q(y, yN )N [
(property (E2)). From (10.10) = (10.11) it follows that T (A(x), B(x)) = A(x) − B(x)N

is continuous on [0, y[ and reaches on this interval every number in [0, Q(y, yN )N −
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T (yN , yN )[. Take x1 ∈ [0, y[ such that 0 < T (A(x1), B(x1)) < Q(y, yN ). Because N = C0

(Part II) we know that A(x1)N < B(x1). From Part I it follows that 1
2 6 T (yN , yN ) 6

B(x1)N . Therefore, the continuity of T (•, B(x1)) on ]B(x1)N , 1] ensures the existence of
x2 ∈ [0, A(x1)N [ ⊂ [0, B(x1)[ such that T (xN2 , B(x1)) < Q(y, yN ). Since y 6 B(x1) this
leads to T (y, xN2 ) = T (xN2 , y) < Q(y, yN ). Taking into account that yN 6 A(x1) < xN2
this latter inequality contradicts property (E2).

2. If T (yN , yN ) = yN , we know that B(x) = y, for every x ∈ [0, y]. Like in the previous case,
we also know that A(x) reaches on [0, y[ every number in [yN , Q(y, yN )N [. We conclude
from (10.10) = (10.11) that T (y, u) = u− yN , for every u ∈ [yN , Q(y, yN )N [. Taking into
account property (E2) this leads to the contradiction

0 < Q(y, yN ) = lim
uցyN

T (y, u) = lim
uցyN

u− yN = 0 .

IV. Q(y, yN) = y implies δT (yN) = yN , for all y ∈ ]0, 1
2
[

Recall that Q(y, yN ) = y implies that x < y = T (xN , y), for all x ∈ [0, y[ (property (E2)).
Applying assertion (G5) on this inequality results in yN = C0(y) < T (xN , C0(x)) = T (xN , xN ),
for every x ∈ [0, y[ ⊂ [0, 1

2 [. As discussed in Part II, the diagonal δT of T is continuous on ]12 , 1].
Taking the limit xր y leads to yN 6 T (yN , yN ) 6 yN .

V. ∃λ ∈ [0, 1
2
]: δT (x) = x, for all x ∈ ]1

2
, λN ], and δT (x) < x, for all x ∈ ]λN , 1[

We prove that that whenever δT (x) = x, for some x ∈ ]12 , 1[, then also δT (y) = y, for
every y ∈ ]12 , x[. The number λ is then defined by λN = sup{x ∈ ]12 , 1[ | δT (x) = x}
(with sup ∅ = 1

2). Note that the left continuity of T ensures that δT (λN ) = λN whenever
1
2 < λN . Suppose now that δT (x) = x, for some x ∈ ]12 , 1[. From Part I it then follows

that x = T (x, x) = σ−1[T
1
2 (σ[x], σ[x])] and hence, T

1
2 (σ[x], σ[x]) = σ[x], with σ[x] ∈ ]0, 1[.

The ordinal sum structure of T
1
2 (Lemma 10.14 and Theorem 6.6) fixes T

1
2 (u, σ[x]) = u,

for every u ∈ [0, σ(x)]. Translating this result for T
1
2 back to a property on T , we get that

T (y, x) = σ−1[T
1
2 (σ[y], σ[x])] = y, for every y ∈ [12 , x] (Part I). Take arbitrary y ∈ ]12 , x[

then y < z = T (z, x) = T (x, z), for every z ∈ ]y, x[. Applying Theorem 5.12 on this in-
equality results in zN < T (x, yN ) 6 yN . We obtain that T (x, yN ) = yN by taking the limit
z ց y. Since T (yN , x) 6 Q(yN , x) (property (E3)), we get that yN 6 Q(yN , x). Recall
that C0 = N (Part II) which allows us to apply assertion (G7) on the above inequality:
0 < xN 6 Q(yN , y) = Q(yN , (yN )N ). Because Q(yN , (yN )N ) can only take values in {0, yN }
(Part III), it necessarily holds that Q(yN , (yN )N ) = yN . Finally, we use Part IV and obtain
δT (y) = y, for every y ∈ ]12 , x[.

VI. T = Tλ, for some λ ∈ [0, 1
2
[

Invoking the rotation invariance of T (Theorem 7.1), Parts I and V, and the increasingness
of T , we need to prove that T (x, y) = x+ y− 1, for every (x, y) ∈ ]λN , 1] satisfying CλN (x) < y

(i.e. λN < T (x, y)). Note that this rules out λ = 1
2 as this would imply that T

1
2 = TL
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which contradicts Part I due to Eq. (7.1). Recall from Part II that C0 = N = N . Fur-

thermore, T
1
2 (x, x) = σ[T (σ−1[x], σ−1[x])] < x, for every x ∈ ]σ(λN ), 1[ (Parts I and V). As

T
1
2 is continuous (Lemma 10.14), the latter yields that T

1
2 |[σ(λN ),1]2 is a rescaled continuous

Archimedean t-norm (Theorems 6.6 and 6.4). Lemma 10.9 is applicable with a = λN . We get
that T (x, y) = x+ y − 1, for every (x, y) ∈ ]λN , 1] satisfying CλN (x) < y. �

In view of Lemma 10.14, one could wonder why we used in the above theorem the rather complex
continuity conditions on the partial functions T (•, x) instead of the continuity of T β . However,
in the previous theorem we neither assumed the rotation invariance of T , nor that C0 = N .
Therefore, Lemma 10.14 is not straightforwardly applicable. Figure 10.3 illustrates that there
exist De Morgan triplets (T, S,N ) that solve the system of functional equations but contain a

left-continuous t-norm T that is not rotation invariant and has a continuous 1
2 -zoom T

1
2 . The

t-norm Ť from Fig. 10.3(a) is obtained from the minimum operator TM by lowering its values
on the area {(x, y) ∈ [0, 1]2 | x+ y 6 0 ∨ (min(x, y) 6 2

5 ∧ max(x, y) 6 9
10)} to zero.
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Figure 10.3: CD2 for the De Morgan triplets (Ť , Š,N ) and (T, S,N ).
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Finally, we would like to point out once more that we focused in Subsections A and B on those
solution triplets that are based on the t-norms described in Section 8.3. The system of functional
equations can also be solved in case the partial functions T (•, β) are not continuous on ]β, 1].
An example of such a solution can be found in Fig. 10.3. The mathematical formulation of
the t-norm T depicted in Fig. 10.3(c) has been stated in Example 7.2. However, as a complete
characterization of all left-continuous t-norms is still lacking and given the incompatibility of
such solutions with our previous results, the study of these solutions is left for further research.
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APPENDIX A

Summary

Fuzzy logic and fuzzy set theory make extensive use of monotone [0, 1] → [0, 1] and monotone
[0, 1]2 → [0, 1] functions. On the one hand, increasing [0, 1]2 → [0, 1] functions such as t-
norms and t-conorms, are used as straightforward generalizations of the Boolean conjunction
and disjunction (see e.g. [19, 36, 51, 71]). On the other hand, decreasing [0, 1] → [0, 1] functions
are used to generalize the Boolean negation (see e.g. [19, 51, 71]). Most attention goes by far
to the study of [0, 1]2 → [0, 1] functions and their properties. Monotone [0, 1] → [0, 1] functions
are more elementary. In this dissertation we have used these functions to describe monotone
[0, 1]2 → [0, 1] functions. The achieved results contribute to a better insight into the structure
of left-continuous t-norms. Such insights are essential for various studies involving t-norms.

A.1 Inverses of monotone functions

Reflections are not always apt to define the inverse of a curve w.r.t. a given monotone [0, 1] →
[0, 1] bijection Φ. Therefore, we have introduced the Φ-inverse of a set A ⊆ [0, 1]2 : AΦ :=
{(x, y) ∈ [0, 1]2 | (Φ−1(y),Φ(x)) ∈ A}. Geometrically, AΦ is the set of those vertices that
constitute the fourth point of a rectangle with sides parallel to the axes, that has two 2 vertices
on the graph of Φ and has one vertex belonging to A. It is clear that (AΦ)Φ = A and Aid = A−1,
with id the identity function.

As for the classical inverse, the Φ-inverse of a monotone [0, 1] → [0, 1] function f is again a
[0, 1] → [0, 1] function if and only if f is bijective. Largely extending the approach of Schweizer
and Sklar [85] we have associated to each monotone function f a set Q(f,Φ) of ‘Φ-inverse’
functions. This set consists of all monotone [0, 1] → [0, 1] functions whose completion is the
Φ-inverse of the completion of f . The completion of a monotone function f is a continuous
increasing or decreasing line that reaches every element in the unit interval and is constructed
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from the graph of f by simply adding vertical segments. For a constant function f the set
Q(f,Φ) contains the functions constructed from the increasing completion of f as well as those
constructed from the decreasing completion of f . For a monotone [0, 1] → [0, 1] bijection Ψ it
clearly holds that Q(Ψ,Φ) = {ΨΦ}.

Theorem The sets Q(f,Φ) and Q(f, id) are isomorphic whenever Φ is increasing and anti-
morphic whenever Φ is decreasing. In particular, for every g ∈ Q(f,Φ) there exists a unique
h ∈ Q(f, id) such that g = Φ ◦ h ◦ Φ.

Increasing [0, 1] → [0, 1] bijections are also kown as automorphisms. Decreasing bijections are
referred to as strict negators. The isomorphy/antimorphy between Q(f, id) and Q(f,Φ) allows
for a straightforward conversion of the properties of Q(f, id) into those of Q(f,Φ). Hence, it
suffices to study the set Q(f, id) only. To describe the members of Q(f, id) mathematically, we
use four [0, 1] → [0, 1] functions:

f
id

(x) = sup{t ∈ [0, 1] | f(t) < x} f id(x) = sup{t ∈ [0, 1] | f(t) > x}
f id(x) = inf{t ∈ [0, 1] | f(t) > x} f

id
(x) = inf{t ∈ [0, 1] | f(t) < x} .

Both functions f
id

and f id are increasing. The functions f id and f
id

are decreasing. In case

f(0) < f(1), resp. f(1) < f(0), the function f
id

, resp. f id, is known as the pseudo-inverse f (−1)

of f [51]. Depending on the type of monotonicity of f , (some of) the functions f
id

, f id, f id or
f

id
constitute the boundaries of Q(f, id). Furthermore, if they belong to Q(f, id) they can also

be sifted out of that set on the basis of their continuity.

Finally, the characteristic properties of the classical inverse show up in the set Q(f, id):

Theorem For every g ∈ Q(f, id) the following assertions hold:

1. f ∈ Q(g, id).
2. g ◦ f = id if and only if f is injective.
3. f ◦ g = id if and only if f is surjective.

A.2 Orthosymmetry of monotone functions

Generalizing the classical notion of symmetry, we call a set A ⊆ [0, 1]2 Φ-symmetrical if it
coincides with its Φ-inverse, i.e. (Φ−1(y),Φ(x)) ∈ A ⇔ (x, y) ∈ A. Unfortunately, when dealing
with monotone [0, 1] → [0, 1] functions f only bijections can coincide with their Φ-inverse. To
overcome this problem we have generalized the classical concept of symmetry by invoking the
set Q(f,Φ). We call a monotone [0, 1] → [0, 1] function f Φ-orthosymmetrical if f ∈ Q(f,Φ).
Considering the geometrical construction of Q(f,Φ), it is clear that f is Φ-orthosymmetrical if
and only if its completion is Φ-symmetrical. There exist only two Φ-orthosymmetrical, constant
functions: 000 and 111.
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Theorem If f is non-constant and Φ-orthosymmetrical, then either f = Φ or f and Φ have
opposite types of monotonicity.

In contrast to Φ-symmetry, Φ-orthosymmetry admits the following limit property.

Theorem The limit of a pointwisely converging sequence of Φ-orthosymmetrical, monotone
[0, 1] → [0, 1] functions (fn)n∈N is always a Φ-orthosymmetrical, monotone [0, 1] → [0, 1] func-
tion.

The (ortho)symmetry of monotone [0, 1] → [0, 1] bijections has some characteristic properties
providing us with better insights into the structure of automorphisms and strict negators. As
Q(Ψ,Φ) = {ΨΦ}, Φ-symmetry and Φ-orthosymmetry coincide when dealing with monotone
[0, 1] → [0, 1] bijections. Explicitly, a monotone [0, 1] → [0, 1] bijection Ψ is Φ-symmetrical if
and only if Ψ = Φ ◦Ψ−1 ◦Φ, or equivalently Φ = Ψ ◦Φ−1 ◦Ψ, which expresses the Ψ-symmetry
of Φ. We say that Φ and Ψ form a symmetrical pair {Φ,Ψ}. Involutive negators (i.e. involutive
strict negators) are exactly those decreasing [0, 1] → [0, 1] bijections that form a symmetrical
pair with the identity function id.

Theorem A monotone [0, 1] → [0, 1] bijection Ψ is Φ-symmetrical if and only if Ψ = Φ or
there exists an involutive negator N such that Ψ = Φ ◦N .

Based on this theorem it has been possible to reveal the (ortho)symmetrical aspects of the
following historical, mathematical result.

Theorem 1. For every strict negator N there exist three involutive negators N1, N2 and
N3 such that N = N1 ◦N2 ◦N3.

2. For every automorphism φ there exist four involutive negators N1, N2, N3 and N4 such
that φ = N1 ◦N2 ◦N3 ◦N4.

The set of monotone [0, 1] → [0, 1] bijections can be partitioned into four subsets: monotone
bijections composed of one, two, three or four involutive negators. Every involutive negator triv-
ially generates itself. All other strict negators are always composed of exactly three involutive
negators. Automorphisms composed of two involutive negators must have some kind of alter-
nating behaviour w.r.t. some fixpoint. An automorphism that has no alternating behaviour is
always composed of four involutive negators. We have presented a simple method for construct-
ing an appropriate sequence of involutive negators generating a given monotone [0, 1] → [0, 1]
bijection Φ. This sequence is not uniquely determined.

A.3 Invariance of monotone functions

Φ-orthosymmetry plays a crucial role in the study of Φ-invariant, monotone [0, 1]n → [0, 1] func-
tions. Let Φ be some monotone [0, 1] → [0, 1] bijection. Then a monotone [0, 1]n → [0, 1] func-
tion F is said to be Φ-invariant if FΦ = F , with FΦ(x1, . . . , xn) := Φ−1(F (Φ(x1), . . . ,Φ(xn)))
(see e.g. [7]). In this context it suffices to study the invariance of increasing functions only. Given
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a bijection Φ, it remains an intriguing problem how to characterize all Φ-invariant, increasing
[0, 1]n → [0, 1] functions. A first subset of solutions consists of those functions that are invariant
under all monotone [0, 1] → [0, 1] bijections.

Theorem An increasing [0, 1]n → [0, 1] function F is invariant under all automorphisms if
and only if there exists an increasing [0, 1]n → [0, 1] function G such that FN = G holds for
every involutive negator N . In this case it also holds that FN = G, for every strict negator N .

Hence, an increasing [0, 1]n → [0, 1] function F is invariant under all monotone [0, 1] → [0, 1]
bijections if and only if it is invariant under all involutive negators.

We have also proposed a wide class of methods for characterizingN -invariant, increasing [0, 1]n →
[0, 1] functions, with N some fixed involutive negator. All of these methods invoke a [0, 1]2 →
[0, 1] function C that allows a characterization in the following sense:

A [0, 1]n → [0, 1] function F is increasing and N -invariant if and only if there exists an increasing
[0, 1]n → [0, 1] function G such that

F (x1, . . . , xn) = C
(
G(x1, . . . , xn), GN (x1, . . . , xn)

)
(A.1)

holds for every (x1, . . . , xn) ∈ [0, 1]n.

We then say that C enables a full characterization of all N -invariant, increasing [0, 1]n → [0, 1]
functions.

Theorem C enables a full characterization of all N -invariant, increasing [0, 1]n → [0, 1] func-
tions if and only if the following assertions hold:

1. C is increasing.
2. C(x, y) = C(yN , xN )N holds for every (x, y) ∈ [0, 1]2.
3. The graph of C contains an increasing (w.r.t. the three space coordinates) curve whose

Z-coordinate reaches every number of [0, 1].

The above class of characterizations (one for every choice of C) comprises two known methods
for characterizing self-dual aggregation operators [7, 33]. A similar approach for describing all
Φ-invariant, increasing [0, 1]n → [0, 1] functions, with Φ a non-involutive monotone [0, 1] → [0, 1]
bijection, cannot be expected. To conclude we have shown the following two properties.

Theorem F = CF holds for every N -invariant, increasing [0, 1]n → [0, 1] function F if and
only if C is idempotent.

Theorem If n > 1, then the arithmetic mean M is the only increasing [0, 1]2 → [0, 1] func-
tion C that enables a full characterization of all N -invariant, increasing [0, 1]n → [0, 1] functions
and for which (C,N ) preserves shift invariance.

Note that N denotes the standard negator (xN = 1 − x) and that (C, N) preserves shift-
invariance if the right-hand side of Eq. (A.1) is shift-invariant for every shift-invariant, increasing
[0, 1]n → [0, 1] function G.
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A.4 Traces of orthosymmetry

Each increasing [0, 1]2 → [0, 1] function F is totally determined by its horizontal cuts (i.e. the
intersections of its graph by planes parallel to the domain [0, 1]2). The contour lines of F
are those [0, 1] → [0, 1] functions determining the upper, lower, right or left limits of these
horizontal cuts. We associate with an increasing [0, 1]2 → [0, 1] function F four types of contour
lines (a ∈ [0, 1]):

Ca : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | F (x, t) 6 a} ,
Da : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | F (x, t) > a} ,
C̃a : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | F (t, x) 6 a} ,
D̃a : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | F (t, x) > a} .

All contour lines are decreasing. Depending on the continuity of F , different types of contour
lines form a Galois connection with F . Contour lines of the type Ca or C̃a are extremely suited
to describe left-continuous, increasing [0, 1]2 → [0, 1] functions. Contour lines of the type Da or
D̃a are used to describe right-continuous, increasing [0, 1]2 → [0, 1] functions.

For a given couple (Φ,Ψ) of monotone [0, 1] → [0, 1] bijections, we have characterized, in terms
of contour lines, those increasing [0, 1]2 → [0, 1] functions F that satisfy

F (x, y) = Ψ
(
F (Φ−1(y),Φ(x))

)
, (A.2)

for every (x, y) ∈ [0, 1]2. In case Φ = Ψ = id, the latter expresses the commutativity of F . For
Φ = Ψ = N , with N an involutive negator, we retrieve the second assertion from the second
theorem in Section A3. There are, however, some restrictions on the choice of Φ and Ψ. Both
bijections must have the same type of monotonicity and F (x, y) = Ψ(Ψ(F (x, y))) must always
be satisfied. We have strengthened the latter condition and required that Ψ is involutive. The
following cases are to be distinguished:

A. Φ is an automorphism φ and Ψ is the identity function id.

B. Φ is a strict negator M and Ψ is an involutive negator N , with fixpoint β.

Theorem The following characterizations hold:

1. If F is left continuous and F (0, 1) = F (1, 0) = 0, then the following assertions are equiv-
alent:

a) F satisfies Eq. (A.2), with Φ = φ and Ψ = id.
b) Ca ∈ Q(Ca, φ), for every a ∈ [0, 1].
c) C̃a ∈ Q(C̃a, φ

−1), for every a ∈ [0, 1].

2. If F is right continuous and F (0, 1) = F (1, 0) = 1, then the following assertions are
equivalent:
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a) F satisfies Eq. (A.2), with Φ = φ and Ψ = id.
b) Da ∈ Q(Da, φ), for every a ∈ [0, 1].
c) D̃a ∈ Q(D̃a, φ

−1), for every a ∈ [0, 1].

Hence, Eq. (A.2), with Φ = φ and Ψ = id, expresses the φ-orthosymmetry, resp., φ−1-
orthosymmetry, of the contour lines Ca and Da, resp., C̃a and D̃a. As shown in the following
theorem, whenever F satisfies Eq. (A.2), with Φ = M and Ψ = N , then CaN can be understood
as some ‘M -inverse function’ of Da and C̃aN as some kind of ‘M−1-inverse function’ of D̃a.

Theorem If F is continuous, then the following assertions are equivalent:

1. F satisfies Eq. (A.2), with Φ = M and Ψ = N .
2. CaN ∈ Q(Da,M), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.
3. DaN ∈ Q(Ca,M), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.
4. C̃aN ∈ Q(D̃a,M

−1), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.
5. D̃aN ∈ Q(C̃a,M

−1), for every a ∈ [0, β], and F (0, 1) = F (1, 0) = β.

A.5 A contour view on uninorms

Examining the contour lines Ca, Da, C̃a and D̃a of a uninorm U (i.e. an associative, commuta-
tive, increasing [0, 1]2 → [0, 1] function that has a neutral element) instead of the uninorm itself,
we have given the description of uninorms a new impetus. Let F be an increasing [0, 1]2 → [0, 1]
function.

Theorem If F is left continuous and F (0, 1) = F (1, 0) = 0, then the following characteriza-
tions hold:

1. F has neutral element e ∈ ]0, 1] if and only if e 6 Ca(x) ⇔ x 6 a and Ca(e) = a hold for
every (x, a) ∈ [0, 1]2.

2. F is commutative if and only if Ca(x) < y ⇔ Ca(y) < x holds for every (x, y, a) ∈ [0, 1]3.
3. F is associative if and only if Ca(F (x, y)) = CCa(x)(y) holds for every (x, y, a) ∈ [0, 1]3.

Also contour lines of the type C̃a can be used to characterize the neutral element, the com-
mutativity and the associativity of a left-continuous, increasing [0, 1]2 → [0, 1] function F . For
right-continuous functions F satisfying F (0, 1) = F (1, 0) = 1 contour lines of the types Da or
D̃a have to be used. The characterization of the commutativity in the above theorem is equiv-
alent with the id-orthosymmetry of the contour lines. If F is commutative, then C̃a = Ca and
D̃a = Da, for every a ∈ [0, 1].

A uninorm U that satisfies U(0, 1) = U(1, 0) = 0 is called conjunctive [28]. If U(0, 1) = U(1, 0) =
1, then U is called disjunctive.

Theorem For a left-continuous, conjunctive uninorm U it holds for every (x, y, z, a) ∈ [0, 1]4

that
U(x, y) 6 Ca(z) ⇔ U(x, z) 6 Ca(y) .
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We have also investigated how properties on contour lines affect the structure of U . Special
attention goes to the study of continuous contour lines.

Theorem For a left-continuous, conjunctive uninorm U the following assertions are equivalent:

1. Ca is continuous.
2. Ca is involutive on [Ca(1), 1].
3. U(x, y) = Ca(CCa(x)(y)), for every (x, y) ∈ [0, 1]2 such that Ca(U(x, 1)) < y.
4. Cb(x) = CCa(x)(Ca(b)), for every (x, b) ∈ [0, 1] × [Ca(1), 1].
5. U(x, y) 6 z ⇔ U(x,Ca(z)) 6 Ca(y), for every (x, y, z) ∈ [Ca(1), 1]3.

Similar results hold for right-continuous uninorms. In that case one has to use contour lines of
the type Da.

A.6 Left-continuous t-norms

For a left-continuous t-norm T (i.e. a left-continuous uninorm with neutral element 1), each
contour line Ca equals the partial function IT (•, a) of the residual implicator IT (see e.g. [27]).
In particular, the contour line C0 coincides with the residual negator NT = IT (•, 0). In this case
(a = 0) the fifth assertion in the last theorem of the Section A5 expresses the rotation invariance
of T w.r.t. the contour line C0. The rotation invariance of a t-norm has been defined originally
w.r.t. an arbitrary involutive negator N [25, 40]. Furthermore, if a t-norm T is rotation invariant
w.r.t. an involutive negator N , then T is necessarily left continuous and C0 = NT = N [40]. In
view of the last theorem in Section A5, we briefly talk about a rotation-invariant t-norm if it
is left continuous and has a continuous contour line C0.

Unfortunately, contour lines are inadequate to give insight into the geometrical structure of
rotation-invariant t-norms. Also the companion and zooms are indispensable for the decompo-
sition and construction of rotation-invariant t-norms.

The companion

The companion Q of an increasing [0, 1]2 → [0, 1] function F is the [0, 1]2 → [0, 1] function
defined by

Q(x, y) = sup{t ∈ [0, 1] | Ct(x) 6 y} .
We have shown thatQ(x, y) = inf{F (x, u) | u ∈ ]y, 1]}. This property allows to straightforwardly
construct the graph of Q from the graph of F . Clearly, Q(x, y) = F (x, y) whenever F (x, •) is
right continuous in y ∈ [0, 1[. Every left-continuous, increasing [0, 1]2 → [0, 1] function F that
has absorbing element 0 is totally determined by its companion Q.

Zooms

An increasing [0, 1]2 → [0, 1] function F can also be described by its associated set of zooms.
Take (a, b) ∈ [0, 1]2 such that a < b and F (b, b) 6 b. Consider an [a, b] → [0, 1] isomorphism σ.
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The (a, b)-zoom F (a,b) of F is the [0, 1]2 → [0, 1] function defined by

F (a,b)(x, y) = σ
[
max

(
a, F (σ−1[x], σ−1[y])

)]
.

If b = 1 we briefly talk about the a-zoom F a of F . In this case the boundary condition F (1, 1) 6 1
is always true and, hence, the a-zoom of F is defined for every a < 1. The graph of F (a,b) is in
some sense obtained by rescaling the set {(x, y, F (x, y)) | (x, y) ∈ [a, b]2 ∧ a < F (x, y)} (zoom
in) into the unit cube (zoom out).

Zooms are extremely suited to study increasing functions F satisfying F (x, y) 6 min(x, y), for
every (x, y) ∈ [0, 1]2. The restriction F (b, b) 6 b then trivially holds. By definition, a t-subnorm
is a [0, 1]2 → [0, 1] function F satisfying all uninorm properties but the neutral element. Instead
F (x, y) 6 min(x, y) must hold for every (x, y) ∈ [0, 1]2 [47].

Theorem Consider (a, b) ∈ [0, 1]2 such that a < b. Then the (a, b)-zoom of a t-subnorm is a
t-subnorm and the a-zoom of a t-norm is a t-norm.

Equipped with contour lines, the companion and zooms, we have been able to concisely re-
formulate the rotation and rotation-annihilation construction of Jenei [47]. Furthermore, we
have illustrated how his decomposition methods [45] can be straightforwardly retrieved from
our results.

A.7 Decomposing rotation-invariant t-norms

Despite all efforts, the class of rotation-invariant t-norms is not yet fully understood. The
decomposition method presented by Jenei [45] only applies to very specific rotation-invariant
t-norms. The  Lukasiewicz t-norm, for example, falls outside this setting. We have introduced
a more natural procedure for decomposing T . Based on a new partition of the domain of the
t-norm T , we express T in terms of its contour line C0 and β-zoom T β , with β the unique
fixpoint of C0.

Let T be a rotation-invariant t-norm and β be the unique fixpoint of C0. We partition the area
D = {(x, y) ∈ [0, 1]2 | C0(x) < y} into four parts:

DI = {(x, y) ∈ ]β, 1]2 | Cβ(x) < y} ,
DII = {(x, y) ∈ ]0, β] × ]β, 1] | C0(x) < y} ,
DIII = {(x, y) ∈ ]β, 1] × ]0, β] | C0(x) < y} ,
DIV = {(x, y) ∈ ]β, 1[2 | y 6 Cβ(x)} .

Theorem Let σ be an arbitrary [β, 1] → [0, 1] isomorphism. If the contour line Cβ of T is

continuous on ]β, 1], then there exists a left-continuous t-norm T̂ (with contour lines Ĉa and
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companion Q̂) such that Ĉ0 is continuous on ]0, 1] and

T (x, y) =





σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(σ[y])

)])
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D .

In particular, T̂ = T β and Q̂ must be commutative on [0, α̂[2, with α̂ = inf{t ∈ [0, 1] | Ĉ0(t) = 0}.

The isomorphism σ must also be used to compute the β-zoom T β of T . The decomposition on
[0, 1] \ DIV is valid for every rotation-invariant t-norm T . The filling-in of area DIV is, however,
not always uniquely determined.

Geometrically, T |DI
is a rescaled version of T β |Dβ , with Dβ = {(x, y) ∈ [0, 1]2 | 0 < T β(x, y)}.

T |DII
is determined by rotating T |DI

120 degrees to the left around the axis {(x, y, z) ∈ [0, 1]2 |
y = x ∧ z = 1 − x}. Similarly, rotating T |DI

120 degrees to the right around this axis
determines T |DIII

. In the above theorem the filling-in of area DIV is obtained by rotating
T |DI∩ ]β,σ−1(α̂)]2 180 degrees to the front around the axis {(x, y, z) ∈ [0, 1]3 | x + y = β +
σ−1[α̂] ∧ z = β}. In case Cβ is continuous it holds that α̂ = 1. Note that the rotations
sometimes have to be reshaped to fit into the areas DII, DIII and DIV, respectively. The contour
lines C0 and Ĉ0 cause this reshaping.

A.8 The triple rotation method

Next, we have transformed our decomposition method into a straightforward construction tool
for rotation-invariant t-norms. The presented results largely comprise the rotation and rotation-
annihilation construction of Jenei [47]. We assume the following setting:

• T : an arbitrary left-continuous t-norm (with contour lines Ca and companion Q) such that
C0 is continuous on ]0, 1] and Q is commutative on [0, α[2, with α = inf{t ∈ [0, 1] | C0(t) =
0};

• N : an arbitrary involutive negator with fixpoint β;
• σ: an arbitrary [β, 1] → [0, 1] isomorphism;
• M : the decreasing [0, 1] → [0, 1] function defined by xM = 1 whenever x ∈ [0, β[ and by
xM = σ−1[C0(σ[x])] whenever x ∈ [β, 1];
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• D: the area {(x, y) ∈ [0, 1]2 | xN < y} = DI ∪ DII ∪ DIII ∪ DIV, with

DI = {(x, y) ∈ ]β, 1]2 | xM < y} ,
DII = {(x, y) ∈ ]0, β] × ]β, 1] | xN < y} ,
DIII = {(x, y) ∈ ]β, 1] × ]0, β] | xN < y} ,
DIV = {(x, y) ∈ ]β, 1[2 | y 6 xM} .

Theorem The [0, 1]2 → [0, 1] function R3(T,N) defined by

R3(T,N)(x, y) =





σ−1 [T (σ[x], σ[y])] , if (x, y) ∈ DI ,
(
σ−1

[
Cσ[xN ](σ[y])

])N
, if (x, y) ∈ DII ,

(
σ−1

[
Cσ[yN ](σ[x])

])N
, if (x, y) ∈ DIII ,

(
σ−1

[
Q
(
C0(σ[x]), C0(σ[y])

)])N
, if (x, y) ∈ DIV ,

0, if (x, y) 6∈ D ,

is a rotation-invariant t-norm. Furthermore, R3(T,N) is the only left-continuous t-norm that
has N as a contour line (a = 0) and that has β-zoom R3(T,N)β = T .

As for our decomposition, R3(T,N)|DII
, R3(T,N)|DIII

and R3(T,N)|DIV
are determined by the

(transformed) left, right and front rotation of R3(T,N)|DI
. Moreover, R3(T,N)|DI

is a rescaled
version of ‘the non-zero part’ of T . Inspired by these geometrical observations, we have briefly
called R3(T,N) the triple rotation of T based on N . The construction method itself is referred
to as the triple rotation method. For the triple rotation method to yield a t-norm it is absolutely
necessary that the companion Q of T is commutative on [0, α[2.

A.9 Facts and figures on fuzzified normal forms

In Section A10 we invoke our knowledge on the structure of rotation-invariant t-norms to solve a
system of functional equations. The present section sets out the framework in which the system
of functional equations surfaces.

In the Boolean algebra ({0, 1},∨,∧,′ , 0, 1) every {0, 1}n → {0, 1} function F can be represented
by its disjunctive (DB(F )) and conjunctive (CB(F )) normal form. In fuzzy logic, it is gener-
ally accepted to work with t-norms and t-conorms (t-conorms are uninorms that have neutral
element 0). Fuzzifying the Boolean normal forms of F by interpreting ∧ as a t-norm T , ∨ as a
t-conorm S and ′ as an involutive negator N yields two [0, 1]n → [0, 1] functions: the disjunctive
(DF (F )) and conjunctive (CF (F )) fuzzified normal form of F [88, 89]. These fuzzified normal
forms can rarely be considered as true normal forms in an extended logic or algebra. However,
they are sometimes used as a kind of standard fuzzification procedure for crisp concepts.
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The main point of study so far has been the relationship between DF (F ) and CF (F ). On
the one hand, Bilgiç [5] has shown that DF (F ) can never equal CF (F ) for every {0, 1}2 →
{0, 1} function F . On the other hand, Türkşen [88, 89] has discovered that some particular
triplets (T, S,N) ensure that

DF (F )(x, y) 6 CF (F )(x, y) ,

for every {0, 1}2 → {0, 1} function F and every (x, y) ∈ [0, 1]2. The shorthand DF 62 CF is
used to express the latter. In general, DF 6n CF expresses that DF (F )(~x) 6 CF (F )(~x) holds
for every {0, 1}n → {0, 1} function F and every ~x ∈ [0, 1]n.

Theorem Consider an automorphism φ. DF 6n CF , with n ∈ N0, holds for some triplet
(T, S,N) if and only if it holds for the triplet (Tφ, Sφ, Nφ).

Theorem If DF 6n CF holds for some n ∈ N0, then DF 6m CF is satisfied for every m ∈ N0

such that m 6 n.

We use the notation DF 6 CF to denote that DF 6n CF holds for every n ∈ N0. In the following
proposition we investigateDF 6 CF for triplets based on one of the three prototypical continuous
t-norms: the minimum operator TM(x, y) = min(x, y), the algebraic product TP(x, y) = x y and
the  Lukasiewicz t-norm TL(x, y) = max(x+ y − 1, 0). Dually, the three prototypical continuous
t-conorms are the maximum operator SM(x, y) = max(x, y), the probabilistic sum SP(x, y) =
x+ y − x y and the  Lukasiewicz t-conorm SL(x, y) = min(x+ y, 1).

Propositie Consider an automorphism φ. DF 6 CF holds for all triplets (TM, SM,Nφ),
((TP)φ, (SP)φ,Nφ) and ((TL)φ, (SL)φ,Nφ).

The inequality DF 6 CF does not hold in general. We have illustrated that even the transformed
triplets (TP, (SP)N◦Nφ ,Nφ) and (TL, (SL)N◦Nφ ,Nφ) do not necessarily yield DF 62 CF .

A.10 Rotation-invariant t-norms solving a system of functional
equations

Investigating the inequalitiesDF 6n CF we noticed that the difference between CF (F ) enDF (F )
is independent of the {0, 1}n → {0, 1} function F in case we work with the triplet (TL, SL,N ).
There exist 2(2n) different expressions CF (F ) −DF (F ) (one for every Boolean function F ). To
find those triplets (T, S,N) for which CF (F )−DF (F ) is independent of F , we need to solve the
system of functional equations, obtained by putting on a par all expressions for CF (F )−DF (F ).

Theorem Consider a triplet (T, S,N) with involutive negator N that has fixpoint β. Let n ∈ N,
n > 1. Then CF (F ) −DF (F ) is independent of the {0, 1}n → {0, 1} function F if and only if
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for all ~x ∈ [0, β]n, x1 6 x2 6 ... 6 xn, the following expressions are equal to each other

S(x1, . . . , xn−1, xn) − T (xN1 , . . . , x
N
n−1, xn) ,

S(x1, . . . , xn−1, x
N
n ) − T (xN1 , . . . , x

N
n−1, x

N
n ) ,

T
(
S(x1, . . . , xn−1, xn), S(x1, . . . , xn−1, x

N
n )
)
,

1 − S
(
T (xN1 , . . . , x

N
n−1, x

N
n ), T (xN1 , . . . , x

N
n−1, xn)

)
.

In case we work with a De Morgan triplet (T, S,N) (i.e. S = TN ) and N = N , it suffices to
solve a single functional equation.

Theorem Consider a De Morgan triplet (T, S,N ). Let n ∈ N, n > 1. Then CF (F ) −DF (F )
is independent of the {0, 1}n → {0, 1} function F if and only if

S
(
T (xN , yN ), T (xN , y)

)
= T (xN , y) + T (xN , yN )

holds for every (x, y) ∈ [0, 1
2 ]2, x 6 y.

To solve the original system of functional equations we need to impose some additional continuity
conditions on T , S and N . In particular we consider De Morgan triplets (T, S,N) based on a
left-continuous t-norm T and an involutive negator N . Furthermore, we assume that the partial
functions T (•, β) of T are continuous on ]β, 1]. In case C0 = N , these t-norms are exactly the
t-norms constructed by means of the triple rotation method.

Theorem Consider a De Morgan triplet (T, S,N), with T a left-continuous t-norm and N an
involutive negator with fixpoint β. Let n ∈ N, n > 1. If T (•, β) is continuous on [β, 1], then
CF (F ) − DF (F ) is independent of the {0, 1}n → {0, 1} function F if and only if (T, S,N) =
(TL, SL,N ).

If 0 < Q(β, β) (i.e. T (•, β) is discontinuous in β), we have shown that necessarily Q(β, β) = β.
Unfortunately, without any further restrictions, a similar straightforward solution as in the
previous theorem cannot be expected.

Theorem Consider a De Morgan triplet (T, S,N), with T a left-continuous t-norm and N an
involutive negator with fixpoint β. Let n ∈ N, n > 1. If 0 < Q(β, β) and the partial functions
T (•, x) are continuous on ]xN , 1], whenever x ∈ ]0, β], and on [x, 1], whenever x ∈ ]β, 1[, then
CF (F ) − DF (F ) is independent of the {0, 1}n → {0, 1} function F if and only if (T, S,N) =
(Tλ, Sλ,N ), for some λ ∈ [0, 1

2 [.

For λ ∈ ]0, 1
2 [, Tλ is the triple rotation R3((〈1−2λ, 1, TL〉),N ) of the ordinal sum (〈1−2λ, 1, TL〉)

based on the standard negator N . The ordinal sum (〈1 − 2λ, 1, TL〉) is on [1 − 2λ, 1]2 defined
as the linear rescaling of TL. Elsewhere, (〈1 − 2λ, 1, TL〉) equals the minimum operator. Note
that there exist, however, also other triplets solving the system of functional equations.



APPENDIX B

Samenvatting

De vaaglogica en de theorie van de vaagverzamelingen maken veelvuldig gebruik van monotone
functies. Stijgende [0, 1]2 → [0, 1] functies zoals driehoeksnormen en driehoeksconormen ver-
vagen de Boolese conjunctie en disjunctie (cf. [19, 36, 51, 71]). Dalende [0, 1] → [0, 1] functies
worden daarentegen gebruikt om de Boolese negatie te veralgemenen (cf. [19, 51, 71]). De studie
van monotone [0, 1]2 → [0, 1] functies en hun eigenschappen geniet veruit de meeste aandacht.
Monotone [0, 1] → [0, 1] functies zijn op zich meer elementair. We hebben ze in dit proefschrift
gebruikt om monotone [0, 1]2 → [0, 1] functies te beschrijven. De verkregen resultaten dra-
gen in grote mate bij tot diepere inzichten in de structuur van linkscontinue driehoeksnormen.
Dergelijke inzichten zijn onontbeerlijk voor driehoeksnorm-gerelateerd onderzoek.

B.1 Inverse monotone functies

Het is meestal niet mogelijk om d.m.v. spiegelingen een curve te inverteren m.b.t. een gegeven
monotone [0, 1] → [0, 1] bijectie Φ. We definiëren daarom als volgt de Φ-inverse van een verza-
meling A ⊆ [0, 1]2: AΦ := {(x, y) ∈ [0, 1]2 | (Φ−1(y),Φ(x)) ∈ A}. De verzameling AΦ bestaat uit
die punten die het vierde hoekpunt uitmaken van een rechthoek met zijden parallel met de assen,
met twee hoekpunten gelegen op de grafiek van Φ en met een hoekpunt behorende tot A. In het
bijzonder geldt er dat (AΦ)Φ = A en Aid = A−1, waarbij id de identieke afbeelding voorstelt.

De Φ-inverse van een monotone functie f is niet noodzakelijk een functie. We kunnen echter
met elke monotone functie f een verzameling Q(f,Φ) associëren van ‘Φ-inverse’ functies. Deze
verzameling bevat alle monotone [0, 1] → [0, 1] functies wiens vervollediging de Φ-inverse is
van een vervollediging van f . Met de vervollediging van een monotone functie f bedoelen we
een continue stijgende of dalende uitbreiding van f die elk punt van het eenheidsinterval [0, 1]
bereikt. Het volstaat om aan de grafiek van f vertikale segmenten toe te voegen. Voor con-
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stante functies f gebruiken we voor de constructie van Q(f,Φ) zowel de stijgende als de dalende
vervollediging van f . Voor een monotone [0, 1] → [0, 1] bijectie Ψ geldt er in het bijzonder dat
Q(Ψ,Φ) = {ΨΦ}. Het werk van Schweizer and Sklar [85] ligt aan de basis van onze constructie.

Stelling Q(f,Φ) is isomorf met Q(f, id) indien Φ stijgend is en Q(f,Φ) is antimorf met
Q(f, id) indien Φ dalend is. In het bijzonder bestaat er voor elke g ∈ Q(f,Φ) een unieke
h ∈ Q(f, id) zodat g = Φ ◦ h ◦ Φ.

Een stijgende [0, 1] → [0, 1] bijectie wordt een automorfisme genoemd. Een strikte negator is een
dalende [0, 1] → [0, 1] bijectie. Dankzij de bovenstaande stelling kunnen we de eigenschappen
van Q(f, id) rechtstreeks vertalen naar eigenschappen van Q(f,Φ). We gebruiken de volgende
functies om de elementen van Q(f, id) wiskundig te beschrijven:

f
id

(x) = sup{t ∈ [0, 1] | f(t) < x} f id(x) = sup{t ∈ [0, 1] | f(t) > x}
f id(x) = inf{t ∈ [0, 1] | f(t) > x} f

id
(x) = inf{t ∈ [0, 1] | f(t) < x} .

Zowel f
id

als f id zijn stijgend. Daarentegen zijn f id en f
id

steeds dalend. De functies f
id

en

f id zijn beter bekend als de pseudo-inverse f (−1) van f als f(0) < f(1), resp., f(1) < f(0) [51].

Het type monotoniteit van f bepaalt welke functies f
id

, f id, f id of f
id

de grenzen van Q(f, id)
uitmaken. Omgekeerd kunnen deze functies, indien ze tot Q(f, id) behoren, ook op basis van
continüıteitseigenschappen uit Q(f, id) gefilterd worden.

Tot slot zijn ook de eigenschappen van de klassieke inverse van toepassing op Q(f, id).

Stelling Elke g ∈ Q(f, id) voldoet aan de volgende beweringen:

1. f ∈ Q(g, id).
2. g ◦ f = id als en slechts als f injectief is.
3. f ◦ g = id als en slechts als f surjectief is.

B.2 Orthosymmetrie van monotone functies

De beschouwingen uit de voorgaande sectie maken het mogelijk om ook klassieke symmetrie te
veralgemenen. We noemen een verzameling A ⊆ [0, 1]2 Φ-symmetrisch als ze samenvalt met
haar Φ-inverse, i.e. (Φ−1(y),Φ(x)) ∈ A ⇔ (x, y) ∈ A. Merk op dat bijecties de enige monotone
[0, 1] → [0, 1] functies zijn die Φ-symmetrisch kunnen zijn. Een monotone [0, 1] → [0, 1] functie f
wordt Φ-orthosymmetrisch genoemd als f ∈ Q(f,Φ). Het is duidelijk dat f orthosymmetrisch is
als en slechts als haar vervollediging Φ-symmetrisch is. 000 en 111 zijn de enige Φ-orthosymmetrische,
constante [0, 1] → [0, 1] functies.

Stelling Onderstel f niet constant en Φ-orthosymmetrisch, dan is f = Φ of de monotoniteit
van f is tegengesteld aan de monotoniteit van Φ.

De volgende limietstelling geldt enkel voor Φ-orthosymmetrie en niet voor Φ-symmetrie.
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Stelling Elke puntsgewijs convergerende rij van Φ-orthosymmetrische, monotone [0, 1] → [0, 1]
functies (fn)n∈N convergeert steeds naar een Φ-orthosymmetrische, monotone [0, 1] → [0, 1] func-
tie.

Door (ortho)symmetrische, monotone [0, 1] → [0, 1] bijecties te bestuderen, hebben we ook
talrijke inzichten verworven betreffende de meetkundige structuur van automorfismen en strikte
negatoren. Vermits Q(Ψ,Φ) = {ΨΦ}, volstaat het de Φ-symmetrie van monotone [0, 1] → [0, 1]
bijecties te bestuderen. Een dergelijke bijectie Ψ is Φ-symmetrisch als en slechts als Ψ =
Φ ◦ Ψ−1 ◦ Φ. Deze gelijkheid is equivalent met Φ = Ψ ◦ Φ−1 ◦ Ψ en drukt dus ook de Ψ-
symmetrie van Φ uit. We zeggen dat Φ en Ψ een symmetrisch paar {Φ,Ψ} vormen. Involutieve
negatoren (i.e. involutieve strikte negatoren) vormen samen met de identieke afbeelding id een
symmetrisch paar.

Stelling Een monotone [0, 1] → [0, 1] bijectie Ψ is Φ-symmetrisch als en slechts als Ψ = Φ of
Ψ = Φ ◦N , met N een involutieve negator.

Dankzij deze stelling is het mogelijk gebleken de (ortho)symmetrische aspecten van de volgende
historische, wiskundige stelling te belichten.

Stelling 1. Een strikte negator N kan steeds geschreven worden als de samenstelling van
drie involutieve negatoren.

2. Een automorfisme φ kan steeds geschreven worden als de samenstelling van vier involutieve
negatoren.

We kunnen de verzameling van alle monotone [0, 1] → [0, 1] bijecties dus partitioneren in vier
deelverzamelingen: monotone bijecties die een samenstelling van één, twee, drie of vier involu-
tieve negatoren. Elke involutieve negator genereert op triviale wijze zichzelf. Alle andere strikte
negatoren zijn steeds samengesteld uit drie involutieve negatoren. Ook de automorfismen kun-
nen in twee groepen ingedeeld worden. Enerzijds zijn er de automorfismen die zich alternerend
gedragen t.o.v. een fixpunt. Deze automorfismen worden gegenereerd door twee involutieve nega-
toren. Alle andere automorfismen zijn steeds samengesteld uit vier involutieve negatoren. We
hebben rechttoe, rechtaan methodes uitgewerkt om een rij involutieve negatoren te construeren
die een gegeven monotone [0, 1] → [0, 1] bijectie Φ genereert.

B.3 Invariante monotone functies

Φ-orthosymmetrie is van cruciaal belang voor de studie van Φ-invariante, monotone [0, 1]n →
[0, 1] functies. Zij Φ een monotone [0, 1] → [0, 1] bijectie. Dan noemen we een monotone [0, 1]n →
[0, 1] functie F Φ-invariant als FΦ = F , waarbij FΦ(x1, . . . , xn) := Φ−1(F (Φ(x1), . . . ,Φ(xn))) [7].
In deze context volstaat het om enkel stijgende functies te bestuderen. Ons doel bestond erin om,
voor een gegeven bijectie Φ, alle Φ-invariante, stijgende [0, 1]n → [0, 1] functies te karakteriseren.
Functies die invariant zijn onder alle monotone bijecties vormen een eerste belangrijke klasse
van oplossingen.
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Stelling Een stijgende [0, 1]n → [0, 1] functie F is invariant onder alle automorfismen als en
slechts als er een stijgende [0, 1]n → [0, 1] functie G bestaat zodat FN = G, voor alle involutieve
negatoren N . In het bijzonder is FN = G ook voldaan voor elke strikte negator N .

Bijgevolg is een stijgende [0, 1]n → [0, 1] functie F invariant onder alle monotone [0, 1] → [0, 1]
bijecties als en slechts als ze invariant is onder alle involutieve negatoren.

We hebben een uitgebreide klasse methodes gëıntroduceerd die alle N -invariante, stijgende
[0, 1]n → [0, 1] functies karakteriseren. Hierbij is N een vooraf vastgelegde involutieve nega-
tor. Al onze methodes maken gebruik van een [0, 1]2 → [0, 1] functie C. De karakterisatie
verloopt telkens als volgt:

Een [0, 1]n → [0, 1] functie F is stijgend en N -invariant als en slechts als er een stijgende
[0, 1]n → [0, 1] functie G bestaat waarvoor

F (x1, . . . , xn) = C
(
G(x1, . . . , xn), GN (x1, . . . , xn)

)
, (B.1)

voor alle (x1, . . . , xn) ∈ [0, 1]n.

We zeggen kortweg dat C een volledige karakterisatie van alle N -invariante, stijgende [0, 1]n →
[0, 1] functies mogelijk maakt.

Stelling C maakt de karakteristie van alle N -invariante, stijgende [0, 1]n → [0, 1] functies
mogelijk als en slechts als

1. C stijgend is.
2. C(x, y) = C(yN , xN )N , voor alle (x, y) ∈ [0, 1]2.
3. De grafiek van C bevat een een stijgende (m.b.t. de drie ruimtecoördinaten) kromme waar-

van de Z-coördinaat elk getal in het interval [0, 1] bereikt.

De bovenstaande stelling omvat onder meer twee gekende technieken om zelfduale aggregatie-
operatoren te bestuderen [7, 33]. De involutiviteit van N is de sleutel voor onze aanpak. Er
bestaan geen gelijkaardige karakterisaties voor Φ-invariante, stijgende [0, 1]n → [0, 1] functies,
waarbij Φ een niet-involutieve bijectie is. Tot slot hebben we nog kort de volgende twee eigen-
schappen besproken.

Stelling F = CF geldt voor elke N -invariante, stijgende [0, 1]n → [0, 1] functie F als en slechts
als C idempotent is.

Stelling Zij n > 1, dan is is het rekenkundig gemiddelde M de enige stijgende [0, 1]2 → [0, 1]
functie C die een karakterisatie van alle N -invariante, stijgende [0, 1]n → [0, 1] functies mogelijk
maakt en waarvoor (C,N ) verschuivingsinvariantie bewaart.

In de bovenstaande stelling duidt N de standaard negator aan (xN = 1−x). Bovendien bewaart
(C, N) verschuivingsinvariantie als de rechterzijde van Vgl. (B.1) verschuivingsinvariant is voor
elke verschuivingsinvariante, stijgende [0, 1]n → [0, 1] functie G.
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B.4 Sporen van orthosymmetry

Elke stijgende [0, 1]2 → [0, 1] functie F wordt volledig bepaald door haar horizontale snedes (i.e.
de doorsnijdingen van haar grafiek met vlakken die evenwijdig zijn met het domein [0, 1]2). De
contourlijnen van F bepalen de boven-, onder-, rechter- en linkergrenzen van haar horizontale
snedes. Ze worden wiskundig als volgt gedefineerd (a ∈ [0, 1]):

Ca : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | F (x, t) 6 a} ,
Da : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | F (x, t) > a} ,
C̃a : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | F (t, x) 6 a} ,
D̃a : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | F (t, x) > a} .

Contourlijnen zijn steeds dalend. Afhankelijk van de continüıteit van F vormen welbepaalde
types contourlijnen samen met F een Galois connectie. Linkscontinue, stijgende functies worden
het best beschreven a.d.h.v. contourlijnen van het type Ca of C̃a. Contourlijnen van het type
Da of D̃a zijn dan weer beter geschikt om rechtscontinue, stijgende functies te beschrijven.

We hebben contourlijnen gebruikt om, voor een gegeven stel monotone [0, 1] → [0, 1] bijecties
(Φ,Ψ), alle stijgende [0, 1]2 → [0, 1] functies F te bepalen die voor alle (x, y) ∈ [0, 1]2 voldoen
aan

F (x, y) = Ψ
(
F (Φ−1(y),Φ(x))

)
. (B.2)

Het is duidelijk dat deze vergelijking het begrip commutativiteit (Φ = Ψ = id) veralgemeent.
Daarenboven herleidt ze zich voor Φ = Ψ = N , met N een involutieve negator, tot de tweede
voorwaarde in de tweede stelling uit Sectie B3. Merk op dat Vgl. (B.2) de keuze van Φ en Ψ
beperkt. Beide bijecties moeten immers hetzelfde type monotoniteit bezitten en er moet steeds
gelden dat F (x, y) = Ψ(Ψ(F (x, y))). Involutieve bijecties Ψ voldoen steeds aan deze laatste
restrictie. We onderscheiden twee gevallen:

A. Φ is een automorfisme φ en Ψ is gelijk aan de identieke afbeelding id.

B. Φ is een strikte negator M en Ψ is een involutieve negator N met fixpunt β.

Stelling De volgende karakteristies gelden:

1. Zij F linkscontinu en F (0, 1) = F (1, 0) = 0, dan zijn de onderstaande beweringen equiva-
lent.

a) F voldoet aan Vgl. (B.2), met Φ = φ en Ψ = id.
b) Ca ∈ Q(Ca, φ), voor alle a ∈ [0, 1].
c) C̃a ∈ Q(C̃a, φ

−1), voor alle a ∈ [0, 1].

2. Zij F rechtscontinu en F (0, 1) = F (1, 0) = 1, dan zijn de onderstaande beweringen equiv-
alent.

a) F voldoet aan Vgl. (B.2), met Φ = φ en Ψ = id .
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b) Da ∈ Q(Da, φ), voor alle a ∈ [0, 1].
c) D̃a ∈ Q(D̃a, φ

−1), voor alle a ∈ [0, 1].

Bijgevolg drukt Vgl. (B.2) voor Φ = φ en Ψ = id de φ-orthosymmetrie, resp., de φ−1-orthosym-
metrie, uit van de contourlijnen Ca en Da, resp., C̃a en D̃a. Indien Φ = M en Ψ = N en F
voldoet aan Vgl. (B.2) dan kan men CaN opvatten als een ‘M -inverse functie’ van Da en C̃aN
als een ‘M−1-inverse functie’ van D̃a.

Stelling Zij F continu, dan zijn de onderstaande beweringen equivalent.

1. F voldoet aan Vgl. (B.2), met Φ = M en Ψ = N .
2. CaN ∈ Q(Da,M), voor alle a ∈ [0, β], en F (0, 1) = F (1, 0) = β.
3. DaN ∈ Q(Ca,M), voor alle a ∈ [0, β], en F (0, 1) = F (1, 0) = β.
4. C̃aN ∈ Q(D̃a,M

−1), voor alle a ∈ [0, β], en F (0, 1) = F (1, 0) = β.
5. D̃aN ∈ Q(C̃a,M

−1), voor alle a ∈ [0, β], en F (0, 1) = F (1, 0) = β.

B.5 Een contourkijk op uninormen

Contourlijnen kunnen ook gebruikt worden om op een alternatieve manier de karakteristieke
eigenschappen van uninormen (i.e. associatieve, commutatieve, stijgende [0, 1]2 → [0, 1] functies
die een neutraal element bezitten) te bestuderen. Als vertrekpunt beschouwen we opnieuw een
stijgende [0, 1]2 → [0, 1] functie F .

Stelling Zij F linkscontinu en F (0, 1) = F (1, 0) = 0, dan zijn de onderstaande beweringen
equivalent.

1. F heeft een neutraal element e ∈ ]0, 1] als en slechts als e 6 Ca(x) ⇔ x 6 a en Ca(e) = a,
voor alle (x, a) ∈ [0, 1]2.

2. F is commutatief als en slechts als Ca(x) < y ⇔ Ca(y) < x, voor alle (x, y, a) ∈ [0, 1]3.
3. F is associatief als en slechts als Ca(F (x, y)) = CCa(x)(y), voor alle (x, y, a) ∈ [0, 1]3.

Ook contourlijnen van het type C̃a kunnen gebruikt worden om het neutraal element, de commu-
tativiteit en de associativiteit van een linkscontinue functie F te karakteriseren. Rechtscontinue
functies F die voldoen aan F (0, 1) = F (1, 0) = 1 kunnen beschreven worden a.d.h.v. contourlij-
nen van het type Da of D̃a. De karakterisatie van de commutativiteit in de bovenstaande stelling
is tevens equivalent met de id-orthosymmetry van de contourlijnen. Als F commutatief is, dan
geldt er noodzakelijk dat Ca = C̃a en Da = D̃a, voor alle a ∈ [0, 1].

Een uninorm U wordt conjunctief genoemd als U(0, 1) = U(1, 0) = 0 [28]. U is disjunctief
indien U(0, 1) = U(1, 0) = 1.

Stelling Elke linkscontinue, conjunctieve uninorm U voldoet aan U(x, y) 6 Ca(z) ⇔ U(x, z) 6

Ca(y), voor alle (x, y, z, a) ∈ [0, 1]4.
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Tot slot hebben we onderzocht in welke mate eigenschappen van contourlijnen de algemene
structuur van een uninorm bëınvloeden. Hierbij hebben we in het bijzonder aandacht besteed
aan de structurele gevolgen van continue contourlijnen.

Stelling De onderstaande beweringen zijn equivalent voor elke linkscontinue, conjunctieve uni-
norm U .

1. Ca is continu.
2. Ca is involutief over [Ca(1), 1].
3. U(x, y) = Ca(CCa(x)(y)), voor alle (x, y) ∈ [0, 1]2 waarvoor Ca(U(x, 1)) < y.
4. Cb(x) = CCa(x)(Ca(b)), voor alle (x, b) ∈ [0, 1] × [Ca(1), 1].
5. U(x, y) 6 z ⇔ U(x,Ca(z)) 6 Ca(y), voor alle (x, y, z) ∈ [Ca(1), 1]3.

Er gelden gelijkaardige resultaten voor rechtscontinue, disjunctieve uninormen. Hierbij dienen
contourlijnen van het type Da gebruikt te worden.

B.6 Linkscontinue driehoeksnormen

De contourlijnen Ca van een linkscontinue driehoeksnorm T (i.e. een linkscontinue uninorm
met neutraal element 1) vallen samen met de partiële afbeeldingen IT (•, a) van de residuele
implicator IT (cf. [27]). Bijgevolg is de contourlijn C0 niets anders dan de residuele negator
NT = IT (•, 0). In dit laatste geval (a = 0) drukt de vijfde bewering uit de laatste stelling van
Sectie (B5) de rotatie-invariantie van T t.o.v. zijn contourlijn C0 uit. Oorspronkelijk werd de
rotatie-invariantie van een driehoeksnorm echter gedefinieerd t.o.v. een willekeurige involutieve
negator N [25, 40]. Een dergelijke driehoeksnorm T is noodzakelijkerwijze linkscontinu en
C0 = NT = N [40]. Rekening houdend met de laatste stelling uit Sectie B5, noemen we
een driehoeksnorm kortweg rotatie-invariant als hij linkscontinu is en als zijn contourlijn C0

continu is.

Contourlijnen alleen verschaffen ons echter onvoldoende inzicht in de meetkundige structuur
van rotatie-invariante driehoeksnormen. De kompaan en zooms leveren de nodige bijkomende
informatie om rotatie-invariante driehoeksnormen verder te ontleden en te (re)construeren.

De kompaan

De kompaan Q van een stijgende [0, 1]2 → [0, 1] functie F is de [0, 1]2 → [0, 1] functie gedefinieerd
door

Q(x, y) = sup{t ∈ [0, 1] | Ct(x) 6 y} .

Er geldt dat Q(x, y) = inf{F (x, u) | u ∈ ]y, 1]}. Het is duidelijk dat Q(x, y) = F (x, y) wanneer
F (x, •) rechtscontinu is in y ∈ [0, 1[. Elke linkscontinue, stijgende [0, 1]2 → [0, 1] functie F die 0
als absorberend element bezit, wordt volledig bepaald door haar kompaan Q.
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Zooms

Een stijgende [0, 1]2 → [0, 1] functie F kan eveneens beschreven worden a.d.h.v. haar geas-
socieerde verzameling zooms. Neem willekeurig (a, b) ∈ [0, 1]2 zodat a < b en F (b, b) 6 b.
Beschouw een [a, b] → [0, 1] isomorfisme σ. De (a, b)-zoom F (a,b) van F is de [0, 1]2 → [0, 1]
functie gedefinieerd door

F (a,b)(x, y) = σ
[
max

(
a, F (σ−1[x], σ−1[y])

)]
.

Indien b = 1, dan noteren we F (a,1) kortweg als F a, de a-zoom van F . De randvoorwaarde
F (1, 1) 6 1 is dan steeds voldaan zodat de a-zoom van F gedefinieerd is voor alle a < 1. De
grafiek van F (a,b) wordt volledig bepaald door de herschaling van de verzameling {(x, y, F (x, y)) |
(x, y) ∈ [a, b]2 ∧ a < F (x, y)} (zoom in) naar de eenheidskubus (zoom out).

Zooms zijn uitermate geschikt om stijgende functies F te bestuderen die voor alle (x, y) ∈
[0, 1]2 voldoen aan F (x, y) 6 min(x, y). De voorwaarde F (b, b) 6 b is in dit geval triviaal
voldaan. Driehoeksnormen en subdriehoeksnormen zijn voorbeelden van dergelijke functies.
Een subdriehoeksnorm F is een [0, 1]2 → [0, 1] functie die op het neutraal element na alle
uninormeigenschappen bezit en waarvoor F (x, y) 6 min(x, y), voor alle (x, y) ∈ [0, 1]2 [47].

Stelling Beschouw (a, b) ∈ [0, 1]2 zodat a < b. De (a, b)-zoom van een subdriehoeksnorm is
steeds een subdriehoeksnorm en de a-zoom van een driehoeksnorm is steeds een driehoeksnorm.

Contourlijnen, de kompaan en zooms maken het mogelijk de rotatie en rotatie-annihilatie
constructie van Jenei [47] uiterst compact te herformuleren. Daarenboven volgen de decom-
postiemethodes van Jenei [45] zo goed als rechtstreeks uit onze resultaten.

B.7 Decompositie van rotatie-invariante driehoeksnormen

Ondanks alle inspanningen kunnen we de klasse der rotatie-invariante driehoeksnormen nog niet
ten volle doorgronden. De bestaande decomposities [45] zijn enkel toepasbaar op enkele heel
specieke rotatie-invariante driehoeksnormen. Driehoeksnormen zoals de  Lukasiewicz driehoeks-
norm vallen volledig buiten dit kader. Door het domein van een rotatie-invariante driehoeks-
norm T op een alternatieve en meer natuurlijke manier te partitioneren, is het echter mogelijk T
zo goed als volledig te beschrijven op basis van zijn contourlijn C0 en zijn β-zoom T β . Hierbij
is β het unieke fixpunt van C0.

Zij T een rotatie-invariante driehoeksnorm en β het unieke fixpunt van C0. We partitioneren
het gebied D = {(x, y) ∈ [0, 1]2 | C0(x) < y} in vier deelgebieden:

DI = {(x, y) ∈ ]β, 1]2 | Cβ(x) < y} ,
DII = {(x, y) ∈ ]0, β]× ]β, 1] | C0(x) < y} ,
DIII = {(x, y) ∈ ]β, 1]× ]0, β] | C0(x) < y} ,
DIV = {(x, y) ∈ ]β, 1[2 | y 6 Cβ(x)} .
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Stelling Zij σ een willekeurig [β, 1] → [0, 1] isomorfisme. Als de contourlijn Cβ van T con-

tinu is over ]β, 1], dan bestaat er een linkscontinue driehoeksnorm T̂ (met contourlijnen Ĉa en
kompaan Q̂) waarvoor Ĉ0 continu is op ]0, 1]en

T (x, y) =





σ−1
[
T̂ (σ[x], σ[y])

]
, als (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, als (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, als (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂
(
Ĉ0(σ[x]), Ĉ0(σ[y])

)])
, als (x, y) ∈ DIV ,

0, als (x, y) 6∈ D .

In het bijzonder is T̂ = T β en is Q̂ commutatief op [0, α̂[2, waarbij α̂ = inf{t ∈ [0, 1] | Ĉ0(t) = 0}.

Het isomorfisme σ in de voorgaande stelling tevens gebruikt moet worden om T β te construeren.
Voorts is onze decompositie over het gebied [0, 1] \ DIV geldig voor elke rotatie-invariante drie-
hoeksnorm T . De invulling van het gebied DIV ligt echter niet altijd op een unieke wijze vast.

Meetkundig gezien is T |DI
als het ware een herschaalde versie van T β |Dβ , met Dβ = {(x, y) ∈

[0, 1]2 | 0 < T β(x, y)}. T |DII
bepaalt men door T |DI

over een hoek van 120 graden naar links
te roteren rond de as {(x, y, z) ∈ [0, 1]2 | y = x ∧ z = 1 − x}. Op een gelijkaardige wijze
wordt T |DIII

bepaald door een rechtse rotatie van T |DI
over een hoek van 120 graden rond

dezelfde as. De invulling van het gebied DIV wordt in de bovenstaande stelling verkregen door
T |DI∩ ]β,σ−1(α̂)]2 180 graden voorwaarts te roteren rond de as {(x, y, z) ∈ [0, 1]3 | x + y = β +
σ−1[α̂] ∧ z = β}. Indien Cβ continu is, dan geldt er dat α̂ = 1. In sommige gevallen moeten de
bovenstaande rotaties bijkomend vervormd worden om in de desbetreffende gebieden te passen.
De contourlijnen C0 en Ĉ0 zijn verantwoordelijk voor deze vervormingen.

B.8 Drievoudige rotatie

Tot slot hebben we onze decompositiemethode omgezet naar een handige constructietool. Deze
tool omvat grotendeels de rotatie- en rotatie-annihilatiemethode van Jenei [47]. De opzet is als
volgt:

• T : een willekeurige linkscontinue driehoeksnorm (met contourlijnen Ca en kompaan Q)
waarvoor C0 continu is over ]0, 1] en Q commutatief is over [0, α[2, met α = inf{t ∈ [0, 1] |
C0(t) = 0};

• N : een willekeurige involutieve negator met fixpunt β;
• σ: een willekeurig [β, 1] → [0, 1] isomorfisme;
• M : de dalende [0, 1] → [0, 1] functie gedefinieerd door xM = 1 als x ∈ [0, β[ en door
xM = σ−1[C0(σ[x])] als x ∈ [β, 1];
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• D: het gebied {(x, y) ∈ [0, 1]2 | xN < y} = DI ∪ DII ∪ DIII ∪ DIV waarbij

DI = {(x, y) ∈ ]β, 1]2 | xM < y} ,
DII = {(x, y) ∈ ]0, β]× ]β, 1] | xN < y} ,
DIII = {(x, y) ∈ ]β, 1]× ]0, β] | xN < y} ,
DIV = {(x, y) ∈ ]β, 1[2 | y 6 xM} .

Stelling De [0, 1]2 → [0, 1] functie R3(T,N) gedefinieerd door

R3(T,N)(x, y) =





σ−1 [T (σ[x], σ[y])] , als (x, y) ∈ DI ,
(
σ−1

[
Cσ[xN ](σ[y])

])N
, als (x, y) ∈ DII ,

(
σ−1

[
Cσ[yN ](σ[x])

])N
, als (x, y) ∈ DIII ,

(
σ−1

[
Q
(
C0(σ[x]), C0(σ[y])

)])N
, als (x, y) ∈ DIV ,

0, als (x, y) 6∈ D ,

is een rotatie-invariante driehoeksnorm. Daarenboven is R3(T,N) de enige linkscontinue drie-
hoeksnorm met N als contourlijn (a = 0) en waarvoor R3(T,N)β = T .

Net als bij de decompositie worden R3(T,N)|DII
, R3(T,N)|DIII

en R3(T,N)|DIV
bepaald door de

(vervormde) linkse, rechtse en voorwaartse rotatie van R3(T,N)|DI
. Merk op dat R3(T,N)|DI

een herschaling is van het ‘niet-nul-deel’ van T . Gëınspireerd door deze meetkundige observaties,
hebben we R3(T,N) de drievoudige rotatie van T gebaseerd op N genoemd. De constructieme-
thode op zich heeft de naam drievoudige rotatiemethode gekregen. Deze methode levert slechts
een driehoeksnorm op indien de kompaan Q van T commutatief is over [0, α[2.

B.9 Vervaagde normaalvormen

In Sectie B10 gebruiken we onze kennis betreffende de structuur van rotatie-invariante driehoek-
snormen om een stelsel functionele vergelijkingen op te lossen. De huidige sectie schetst het kader
waarin het stelsel functionele vergelijkingen gesitueerd kan worden.

Elke {0, 1}n → {0, 1} functie F in de Boolese algebra ({0, 1},∨,∧,′ , 0, 1) wordt op een unieke
wijze gerepresenteerd door haar disjunctieve (DB(F )) en conjunctieve (CB(F )) normaalvorm.
De vaaglogica is grotendeels gebaseerd op het gebruik van driehoeksnormen en driehoeksconor-
men (driehoeksconormen zijn uninormen die 0 als neutraal element hebben). De Boolese nor-
maalvormen van F kunnen rechttoe, rechtaan vervaagd worden door ∧ te vervangen door een
driehoeksnorm T , ∨ door een driehoeksconorm S en ′ door een involutieve negator N . We
verkrijgen zo twee [0, 1]n → [0, 1] functies: de disjunctieve (DF (F )) en conjunctieve (CF (F ))
vervaagde normaalvorm van F [88, 89]. Deze vervaagde normaalvormen kunnen echter meestal
niet gëınterpreteerd worden als echte normaalvormen in een veralgemeende logica of algebra.
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Desalniettemin worden ze dikwijls gebruikt als een soort van standaard vervagingsprocedure
voor scherpe concepten.

Het onderzoek betreffende de vervaagde normaalvormen richt(te) zich hoofdzakelijk op de on-
derlinge verbanden tussen DF (F ) and CF (F ). Bilgiç [5] heeft aangetoond dat DF (F ) nooit met
CF (F ) kan samenvallen voor alle {0, 1}2 → {0, 1} functies F . Türkşen [88, 89] heeft dan weer
ontdekt dat sommige tripletten (T, S,N) verzekeren dat

DF (F )(x, y) 6 CF (F )(x, y) ,

voor alle {0, 1}2 → {0, 1} functies F en alle (x, y) ∈ [0, 1]2. Deze laatste eigenschap noteren we
kortweg als DF 62 CF . We gebruiken DF 6n CF om uit te drukken dat DF (F )(~x) 6 CF (F )(~x)
geldig is voor alle {0, 1}n → {0, 1} functies F en alle ~x ∈ [0, 1]n.

Stelling Beschouw een automorfisme φ. De ongelijkheid DF 6n CF , met n ∈ N0, geldt voor
een triplet (T, S,N) als en slechts als ze geldt voor het triplet (Tφ, Sφ, Nφ).

Stelling Als er een n ∈ N0 bestaat waarvoor DF 6n CF geldt, dan geldt ook DF 6m CF voor
elke m ∈ N0 waarvoor m 6 n.

De ongelijkheid DF 6 CF drukt uit dat DF 6n CF geldt voor alle n ∈ N0. In de volgende
propositie onderzoeken we DF 6 CF voor tripletten gebaseerd op één van de volgende driehoek-
snormen: het minimum TM(x, y) = min(x, y), het product TP(x, y) = x y en de  Lukasiewicz
driehoeksnorm TL(x, y) = max(x + y − 1, 0). De corresponderende driehoeksconormen zijn het
maximum SM(x, y) = max(x, y), de probabilistische som SP(x, y) = x+y−x y en de  Lukasiewicz
driehoeksconorm SL(x, y) = min(x+ y, 1).

Propositie Beschouw een automorfisme φ. De ongelijkheid DF 6 CF geldt voor alle tripletten
(TM, SM,Nφ), ((TP)φ, (SP)φ,Nφ) en ((TL)φ, (SL)φ,Nφ).

De ongelijkheid DF 6 CF is evenwel niet algemeen geldig. We hebben aangetoond dat zelfs
getransformeerde tripletten van de vorm (TP, (SP)N◦Nφ ,Nφ) en (TL, (SL)N◦Nφ ,Nφ) niet garan-
deren dat DF 62 CF .

B.10 Rotatie-invariante driehoeksnormen als oplossingen van
een stelsel functionele vergelijkingen

Door DF 6n CF te onderzoeken, hebben we ontdekt dat het verschil tussen CF (F ) en DF (F )
onafhankelijk is van de {0, 1}n → {0, 1} functie F indien we het triplet (TL, SL,N ) gebruiken bij
de berekening van de vervaagde normaalvormen. Er bestaan 2(2n) verschillende {0, 1}n → {0, 1}
functies F en bijgevolg ook evenveel uitdrukkingen voor CF (F )−DF (F ). Om dus die tripletten
(T, S,N) te bepalen waarvoor CF (F )−DF (F ) onafhankelijk wordt van F , moeten we het stelsel
functionele vergelijkingen oplossen dat ontstaat door all uitdrukkingen voor CF (F )−DF (F ) aan
elkaar gelijk te stellen.
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Stelling Beschouw een triplet (T, S,N) en onderstel β het fixpunt van de involutieve nega-
tor N . Zij n ∈ N, n > 1. Dan is CF (F ) −DF (F ) onafhankelijk van de {0, 1}n → {0, 1} func-
tie F als en slechts als de onderstaande uitdrukkingen voor alle ~x ∈ [0, β]n, x1 6 x2 6 ... 6 xn,
aan elkaar gelijk zijn

S(x1, . . . , xn−1, xn) − T (xN1 , . . . , x
N
n−1, xn) ,

S(x1, . . . , xn−1, x
N
n ) − T (xN1 , . . . , x

N
n−1, x

N
n ) ,

T
(
S(x1, . . . , xn−1, xn), S(x1, . . . , xn−1, x

N
n )
)
,

1 − S
(
T (xN1 , . . . , x

N
n−1, x

N
n ), T (xN1 , . . . , x

N
n−1, xn)

)
.

Indien we werken met een De Morgan triplet (T, S,N) (i.e. S = TN ) waarbij N = N , dan
reduceert het stelsel functionele vergelijkingen zelfs tot één enkele functionele vergelijking.

Stelling Beschouw een De Morgan triplet (T, S,N ). Zij n ∈ N, n > 1. Dan is CF (F )−DF (F )
onafhankelijk van de {0, 1}n → {0, 1} functie F als en slechts als

S
(
T (xN , yN ), T (xN , y)

)
= T (xN , y) + T (xN , yN ) ,

voor alle (x, y) ∈ [0, 1
2 ]2, x 6 y.

Om het oorspronkelijke stelsel functionele vergelijkingen te kunnen oplossen zijn we genoodza-
akt om op T , S en N bijkomende continüıteitsvoorwaarden op te leggen. In het bijzonder
beschouwen we enkel De Morgan tripletten (T, S,N) die gebaseerd zijn op een linkscontinue
driehoeksnorm T en een involutieve negator N . Daarenboven veronderstellen we dat de partiële
afbeeldingen T (•, β) continu zijn over ]β, 1]. Indien C0 = N , dan vereist deze laatste restrictie
dat T d.m.v. de drievoudige rotatiemethode geconstrueerd moet zijn.

Stelling Beschouw een De Morgan triplet (T, S,N) dat gebaseerd is op een linkscontinue drie-
hoeksnorm T en een involutieve negator N met fixpunt β. Zij n ∈ N, n > 1. Als T (•, β) continu
is over [β, 1], dan is CF (F ) − DF (F ) onafhankelijk van de {0, 1}n → {0, 1} functie F als en
slechts als (T, S,N) = (TL, SL,N ).

Voor 0 < Q(β, β) (i.e. T (•, β) is discontinu in β) hebben we aangetoond dat noodzakelijkerwijze
Q(β, β) = β. Echter, zonder bijkomende voorwaarden was het vooralsnog niet mogelijk om het
stelsel functionele vergelijkingen op te lossen.

Stelling Beschouw een De Morgan triplet (T, S,N) dat gebaseerd is op een linkscontinue drie-
hoeksnorm T en een involutieve negator N met fixpunt β. Zij n ∈ N, n > 1. Als 0 < Q(β, β)
en de functies T (•, x) zijn continu over ]xN , 1] als x ∈ ]0, β] en over [x, 1] als x ∈ ]β, 1[,
dan is CF (F ) − DF (F ) onafhankelijk van de {0, 1}n → {0, 1} functie F als en slechts als
(T, S,N) = (Tλ, Sλ,N ), met λ ∈ [0, 1

2 [.

De driehoeksnorm Tλ, met λ ∈ [0, 1
2 [,wordt gedefinieerd als de drievoudige rotatie R3((〈1 −

2λ, 1, TL〉),N ) van de ordinale som (〈1 − 2λ, 1, TL〉). Deze ordinale som (〈1 − 2λ, 1, TL〉) is op
[1 − 2λ, 1]2 gedefinieerd als de lineaire herschaling van TL. Elders valt (〈1 − 2λ, 1, TL〉) samen
met het minimum. Merk op dat er nog andere tripletten bestaan die het stelsel functionele
vergelijkingen oplossen.
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[5] T. Bilgiç, Interval-valued preference structures, European Journal of Operational Research
105 (1998), 162–183.

[6] G. Birkhoff, Lattice Theory, 3rd ed., AMS Colloquium Publications, Vol. 25, American
Mathematical Society, Providence, Rhode Island, 1967.
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maximum operator, 56, 74
minimum operator, 56, 74
multiset, 163
mutual position, 36

negator, 29
neutral agg. op., 47
neutral element, 73
nilpotent minimum, 74
normal form

conjunctive, 154, 160
disjunctive, 154, 160

ordinal sum, 86, 154
OWA operator, 47

partial function, 50
partial order, 18
partially ordered set, 18
portation law, 87
probabilistic sum, 74
pseudo-inverse, 20

quasi-arithmetic mean, 47

reciprocal agg. op., 47
reciprocal relation, 45
reflexivity, 18
residual coimplicator, 75
residual implicator, 75
residual negator, 87
right continuity, 61
rotation invariance, 96, 97

self quasi-inverse property, 96
self-dual agg. op., 47

shift invariance, 56
preserving, 57

skeleton function, 98
stable function, 46, 56
standard negator, 13
strict negator, 14
sub-involutive function, 78
summand, 86, 154
super-involutive function, 78
symmetric sum, 48
symmetrical pair, 35

t-conorm, 74
t-norm, 74

annihilation, 102
Archimedean, 87
decomposable, 98
diagonal, 87, 174
rotation construction, 102
rotation invariant, 98
rotation-annihilation construction, 102
totally decomposable, 98
triple rotation method, 140

t-subnorm, 94
transitivity, 18

uninorm, 73

weak negation, 78
weighted mean, 47

zero divisor, 97


